1
|
Zhou Z, Zhang R, Zhang Y, Xu Y, Wang R, Chen S, Lv Y, Chen Y, Ren Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Ba Y, Liu S, Han X, Liu Z. Circadian disruption in cancer hallmarks: Novel insight into the molecular mechanisms of tumorigenesis and cancer treatment. Cancer Lett 2024; 604:217273. [PMID: 39306230 DOI: 10.1016/j.canlet.2024.217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Circadian rhythms are 24-h rhythms governing temporal organization of behavior and physiology generated by molecular clocks composed of autoregulatory transcription-translation feedback loops (TTFLs). Disruption of circadian rhythms leads to a spectrum of pathologies, including cancer by triggering or being involved in different hallmarks. Clock control of phenotypic plasticity involved in tumorigenesis operates in aberrant dedifferentiating to progenitor-like cell states, generation of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) events. Circadian rhythms might act as candidates for regulatory mechanisms of cellular senescent and functional determinants of senescence-associated secretory phenotype (SASP). Reciprocal control between clock and epigenetics sheds light on post-transcriptional regulation of circadian rhythms and opens avenues for novel anti-cancer strategies. Additionally, disrupting circadian rhythms influences microbiota communities that could be associated with altered homeostasis contributing to cancer development. Herein, we summarize recent advances in support of the nexus between disruptions of circadian rhythms and cancer hallmarks of new dimensions, thus providing novel perspectives on potentially effective treatment approaches for cancer management.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Pediatrics, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Liu P, Nadeef S, Serag MF, Paytuví-Gallart A, Abadi M, Della Valle F, Radío S, Roda X, Dilmé Capó J, Adroub S, Hosny El Said N, Fallatah B, Celii M, Messa GM, Wang M, Li M, Tognini P, Aguilar-Arnal L, Habuchi S, Masri S, Sassone-Corsi P, Orlando V. PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability. EMBO J 2024:10.1038/s44318-024-00267-2. [PMID: 39433902 DOI: 10.1038/s44318-024-00267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.
Collapse
Affiliation(s)
- Peng Liu
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maged F Serag
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Maram Abadi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Institute of Science, San Diego, CA, 92121, USA
| | - Santiago Radío
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Xènia Roda
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Jaïr Dilmé Capó
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nadine Hosny El Said
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gian Marco Messa
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Paola Tognini
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, 56126, Italy
| | - Lorena Aguilar-Arnal
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Mexico City, 04510, Mexico
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Selma Masri
- University of California Irvine, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, Irvine, CA, 92697, USA
| | - Paolo Sassone-Corsi
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Rajan PK, Udoh UAS, Finley R, Pierre SV, Sanabria J. The Biological Clock of Liver Metabolism in Metabolic Dysfunction-Associated Steatohepatitis Progression to Hepatocellular Carcinoma. Biomedicines 2024; 12:1961. [PMID: 39335475 PMCID: PMC11428469 DOI: 10.3390/biomedicines12091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are endogenous behavioral or physiological cycles that are driven by a daily biological clock that persists in the absence of geophysical or environmental temporal cues. Circadian rhythm-related genes code for clock proteins that rise and fall in rhythmic patterns driving biochemical signals of biological processes from metabolism to physiology and behavior. Clock proteins have a pivotal role in liver metabolism and homeostasis, and their disturbances are implicated in various liver disease processes. Encoded genes play critical roles in the initiation and progression of metabolic dysfunction-associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC) and their proteins may become diagnostic markers as well as therapeutic targets. Understanding molecular and metabolic mechanisms underlying circadian rhythms will aid in therapeutic interventions and may have broader clinical applications. The present review provides an overview of the role of the liver's circadian rhythm in metabolic processes in health and disease, emphasizing MASH progression and the oncogenic associations that lead to HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Utibe-Abasi S Udoh
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Robert Finley
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
| | - Juan Sanabria
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
- Department of Nutrition and Metabolomic Core Facility, School of Medicine, Case Western Reserve University, Cleveland, OH 44100, USA
| |
Collapse
|
4
|
Lv P, Zhao Z, Hirano Y, Du J. The CoREST complex regulates multiple histone modifications temporal-specifically in clock neurons. Open Biol 2024; 14:230355. [PMID: 38981515 DOI: 10.1098/rsob.230355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024] Open
Abstract
Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yukinori Hirano
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
7
|
Morena da Silva F, Esser KA, Murach KA, Greene NP. Inflammation o'clock: interactions of circadian rhythms with inflammation-induced skeletal muscle atrophy. J Physiol 2023:10.1113/JP284808. [PMID: 37563881 PMCID: PMC10858298 DOI: 10.1113/jp284808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/β, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Karyn A Esser
- Department of Physiology and Ageing, College of Medicine, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Xu W, Li X. Regulation of Pol II Pausing during Daily Gene Transcription in Mouse Liver. BIOLOGY 2023; 12:1107. [PMID: 37626993 PMCID: PMC10452108 DOI: 10.3390/biology12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Cell autonomous circadian oscillation is present in central and various peripheral tissues. The intrinsic tissue clock and various extrinsic cues drive gene expression rhythms. Transcription regulation is thought to be the main driving force for gene rhythms. However, how transcription rhythms arise remains to be fully characterized due to the fact that transcription is regulated at multiple steps. In particular, Pol II recruitment, pause release, and premature transcription termination are critical regulatory steps that determine the status of Pol II pausing and transcription output near the transcription start site (TSS) of the promoter. Recently, we showed that Pol II pausing exhibits genome-wide changes during daily transcription in mouse liver. In this article, we review historical as well as recent findings on the regulation of transcription rhythms by the circadian clock and other transcription factors, and the potential limitations of those results in explaining rhythmic transcription at the TSS. We then discuss our results on the genome-wide characteristics of daily changes in Pol II pausing, the possible regulatory mechanisms involved, and their relevance to future research on circadian transcription regulation.
