1
|
Huang X, Tang Y. Unveiling the complex double-edged sword role of exosomes in nasopharyngeal carcinoma. PeerJ 2025; 13:e18783. [PMID: 39822977 PMCID: PMC11737332 DOI: 10.7717/peerj.18783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence. Exosomes are small membrane vesicles at the nanoscale that transport physiologically active compounds from their source cell and have a crucial function in signal transmission and intercellular message exchange. The exosomes detected in the tissues of NPC patients have recently emerged as a potential non-invasive liquid biopsy biomarker that plays a role in controlling the tumor pathophysiology. Here, we take a look back at what we know so far about the complex double-edged sword role of exosomes in NPC. Exosomes could serve as biomarkers and therapeutic agents, as well as the molecular mechanisms by which they promote cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance, and chemotherapy resistance in NPC. Furthermore, we go over some of the difficulties and restrictions associated with exosome use. It is anticipated that this article would provide the reference for the apply of exosomes in clinical practice.
Collapse
Affiliation(s)
- Xueyan Huang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yuedi Tang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
3
|
Ono K. Signal Peptides and Their Fragments in Post-Translation: Novel Insights of Signal Peptides. Int J Mol Sci 2024; 25:13534. [PMID: 39769297 PMCID: PMC11678238 DOI: 10.3390/ijms252413534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Signal peptides (SPs), peptide sequences located at the N-terminus of newly synthesized proteins, are primarily known for their role in targeting proteins to the endoplasmic reticulum (ER). It has traditionally been assumed that cleaved SPs are rapidly degraded and digested near the ER. However, recent evidence has demonstrated that cleaved SP fragments can be detected in extracellular fluids such as blood flow, where they exhibit bioactivity. In addition, SP fragments are delivered to extracellular fluids via extracellular vesicles such as exosomes and microvesicles, which are important mediators of intercellular communication. These findings suggest that SPs and their fragments may have physiological roles beyond their classical function. This review aims to provide a comprehensive overview of these novel roles and offer new insights into the potential functions of SPs and their fragments in post-translational regulation and intercellular communication.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan; ; Tel.: +81-52-853-8992; Fax: +81-52-853-8996
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Wu J, Mao K, Zhang R, Fu Y. Extracellular vesicles in the pathogenesis of neurotropic viruses. Microb Pathog 2024; 195:106901. [PMID: 39218378 DOI: 10.1016/j.micpath.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.
Collapse
Affiliation(s)
- Junyi Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Kedan Mao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
6
|
Mohammadinasr M, Montazersaheb S, Hosseini V, Kahroba H, Talebi M, Molavi O, Ayromlou H, Hejazi MS. Epstein-Barr virus-encoded BART9 and BART15 miRNAs are elevated in exosomes of cerebrospinal fluid from relapsing-remitting multiple sclerosis patients. Cytokine 2024; 179:156624. [PMID: 38692184 DOI: 10.1016/j.cyto.2024.156624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Epstein-Barr virus (EBV) infection is approved as the main environmental trigger of multiple sclerosis (MS). In this path, we quantified ebv-miR-BART9-3p and ebv-miR-BART15 in exosomes of cerebrospinal fluid (CSF) of untreated relapsing-remitting MS (RRMS) patients in comparison with the control group. Interestingly, patients displayed significant upregulation of ebv-miR-BART9-3p (18.4-fold) and ebv-miR-BART15 (3.1-fold) expression in CSF exosomes. Moreover, the expression levels of hsa-miR-21-5p and hsa-miR-146a-5p were found to be significantly elevated in the CSF samples obtained from the patient group compared to those obtained from the HC group. The levels of Interferon-gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), transforming growth factor beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) were observed to be significantly elevated in the serum and CSF exosomes of the patients. The highest increase was observed in TGF-β (8.5-fold), followed by IL-23 (3.9-fold) in CSF exosomes. These findings are in agreement with the association between EBV infection and inflammatory cytokines induction. Furthermore, the ratios of TGF-β: TNF-α and TGF-β: IFN-γ attained values of 4 to 16.4 and 1.3 to 3.6, respectively, in the CSF exosomes of the patients, in comparison to those of the control group. These findings show EBV activity in RRMS patients is different from that of healthy ones. Elevation of ebv-miR-BART9-3p, ebv-miR-BART15, and inflammatory cytokines expression in CSF exosomes in RRMS patients provides a substantial link between EBV activity and the onset of the disease, as well as the transition from EBV infection to MS.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
DeMarino C, Cowen M, Williams A, Khatkar P, Abulwerdi FA, Henderson L, Denniss J, Pleet ML, Luttrell DR, Vaisman I, Liotta LA, Steiner J, Le Grice SFJ, Nath A, Kashanchi F. Autophagy Deregulation in HIV-1-Infected Cells Increases Extracellular Vesicle Release and Contributes to TLR3 Activation. Viruses 2024; 16:643. [PMID: 38675983 PMCID: PMC11054313 DOI: 10.3390/v16040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can result in HIV-associated neurocognitive disorder (HAND), a spectrum of disorders characterized by neurological impairment and chronic inflammation. Combined antiretroviral therapy (cART) has elicited a marked reduction in the number of individuals diagnosed with HAND. However, there is continual, low-level viral transcription due to the lack of a transcription inhibitor in cART regimens, which results in the accumulation of viral products within infected cells. To alleviate stress, infected cells can release accumulated products, such as TAR RNA, in extracellular vesicles (EVs), which can contribute to pathogenesis in neighboring cells. Here, we demonstrate that cART can contribute to autophagy deregulation in infected cells and increased EV release. The impact of EVs released from HIV-1 infected myeloid cells was found to contribute to CNS pathogenesis, potentially through EV-mediated TLR3 (Toll-like receptor 3) activation, suggesting the need for therapeutics to target this mechanism. Three HIV-1 TAR-binding compounds, 103FA, 111FA, and Ral HCl, were identified that recognize TAR RNA and reduce TLR activation. These data indicate that packaging of viral products into EVs, potentially exacerbated by antiretroviral therapeutics, may induce chronic inflammation of the CNS observed in cART-treated patients, and novel therapeutic strategies may be exploited to mitigate morbidity.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Fardokht A. Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Julia Denniss
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Delores R. Luttrell
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Iosif Vaisman
- Laboratory for Structural Bioinformatics, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA;
| | - Joseph Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stuart F. J. Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| |
Collapse
|
9
