1
|
Yang JP, Toughiri R, Gounder AP, Scheibe D, Petrus M, Fink SJ, Vallee S, Kenniston J, Papaioannou N, Langston S, Gavva NR, Horman SR. Identification of small molecule agonists of fetal hemoglobin expression for the treatment of sickle cell disease. PLoS One 2024; 19:e0307049. [PMID: 39504332 PMCID: PMC11540224 DOI: 10.1371/journal.pone.0307049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Induction of fetal hemoglobin (HbF) has been shown to be a viable therapeutic approach to treating sickle cell disease and potentially other β-hemoglobinopathies. To identify targets and target-modulating small molecules that enhance HbF expression, we engineered a human umbilical-derived erythroid progenitor reporter cell line (HUDEP2_HBG1_HiBiT) by genetically tagging a HiBiT peptide to the carboxyl (C)-terminus of the endogenous HBG1 gene locus, which codes for γ-globin protein, a component of HbF. Employing this reporter cell line, we performed a chemogenomic screen of approximately 5000 compounds annotated with known targets or mechanisms that have achieved clinical stage or approval by the US Food and Drug Administration (FDA). Among them, 10 compounds were confirmed for their ability to induce HbF in the HUDEP2 cell line. These include several known HbF inducers, such as pomalidomide, lenalidomide, decitabine, idoxuridine, and azacytidine, which validate the translational nature of this screening platform. We identified avadomide, autophinib, triciribine, and R574 as novel HbF inducers from these screens. We orthogonally confirmed HbF induction activities of the top hits in both parental HUDEP2 cells as well as in human primary CD34+ hematopoietic stem and progenitor cells (HSPCs). Further, we demonstrated that pomalidomide and avadomide, but not idoxuridine, induced HbF expression through downregulation of several transcriptional repressors such as BCL11A, ZBTB7A, and IKZF1. These studies demonstrate a robust phenotypic screening workflow that can be applied to large-scale small molecule profiling campaigns for the discovery of targets and pathways, as well as novel therapeutics for sickle cell disease and other β-hemoglobinopathies.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Rachel Toughiri
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Anshu P. Gounder
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Dan Scheibe
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Matt Petrus
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Sarah J. Fink
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Sebastien Vallee
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Jon Kenniston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Nikolaos Papaioannou
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Steve Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Narender R. Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R. Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
2
|
Mazzarini M, Cherone J, Nguyen T, Martelli F, Varricchio L, Funnell APW, Papayannopoulou T, Migliaccio AR. The glucocorticoid receptor elicited proliferative response in human erythropoiesis is BCL11A-dependent. Stem Cells 2024; 42:1006-1022. [PMID: 39110040 DOI: 10.1093/stmcls/sxae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024]
Abstract
Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: (1) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; (2) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; (3) response to GC of 2 cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: (1) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; (2) CD34 + cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; (3) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in control cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant in certain aspects of the stress pathway sustained by GC.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Jennifer Cherone
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Truong Nguyen
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98185, United States
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
3
|
Dolfini D, Imbriano C, Mantovani R. The role(s) of NF-Y in development and differentiation. Cell Death Differ 2024:10.1038/s41418-024-01388-1. [PMID: 39327506 DOI: 10.1038/s41418-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
4
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Sun Y, Benmhammed H, Al Abdullatif S, Habara A, Fu E, Brady J, Williams C, Ilinski A, Sharma A, Mahdaviani K, Alekseyev YO, Campbell JD, Steinberg MH, Cui S. PGC-1α agonism induces fetal hemoglobin and exerts antisickling effects in sickle cell disease. SCIENCE ADVANCES 2024; 10:eadn8750. [PMID: 39083598 PMCID: PMC11290485 DOI: 10.1126/sciadv.adn8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Sickle cell disease is a growing health burden afflicting millions around the world. Clinical observation and laboratory studies have shown that the severity of sickle cell disease is ameliorated in individuals who have elevated levels of fetal hemoglobin. Additional pharmacologic agents to induce sufficient fetal hemoglobin to diminish clinical severity is an unmet medical need. We recently found that up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) can induce fetal hemoglobin synthesis in human primary erythroblasts. Here, we report that a small molecule, SR-18292, increases PGC-1α leading to enhanced fetal hemoglobin expression in human erythroid cells, β-globin yeast artificial chromosome mice, and sickle cell disease mice. In SR-18292-treated sickle mice, sickled red blood cells are significantly reduced, and disease complications are alleviated. SR-18292, or agents in its class, could be a promising additional therapeutic for sickle cell disease.
Collapse
Affiliation(s)
- Yanan Sun
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hajar Benmhammed
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam Al Abdullatif
- Single Cell Sequencing Core Facility, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alawi Habara
- Imam Abdulrahman Bin Faisal University, Department of Clinical Biochemistry, Dammam, Saudi Arabia
| | - Eric Fu
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Jordan Brady
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Christopher Williams
- Single Cell Sequencing Core Facility, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Adrian Ilinski
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anusha Sharma
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiana Mahdaviani
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D. Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Martin H Steinberg
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Song X, Liu J, Chen T, Zheng T, Wang X, Guo X. Gene therapy and gene editing strategies in inherited blood disorders. J Genet Genomics 2024:S1673-8527(24)00180-2. [PMID: 38986807 DOI: 10.1016/j.jgg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies and reduction of its expression using the commercialized gene therapy product Casgevy was approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting new possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.