Collapse
Affiliation(s)
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
9
|
Bafna A, Banks G, Hastings MH, Nolan PM. Dynamic modulation of genomic enhancer elements in the suprachiasmatic nucleus, the site of the mammalian circadian clock. Genome Res 2023; 33:673-688. [PMID: 37156620 PMCID: PMC10317116 DOI: 10.1101/gr.277581.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, synchronizes and maintains daily cellular and physiological rhythms across the body, in accordance with environmental and visceral cues. Consequently, the systematic regulation of spatiotemporal gene transcription in the SCN is vital for daily timekeeping. So far, the regulatory elements assisting circadian gene transcription have only been studied in peripheral tissues, lacking the critical neuronal dimension intrinsic to the role of the SCN as central brain pacemaker. By using histone-ChIP-seq, we identified SCN-enriched gene regulatory elements that associated with temporal gene expression. Based on tissue-specific H3K27ac and H3K4me3 marks, we successfully produced the first-ever SCN gene-regulatory map. We found that a large majority of SCN enhancers not only show robust 24-h rhythmic modulation in H3K27ac occupancy, peaking at distinct times of day, but also possess canonical E-box (CACGTG) motifs potentially influencing downstream cycling gene expression. To establish enhancer-gene relationships in the SCN, we conducted directional RNA-seq at six distinct times across the day and night, and studied the association between dynamically changing histone acetylation and gene transcript levels. About 35% of the cycling H3K27ac sites were found adjacent to rhythmic gene transcripts, often preceding the rise in mRNA levels. We also noted that enhancers encompass noncoding, actively transcribing enhancer RNAs (eRNAs) in the SCN, which in turn oscillate, along with cyclic histone acetylation, and correlate with rhythmic gene transcription. Taken together, these findings shed light on genome-wide pretranscriptional regulation operative in the central clock that confers its precise and robust oscillation necessary to orchestrate daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| | - Gareth Banks
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Patrick M Nolan
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| |
Collapse
|
10
|
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188900. [PMID: 37105413 DOI: 10.1016/j.bbcan.2023.188900] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
The molecular machinery of the circadian clock regulates the expression of many genes and processes in the organism, allowing the adaptation of cellular activities to the daily light-dark cycles. Disruption of the circadian rhythm can lead to various pathologies, including cancer. Thus, disturbance of the normal circadian clock at both genetic and environmental levels has been described as an independent risk factor for cancer. In addition, researchers have proposed that circadian genes may have a tissue-dependent and/or context-dependent role in tumorigenesis and may function both as tumor suppressors and oncogenes. Finally, circadian clock core genes may trigger or at least be involved in different hallmarks of cancer. Hence, expanding the knowledge of the molecular basis of the circadian clock would be helpful to identify new prognostic markers of tumorigenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sara M Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Amiama-Roig
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - José R Blanco
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
11
|
Stangherlin A. Ion dynamics and the regulation of circadian cellular physiology. Am J Physiol Cell Physiol 2023; 324:C632-C643. [PMID: 36689675 DOI: 10.1152/ajpcell.00378.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Obodo D, Outland EH, Hughey JJ. Sex Inclusion in Transcriptome Studies of Daily Rhythms. J Biol Rhythms 2023; 38:3-14. [PMID: 36419398 PMCID: PMC9903005 DOI: 10.1177/07487304221134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
13
|
Kelliher CM, Stevenson EL, Loros JJ, Dunlap JC. Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability. PLoS Biol 2023; 21:e3001961. [PMID: 36603054 PMCID: PMC9848017 DOI: 10.1371/journal.pbio.3001961] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/18/2023] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Compensation is a defining principle of a true circadian clock, where its approximately 24-hour period length is relatively unchanged across environmental conditions. Known compensation effectors directly regulate core clock factors to buffer the oscillator's period length from variables in the environment. Temperature Compensation mechanisms have been experimentally addressed across circadian model systems, but much less is known about the related process of Nutritional Compensation, where circadian period length is maintained across physiologically relevant nutrient levels. Using the filamentous fungus Neurospora crassa, we performed a genetic screen under glucose and amino acid starvation conditions to identify new regulators of Nutritional Compensation. Our screen uncovered 16 novel mutants, and together with 4 mutants characterized in prior work, a model emerges where Nutritional Compensation of the fungal clock is achieved at the levels of transcription, chromatin regulation, and mRNA stability. However, eukaryotic circadian Nutritional Compensation is completely unstudied outside of Neurospora. To test for conservation in cultured human cells, we selected top hits from our fungal genetic screen, performed siRNA knockdown experiments of the mammalian orthologs, and characterized the cell lines with respect to compensation. We find that the wild-type mammalian clock is also compensated across a large range of external glucose concentrations, as observed in Neurospora, and that knocking down the mammalian orthologs of the Neurospora compensation-associated genes CPSF6 or SETD2 in human cells also results in nutrient-dependent period length changes. We conclude that, like Temperature Compensation, Nutritional Compensation is a conserved circadian process in fungal and mammalian clocks and that it may share common molecular determinants.
Collapse
Affiliation(s)
- Christina M. Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Elizabeth-Lauren Stevenson
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
14
|
Colombini B, Dinu M, Murgo E, Lotti S, Tarquini R, Sofi F, Mazzoccoli G. Ageing and Low-Level Chronic Inflammation: The Role of the Biological Clock. Antioxidants (Basel) 2022; 11:2228. [PMID: 36421414 PMCID: PMC9686908 DOI: 10.3390/antiox11112228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 09/01/2023] Open
Abstract
Ageing is a multifactorial physiological manifestation that occurs inexorably and gradually in all forms of life. This process is linked to the decay of homeostasis due to the progressive decrease in the reparative and regenerative capacity of tissues and organs, with reduced physiological reserve in response to stress. Ageing is closely related to oxidative damage and involves immunosenescence and tissue impairment or metabolic imbalances that trigger inflammation and inflammasome formation. One of the main ageing-related alterations is the dysregulation of the immune response, which results in chronic low-level, systemic inflammation, termed "inflammaging". Genetic and epigenetic changes, as well as environmental factors, promote and/or modulate the mechanisms of ageing at the molecular, cellular, organ, and system levels. Most of these mechanisms are characterized by time-dependent patterns of variation driven by the biological clock. In this review, we describe the involvement of ageing-related processes with inflammation in relation to the functioning of the biological clock and the mechanisms operating this intricate interaction.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
15
|
Baxter M, Poolman T, Cunningham P, Hunter L, Voronkov M, Kitchen GB, Goosey L, Begley N, Kay D, Hespe A, Maidstone R, Loudon ASI, Ray DW. Circadian clock function does not require the histone methyltransferase MLL3. FASEB J 2022; 36:e22356. [PMID: 35704036 PMCID: PMC9328146 DOI: 10.1096/fj.202200368r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
The circadian clock controls the physiological function of tissues through the regulation of thousands of genes in a cell-type-specific manner. The core cellular circadian clock is a transcription-translation negative feedback loop, which can recruit epigenetic regulators to facilitate temporal control of gene expression. Histone methyltransferase, mixed lineage leukemia gene 3 (MLL3) was reported to be required for the maintenance of circadian oscillations in cultured cells. Here, we test the role of MLL3 in circadian organization in whole animals. Using mice expressing catalytically inactive MLL3, we show that MLL3 methyltransferase activity is in fact not required for circadian oscillations in vitro in a range of tissues, nor for the maintenance of circadian behavioral rhythms in vivo. In contrast to a previous report, loss of MLL3-dependent methylation did not affect the global levels of H3K4 methylation in liver, indicating substantial compensation from other methyltransferases. Furthermore, we found little evidence of genomic repositioning of H3K4me3 marks. We did, however, observe repositioning of H3K4me1 from intronic regions to intergenic regions and gene promoters; however, there were no changes in H3K4me1 mark abundance around core circadian clock genes. Output functions of the circadian clock, such as control of inflammation, were largely intact in MLL3-methyltransferase-deficient mice, although some gene-specific changes were observed, with sexually dimorphic loss of circadian regulation of specific cytokines. Taken together, these observations indicate that MLL3-directed histone methylation is not essential for core circadian clock function; however, it may influence the inflammatory response.