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Chang H, Chen E, Hu Y, Wu L, Deng L, Ye‐Lehmann S, Mao X, Zhu T, Liu J, Chen C. Extracellular Vesicles: The Invisible Heroes and Villains of COVID-19 Central Neuropathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305554. [PMID: 38143270 PMCID: PMC10933635 DOI: 10.1002/advs.202305554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Indexed: 12/26/2023]
Abstract
Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Erya Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yi Hu
- Department of Cardiology, Honghui hospitalXi'an Jiaotong UniversityXi'an710049China
| | - Lining Wu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liyun Deng
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shixin Ye‐Lehmann
- Diseases and Hormones of the Nervous System University of Paris‐Scalay Bicêtre Hosptial BâtGrégory Pincus 80 Rue du Gal Leclerc, CedexLe Kremlin Bicêtre94276France
| | - Xiaobo Mao
- Department of NeurologyInstitute of Cell EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMD21218USA
| | - Tao Zhu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jin Liu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chan Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
11
|
Bernal C, How-Volkman C, Spencer M, El-Shamy A, Mohieldin AM. The Role of Extracellular Vesicles in SARS-CoV-2-Induced Acute Kidney Injury: An Overview. Life (Basel) 2024; 14:163. [PMID: 38398672 PMCID: PMC10890680 DOI: 10.3390/life14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions worldwide since its outbreak in the winter of 2019. While extensive research has primarily focused on the deleterious respiratory effects of SARS-CoV-2 in recent years, its pan-tropism has become evident. Among the vital organs susceptible to SARS-CoV-2 infection is the kidney. Post SARS-CoV-2 infection, patients have developed coronavirus disease 19 (COVID-19), with reported incidences of COVID-19 patients developing acute kidney injury (AKI). Given COVID-19's multisystemic manifestation, our review focuses on the impact of SARS-CoV-2 infection within the renal system with an emphasis on the current hypotheses regarding the role of extracellular vesicles (EVs) in SARS-CoV-2 pathogenesis. Emerging studies have shown that SARS-CoV-2 can directly infect the kidney, whereas EVs are involved in the spreading of SARS-CoV-2 particles to other neighboring cells. Once the viral particles are within the kidney system, many proinflammatory signaling pathways are shown to be activated, resulting in AKI. Hence, clinical investigation of urinary proinflammatory components and total urinary extracellular vesicles (uEVs) with viral particles have been used to assess the severity of AKI in patients with COVID-19. Remarkedly, new emerging studies have shown the potential of mesenchymal stem cell-derived EVs (MSC-EVs) and ACE2-containing EVs as a hopeful therapeutic tool to inhibit SARS-CoV-2 RNA replication and block viral entry, respectively. Overall, understanding EVs' physiological role is crucial and hopefully will rejuvenate our therapeutic approach towards COVID-19 patients with AKI.
Collapse
Affiliation(s)
- Carter Bernal
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Christiane How-Volkman
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Madison Spencer
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed El-Shamy
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Ashraf M. Mohieldin
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
12
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
13
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
14
|
Owliaee I, Khaledian M, Boroujeni AK, Shojaeian A. Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers. Infect Agent Cancer 2023; 18:69. [PMID: 37915098 PMCID: PMC10621078 DOI: 10.1186/s13027-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Cancer, as a complex, heterogeneous disease, is currently affecting millions of people worldwide. Even if the most common traditional treatments, namely, chemotherapy (CTx) and radiotherapy (RTx), have been so far effective in some conditions, there is still a dire need for novel, innovative approaches to treat types of cancer. In this context, oncoviruses are responsible for 12% of all malignancies, such as human papillomavirus (HPV), Merkel cell polyomavirus (MCPyV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), as well as hepatitis B virus (HBV) and hepatitis C virus (HCV), and the poorest in the world also account for 80% of all human cancer cases. Against this background, nanomedicine has developed nano-based drug delivery systems (DDS) to meet the demand for drug delivery vectors, e.g., extracellular vesicles (EVs). This review article aimed to explore the potential of engineered small EVs (sEVs) in suppressing human oncovirus-associated cancers. METHODS Our search was conducted for published research between 2000 and 2022 using several international databases, including Scopus, PubMed, Web of Science, and Google Scholar. We also reviewed additional evidence from relevant published articles. RESULTS In this line, the findings revealed that EV engineering as a new field is witnessing the development of novel sEV-based structures, and it is expected to be advanced in the future. EVs may be further exploited in specialized applications as therapeutic or diagnostic tools. The techniques of biotechnology have been additionally utilized to create synthetic bilayers based on the physical and chemical properties of parent molecules via a top-down strategy for downsizing complicated, big particles into nano-sized sEVs. CONCLUSION As the final point, EV-mediated treatments are less toxic to the body than the most conventional ones, making them a safer and even more effective option. Although many in vitro studies have so far tested the efficacy of sEVs, further research is still needed to develop their potential in animal and clinical trials to reap the therapeutic benefits of this promising platform.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Kakiuchi Y, Kuroda S, Kanaya N, Kagawa S, Tazawa H, Fujiwara T. Exosomes as a drug delivery tool for cancer therapy: a new era for existing drugs and oncolytic viruses. Expert Opin Ther Targets 2023; 27:807-816. [PMID: 37742281 DOI: 10.1080/14728222.2023.2259102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Exosomes are cell-derived nanovesicles involved in cell-to-cell communications. These nanovesicles are generally considered to contain important carriers of information such as DNA and RNA, and show specific tropism. AREAS COVERED The combination of existing therapeutic agents with exosomes enhances therapeutic effects by increasing uptake into the tumor. Induction of immunogenic cell death (ICD) may also be triggered more strongly than with the drug alone. Oncolytic viruses (OVs) are even more effective as a drug in combination with exosomes. Although OVs are more likely to cause immune activity, combination with exosomes can exert synergistic effects. OVs have potent anti-tumor effects, but many limitations, such as being limited to local administration and vulnerability to attack by antibodies. Incorporation into exosomes can overcome these limitations and may allow effects against distant tumors. EXPERT OPINION Novel therapies using exosomes are very attractive in terms of enhancing therapeutic efficacy and reducing side effects. This approach also contains elements overcoming disadvantages in OVs, which have not been used clinically until now, and may usher in a new era of cancer treatments.