Collapse
Affiliation(s)
- Xuemei Song
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - JinLei Liu
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tangcong Chen
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tingfeng Zheng
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiaolong Wang
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China.
| |
Collapse
|
7
|
Myers G, Sun Y, Wang Y, Benmhammed H, Cui S. Roles of Nuclear Orphan Receptors TR2 and TR4 during Hematopoiesis. Genes (Basel) 2024; 15:563. [PMID: 38790192 PMCID: PMC11121135 DOI: 10.3390/genes15050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.
Collapse
Affiliation(s)
- Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (G.M.); (Y.W.)
| | - Yanan Sun
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| | - Yu Wang
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (G.M.); (Y.W.)
| | - Hajar Benmhammed
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| |
Collapse
|
8
|
Jiang Y, Ye Y, Zhang X, Yu Y, Huang L, Bao X, Xu X. Identification and characterization of CHD4-associated eRNA as a novel modulator of fetal hemoglobin levels in β-thalassemia. Biochem Biophys Res Commun 2024; 701:149555. [PMID: 38325179 DOI: 10.1016/j.bbrc.2024.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of β-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2β2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six β-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.
Collapse
Affiliation(s)
- Yida Jiang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yanping Yu
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Liping Huang
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Xiuqin Bao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Xi C, Palani C, Takezaki M, Shi H, Horuzsko A, Pace BS, Zhu X. Simvastatin-Mediated Nrf2 Activation Induces Fetal Hemoglobin and Antioxidant Enzyme Expression to Ameliorate the Phenotype of Sickle Cell Disease. Antioxidants (Basel) 2024; 13:337. [PMID: 38539870 PMCID: PMC10968127 DOI: 10.3390/antiox13030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 06/04/2024] Open
Abstract
Sickle cell disease (SCD) is a pathophysiological condition of chronic hemolysis, oxidative stress, and elevated inflammation. The transcription factor Nrf2 is a master regulator of oxidative stress. Here, we report that the FDA-approved oral agent simvastatin, an inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, significantly activates the expression of Nrf2 and antioxidant enzymes. Simvastatin also induces fetal hemoglobin expression in SCD patient primary erythroid progenitors and a transgenic mouse model. Simvastatin alleviates SCD symptoms by decreasing hemoglobin S sickling, oxidative stress, and inflammatory stress in erythroblasts. Particularly, simvastatin increases cellular levels of cystine, the precursor for the biosynthesis of the antioxidant reduced glutathione, and decreases the iron content in SCD mouse spleen and liver tissues. Mechanistic studies suggest that simvastatin suppresses the expression of the critical histone methyltransferase enhancer of zeste homolog 2 to reduce both global and gene-specific histone H3 lysine 27 trimethylation. These chromatin structural changes promote the assembly of transcription complexes to fetal γ-globin and antioxidant gene regulatory regions in an antioxidant response element-dependent manner. In summary, our findings suggest that simvastatin activates fetal hemoglobin and antioxidant protein expression, modulates iron and cystine/reduced glutathione levels to improve the phenotype of SCD, and represents a therapeutic strategy for further development.
Collapse
Affiliation(s)
- Caixia Xi
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Chithra Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
| | - Mayuko Takezaki
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Anatolij Horuzsko
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Xingguo Zhu
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| |
Collapse
|
10
|
Al-Allawi N, Atroshi SD, Sadullah RK, Eissa AA, Kriegshäuser G, Al-Zebari S, Qadir S, Khalil D, Oberkanins C. A Population-Oriented Genetic Scoring System to Predict Phenotype: A Pathway to Personalized Medicine in Iraqis With β-Thalassemia. Hemoglobin 2024:1-7. [PMID: 38390736 DOI: 10.1080/03630269.2024.2319733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
To assess the roles of genetic modifiers in Iraqi β-thalassemia patients, and determine whether a genotype-based scoring system could be used to predict phenotype, a total of 224 Iraqi patients with molecularly characterized homozygous or compound heterozygous β-thalassemia were further investigated for α-thalassemia deletions as well as five polymorphisms namely: rs7482144 C > T at HBG2, rs1427407 G > T and rs10189857 A > G at BCL11A, and rs28384513 A > C and rs9399137 T > C at HMIP. The enrolled patients had a median age of 14 years, with 96 males and 128 females. They included 144 thalassemia major, and 80 thalassemia intermedia patients. Multivariate logistic regression analysis revealed that a model including sex and four of these genetic modifiers, namely: β+ alleles, HBG2 rs7482144, α-thalassemia deletions, and BCL11A rs1427407 could significantly predict phenotype (major versus intermedia) with an overall accuracy of 83.9%. Furthermore, a log odds genetic score based on these significant predictors had a highly significant area under curve of 0.917 (95% CI 0.882-0.953). This study underscores the notion that genetic scoring systems should be tailored to populations in question, since genetic modifiers (and/or their relative weight) vary between populations. The population-oriented genetic scoring system created by the current study to predict β-thalassemia phenotype among Iraqis may pave the way to personalized medicine in this patient's group.