Collapse
Affiliation(s)
- Matthew Baxter
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Toryn Poolman
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Peter Cunningham
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Louise Hunter
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Maria Voronkov
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Gareth B. Kitchen
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Laurence Goosey
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nicola Begley
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Danielle Kay
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Abby Hespe
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Robert Maidstone
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Andrew S. I. Loudon
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - David W. Ray
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Fukumoto K, Ito K, Saer B, Taylor G, Ye S, Yamano M, Toriba Y, Hayes A, Okamura H, Fustin JM. Excess S-adenosylmethionine inhibits methylation via catabolism to adenine. Commun Biol 2022; 5:313. [PMID: 35383287 PMCID: PMC8983724 DOI: 10.1038/s42003-022-03280-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
The global dietary supplement market is valued at over USD 100 billion. One popular dietary supplement, S-adenosylmethionine, is marketed to improve joints, liver health and emotional well-being in the US since 1999, and has been a prescription drug in Europe to treat depression and arthritis since 1975, but recent studies questioned its efficacy. In our body, S-adenosylmethionine is critical for the methylation of nucleic acids, proteins and many other targets. The marketing of SAM implies that more S-adenosylmethionine is better since it would stimulate methylations and improve health. Previously, we have shown that methylation reactions regulate biological rhythms in many organisms. Here, using biological rhythms to assess the effects of exogenous S-adenosylmethionine, we reveal that excess S-adenosylmethionine disrupts rhythms and, rather than promoting methylation, is catabolized to adenine and methylthioadenosine, toxic methylation inhibitors. These findings further our understanding of methyl metabolism and question the safety of S-adenosylmethionine as a supplement. S-adenosylmethionine (SAM) is a widely available dietary supplement. Exogenous SAM is catabolized to adenine, an inhibitor of adenosylhomocysteinase, leading to widespread methylation inhibition and disruption of circadian rhythms in vitro and in mice.
Collapse
Affiliation(s)
- Kazuki Fukumoto
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan.,Kokando Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Kakeru Ito
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan
| | - Benjamin Saer
- The University of Manchester, Centre for Biological Timing, Manchester, UK
| | - George Taylor
- The University of Manchester, BioMS Core Facility, Manchester, UK
| | - Shiqi Ye
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan.,Cancer Epigenetics Laboratory, Francis Crick Institute, Cambridge, UK
| | - Mayu Yamano
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan
| | - Yuki Toriba
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan.,Master's Programme in Molecular Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrew Hayes
- The University of Manchester, Genomics Technologies Core Facility, Manchester, UK
| | - Hitoshi Okamura
- Kyoto University, Graduate School of Medicine, Division of Physiology and Neurobiology, Kyoto, Japan.
| | - Jean-Michel Fustin
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan. .,The University of Manchester, Centre for Biological Timing, Manchester, UK.
| |
Collapse
|
17
|
Fustin JM. Methyl Metabolism and the Clock: An Ancient Story With New Perspectives. J Biol Rhythms 2022; 37:235-248. [PMID: 35382619 PMCID: PMC9160962 DOI: 10.1177/07487304221083507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation, that is, the transfer or synthesis of a –CH3 group onto a target molecule, is a pervasive biochemical modification found in organisms from bacteria to humans. In mammals, a complex metabolic pathway powered by the essential nutrients vitamin B9 and B12, methionine and choline, synthesizes S-adenosylmethionine, the methyl donor in the methylation of nucleic acids, proteins, fatty acids, and small molecules by over 200 substrate-specific methyltransferases described so far in humans. Methylations not only play a key role in scenarios for the origin and evolution of life, but they remain essential for the development and physiology of organisms alive today, and methylation deficiencies contribute to the etiology of many pathologies. The methylation of histones and DNA is important for circadian rhythms in many organisms, and global inhibition of methyl metabolism similarly affects biological rhythms in prokaryotes and eukaryotes. These observations, together with various pieces of evidence scattered in the literature on circadian gene expression and metabolism, indicate a close mutual interdependence between biological rhythms and methyl metabolism that may originate from prebiotic chemistry. This perspective first proposes an abiogenetic scenario for rhythmic methylations and then outlines mammalian methyl metabolism, before reanalyzing previously published data to draw a tentative map of its profound connections with the circadian clock.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Centre for Biological Timing, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Kinouchi K, Miyashita K, Itoh H. Chromatin Immunoprecipitation and Circadian Rhythms. Methods Mol Biol 2022; 2482:341-351. [PMID: 35610438 DOI: 10.1007/978-1-0716-2249-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organisms exhibit daily changes of physiology and behavior to exert homeostatic adaptations to day-night cycles. The cyclic fluctuation also takes place at transcriptional levels, giving rise to rhythmic gene expression. Central to this oscillatory transcription is the core clock machinery which constitutes a circuit of transcriptional-translational feedback and achieves circadian functions accordingly. Chromatin immunoprecipitation provides understanding of such mechanisms that clock and non-clock transcription factors along with co-regulators and chromatin modifications dictate circadian epigenome through cyclic alterations of chromatin structures and molecular functions in a concerted fashion. Besides, innovation of high-throughput sequencing technology has broadened our horizon and renewed perspectives in circadian research. This article summarizes the methodology of a chromatin immunoprecipitation experiment in light of circadian rhythm research.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Zeng A, O'Neill JS. Using ALLIGATORs to Capture Circadian Bioluminescence. Methods Mol Biol 2022; 2482:125-135. [PMID: 35610423 DOI: 10.1007/978-1-0716-2249-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luciferases are a popular tool in circadian biology research as longitudinal reporters of gene expression. Here, we describe a short updated protocol for the use of an Automated Longitudinal Luciferase Imaging Gas and Temperature-Optimized Recorder (ALLIGATOR) to record cellular bioluminescence over many days. The ALLIGATOR has superior capacity and flexibility compared with traditional luminometers that employ photomultiplier tubes (PMTs), with high-throughput capability and spatial resolution. It can be readily adapted to a wide variety of applications, such as different sample types and plate sizes, under a wide range of physiologically relevant conditions.