Collapse
Affiliation(s)
- Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| |
Collapse
|
16
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Chen H, Tang Y. Iron-loaded extracellular vesicles: angel or demon? Free Radic Res 2023; 57:61-68. [PMID: 36927327 DOI: 10.1080/10715762.2023.2191813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Extracellular vesicles (EVs) are identified as a non-classical way to mediate iron efflux except ferroportin. Interestingly, recent studies indicated that EVs pathway is a novel way involved in iron efflux. Mitochondria-derived vesicles (MDVs) are the potential mediator to load mitochondrial iron into EVs. Additionally, iron-replete cells resist excess iron-induced damage by secreting iron-loaded EVs, and the uptake of these EVs induces oxidative damage in the recipient cell. Importantly, iron-loaded EVs play a key role in aberrant iron distribution, which drives the progress of diseases like nonalcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. Herein, we summarize extant research on intracellular iron export with an emphasis on EVs and put our eyes on the relationship between iron-loaded EVs with both parent and target cells. Iron-loaded EVs will be an important avenue for later research on their vital role in iron redistribution.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
York SB, Hurwitz SN, Liu X, Meckes DG. Ceramide-dependent trafficking of Epstein-Barr virus LMP1 to small extracellular vesicles. Virology 2023; 581:128-138. [PMID: 36958217 DOI: 10.1016/j.virol.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that is associated with a multitude of cancers. The primary EBV oncogene latent membrane protein 1 (LMP1) is secreted from infected cancer cells in small extracellular vesicles (EVs). Additionally, the tetraspanin protein CD63 forms a complex with LMP1 and CD63 can be trafficked to EVs through a ceramide-dependent manner. Therefore, we hypothesize that ceramide is required for efficient packaging of LMP1 into small EVs. Following treatment with the neutral sphingomyelinase inhibitor GW4869, LMP1 cellular localization was disrupted and immunoblotting of EV lysates revealed a significant reduction in extracellular LMP1. NTA of EVs from the LCLs treated with GW4869 demonstrated a significant decrease in particle secretion. Additionally, ceramide inhibition resulted in enhanced LMP1-mediated NFkB activation in EV producing cells. Taken together, these data reveal a critical role for the lipid ceramide in LMP1 exosomal trafficking and the oncogenic signaling properties of the viral protein.
Collapse
Affiliation(s)
- Sara B York
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, 32306, USA.
| | - Stephanie N Hurwitz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, 32306, USA
| | - Xia Liu
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, 32306, USA
| | - David G Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, 32306, USA
| |
Collapse
|
20
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
21
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
23
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
24
|
Key role of exportin 6 in exosome-mediated viral transmission from insect vectors to plants. Proc Natl Acad Sci U S A 2022; 119:e2207848119. [PMID: 36037368 PMCID: PMC9457540 DOI: 10.1073/pnas.2207848119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosomes play a key role in virus exocytosis and transmission. The exportin family is usually responsible for cargo nucleocytoplasmic trafficking, and they are frequently found in exosomes. However, the function of exportins sorted in exosomes remains unknown. Here, we successfully isolated "cup holder"-like exosomes from the saliva of ∼30,000 small brown planthoppers, which are vectors of rice stripe virus (RSV). RSV virions were packed in comparatively large exosomes. Four viral genomic RNAs at a certain ratio were identified in the saliva exosomes. The virions contained in the saliva exosomes were capable of replicating and causing disease in rice plants. Interference with each phase of the insect exosome system affected the transmission of RSV from the insect vectors to rice plants. Fragmented exportin 6 was coimmunoprecipitated with viral nucleocapsid protein in saliva and sorted to exosomes via interactions with the cargo sorting protein VPS37a. When the expression of exportin 6 was knocked down, the amounts of RSV secreted in saliva and rice plants were reduced by 60% and 74%, respectively. These results showed that exportin 6 acted as a vehicle for transporting RSV into exosomes to overcome the barrier of insect salivary glands for horizontal transmission. Exportin 6 would represent an ideal target that could be manipulated to control the outbreak of insect-borne viruses in the future.