Collapse
Affiliation(s)
- Nasir Al-Allawi
- Department of Pathology, College of Medicine, University of Duhok, Iraq
| | - Sulav D Atroshi
- Department of Pathology, College of Medicine, University of Duhok, Iraq
| | - Regir K Sadullah
- Medical Laboratory Technology Department, College of Health and Medical Technology, Duhok Polytechnic University, Shekhan, Iraq
| | | | | | - Shaima Al-Zebari
- Research Center, College of Science, University of Duhok, Duhok, Iraq
| | - Shatha Qadir
- Department of Hematology, Azadi Teaching Hospital, Duhok, Iraq
| | - Dilan Khalil
- Research Center, College of Science, University of Duhok, Duhok, Iraq
| | - Christian Oberkanins
- Department of Research and Development, ViennaLab Diagnostics GmbH, Vienna, Austria
| |
Collapse
|
11
|
Wang Z, Ren B. Role of H3K4 monomethylation in gene regulation. Curr Opin Genet Dev 2024; 84:102153. [PMID: 38278054 PMCID: PMC11065453 DOI: 10.1016/j.gde.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Methylation of histone H3 on the lysine-4 residue (H3K4me) is found throughout the eukaryotic domain, and its initial discovery as a conserved epigenetic mark of active transcription from yeast to mammalian cells has contributed to the histone code hypothesis. However, recent studies have raised questions on whether the different forms of H3K4me play a direct role in gene regulation or are simply by-products of the transcription process. Here, we review the often-conflicting experimental evidence, focusing on the monomethylation of lysine 4 on histone H3 that has been linked to the transcriptional state of enhancers in metazoans. We suggest that this epigenetic mark acts in a context-dependent manner to directly facilitate the transcriptional output of the genome and the establishment of cellular identity.
Collapse
Affiliation(s)
- Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. https://twitter.com/@ZhaoningWang
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA; Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
12
|
Zheng G, Orkin SH. Transcriptional Repressor BCL11A in Erythroid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:199-215. [PMID: 39017845 DOI: 10.1007/978-3-031-62731-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2β2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and β-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and β-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.
Collapse
Affiliation(s)
- Ge Zheng
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School and HHMI, Boston, MA, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School and HHMI, Boston, MA, USA.
| |
Collapse
|
13
|
Ibanez V, Vaitkus K, Ruiz MA, Lei Z, Maienschein-Cline M, Arbieva Z, Lavelle D. Effect of the LSD1 inhibitor RN-1 on γ-globin and global gene expression during erythroid differentiation in baboons (Papio anubis). PLoS One 2023; 18:e0289860. [PMID: 38134183 PMCID: PMC10745162 DOI: 10.1371/journal.pone.0289860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of Fetal Hemoglobin interfere with polymerization of sickle hemoglobin thereby reducing anemia, lessening the severity of symptoms, and increasing life span of patients with sickle cell disease. An affordable, small molecule drug that stimulates HbF expression in vivo would be ideally suited to treat the large numbers of SCD patients that exist worldwide. Our previous work showed that administration of the LSD1 (KDM1A) inhibitor RN-1 to normal baboons increased Fetal Hemoglobin (HbF) and was tolerated over a prolonged treatment period. HbF elevations were associated with changes in epigenetic modifications that included increased levels of H3K4 di-and tri-methyl lysine at the γ-globin promoter. While dramatic effects of the loss of LSD1 on hematopoietic differentiation have been observed in murine LSD1 gene deletion and silencing models, the effect of pharmacological inhibition of LSD1 in vivo on hematopoietic differentiation is unknown. The goal of these experiments was to investigate the in vivo mechanism of action of the LSD1 inhibitor RN-1 by determining its effect on γ-globin expression in highly purified subpopulations of bone marrow erythroid cells enriched for varying stages of erythroid differentiation isolated directly from baboons treated with RN-1 and also by investigating the effect of RN1 on the global transcriptome in a highly purified population of proerythroblasts. Our results show that RN-1 administered to baboons targets an early event during erythroid differentiation responsible for γ-globin repression and increases the expression of a limited number of genes including genes involved in erythroid differentiation such as GATA2, GFi-1B, and LYN.
Collapse
Affiliation(s)
- Vinzon Ibanez
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Kestis Vaitkus
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Maria Armila Ruiz
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Zhengdeng Lei
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Ambry Genetics, Aliso Viejo, California, United States of America
| | - Mark Maienschein-Cline
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zarema Arbieva
- Genomics Research Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Tamaoki J, Maeda H, Kobayashi I, Takeuchi M, Ohashi K, Gore A, Bonkhofer F, Patient R, Weinstein BM, Kobayashi M. LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Dev Biol 2023; 501:92-103. [PMID: 37353106 PMCID: PMC10393020 DOI: 10.1016/j.ydbio.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.