Collapse
Affiliation(s)
- Aiwei Zeng
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
20
|
The Expression and Function of Circadian Rhythm Genes in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4044606. [PMID: 34697563 PMCID: PMC8541861 DOI: 10.1155/2021/4044606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.
Collapse
|
21
|
Maurya S, Yang W, Tamai M, Zhang Q, Erdmann-Gilmore P, Bystry A, Martins Rodrigues F, Valentine MC, Wong WH, Townsend R, Druley TE. Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics 2021; 17:220-238. [PMID: 34304711 PMCID: PMC8865227 DOI: 10.1080/15592294.2021.1954780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.
Collapse
Affiliation(s)
- Shailendra Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wei Yang
- McDonnell Genome Institute, Genome Technology Access Center, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Minori Tamai
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Qiang Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amelia Bystry
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Mark C Valentine
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wing H Wong
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd E Druley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
22
|
Levine DC, Ramsey KM, Bass J. Circadian NAD(P)(H) cycles in cell metabolism. Semin Cell Dev Biol 2021; 126:15-26. [PMID: 34281771 DOI: 10.1016/j.semcdb.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.
Collapse
Affiliation(s)
- Daniel C Levine
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn M Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
23
|
Sato T, Greco CM. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic Biol Med 2021; 170:50-58. [PMID: 33450380 DOI: 10.1016/j.freeradbiomed.2021.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play a central role in physiological and metabolic processes. This is mostly achieved through rhythmic regulation of myriad genes via dynamic epigenome changes. Accumulating evidence indicates that oxidative stress and redox balance are under circadian control and feedback on the clock system. Circadian perturbations induce oxidative stress accumulation and disturb redox balance. Along with these changes, epigenomic landscape changes are a remarkable hallmark of clock disruption. This review aims to summarize evidence supporting the link between the circadian clock and redox metabolism, focusing on possible connections through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Carolina Magdalen Greco
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
24
|
Rewiring of lactate-IL-1β auto-regulatory loop with Clock-Bmal1: A feed-forward circuit in glioma. Mol Cell Biol 2021; 41:e0044920. [PMID: 34124933 DOI: 10.1128/mcb.00449-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De-synchronized circadian rhythm in tumors is coincident with aberrant inflammation and dysregulated metabolism. As their inter-relationship in cancer etiology is largely unknown, we investigated the link between the three in glioma. Tumor metabolite lactate- mediated increase in pro-inflammatory cytokine IL-1β was concomitant with elevated levels of core circadian regulators Clock and Bmal1. siRNA mediated knockdown of Bmal1 and Clock decreased (i) LDHA and IL-1β levels and (ii) release of lactate and pro-inflammatory cytokines. Lactate mediated deacetylation of Bmal1 and its interaction with Clock, regulate IL-1β levels and vice versa. Site-directed mutagenesis and luciferase reporter assay indicated the functionality of E-box sites on LDHA and IL-1β promoters. ChIP-re-ChIP revealed that lactate-IL-1β crosstalk positively affects co-recruitment of Clock-Bmal1 to these E-box sites. Clock-Bmal1 enrichment was accompanied by decreased H3K9me3, and increased H3K9ac and RNA pol II occupancy. Lactate-IL-1β-Clock (LIC) loop positively regulated expression of genes associated with cell cycle, DNA damage and cytoskeletal organization involved in glioma progression. TCGA data analysis suggested the presence of lactate- IL-1β-crosstalk in other cancers. The responsiveness of stomach and cervical cancer cells to lactate inhibition followed the same trend exhibited by glioma cells. In addition, components of LIC loop were found to be correlated with (i) patient survival, (ii) clinically actionable genes, and (iii) anti-cancer drug sensitivity. Our findings provide evidence for a potential cancer-specific axis wiring of IL-1β and LDHA through Clock -Bmal1, the outcome of which is to fuel an IL-1β-lactate autocrine loop that drives pro-inflammatory and oncogenic signals.
Collapse
|
25
|
Putker M, Wong DCS, Seinkmane E, Rzechorzek NM, Zeng A, Hoyle NP, Chesham JE, Edwards MD, Feeney KA, Fischer R, Peschel N, Chen K, Vanden Oever M, Edgar RS, Selby CP, Sancar A, O’Neill JS. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. EMBO J 2021; 40:e106745. [PMID: 33491228 PMCID: PMC8013833 DOI: 10.15252/embj.2020106745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1δ/ε activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational.
Collapse
Affiliation(s)
| | | | | | | | - Aiwei Zeng
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | | - Mathew D Edwards
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
UCL Sainsbury Wellcome Centre for Neural Circuits and BehaviourLondonUK
| | | | | | | | - Ko‐Fan Chen
- Institute of NeurologyUniversity College LondonLondonUK
- Present address:
Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | | | | | - Christopher P Selby
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Aziz Sancar
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNCUSA
| | | |
Collapse
|
26
|
Zhao Z, Zhao X, He T, Wu X, Lv P, Zhu AJ, Du J. Epigenetic regulator Stuxnet modulates octopamine effect on sleep through a Stuxnet-Polycomb-Octβ2R cascade. EMBO Rep 2021; 22:e47910. [PMID: 33410264 DOI: 10.15252/embr.201947910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
Sleep homeostasis is crucial for sleep regulation. The role of epigenetic regulation in sleep homeostasis is unestablished. Previous studies showed that octopamine is important for sleep homeostasis. However, the regulatory mechanism of octopamine reception in sleep is unknown. In this study, we identify an epigenetic regulatory cascade (Stuxnet-Polycomb-Octβ2R) that modulates the octopamine receptor in Drosophila. We demonstrate that stuxnet positively regulates Octβ2R through repression of Polycomb in the ellipsoid body of the adult fly brain and that Octβ2R is one of the major receptors mediating octopamine function in sleep homeostasis. In response to octopamine, Octβ2R transcription is inhibited as a result of stuxnet downregulation. This feedback through the Stuxnet-Polycomb-Octβ2R cascade is crucial for sleep homeostasis regulation. This study demonstrates a Stuxnet-Polycomb-Octβ2R-mediated epigenetic regulatory mechanism for octopamine reception, thus providing an example of epigenetic regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao He
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyu Wu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Lv
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Alan J Zhu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Greco CM, Cervantes M, Fustin JM, Ito K, Ceglia N, Samad M, Shi J, Koronowski KB, Forne I, Ranjit S, Gaucher J, Kinouchi K, Kojima R, Gratton E, Li W, Baldi P, Imhof A, Okamura H, Sassone-Corsi P. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. SCIENCE ADVANCES 2020; 6:eabc5629. [PMID: 33328229 PMCID: PMC7744083 DOI: 10.1126/sciadv.abc5629] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 05/03/2023]
Abstract
Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.