Collapse
|
25
|
Alahdal M, Elkord E. Promising use of immune cell-derived exosomes in the treatment of SARS-CoV-2 infections. Clin Transl Med 2022; 12:e1026. [PMID: 35988156 PMCID: PMC9393056 DOI: 10.1002/ctm2.1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is persistently threatening the lives of thousands of individuals globally. It triggers pulmonary oedema, driving to dyspnoea and lung failure. Viral infectivity of coronavirus disease 2019 (COVID-19) is a genuine challenge due to the mutagenic genome and mysterious immune-pathophysiology. Early reports highlighted that extracellular vesicles (exosomes, Exos) work to enhance COVID-19 progression by mediating viral transmission, replication and mutations. Furthermore, recent studies revealed that Exos derived from immune cells play an essential role in the promotion of immune cell exhaustion by transferring regulatory lncRNAs and miRNAs from exhausted cells to the active cells. Fortunately, there are great chances to modulate the immune functions of Exos towards a sustained repression of COVID-19. Engineered Exos hold promising immunotherapeutic opportunities for remodelling cytotoxic T cells' function. Immune cell-derived Exos may trigger a stable epigenetic repression of viral infectivity, restore functional cytokine-producing T cells and rebalance immune response in severe infections by inducing functional T regulatory cells (Tregs). This review introduces a view on the current outcomes of immunopathology, and immunotherapeutic applications of immune cell-derived Exos in COVID-19, besides new perspectives to develop novel patterns of engineered Exos triggering novel anti-SARS-CoV-2 immune responses.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
26
|
Zhou GF, Chen CX, Cai QC, Yan X, Peng NN, Li XC, Cui JH, Han YF, Zhang Q, Meng JH, Tang HM, Cai CH, Long J, Luo KJ. Bracovirus Sneaks Into Apoptotic Bodies Transmitting Immunosuppressive Signaling Driven by Integration-Mediated eIF5A Hypusination. Front Immunol 2022; 13:901593. [PMID: 35664011 PMCID: PMC9156803 DOI: 10.3389/fimmu.2022.901593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
A typical characteristics of polydnavirus (PDV) infection is a persistent immunosuppression, governed by the viral integration and expression of virulence genes. Recently, activation of caspase-3 by Microplitis bicoloratus bracovirus (MbBV) to cleave Innexins, gap junction proteins, has been highlighted, further promoting apoptotic cell disassembly and apoptotic body (AB) formation. However, whether ABs play a role in immune suppression remains to be determined. Herein, we show that ABs transmitted immunosuppressive signaling, causing recipient cells to undergo apoptosis and dismigration. Furthermore, the insertion of viral–host integrated motif sites damaged the host genome, stimulating eIF5A nucleocytoplasmic transport and activating the eIF5A-hypusination translation pathway. This pathway specifically translates apoptosis-related host proteins, such as P53, CypA, CypD, and CypJ, to drive cellular apoptosis owing to broken dsDNA. Furthermore, translated viral proteins, such Vank86, 92, and 101, known to complex with transcription factor Dip3, positively regulated DHYS and DOHH transcription maintaining the activation of the eIF5A-hypusination. Mechanistically, MbBV-mediated extracellular vesicles contained inserted viral fragments that re-integrated into recipients, potentially via the homologous recombinant repair system. Meanwhile, this stimulation regulated activated caspase-3 levels via PI3K/AKT 308 and 473 dephosphorylation to promote apoptosis of granulocyte-like recipients Sf9 cell; maintaining PI3K/AKT 473 phosphorylation and 308 dephosphorylation inhibited caspase-3 activation leading to dismigration of plasmatocyte-like recipient High Five cells. Together, our results suggest that integration-mediated eIF5A hypusination drives extracellular vesicles for continuous immunosuppression.
Collapse
Affiliation(s)
- Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ji-Hui Cui
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chen-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| |
Collapse
|
27
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
28
|
Proteomic Profiling and Functional Analysis of B Cell-Derived Exosomes upon Pneumocystis Infection. J Immunol Res 2022; 2022:5187166. [PMID: 35465354 PMCID: PMC9023222 DOI: 10.1155/2022/5187166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Pneumocystis is a life-threatening fungal pathogen that frequently causes fatal pneumonia (PCP) in immunocompromised individuals. Recently, B cells have been reported to play a crucial role in the pathogenesis of PCP through producing antibodies and activating CD4+ T cell response. Exosomes are nanoscale small extracellular vesicles abundant with protein cargo and can mediate immune response during infectious disease. In this study, using tandem mass tag-based quantitative proteomics coupled with bioinformatic analysis, we attempted to characterize exosomes derived from B lymphocytes in response to PCP. Several proteins were verified by parallel reaction monitoring (PRM) analysis. Also, the effects of B cell exosomes on CD4+ T cell response and phagocytic function of macrophages were clarified. Briefly, 1701 proteins were identified from B cell exosomes, and the majority of them were reported in Vesiclepedia. A total of 51 differentially expressed proteins of B cell exosomes were found in response to PCP. They were mainly associated with immune response and transcription regulation. PRM analysis confirmed the significantly changed levels of histone H1.3, vimentin, and tyrosine-protein phosphatase nonreceptor type 6 (PTPN6). Moreover, a functional study revealed the proinflammatory profile of B cell exosomes on CD4+ T cell response in PCP. Taken together, our results suggest the involvement of exosomes derived from B cells in cell-to-cell communication, providing new information on the function of B cells in response to PCP.
Collapse
|
29
|
Adib A, Sahu R, Mohta S, Pollock RE, Casadei L. Cancer-Derived Extracellular Vesicles: Their Role in Sarcoma. Life (Basel) 2022; 12:life12040481. [PMID: 35454972 PMCID: PMC9029613 DOI: 10.3390/life12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Soft tissue sarcomas (STS) are rare malignancies with limited responses to anticancer therapy. Extracellular vesicles (EVs) are a heterogeneous group of bi-lipid layer sacs secreted by cells into extracellular space. Investigations of tumor-derived EVs have revealed their functional capabilities, including cell-to-cell communication and their impact on tumorigenesis, progression, and metastasis; however information on the roles of EVs in sarcoma is currently limited. In this review we investigate the role of various EV cargos in sarcoma and the mechanisms by which those cargos can affect the recipient cell phenotype and the aggressivity of the tumor itself. The study of EVs in sarcoma may help establish novel therapeutic approaches that target specific sarcoma subtypes or biologies, thereby improving sarcoma therapeutics in the future.
Collapse
Affiliation(s)
- Anita Adib
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Ruhi Sahu
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Shivangi Mohta
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| | - Raphael Etomar Pollock
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA;
| | - Lucia Casadei
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| |
Collapse
|
30
|
Chen W, Xie Y, Wang T, Wang L. New insights into Epstein‑Barr virus‑associated tumors: Exosomes (Review). Oncol Rep 2021; 47:13. [PMID: 34779497 PMCID: PMC8600424 DOI: 10.3892/or.2021.8224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) is endemic worldwide and is associated with a number of human tumors. EBV-associated tumors have unique mechanisms of tumorigenesis. EBV encodes multiple oncogenic molecules that can be loaded into exosomes released by EBV+ tumor cells to mediate intercellular communication. Moreover, different EBV+ tumor cells secrete exosomes that act on various target cells with various biological functions. In addition to oncogenicity, EBV+ exosomes have potential immunosuppressive effects. Investigating EBV+ exosomes could identify the role of EBV in tumorigenesis and progression. The present review summarized advances in studies focusing on exosomes and the functions of EBV+ exosomes derived from different EBV-associated tumors. EBV+ exosomes are expected to become a new biomarker for disease diagnosis and prognosis. Therefore, exosome-targeted therapy displays potential.