Collapse
Affiliation(s)
- Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Hiroki Maeda
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Miki Takeuchi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Ken Ohashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Aniket Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Florian Bonkhofer
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roger Patient
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
15
|
Ibanez V, Vaitkus K, Zhang X, Ramasamy J, Rivers AE, Saunthararajah Y, Molokie R, Lavelle D. Combinatorial targeting of epigenome-modifying enzymes with decitabine and RN-1 synergistically increases HbF. Blood Adv 2023; 7:3891-3902. [PMID: 36884303 PMCID: PMC10405201 DOI: 10.1182/bloodadvances.2022009558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Increased fetal hemoglobin (HbF) levels reduce the symptoms of sickle cell disease (SCD) and increase the lifespan of patients. Because curative strategies for bone marrow transplantation and gene therapy technologies remain unavailable to a large number of patients, the development of a safe and effective pharmacological therapy that increases HbF offers the greatest potential for disease intervention. Although hydroxyurea increases HbF, a substantial proportion of patients fail to demonstrate an adequate response. Pharmacological inhibitors of DNA methyltransferase (DNMT1) and lysine-specific demethylase 1A (LSD1), 2 epigenome-modifying enzymes associated with the multiprotein corepressor complex recruited to the repressed γ-globin gene, are powerful in vivo inducers of HbF. The hematological side effects of these inhibitors limit feasible clinical exposures. We evaluated whether administering these drugs in combination could reduce the dose and/or time of exposure to any single agent to minimize adverse effects, while achieving additive or synergistic increases in HbF. The DNMT1 inhibitor decitabine (0.5 mg/kg per day) and the LSD1 inhibitor RN-1 (0.25 mg/kg per day) administered in combination 2 days per week produced synergistic increases in F-cells, F-reticulocytes, and γ-globin messenger RNA in healthy baboons. Large increases in HbF and F-cells were observed in healthy, nonanemic, and anemic (phlebotomized) baboons. Combinatorial therapy targeting epigenome-modifying enzymes could thus be a useful strategy for producing larger increases in HbF to modify the clinical course of SCD.
Collapse
Affiliation(s)
- Vinzon Ibanez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| | - Kestis Vaitkus
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| | - Xu Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jagadeesh Ramasamy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Angela E. Rivers
- Department of Pediatrics, School of Medicine, University of California at San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
| | - Yogen Saunthararajah
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Robert Molokie
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
- Department of Pharmaceutical Science, University of Illinois at Chicago, Chicago, IL
| | - Donald Lavelle
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
16
|
Shang S, Li X, Azzo A, Truong T, Dozmorov M, Lyons C, Manna A, Williams D, Ginder G. MBD2a-NuRD binds to the methylated γ-globin gene promoter and uniquely forms a complex required for silencing of HbF expression. Proc Natl Acad Sci U S A 2023; 120:e2302254120. [PMID: 37307480 PMCID: PMC10288633 DOI: 10.1073/pnas.2302254120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.
Collapse
Affiliation(s)
- Shengzhe Shang
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
| | - Xia Li
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23060
| | - Alexander Azzo
- Center for Clinical and Translational Research, PhD Program in Cancer and Molecular Medicine, Virginia Commonwealth University, Richmond, VA23060
- MD-PhD Program, Virginia Commonwealth University, Richmond, VA23060
| | - Tin Truong
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA23060
| | - Charles Lyons
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
| | - Asit K. Manna
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC27599
| | - David C. Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC27599
| | - Gordon D. Ginder
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23060
- Department of Internal Medicine, Division of Hematology-Oncology, Virginia Commonwealth University, Richmond, VA23060
| |
Collapse
|
17
|
Qin K, Lan X, Huang P, Saari MS, Khandros E, Keller CA, Giardine B, Abdulmalik O, Shi J, Hardison RC, Blobel GA. Molecular basis of polycomb group protein-mediated fetal hemoglobin repression. Blood 2023; 141:2756-2770. [PMID: 36893455 PMCID: PMC10273169 DOI: 10.1182/blood.2022019578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and β-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Huang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan S. Saari
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Dean A. Help on the way to unsilence HbF. Blood 2023; 141:2670-2672. [PMID: 37530647 PMCID: PMC10273155 DOI: 10.1182/blood.2023020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Affiliation(s)
- Ann Dean
- National Institute of Diabetes and Digestive and Kidney Diseases
| |
Collapse
|
19
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
20
|
Lu HY, Orkin SH, Sankaran VG. Fetal Hemoglobin Regulation in Beta-Thalassemia. Hematol Oncol Clin North Am 2023; 37:301-312. [PMID: 36907604 DOI: 10.1016/j.hoc.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
β-thalassemia is caused by mutations that reduce β-globin production, causing globin chain imbalance, ineffective erythropoiesis, and consequent anemia. Increased fetal hemoglobin (HbF) levels can ameliorate the severity of β-thalassemia by compensating for the globin chain imbalance. Careful clinical observations paired with population studies and advances in human genetics have enabled the discovery of major regulators of HbF switching (i.e. BCL11A, ZBTB7A) and led to pharmacological and genetic therapies for treating β-thalassemia patients. Recent functional screens using genome editing and other emerging tools have identified many new HbF regulators, which may improve therapeutic HbF induction in the future.