Collapse
Affiliation(s)
- Carolina Magdalen Greco
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Kakeru Ito
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Nicholas Ceglia
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Jiejun Shi
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Brian Koronowski
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Jonathan Gaucher
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Rika Kojima
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Axel Imhof
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| |
Collapse
|
28
|
Abstract
Circadian rhythms govern a large array of physiological and metabolic functions. Perturbations of the daily cycle have been linked to elevated risk of developing cancer as well as poor prognosis in patients with cancer. Also, expression of core clock genes or proteins is remarkably attenuated particularly in tumours of a higher stage or that are more aggressive, possibly linking the circadian clock to cellular differentiation. Emerging evidence indicates that metabolic control by the circadian clock underpins specific hallmarks of cancer metabolism. Indeed, to support cell proliferation and biomass production, the clock may direct metabolic processes of cancer cells in concert with non-clock transcription factors to control how nutrients and metabolites are utilized in a time-specific manner. We hypothesize that the metabolic switch between differentiation or stemness of cancer may be coupled to the molecular clockwork. Moreover, circadian rhythms of host organisms appear to dictate tumour growth and proliferation. This Review outlines recent discoveries of the interplay between circadian rhythms, proliferative metabolism and cancer, highlighting potential opportunities in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
29
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Zhou S, Dai YM, Zeng XF, Chen HZ. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne) 2020; 11:173. [PMID: 32308644 PMCID: PMC7145977 DOI: 10.3389/fendo.2020.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye, liver, skin, and nervous system contribute significantly to the morbidity and mortality of diabetes. However, whether the lung should be considered a diabetic target organ has been discussed for decades. Accumulating evidence shows that both pulmonary histological changes and functional abnormalities have been observed in diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation, and premature aging convincingly contribute to them. Circadian system and Sirtuins have been well-documented to play important roles in above mechanisms. Circadian rhythms are intrinsic mammalian biological oscillations with a period of near 24 h driven by the circadian clock system. This system plays an important role in the regulation of energy metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins, a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been demonstrated to regulate a series of physiological processes and affect diseases such as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging. In this review, we summarize recent advances in the understanding of the roles of the circadian clock and Sirtuins in regulating cellular processes and highlight the potential interactions of the circadian clock and Sirtuins in the context of diabetic lung.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuang Zhou
| | - Yi-Min Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
31
|
Circadian Clock Regulation of Hepatic Energy Metabolism Regulatory Circuits. BIOLOGY 2019; 8:biology8040079. [PMID: 31635079 PMCID: PMC6956161 DOI: 10.3390/biology8040079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023]
Abstract
The liver is a critical organ of energy metabolism. At least 10% of the liver transcriptome demonstrates rhythmic expression, implying that the circadian clock regulates large programmes of hepatic genes. Here, we review the mechanisms by which this rhythmic regulation is conferred, with a particular focus on the transcription factors whose actions combine to impart liver- and time-specificity to metabolic gene expression.
Collapse
|
32
|
Verlande A, Masri S. Circadian Clocks and Cancer: Timekeeping Governs Cellular Metabolism. Trends Endocrinol Metab 2019; 30:445-458. [PMID: 31155396 PMCID: PMC6679985 DOI: 10.1016/j.tem.2019.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
The circadian clock is a biological mechanism that dictates an array of rhythmic physiological processes. Virtually all cells contain a functional clock whose disruption results in altered timekeeping and detrimental systemic effects, including cancer. Recent advances have connected genetic disruption of the clock with multiple transcriptional and signaling networks controlling tumor initiation and progression. An additional feature of this circadian control relies on cellular metabolism, both within the tumor microenvironment and the organism systemically. A discussion of major advances related to cancer metabolism and the circadian clock will be outlined, including new efforts related to metabolic flux of transformed cells, metabolic heterogeneity of tumors, and the implications of circadian control of these pathways.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
33
|
Pacheco-Bernal I, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clin Epigenetics 2019; 11:79. [PMID: 31092281 PMCID: PMC6521413 DOI: 10.1186/s13148-019-0677-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms orchestrate crucial physiological functions and behavioral aspects around a day in almost all living forms. The circadian clock is a time tracking system that permits organisms to predict and anticipate periodic environmental fluctuations. The circadian system is hierarchically organized, and a master pacemaker located in the brain synchronizes subsidiary clocks in the rest of the organism. Adequate synchrony between central and peripheral clocks ensures fitness and potentiates a healthy state. Conversely, disruption of circadian rhythmicity is associated with metabolic diseases, psychiatric disorders, or cancer, amongst other pathologies. Remarkably, the molecular machinery directing circadian rhythms consists of an intricate network of feedback loops in transcription and translation which impose 24-h cycles in gene expression across all tissues. Interestingly, the molecular clock collaborates with multitude of epigenetic remodelers to fine tune transcriptional rhythms in a tissue-specific manner. Very exciting research demonstrate that three-dimensional properties of the genome have a regulatory role on circadian transcriptional rhythmicity, from bacteria to mammals. Unexpectedly, highly dynamic long-range chromatin interactions have been revealed during the circadian cycle in mammalian cells, where thousands of regulatory elements physically interact with promoter regions every 24 h. Molecular mechanisms directing circadian dynamics on chromatin folding are emerging, and the coordinated action between the core clock and epigenetic remodelers appears to be essential for these movements. These evidences reveal a critical epigenetic regulatory layer for circadian rhythms and pave the way to uncover molecular mechanisms triggering pathological states associated to circadian misalignment.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
34
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
35
|
Singh K, Jha NK, Thakur A. Spatiotemporal chromatin dynamics - A telltale of circadian epigenetic gene regulation. Life Sci 2019; 221:377-391. [PMID: 30721705 DOI: 10.1016/j.lfs.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Over the course of evolution, nature has forced organisms under selection pressure to hardwire an internal time keeping device that defines 24 h of a daily cycle of physiological and behavioral rhythms, known as circadian rhythms. At the cellular level, the cycle is governed by significant fractions of transcriptomes, which are under the control of transcriptional and translational feedback loop of clock genes. Intriguingly, this feedback loop is regulated at multiple stratums such as at the transcriptional and translational levels, which direct a cell towards producing a robust rhythm by sustaining the repeated stoichiometry of protein products. Moreover, with the advent of state of the art paradigms, epigenetic regulation of circadian rhythms has been becoming more evident at present time. Light-induced recurring fluctuations in chromatin acetylation concurrent with the binding of RNA Pol II and integration of miRNAs monitor the chromatin modifiers or clock genes expression to drive temporal rhythmicity. Furthermore, CLOCK protein intrinsic histone acetyl transferase activity, the interaction of CLOCK-BMAL-1 with HAT enzymes, and the involvement of many histone deacetylases also maintain the rhythmic protein profile. Additionally, the critical role of the rhythmic methylation pattern of clock genes in battery of cancer and metabolic disorders also defines its importance. Therefore, in this review, we focused on accumulating all the present data available on epigenetics and circadian rhythms. Interestingly, we also gathered evidence from the available literature pinpointing towards the dynamic nature of chromatin architecture governed by long and short-range regulatory elements DNA contacts arising daily, that was thought to be steady otherwise.