Collapse
Affiliation(s)
- Wei Chen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tingting Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
31
|
Yang L, Li J, Li S, Dang W, Xin S, Long S, Zhang W, Cao P, Lu J. Extracellular Vesicles Regulated by Viruses and Antiviral Strategies. Front Cell Dev Biol 2021; 9:722020. [PMID: 34746122 PMCID: PMC8566986 DOI: 10.3389/fcell.2021.722020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), consisting of exosomes, micro-vesicles, and other vesicles, mainly originate from the multi-vesicular body (MVB) pathway or plasma membrane. EVs are increasingly recognized as a tool to mediate the intercellular communication and are closely related to human health. Viral infection is associated with various diseases, including respiratory diseases, neurological diseases, and cancers. Accumulating studies have shown that viruses could modulate their infection ability and pathogenicity through regulating the component and function of EVs. Non-coding RNA (ncRNA) molecules are often targets of viruses and also serve as the main functional cargo of virus-related EVs, which have an important role in the epigenetic regulation of target cells. In this review, we summarize the research progress of EVs under the regulation of viruses, highlighting the content alteration and function of virus-regulated EVs, emphasizing their isolation methods in the context of virus infection, and potential antiviral strategies based on their use. This review would promote the understanding of the viral pathogenesis and the development of antiviral research.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Sijing Long
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
32
|
A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics 2021; 13:pharmaceutics13091405. [PMID: 34575480 PMCID: PMC8466084 DOI: 10.3390/pharmaceutics13091405] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) subtype, exosome is an extracellular nano-vesicle that sheds from cells’ surface and originates as intraluminal vesicles during endocytosis. Firstly, it was thought to be a way for the cell to get rid of unwanted materials as it loaded selectively with a variety of cellular molecules, including RNAs, proteins, and lipids. However, it has been found to play a crucial role in several biological processes such as immune modulation, cellular communication, and their role as vehicles to transport biologically active molecules. The latest discoveries have revealed that many viruses export their viral elements within cellular factors using exosomes. Hijacking the exosomal pathway by viruses influences downstream processes such as viral propagation and cellular immunity and modulates the cellular microenvironment. In this manuscript, we reviewed exosomes biogenesis and their role in the immune response to viral infection. In addition, we provided a summary of how some pathogenic viruses hijacked this normal physiological process. Viral components are harbored in exosomes and the role of these exosomes in viral infection is discussed. Understanding the nature of exosomes and their role in viral infections is fundamental for future development for them to be used as a vaccine or as a non-classical therapeutic strategy to control several viral infections.
Collapse
|
33
|
Shao J, Jin Y, Shao C, Fan H, Wang X, Yang G. Serum exosomal pregnancy zone protein as a promising biomarker in inflammatory bowel disease. Cell Mol Biol Lett 2021; 26:36. [PMID: 34376139 PMCID: PMC8353742 DOI: 10.1186/s11658-021-00280-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a kind of intestinal immune dysfunction disease, and its occurrence and prevalence are on the rise worldwide. As a chronic gastrointestinal disease, its pathogenesis is still unknown. Exosomes are vesicles in various body fluids that carry a variety of substances. They can mediate intercellular communication and long-distance transport of multiple media. In this study, we investigated the protein profile of serum exosomes from healthy people and IBD patients to explore a new serological biomarker for IBD. METHODS Initially, exosomes were extracted from serum samples, and the proteins within the exosomes were identified by label-free liquid chromatography/mass spectrometry (LC-MS/MS). Western blot and ELISA were used to assess the identified protein. To further analyze the target protein, an acute colitis mouse model was established, and exosomes in colonic tissue and serum were extracted to investigate the protein in them. RESULTS Firstly, serum exosomes were extracted from samples, and proteins in exosomes were identified by LC-MS/MS. Through statistical analysis, we identified 633 proteins. Among these proteins, pregnancy zone protein (PZP) showed a marked difference between patients with IBD and healthy people, in that its expression level was much higher in the IBD patients This exosomal protein was associated with immunosuppressive effects. Also, the level of PZP in colon tissue exosomes and serum exosomes of acute colitis mice was significantly higher than that of the control group. CONCLUSIONS Our findings indicated that serum exosome PZP was present at a high level in the IBD patients. Hence it might be a promising biomarker and enhance auxiliary diagnosis of IBD.
Collapse
Affiliation(s)
- Jing Shao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunhong Shao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Fan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaorui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guang Yang
- Department of General Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, Shandong, China.
| |
Collapse
|
34
|
York SB, Sun L, Cone AS, Duke LC, Cheerathodi MR, Meckes DG. Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. mSphere 2021; 6:e0019221. [PMID: 34190582 PMCID: PMC8265634 DOI: 10.1128/msphere.00192-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins, and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from hepatitis C virus (HCV)-infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus-infected cells secrete distinct EV subpopulations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with various sizes and densities compared to those released from noninfected cells. We also show that the EV-enriched tetraspanin CD63 regulates the release of EVs and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika virus infection and virion morphogenesis. IMPORTANCE Zika virus is a reemerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins, and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus, gaining a greater understanding of how Zika virus affects EV cargo may aid in the development of better diagnostics, targeted therapeutics, and/or prophylactic treatments.
Collapse
Affiliation(s)
- Sara B. York
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Li Sun
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Allaura S. Cone
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Leanne C. Duke
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Mujeeb R. Cheerathodi
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - David G. Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| |
Collapse
|
35
|
Barrett L, Dai L, Wang S, Qin Z. Kaposi's sarcoma-associated herpesvirus and extracellular vesicles. J Med Virol 2021; 93:3294-3299. [PMID: 33415746 DOI: 10.1002/jmv.26780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/13/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) represents the etiological agent for several human malignancies, including Kaposi's Sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD), which develop mainly in immunocompromised patients. KSHV has established many strategies to hijack and thwart the host's immune responses, including through the use of extracellular vesicles (EVs). EVs represent a significant mode of intercellular communication as they carry a variety of molecules that can be delivered from cell-to-cell. EVs are now recognized as one of the major players in immune system development and function during both innate and adaptive immune responses. In the current mini-review, we summarize recent findings on how KSHV utilizes EVs to create favorable environments for viral spread and persistence while evading immune responses. We also discuss the limitations and unanswered questions in this field and the potential areas for related immunotherapies.