Collapse
Affiliation(s)
- Henry Y Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA. https://twitter.com/realhenrylu
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
21
|
Abstract
Thalassemia syndromes are common monogenic disorders and represent a significant health issue worldwide. In this review, the authors elaborate on fundamental genetic knowledge about thalassemias, including the structure and location of globin genes, the production of hemoglobin during development, the molecular lesions causing α-, β-, and other thalassemia syndromes, the genotype-phenotype correlation, and the genetic modifiers of these conditions. In addition, they briefly discuss the molecular techniques applied for diagnosis and innovative cell and gene therapy strategies to cure these conditions.
Collapse
Affiliation(s)
- Nicolò Tesio
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy. https://twitter.com/nicolotesio
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023; 15:713. [PMID: 36992422 PMCID: PMC10054523 DOI: 10.3390/v15030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the β-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent β-hemoglobinopathies: sickle cell disease and β-thalassemia, both affecting functional β-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for β-thalassemia (Zynteglo™). This review illuminates the β-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the β-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eva Eugenie Rose Segura
- Molecular Biology Interdepartmental Doctoral Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Paul George Ayoub
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevyn Lopez Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Donald Barry Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Haftorn KL, Denault WRP, Lee Y, Page CM, Romanowska J, Lyle R, Næss ØE, Kristjansson D, Magnus PM, Håberg SE, Bohlin J, Jugessur A. Nucleated red blood cells explain most of the association between DNA methylation and gestational age. Commun Biol 2023; 6:224. [PMID: 36849614 PMCID: PMC9971030 DOI: 10.1038/s42003-023-04584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Determining if specific cell type(s) are responsible for an association between DNA methylation (DNAm) and a given phenotype is important for understanding the biological mechanisms underlying the association. Our EWAS of gestational age (GA) in 953 newborns from the Norwegian MoBa study identified 13,660 CpGs significantly associated with GA (pBonferroni<0.05) after adjustment for cell type composition. When the CellDMC algorithm was applied to explore cell-type specific effects, 2,330 CpGs were significantly associated with GA, mostly in nucleated red blood cells [nRBCs; n = 2,030 (87%)]. Similar patterns were found in another dataset based on a different array and when applying an alternative algorithm to CellDMC called Tensor Composition Analysis (TCA). Our findings point to nRBCs as the main cell type driving the DNAm-GA association, implicating an epigenetic signature of erythropoiesis as a likely mechanism. They also explain the poor correlation observed between epigenetic age clocks for newborns and those for adults.
Collapse
Affiliation(s)
- Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, , University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Øyvind E Næss
- Institute of Health and Society, University of Oslo, Oslo, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dana Kristjansson
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, , University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
25
|
CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid progress in genome modification technologies holds great potential for treating this disease and will soon change the current standard of care for β-thalassemia. For instance, the emergence of the CRISPR/Cas9 genome editing platform has opened the door for precision gene editing and can serve as an effective molecular treatment for a multitude of genetic diseases. Investigational studies were carried out to treat β-thalassemia patients utilizing CRISPR-based CTX001 therapy targeting the fetal hemoglobin silencer BCL11A to restore γ-globin expression in place of deficient β-globin. The results of recently carried out clinical trials provide hope of CTX001 being a promising one-time therapeutic option to treat β-hemoglobinopathies. This review provides an insight into the key scientific steps that led to the development and application of novel CRISPR/Cas9–based gene therapies as a promising therapeutic platform for transfusion-dependent β-thalassemia (TDT). Despite the resulting ethical, moral, and social challenges, CRISPR provides an excellent treatment option against hemoglobin-associated genetic diseases.
Collapse
|
26
|
Takase S, Hiroyama T, Shirai F, Maemoto Y, Nakata A, Arata M, Matsuoka S, Sonoda T, Niwa H, Sato S, Umehara T, Shirouzu M, Nishigaya Y, Sumiya T, Hashimoto N, Namie R, Usui M, Ohishi T, Ohba SI, Kawada M, Hayashi Y, Harada H, Yamaguchi T, Shinkai Y, Nakamura Y, Yoshida M, Ito A. A specific G9a inhibitor unveils BGLT3 lncRNA as a universal mediator of chemically induced fetal globin gene expression. Nat Commun 2023; 14:23. [PMID: 36635268 PMCID: PMC9837035 DOI: 10.1038/s41467-022-35404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is a heritable disorder caused by β-globin gene mutations. Induction of fetal γ-globin is an established therapeutic strategy. Recently, epigenetic modulators, including G9a inhibitors, have been proposed as therapeutic agents. However, the molecular mechanisms whereby these small molecules reactivate γ-globin remain unclear. Here we report the development of a highly selective and non-genotoxic G9a inhibitor, RK-701. RK-701 treatment induces fetal globin expression both in human erythroid cells and in mice. Using RK-701, we find that BGLT3 long non-coding RNA plays an essential role in γ-globin induction. RK-701 selectively upregulates BGLT3 by inhibiting the recruitment of two major γ-globin repressors in complex with G9a onto the BGLT3 gene locus through CHD4, a component of the NuRD complex. Remarkably, BGLT3 is indispensable for γ-globin induction by not only RK-701 but also hydroxyurea and other inducers. The universal role of BGLT3 in γ-globin induction suggests its importance in SCD treatment.