Collapse
Affiliation(s)
- Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
36
|
Masri S, Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 2018; 24:1795-1803. [PMID: 30523327 DOI: 10.1038/s41591-018-0271-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
The circadian clock is a complex cellular mechanism that, through the control of diverse metabolic and gene expression pathways, governs a large array of cyclic physiological processes. Epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer that is supported by recent preclinical data. In addition, results from animal models and molecular studies underscore emerging links between cancer metabolism and the circadian clock. This has implications for therapeutic approaches, and we discuss the possible design of chronopharmacological strategies.
Collapse
Affiliation(s)
- Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, INSERM U1233, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
37
|
Hong HK, Maury E, Ramsey KM, Perelis M, Marcheva B, Omura C, Kobayashi Y, Guttridge DC, Barish GD, Bass J. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev 2018; 32:1367-1379. [PMID: 30366905 PMCID: PMC6217733 DOI: 10.1101/gad.319228.118] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.
Collapse
Affiliation(s)
- Hee-Kyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Eleonore Maury
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
- Unit of Endocrinology, Diabetes, and Nutrition, Université Catholique de Louvain (UCL), Brussels B-1200, Belgium
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis C Guttridge
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Du J, Kirk B, Zeng J, Ma J, Wang Q. Three classes of response elements for human PRC2 and MLL1/2-Trithorax complexes. Nucleic Acids Res 2018; 46:8848-8864. [PMID: 29992232 PMCID: PMC6158500 DOI: 10.1093/nar/gky595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are essential for maintaining epigenetic memory in both embryonic stem cells and differentiated cells. To date, how they are localized to hundreds of specific target genes within a vertebrate genome had remained elusive. Here, by focusing on short cis-acting DNA elements of single functions, we discovered three classes of response elements in human genome: Polycomb response elements (PREs), Trithorax response elements (TREs) and Polycomb/Trithorax response elements (P/TREs). In particular, the four PREs (PRE14, 29, 39 and 48) are the first set of, to our knowledge, bona fide vertebrate PREs ever discovered, while many previously reported Drosophila or vertebrate PREs are likely P/TREs. We further demonstrated that YY1 and CpG islands are specifically enriched in the four TREs (PRE30, 41, 44 and 55), but not in the PREs. The three classes of response elements as unraveled in this study should guide further global investigation and open new doors for a deeper understanding of PcG and TrxG mechanisms in vertebrates.
Collapse
Affiliation(s)
- Junqing Du
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brian Kirk
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jia Zeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianpeng Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
39
|
El-Gammal Z, AlOkda A, El-Badri N. Role of human oocyte-enriched factors in somatic cell reprograming. Mech Ageing Dev 2018; 175:88-99. [PMID: 29890177 DOI: 10.1016/j.mad.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications.
Collapse
Affiliation(s)
- Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Abdelrahman AlOkda
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
40
|
Grygoryev D, Rountree MR, Rwatambuga F, Ohlrich A, Kukino A, Butler MP, Allen CN, Turker MS. Rapid Response and Slow Recovery of the H3K4me3 Epigenomic Marker in the Liver after Light-mediated Phase Advances of the Circadian Clock. J Biol Rhythms 2018; 33:363-375. [PMID: 29888643 DOI: 10.1177/0748730418779958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian tissues display circadian rhythms in transcription, translation, and histone modifications. Here we asked how an advance of the light-dark cycle alters daily rhythms in the liver epigenome at the H3K4me3 (trimethylation of lysine 4 on histone 3) modification, which is found at active and poised gene promoters. H3K4me3 levels were first measured at 4 time points (zeitgeber time [ZT] 3, 8, 15, and 20) during a normal 12L:12D light-dark cycle. Peak levels were observed during the early dark phase at ZT15 and dropped to low levels around lights-on (ZT0) between ZT20 and ZT3. A 6-h phase advance at ZT18 (new lights-on after only 6 h of darkness) led to a transient extension of peak H3K4me3 levels. Although locomotor activity reentrained within a week after the phase advance, H3K4me3 rhythms failed to do so, with peak levels remaining in the light phase at the 1-week recovery time point. Eight weekly phase advances, with 1-week recovery times between each phase advance, further disrupted the H3K4me3 rhythms. Finally, we used the mPer2Luc knockin mouse to determine whether the phase advance also disrupted Per2 protein expression. Similar to the results from the histone work, we found both a rapid response to the phase advance and a delayed recovery, the latter in sync with H3K4me3 levels. A model to explain these results is offered.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- 1 These authors contributed equally to this study.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Michael R Rountree
- 1 These authors contributed equally to this study.,Nzumbe Inc., Portland, Oregon
| | - Furaha Rwatambuga
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Anna Ohlrich
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Ayaka Kukino
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Matthew P Butler
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.,Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
41
|
KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function. Oncogene 2018; 37:4692-4710. [PMID: 29755131 PMCID: PMC6107480 DOI: 10.1038/s41388-018-0273-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/30/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Estrogen receptor alpha (ERα) is a ligand-activated nuclear receptor that directs proliferation and differentiation in selected cancer cell types including mammary-derived carcinomas. These master-regulatory functions of ERα require trans-acting elements such as the pioneer factor FOXA1 to establish a genomic landscape conducive to ERα control. Here, we identify the H3K4 methyltransferase KMT2C as necessary for hormone-driven ERα activity and breast cancer proliferation. KMT2C knockdown suppresses estrogen-dependent gene expression and causes H3K4me1 and H3K27ac loss selectively at ERα enhancers. Correspondingly, KMT2C loss impairs estrogen-driven breast cancer proliferation but has no effect on ER- breast cells. Whereas KMT2C loss disrupts estrogen-driven proliferation, it conversely promotes tumor outgrowth under hormone-depleted conditions. In accordance, KMT2C is one of the most frequently mutated genes in ER-positive breast cancer with KMT2C deletion correlating with significantly shorter progression-free survival on anti-estrogen therapy. From a therapeutic standpoint, KMT2C-depleted cells that develop hormone-independence retain their dependence on ERα, displaying ongoing sensitivity to ERα antagonists. We conclude that KMT2C is a key regulator of ERα activity whose loss uncouples breast cancer proliferation from hormone abundance.