Collapse
Affiliation(s)
- Lindsey Barrett
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shanzhi Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
36
|
Luo H, Yi B. The role of Exosomes in the Pathogenesis of Nasopharyngeal Carcinoma and the involved Clinical Application. Int J Biol Sci 2021; 17:2147-2156. [PMID: 34239345 PMCID: PMC8241729 DOI: 10.7150/ijbs.59688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane vesicles, which carry biologically active substances of their cell of origin and play an important role in signal transduction and intercellular communication. At present, exosomes have been identified as a promising non-invasive liquid biopsy biomarker in the tissues and circulating blood of nasopharyngeal carcinoma (NPC) and found to participate in regulating pathophysiological process of the tumor. We here review recent insights gained into the molecular mechanisms of exosome-induced cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance and chemotherapy resistance in the development and progression of NPC, as well as the clinical application of exosomes as diagnostic biomarkers and therapeutic agents. We also discuss the limitations and challenges in exosome application. We hope this review may provide some references for the use of exosomes in clinical intervention.
Collapse
Affiliation(s)
- Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
37
|
Mrad MF, Saba ES, Nakib L, Khoury SJ. Exosomes From Subjects With Multiple Sclerosis Express EBV-Derived Proteins and Activate Monocyte-Derived Macrophages. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/4/e1004. [PMID: 34006621 PMCID: PMC8130999 DOI: 10.1212/nxi.0000000000001004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Objective To investigate in a cross-sectional study the effect of serum-derived exosomes on primary human blood monocyte-derived macrophages (MDMs) comparing exosomes from healthy donors vs patients with relapsing-remitting multiple sclerosis in remission and in relapse and to assess whether the response correlates with exosomal Epstein-Barr virus (EBV) protein expression. Methods A total of 45 serum-derived exosome preparations were isolated from patients and healthy controls and verified for the expression of exosomal and EBV markers. MDMs were differentiated from monocytes for 7 days and incubated for 24 hours with exosomes, and then, cell supernatants were collected for cytokine measurement by cytometric bead array. Cells were immunophenotyped before and after differentiation. Results Serum-derived exosomes of patients with multiple sclerosis (MS) expressed higher levels of EBV proteins than healthy controls. Of interest, expression of EBV nuclear antigen EBNA1 and latent membrane proteins LMP1 and 2A was higher on exosomes derived from patients with active RRMS compared with healthy controls and stable patients. After data normalization, we observed that incubation with EBV(+) exosomes induced CXCL10 and CCL2 secretion by MDMs. MDMs differentiated from patients with active disease were better secretors of CXCL10 and other interferon-γ–inducible chemokines, including CCL2 and CXCL9, than MDMs from healthy and stable MS groups. MDMs from active patients had a higher frequency of a CD14(++) subset that correlated with the secreted CXCL10. Conclusion Exosomes expressing EBV proteins correlate with disease activity and induce an inflammatory response in MDMs that is compounded by the origin of the responder cells.
Collapse
Affiliation(s)
- May F Mrad
- From the Nehme and Therese Tohme Multiple Sclerosis Center (M.F.M.), Faculty of Medicine, American University of Beirut Medical Center; Department of Experimental Pathology (E.S.S., L.N.), Immunology and Microbiology, Faculty of Medicine, American University of Beirut; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), and Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Esber S Saba
- From the Nehme and Therese Tohme Multiple Sclerosis Center (M.F.M.), Faculty of Medicine, American University of Beirut Medical Center; Department of Experimental Pathology (E.S.S., L.N.), Immunology and Microbiology, Faculty of Medicine, American University of Beirut; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), and Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Layane Nakib
- From the Nehme and Therese Tohme Multiple Sclerosis Center (M.F.M.), Faculty of Medicine, American University of Beirut Medical Center; Department of Experimental Pathology (E.S.S., L.N.), Immunology and Microbiology, Faculty of Medicine, American University of Beirut; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), and Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Samia J Khoury
- From the Nehme and Therese Tohme Multiple Sclerosis Center (M.F.M.), Faculty of Medicine, American University of Beirut Medical Center; Department of Experimental Pathology (E.S.S., L.N.), Immunology and Microbiology, Faculty of Medicine, American University of Beirut; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), and Abu Haidar Neuroscience Institute, Faculty of Medicine, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
38
|
Patil M, Singh S, Henderson J, Krishnamurthy P. Mechanisms of COVID-19-induced cardiovascular disease: Is sepsis or exosome the missing link? J Cell Physiol 2021; 236:3366-3382. [PMID: 33078408 PMCID: PMC7920909 DOI: 10.1002/jcp.30109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has reached a pandemic level, spreading across the globe by affecting over 33 million people and causing over 1,009,270 deaths. SARS-CoV-2 is highly infectious with a high basic reproduction number (R0 ) of 2.2-5.7 that has led to its exponential spread. Besides, very little is known about it in terms of immunogenicity and its molecular targets. SARS-CoV-2 causes acute respiratory distress syndrome, followed by multiple organ failure and death in a small percentage of individuals. Cardiac injury has emerged as another dreaded outcome of COVID-19 complications. However, a thorough understanding of the pathogenesis of SARS-CoV-2 is lacking. In this review, we discuss the virus, possible mechanisms of COVID-19-induced cardiac injury, and potential therapeutic strategies, and we explore if exosomes could be targeted to treat symptoms of COVID-19. Furthermore, we discussed the virus-induced sepsis, which may be the cause of multiple organ failure, including myocardial injury.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
39
|
Cheerathodi M, Nkosi D, Cone AS, York SB, Meckes DG. Epstein-Barr Virus LMP1 Modulates the CD63 Interactome. Viruses 2021; 13:675. [PMID: 33920772 PMCID: PMC8071190 DOI: 10.3390/v13040675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
Tetraspanin CD63 is a cluster of cell surface proteins with four transmembrane domains; it is associated with tetraspanin-enriched microdomains and typically localizes to late endosomes and lysosomes. CD63 plays an important role in the cellular trafficking of different proteins, EV cargo sorting, and vesicle formation. We have previously shown that CD63 is important in LMP1 trafficking to EVs, and this also affects LMP1-mediated intracellular signaling including MAPK/ERK, NF-κB, and mTOR activation. Using the BioID method combined with mass spectrometry, we sought to define the broad CD63 interactome and how LMP1 modulates this network of interacting proteins. We identified a total of 1600 total proteins as a network of proximal interacting proteins to CD63. Biological process enrichment analysis revealed significant involvement in signal transduction, cell communication, protein metabolism, and transportation. The CD63-only interactome was enriched in Rab GTPases, SNARE proteins, and sorting nexins, while adding LMP1 into the interactome increased the presence of signaling and ribosomal proteins. Our results showed that LMP1 alters the CD63 interactome, shifting the network of protein enrichment from protein localization and vesicle-mediated transportation to metabolic processes and translation. We also show that LMP1 interacts with mTOR, Nedd4 L, and PP2A, indicating the formation of a multiprotein complex with CD63, thereby potentially regulating LMP1-dependent mTOR signaling. Collectively, the comprehensive analysis of CD63 proximal interacting proteins provides insights into the network of partners required for endocytic trafficking and extracellular vesicle cargo sorting, formation, and secretion.