Collapse
Affiliation(s)
- Shohei Takase
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Mayumi Arata
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Seiji Matsuoka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takeshi Sonoda
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hideaki Niwa
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | - Shin Sato
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Umehara
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | - Yosuke Nishigaya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Tatsunobu Sumiya
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Noriaki Hashimoto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Ryosuke Namie
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Masaya Usui
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka, 410-0301, Japan
| | - Shun-Ichi Ohba
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka, 410-0301, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka, 410-0301, Japan
| | - Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Tokio Yamaguchi
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan. .,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan. .,Department of Biotechnology, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan. .,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
27
|
Mahmoud Ahmed NH, Lai MI. The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment. Cardiovasc Hematol Disord Drug Targets 2023; 22:226-236. [PMID: 36734897 DOI: 10.2174/1871529x23666230123140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023]
Abstract
β-thalassaemia is a genetic disorder resulting in a reduction or absence of β-globin gene expression. Due to the high prevalence of β-thalassaemia and the lack of available treatment other than blood transfusion and haematopoietic stem cell (HSC) transplantation, the disease represents a considerable burden to clinical and economic systems. Foetal haemoglobin has an appreciated ameliorating effect in β-haemoglobinopathy, as the γ-globin chain substitutes the β-globin chain reduction by pairing with the excess α-globin chain in β-thalassaemia and reduces sickling in sickle cell disease (SCD). BCL11A is a critical regulator and repressor of foetal haemoglobin. Downregulation of BCL11A in adult erythroblasts and cell lines expressing adult haemoglobin led to a significant increase in foetal haemoglobin levels. Disruption of BCL11A erythroid enhancer resulted in disruption of the BCL11A gene solely in the erythroid lineages and increased γ-globin expression in adult erythroid cells. Autologous haematopoietic stem cell gene therapy represents an attractive treatment option to overcome the immune complications and donor availability associated with allogeneic transplantation. Using genome editing technologies, the disruption of BCL11A to induce γ- globin expression in HSCs has emerged as an alternative approach to treat β-thalassaemia. Targeting the +58 BCL11A erythroid enhancer or BCL11A binding motif at the γ-gene promoter with CRISPR-Cas9 or base editors has successfully disrupted the gene and the binding motif with a subsequent increment in HbF levels. This review outlines the critical role of BCL11A in γ-globin gene silencing and discusses the different genome editing approaches to downregulate BCL11A as a means for ameliorating β-thalassaemia.
Collapse
Affiliation(s)
- Nahil Hassan Mahmoud Ahmed
- Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Mei I Lai
- Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Reid XJ, Low JKK, Mackay JP. A NuRD for all seasons. Trends Biochem Sci 2023; 48:11-25. [PMID: 35798615 DOI: 10.1016/j.tibs.2022.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022]
Abstract
The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.
Collapse
Affiliation(s)
- Xavier J Reid
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Vong P, Messaoudi K, Jankovsky N, Gomilla C, Demont Y, Caulier A, Jedraszak G, Demagny J, Djordjevic S, Boyer T, Marolleau JP, Rochette J, Ouled‐Haddou H, Garçon L. HDAC6 regulates human erythroid differentiation through modulation of JAK2 signalling. J Cell Mol Med 2022; 27:174-188. [PMID: 36578217 PMCID: PMC9843532 DOI: 10.1111/jcmm.17559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Among histone deacetylases, HDAC6 is unusual in its cytoplasmic localization. Its inhibition leads to hyperacetylation of non-histone proteins, inhibiting cell cycle, proliferation and apoptosis. Ricolinostat (ACY-1215) is a selective inhibitor of the histone deacetylase HDAC6 with proven efficacy in the treatment of malignant diseases, but anaemia is one of the most frequent side effects. We investigated here the underlying mechanisms of this erythroid toxicity. We first confirmed that HDAC6 was strongly expressed at both RNA and protein levels in CD34+ -cells-derived erythroid progenitors. ACY-1215 exposure on CD34+ -cells driven in vitro towards the erythroid lineage led to a decreased cell count, an increased apoptotic rate and a delayed erythroid differentiation with accumulation of weakly hemoglobinized immature erythroblasts. This was accompanied by drastic changes in the transcriptomic profile of primary cells as shown by RNAseq. In erythroid cells, ACY-1215 and shRNA-mediated HDAC6 knockdown inhibited the EPO-dependent JAK2 phosphorylation. Using acetylome, we identified 14-3-3ζ, known to interact directly with the JAK2 negative regulator LNK, as a potential HDAC6 target in erythroid cells. We confirmed that 14-3-3ζ was hyperacetylated after ACY-1215 exposure, which decreased the 14-3-3ζ/LNK interaction while increased LNK ability to interact with JAK2. Thus, in addition to its previously described role in the enucleation of mouse fetal liver erythroblasts, we identified here a new mechanism of HDAC6-dependent control of erythropoiesis through 14-3-3ζ acetylation level, LNK availability and finally JAK2 activation in response to EPO, which is crucial downstream of EPO-R activation for human erythroid cell survival, proliferation and differentiation.