Collapse
|
42
|
Kaur G, Bagam P, Pinkston R, Singh DP, Batra S. Cigarette smoke-induced inflammation: NLRP10-mediated mechanisms. Toxicology 2018; 398-399:52-67. [PMID: 29501574 DOI: 10.1016/j.tox.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive, life-threatening disease that causes irreversible lung damage. Cigarette smoking is the chief etiologic factor for the commencement of this condition. Despite constant efforts to develop therapeutic interventions and to ascertain the molecular mechanism leading to the pathophysiology of this disease, much remains unknown. However, pattern recognition receptors (PRRs), i.e., Toll-like-receptors (TLRs) and NOD-like receptors (NLRs) are believed to play important roles in COPD and could serve as effective therapeutic targets. Although the role of TLRs in COPD has been well studied, the importance of NLRs has not yet been explored in detail. The NLR family member NLRP10 (aka NOD8, PAN5, PYNOD) is the only member of this family of proteins that lacks the leucine rich repeat (LRR) domain responsible for detection of pathogen and danger-associated molecular patterns (PAMPs/DAMPs). Therefore, instead of functioning as a PRR, NLRP10 may have a broader regulatory role. To elucidate the role of NLRP10 in secondhand smoke (SHS)-induced inflammation, we exposed C57Bl/6 (WT) and Nlrp10-deficient mice (Nlrp10-/-) on the C57Bl/6 background to filtered air- or SHS- for 6 weeks (acute exposure) and assessed the resulting molecular events. Leukocyte recruitment in SHS-exposed Nlrp10-/- mice was found to be significantly lower compared to SHS-exposed WT mice. In addition, we observed an important role for NLRP10 in SHS-mediated caspase-1 activation, cytokine/chemokine production (IL-1β, IL-18, MCP-1 and IL-17A), and induction of NF-κB and MAPKs in the lungs of C57Bl/6 mice. The reduced influx of CD4+IL-17A+ and CD8+IL-17A+ cells into the lungs of SHS-exposed Nlrp10-/- mice and impaired differentiation of Nlrp10-/- Th0 cells into Th17 cells (ex vivo) provide insight into the mechanistic details underlying NLRP10-dependent IL-17 production. We further substantiated our in vivo findings by challenging human alveolar type II epithelial cells (A549) transfected with scrambled- or Nlrp10-siRNA with cigarette smoke extract (CSE). We observed an important role of NLRP10 in cytokine and chemokine production as well as expression of NF-κB and MAPKs in CSE-exposed A549 cells. Furthermore, replenishment of A549 cell culture with recombinant IL-17A (rIL-17A) during NLRP10 knockdown rescued CSE-induced inflammatory responses. To identify upstream mediators of NLRP10 regulation we investigated epigenetic markers within the Nlrp10 promoter following cigarette smoke exposure and observed significant changes in active as well as repressive gene markers on histone 3 and histone 4 using both in vivo and in vitro study models. Further, alterations in the respective histone acetyl- and methyltransferases (PCAF, SET1, ESET, SUV20H1) correlated well with the observed histone modifications. Overall, our findings suggest a novel role of epigenetically regulated NLRP10 in Th17/IL-17 signaling during CS exposure.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Rakeysha Pinkston
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
43
|
Shalaby NA, Pinzon JH, Narayanan AS, Jin EJ, Ritz MP, Dove RJ, Wolfenberg H, Rodan AR, Buszczak M, Rothenfluh A. JmjC domain proteins modulate circadian behaviors and sleep in Drosophila. Sci Rep 2018; 8:815. [PMID: 29339751 PMCID: PMC5770425 DOI: 10.1038/s41598-017-18989-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022] Open
Abstract
Jumonji (JmjC) domain proteins are known regulators of gene expression and chromatin organization by way of histone demethylation. Chromatin modification and remodeling provides a means to modulate the activity of large numbers of genes, but the importance of this class of predicted histone-modifying enzymes for different aspects of post-developmental processes remains poorly understood. Here we test the function of all 11 non-lethal members in the regulation of circadian rhythms and sleep. We find loss of every Drosophila JmjC gene affects different aspects of circadian behavior and sleep in a specific manner. Together these findings suggest that the majority of JmjC proteins function as regulators of behavior, rather than controlling essential developmental programs.
Collapse
Affiliation(s)
- Nevine A Shalaby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Jorge H Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anjana S Narayanan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Morgan P Ritz
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rachel J Dove
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Heike Wolfenberg
- Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Aylin R Rodan
- Department of Internal Medicine - Division of Nephrology, Department of Human Genetics, University of Utah, Salt Lake City, Utah, 84112, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, 84112, USA. .,Department of Psychiatry, Department of Neurobiology and Anatomy, Department of Human Genetics, University of Utah, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
44
|
Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet 2018; 14:e1007156. [PMID: 29300726 PMCID: PMC5771620 DOI: 10.1371/journal.pgen.1007156] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/17/2018] [Accepted: 12/14/2017] [Indexed: 01/20/2023] Open
Abstract
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes.
Collapse
Affiliation(s)
- Alexandra J. Trott
- Department of Biology, Program of Genetics and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States of America
| | - Jerome S. Menet
- Department of Biology, Program of Genetics and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
45
|
Abstract
Self-sustained and synchronized to environmental stimuli, circadian clocks are under genetic and epigenetic regulation. Recent findings have greatly increased our understanding of epigenetic plasticity governed by circadian clock. Thus, the link between circadian clock and epigenetic machinery is reciprocal. Circadian clock can affect epigenetic features including genomic DNA methylation, noncoding RNA, mainly miRNA expression, and histone modifications resulted in their 24-h rhythms. Concomitantly, these epigenetic events can directly modulate cyclic system of transcription and translation of core circadian genes and indirectly clock output genes. Significant findings interlocking circadian clock, epigenetics, and cancer have been revealed, particularly in breast, colorectal, and blood cancers. Aberrant methylation of circadian gene promoter regions and miRNA expression affected circadian gene expression, together with 24-h expression oscillation pace have been frequently observed.