Collapse
Affiliation(s)
| | | | | | | | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA; (M.C.); (D.N.); (A.S.C.); (S.B.Y.)
| |
Collapse
|
40
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
41
|
Extracellular Vesicles in Viral Pathogenesis: A Case of Dr. Jekyll and Mr. Hyde. Life (Basel) 2021; 11:life11010045. [PMID: 33450847 PMCID: PMC7828316 DOI: 10.3390/life11010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes. In addition, EVs are involved in the pathogenesis of multiple diseases: infectious, neurodegenerative, and oncological. The current EV classification into microvesicles, apoptotic bodies, and exosomes is based on their size, pathways of cellular biogenesis, and molecular composition. This review is focused on analysis of the role of EVs (mainly exosomes) in the pathogenesis of viral infection. We briefly characterize the biogenesis and molecular composition of various EV types. Then, we consider EV-mediated pro- and anti-viral mechanisms. EV secretion by infected cells can be an important factor of virus spread in target cell populations, or a protective factor limiting viral invasion. The data discussed in this review, on the effect of EV secretion by infected cells on processes in neighboring cells and on immune cells, are of high significance in the search for new therapeutic approaches and for design of new generations of vaccines.
Collapse
|
42
|
Gebeyehu A, Kommineni N, Bagde A, Meckes DG, Sachdeva MS. Role of Exosomes for Delivery of Chemotherapeutic Drugs. Crit Rev Ther Drug Carrier Syst 2021; 38:53-97. [PMID: 34375513 PMCID: PMC8691065 DOI: 10.1615/critrevtherdrugcarriersyst.2021036301] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exosomes are endogenous extracellular vesicles (30-100 nm) composed with membrane lipid bilayer which carry vesicular proteins, enzymes, mRNA, miRNA and nucleic acids. They act as messengers for intra- and inter-cellular communication. In addition to their physiological roles, exosomes have the potential to encapsulate and deliver small chemotherapeutic drugs and biological molecules such as proteins and nucleic acid-based drugs to the recipient tissue or organs. Due to their biological properties, exosomes have better organotropism, homing capacity, cellular uptake and cargo release ability than other synthetic nano-drug carriers such as liposomes, micelles and nanogels. The secretion of tumor-derived exosomes is increased in the hypoxic and acidic tumor microenvironment, which can be used as a target for nontoxic and nonimmunogenic drug delivery vehicles for various cancers. Moreover, exosomes have the potential to carry both hydrophilic and hydrophobic chemotherapeutic drugs, bypass RES effect and bypass BBB. Exosomes can be isolated from other types of EVs and cell debris based on their size, density and specific surface proteins through ultracentrifugation, density gradient separation, precipitation, immunoaffinity interaction and gel filtration. Drugs can be loaded into exosomes at the biogenesis stage or with the isolated exosomes by incubation, electroporation, extrusion or sonication methods. Finally, exosomal cargo vehicles can be characterized by ultrastructural microscopic analysis. In this review we intend to summarize the inception, structure and function of the exosomes, role of exosomes in immunological regulation and cancer, methods of isolation and characterization of exosomes and products under clinical trials. This review will provide an inclusive insight of exosomes in drug delivery.