Collapse
Affiliation(s)
- Pascal Vong
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | | | - Cathy Gomilla
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Yohann Demont
- Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Alexis Caulier
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | - Guillaume Jedraszak
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Laboratoire de Génétique ConstitutionnelleCentre Hospitalier UniversitaireAmiensFrance
| | - Julien Demagny
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | | | - Thomas Boyer
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Jean Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | | | | | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| |
Collapse
|
30
|
Crossley M, Christakopoulos GE, Weiss MJ. Effective therapies for sickle cell disease: are we there yet? Trends Genet 2022; 38:1284-1298. [PMID: 35934593 PMCID: PMC9837857 DOI: 10.1016/j.tig.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Sickle cell disease (SCD) is a common genetic blood disorder associated with acute and chronic pain, progressive multiorgan damage, and early mortality. Recent advances in technologies to manipulate the human genome, a century of research and the development of techniques enabling the isolation, efficient genetic modification, and reimplantation of autologous patient hematopoietic stem cells (HSCs), mean that curing most patients with SCD could soon be a reality in wealthy countries. In parallel, ongoing research is pursuing more facile treatments, such as in-vivo-delivered genetic therapies and new drugs that can eventually be administered in low- and middle-income countries where most SCD patients reside.
Collapse
Affiliation(s)
- Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052.
| | | | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
31
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
32
|
Bou-Fakhredin R, De Franceschi L, Motta I, Cappellini MD, Taher AT. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals (Basel) 2022; 15:ph15060753. [PMID: 35745672 PMCID: PMC9227505 DOI: 10.3390/ph15060753] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (M.D.C.); (A.T.T.)
| | - Ali T. Taher
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (M.D.C.); (A.T.T.)
| |
Collapse
|
33
|
Identification of novel γ-globin inducers among all potential erythroid druggable targets. Blood Adv 2022; 6:3280-3285. [PMID: 35240686 PMCID: PMC9198928 DOI: 10.1182/bloodadvances.2021006802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 01/28/2023] Open
Abstract
Human γ-globin is predominantly expressed in fetal liver erythroid cells during gestation from 2 nearly identical genes, HBG1 and HBG2, that are both perinatally silenced. Reactivation of these fetal genes in adult red blood cells can ameliorate many symptoms associated with the inherited β-globinopathies, sickle cell disease, and Cooley anemia. Although promising genetic strategies to reactivate the γ-globin genes to treat these diseases have been explored, there are significant barriers to their effective implementation worldwide; alternatively, pharmacological induction of γ-globin synthesis could readily reach the majority of affected individuals. In this study, we generated a CRISPR knockout library that targeted all erythroid genes for which prospective or actual therapeutic compounds already exist. By probing this library for genes that repress fetal hemoglobin (HbF), we identified several novel, potentially druggable, γ-globin repressors, including VHL and PTEN. We demonstrate that deletion of VHL induces HbF through activation of the HIF1α pathway and that deletion of PTEN induces HbF through AKT pathway stimulation. Finally, we show that small-molecule inhibitors of PTEN and EZH induce HbF in both healthy and β-thalassemic human primary erythroid cells.