Collapse
|
46
|
O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 2018; 253:59-81. [PMID: 29796779 DOI: 10.1007/164_2018_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. 'omics' approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as 'systems genetics', will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.
Collapse
Affiliation(s)
- Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada. .,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
47
|
Zhang Y, Markert MJ, Groves SC, Hardin PE, Merlin C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc Natl Acad Sci U S A 2017; 114:E7516-E7525. [PMID: 28831003 PMCID: PMC5594645 DOI: 10.1073/pnas.1702014114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circadian repression of CLOCK-BMAL1 by PERIOD and CRYPTOCHROME (CRY) in mammals lies at the core of the circadian timekeeping mechanism. CRY repression of CLOCK-BMAL1 and regulation of circadian period are proposed to rely primarily on competition for binding with coactivators on an α-helix located within the transactivation domain (TAD) of the BMAL1 C terminus. This model has, however, not been tested in vivo. Here, we applied CRISPR/Cas9-mediated mutagenesis in the monarch butterfly (Danaus plexippus), which possesses a vertebrate-like CRY (dpCRY2) and an ortholog of BMAL1, to show that insect CRY2 regulates circadian repression through TAD α-helix-dependent and -independent mechanisms. Monarch mutants lacking the BMAL1 C terminus including the TAD exhibited arrhythmic eclosion behavior. In contrast, mutants lacking the TAD α-helix but retaining the most distal C-terminal residues exhibited robust rhythms during the first day of constant darkness (DD1), albeit with a delayed peak of eclosion. Phase delay in this mutant on DD1 was exacerbated in the presence of a single functional allele of dpCry2, and rhythmicity was abolished in the absence of dpCRY2. Reporter assays in Drosophila S2 cells further revealed that dpCRY2 represses through two distinct mechanisms: a TAD-dependent mechanism that involves the dpBMAL1 TAD α-helix and dpCLK W328 and a TAD-independent mechanism involving dpCLK E333. Together, our results provide evidence for independent mechanisms of vertebrate-like CRY circadian regulation on the BMAL1 C terminus and the CLK PAS-B domain and demonstrate the importance of a BMAL1 TAD-independent mechanism for generating circadian rhythms in vivo.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biology, Texas A&M University, College Station, TX 77843
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843
| | - Matthew J Markert
- Department of Biology, Texas A&M University, College Station, TX 77843
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843
| | - Shayna C Groves
- Department of Biology, Texas A&M University, College Station, TX 77843
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843
| | - Paul E Hardin
- Department of Biology, Texas A&M University, College Station, TX 77843
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, TX 77843;
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843
| |
Collapse
|
48
|
Abstract
The physiological identity of every cell is maintained by highly specific transcriptional networks that establish a coherent molecular program that is in tune with nutritional conditions. The regulation of cell-specific transcriptional networks is accomplished by an epigenetic program via chromatin-modifying enzymes, whose activity is directly dependent on metabolites such as acetyl-coenzyme A, S-adenosylmethionine, and NAD+, among others. Therefore, these nuclear activities are directly influenced by the nutritional status of the cell. In addition to nutritional availability, this highly collaborative program between epigenetic dynamics and metabolism is further interconnected with other environmental cues provided by the day-night cycles imposed by circadian rhythms. Herein, we review molecular pathways and their metabolites associated with epigenetic adaptations modulated by histone- and DNA-modifying enzymes and their responsiveness to the environment in the context of health and disease.
Collapse
|
49
|
Jiang DS, Yi X, Li R, Su YS, Wang J, Chen ML, Liu LG, Hu M, Cheng C, Zheng P, Zhu XH, Wei X. The Histone Methyltransferase Mixed Lineage Leukemia (MLL) 3 May Play a Potential Role on Clinical Dilated Cardiomyopathy. Mol Med 2017; 23:196-203. [PMID: 28805231 DOI: 10.2119/molmed.2017.00012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/01/2017] [Indexed: 01/03/2023] Open
Abstract
Histone modifications play a critical role in the pathological processes of dilated cardiomyopathy (DCM). While the role and expression pattern of histone methyltransferases (HMTs), especially mixed lineage leukemia (MLL) families on DCM are unclear. To this end, twelve normal and fifteen DCM heart samples were included in the present study. A murine cardiac remodelling model was induced by transverse aortic constriction (TAC). Real-time PCR was performed to detect the expression levels of MLL families in the mouse and human left ventricles. The mRNA level of MLL3 was significantly increased in the mouse hearts treated by TAC surgery. Compared with normal hearts, higher mRNA and protein level of MLL3 was detected in the DCM hearts, and its expression level was closely associated with left ventricular end systolic diameter (LVEDD) and left ventricular ejection fraction (LVEF). However, the expression level of other MLL families (MLL, MLL2, MLL4, MLL5, SETD1A, and SETD1B) had no obvious change between control and DCM hearts or remodeled mouse hearts. Furthermore, the di-methylated histone H3 lysine 4 (H3K4me2) but not H3K4me3 was significantly increased in the DCM hearts. The protein levels of Smad3, GATA4, EGR1, which might regulate by MLL3, were remarkably elevated in the DCM hearts. Our hitherto unrecognized findings indicate that MLL3 has a potential role on pathological processes of DCM via regulating H3K4me2 and the expression of Smad3, GATA4, and EGR1.
Collapse
Affiliation(s)
- Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Shu Su
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min-Lai Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Gang Liu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Hu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
50
|
Abstract
The molecular clockwork drives rhythmic oscillations of signaling pathways managing intermediate metabolism; the circadian timing system synchronizes behavioral cycles and anabolic/catabolic processes with environmental cues, mainly represented by light/darkness alternation. Metabolic pathways, bile acid synthesis, and autophagic and immune/inflammatory processes are driven by the biological clock. Proper timing of hormone secretion, metabolism, bile acid turnover, autophagy, and inflammation with behavioral cycles is necessary to avoid dysmetabolism. Disruption of the biological clock and mistiming of body rhythmicity with respect to environmental cues provoke loss of internal synchronization and metabolic derangements, causing liver steatosis, obesity, metabolic syndrome, and diabetes mellitus.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Clinical and Experimental Medicine, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy; Inter-institutional Department for Continuity of Care of Empoli, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Gianluigi Mazzoccoli
- Chronobiology Unit, Division of Internal Medicine, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Cappuccini Avenue, San Giovanni Rotondo, Foggia 71013, Italy.
| |
Collapse
|