Collapse
Affiliation(s)
- Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - David G. Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh Sachdeva
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
43
|
Bebelman MP, Janssen E, Pegtel DM, Crudden C. The forces driving cancer extracellular vesicle secretion. Neoplasia 2021; 23:149-157. [PMID: 33321449 PMCID: PMC7744813 DOI: 10.1016/j.neo.2020.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
Abstract
The discovery that cancer cells discharge vast quantities of extracellular vesicles (EVs), underscored the explosion of the EV field. A large body of evidence now supports their onco-functionality in an array of contexts; stromal crosstalk, immune evasion, metastatic site priming, and drug resistance - justifying therapeutic intervention. The current bottleneck is a lack of clear understanding of why and how EV biogenesis ramps up in cancer cells, and hence where exactly avenues for intervention may reside. We know that EVs also play an array of physiological roles, therefore effective anticancer inhibition requires a target distinct enough from physiology to achieve efficacy. Taking the perspective that EV upregulation may be a consequence of the tumor landscape, we examine classic mutational events and tumor characteristics for EV regulators. All the while, aiming to illuminate topics worth further research in therapeutic development.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Eline Janssen
- Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Caitrin Crudden
- Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Nkosi D, Sun L, Duke LC, Meckes DG. Epstein-Barr virus LMP1 manipulates the content and functions of extracellular vesicles to enhance metastatic potential of recipient cells. PLoS Pathog 2020; 16:e1009023. [PMID: 33382850 PMCID: PMC7774862 DOI: 10.1371/journal.ppat.1009023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) mediate intercellular communication events and alterations in normal vesicle content contribute to function and disease initiation or progression. The ability to package a variety of cargo and transmit molecular information between cells renders EVs important mediators of cell-to-cell crosstalk. Latent membrane protein 1 (LMP1) is a chief viral oncoprotein expressed in most Epstein-Barr virus (EBV)-associated cancers and is released from cells at high levels in EVs. LMP1 containing EVs have been demonstrated to promote cell growth, migration, differentiation, and regulate immune cell function. Despite these significant changes in recipient cells induced by LMP1 modified EVs, the mechanism how this viral oncogene modulates the recipient cells towards these phenotypes is not well understood. We hypothesize that LMP1 alters EV content and following uptake of the LMP1-modified EVs by the recipient cells results in the activation of cell signaling pathways and increased gene expression which modulates the biological properties of recipient cell towards a new phenotype. Our results show that LMP1 expression alters the EV protein and microRNA content packaged into EVs. The LMP1-modified EVs also enhance recipient cell adhesion, proliferation, migration, invasion concomitant with the activation of ERK, AKT, and NF-κB signaling pathways. The LMP1 containing EVs induced transcriptome reprogramming in the recipient cells by altering gene expression of different targets including cadherins, matrix metalloproteinases 9 (MMP9), MMP2 and integrin-α5 which contribute to extracellular matrix (ECM) remodeling. Altogether, our data demonstrate the mechanism in which LMP1-modified EVs reshape the tumor microenvironment by increasing gene expression of ECM interaction proteins.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Leanne C. Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
45
|
Charest A. Experimental and Biological Insights from Proteomic Analyses of Extracellular Vesicle Cargos in Normalcy and Disease. ADVANCED BIOSYSTEMS 2020; 4:e2000069. [PMID: 32815324 PMCID: PMC8091982 DOI: 10.1002/adbi.202000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.
Collapse
|
46
|
Proteomic approaches to investigate gammaherpesvirus biology and associated tumorigenesis. Adv Virus Res 2020; 109:201-254. [PMID: 33934828 DOI: 10.1016/bs.aivir.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.
Collapse
|
47
|
Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104422. [PMID: 32544615 PMCID: PMC7293471 DOI: 10.1016/j.meegid.2020.104422] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles releasing from various types of cells contribute to intercellular communication via delivering bio-molecules like nucleic acids, proteins, and lipids to recipient cells. Exosomes are 30-120 nm extracellular vesicles that participate in several pathological conditions. Virus-infected cells release exosomes that are implicated in infection through transferring viral components such as viral-derived miRNAs and proteins. As well, exosomes contain receptors for viruses that make recipient cells susceptible to virus entry. Since December 2019, SARS-CoV-2 (COVID-19) infection has become a worldwide urgent public health concern. There is currently no vaccine or specific antiviral treatment existing for COVID-19 virus infection. Hence, it is critical to find a safe and effective therapeutic tool to patients with severe COVID-19 virus infection. Extracellular vesicles may contribute to spread this virus as they transfer such receptors as CD9 and ACE2, which make recipient cells susceptible to virus docking. Upon entry, COVID-19 virus may be directed into the exosomal pathway, and its component is packaged into exosomes for secretion. Exosome-based strategies for the treatment of COVID-19 virus infection may include following items: inhibition of exosome biogenesis and uptake, exosome-therapy, exosome-based drug delivery system, and exosome-based vaccine. Mesenchymal stem cells can suppress nonproductive inflammation and improve/repair lung cells including endothelial and alveolar cells, which damaged by COVID-19 virus infection. Understanding molecular mechanisms behind extracellular vesicles related COVID-19 virus infection may provide us with an avenue to identify its entry, replication, spreading, and infection to overcome its adverse effects.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Biochemistry, Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran,Correspondence to: J. Rezaie, Solid Tumor Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147 Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Biochemistry, Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran,Correspondence to: Y. Panahi, Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
48
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
49
|
Turner DL, Korneev DV, Purdy JG, de Marco A, Mathias RA. The host exosome pathway underpins biogenesis of the human cytomegalovirus virion. eLife 2020; 9:e58288. [PMID: 32910773 PMCID: PMC7556872 DOI: 10.7554/elife.58288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Human Cytomegalovirus (HCMV) infects over half the world's population, is a leading cause of congenital birth defects, and poses serious risks for immuno-compromised individuals. To expand the molecular knowledge governing virion maturation, we analysed HCMV virions using proteomics, and identified a significant proportion of host exosome constituents. To validate this acquisition, we characterized exosomes released from uninfected cells, and demonstrated that over 99% of the protein cargo was subsequently incorporated into HCMV virions during infection. This suggested a common membrane origin, and utilization of host exosome machinery for virion assembly and egress. Thus, we selected a panel of exosome proteins for knock down, and confirmed that loss of 7/9 caused significantly less HCMV production. Saliently, we report that VAMP3 is essential for viral trafficking and release of infectious progeny, in various HCMV strains and cell types. Therefore, we establish that the host exosome pathway is intrinsic for HCMV maturation, and reveal new host regulators involved in viral trafficking, virion envelopment, and release. Our findings underpin future investigation of host exosome proteins as important modulators of HCMV replication with antiviral potential.
Collapse
Affiliation(s)
- Declan L Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash UniversityVictoriaAustralia
| | - Denis V Korneev
- School of Biological Sciences, Monash UniversityVictoriaAustralia
| | - John G Purdy
- Department of Immunobiology and BIO5 Institute, University of ArizonaTucsonUnited States
| | - Alex de Marco
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash UniversityVictoriaAustralia
- University of WarwickCoventryUnited Kingdom
| | - Rommel A Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash UniversityVictoriaAustralia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
| |
Collapse
|
50
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2020. [PMID: 31512168 DOI: 10.1007/s11481-%20019-09874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|