Collapse
|
34
|
Qin K, Huang P, Feng R, Keller CA, Peslak SA, Khandros E, Saari MS, Lan X, Mayuranathan T, Doerfler PA, Abdulmalik O, Giardine B, Chou ST, Shi J, Hardison RC, Weiss MJ, Blobel GA. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat Genet 2022; 54:874-884. [PMID: 35618846 PMCID: PMC9203980 DOI: 10.1038/s41588-022-01076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease (SCD) and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family – NFIA and NFIX – as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared to fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants. Genomic profiling, genome editing, and DNA binding assays demonstrate that the potent concerted activity of NFIA and NFIX is explained in part by their ability to stimulate the expression of BCL11A, a known silencer of the HBG1/2 genes, and in part by directly repressing the HBG1/2 genes. Thus, NFI factors emerge as versatile regulators of the fetal-to-adult switch in β-globin production.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Zhang H, Sun R, Fei J, Chen H, Lu D. Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing. Int J Mol Sci 2022; 23:ijms23115948. [PMID: 35682629 PMCID: PMC9180235 DOI: 10.3390/ijms23115948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Prime editing was used to insert and correct various pathogenic mutations except for beta-thalassemia variants, which disrupt functional beta-globin and prevent hemoglobin assembly in erythrocytes. This study investigated the effect of gene correction using prime editor version 3 (PE3) in a mouse model with the human beta-thalassemia IVS-II-654 mutation (C > T). The T conversion generates a 5′ donor site at intron 2 of the beta-globin gene resulting in aberrant splicing of pre-mRNA, which affects beta-globin expression. We microinjected PE3 components (pegRNA, nick sgRNA, and PE2 mRNA) into the zygotes from IVS-II-654 mice to generate mutation-edited mice. Genome sequencing of the IVS-II-654 site showed that PE3 installed the correction (T > C), with an editing efficiency of 14.29%. Reverse transcription-PCR analysis showed that the PE3-induced conversion restored normal splicing of beta-globin mRNA. Subsequent comprehensive phenotypic analysis of thalassemia symptoms, including anemic hematological parameters, anisocytosis, splenomegaly, cardiac hypertrophy, extramedullary hematopoiesis, and iron overload, showed that the corrected IVS-II-654 mice had a normal phenotype identical to the wild type mice. Off-target analysis of pegRNA and nick sgRNA additionally showed the genomic safety of PE3. These results suggest that correction of beta-thalassemia mutation by PE3 may be a straightforward therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Haokun Zhang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Ruilin Sun
- Shanghai Model Organisms Center, No.3577 Jinke Rd., Shanghai 201203, China; (R.S.); (J.F.)
| | - Jian Fei
- Shanghai Model Organisms Center, No.3577 Jinke Rd., Shanghai 201203, China; (R.S.); (J.F.)
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China;
- Correspondence: (H.C.); (D.L.)
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China;
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing 404100, China
- Correspondence: (H.C.); (D.L.)
| |
Collapse
|
36
|
Khan F, Ali H, Musharraf SG. Tenofovir disoproxil fumarate-mediated γ-globin induction is correlated with the suppression of trans-acting factors in CD34 + progenitor cells: A role in the reactivation of fetal hemoglobin. Eur J Pharmacol 2022; 927:175036. [PMID: 35618038 DOI: 10.1016/j.ejphar.2022.175036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Sickle-cell disease (SCD) and β-thalassemia are public health issues that affect people all over the world. Fetal hemoglobin (HbF) induction is a molecular intervention, including hydroxyurea, which has made an effort to improve current treatment. Tenofovir disoproxil fumarate (TDF) is formerly reported with improving levels of hemoglobin, mean corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV). Hence, in this preclinical investigation, human peripheral whole blood-derived CD34+ progenitor cells were cultured to prove the efficacy of TDF on erythroid proliferation, differentiation, γ-globin gene expression regulation, and ultimately HbF production. We observed that TDF increased the proliferation of immature erythroid cells, delayed the terminal erythroid maturation without cytotoxicity as correlated with other HbF inducers. Here, the presented data show that TDF can induce HbF expression by up-regulating the γ-globin gene transcription up to 7.1 ± 0.46-fold and subsequently increased the F-cells (10.79 ± 1.9-fold) population in terminally differentiated erythroid cells. Furthermore, our findings demonstrated that TDF-mediated γ-globin gene induction and HbF production was associated with down-fold regulation of BCL11A and SOX6, and their corresponding trans-acting regulators, FOP, KLF1, and GATA1. Collectively, our findings suggest TDF as an effective inducer of HbF in CD34+ cells and pave the way to put forward the assessment of TDF as a new potential therapy in treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Faisal Khan
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hamad Ali
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Syed Ghulam Musharraf
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
37
|
Abstract
INTRODUCTION Sickle cell disease and β thalassemia are the principal β hemoglobinopathies. The complex pathophysiology of sickle cell disease is initiated by sickle hemoglobin polymerization. In β thalassemia, insufficient β-globin synthesis results in excessive free α globin, ineffective erythropoiesis and severe anemia. Fetal hemoglobin (HbF) prevents sickle hemoglobin polymerization; in β thalassemia HbF compensates for the deficit of normal hemoglobin. When HbF constitutes about a third of total cell hemoglobin, the complications of sickle cell disease are nearly totally prevented. Similarly, sufficient HbF in β thalassemia diminishes or prevents ineffective erythropoiesis and hemolysis. AREAS COVERED This article examines the pathophysiology of β hemoglobinopathies, the physiology of HbF, intracellular distribution and the regulation of HbF expression. Inducing high levels of HbF by targeting its regulatory pathways pharmacologically or with cell-based therapeutics provides major clinical benefit and perhaps a "cure." EXPERT OPINION Erythrocytes must contain about 10 pg of HbF to "cure" sickle cell disease. If HbF is the only hemoglobin present, much higher levels are needed to "cure" β thalassemia. These levels of HbF can be obtained by different iterations of gene therapy. Small molecule drugs that can achieve even modest pancellular HbF concentrations are a major unmet need.
Collapse
Affiliation(s)
- Martin H Steinberg
- Professor of Medicine, Pediatrics, Pathology and Laboratory Medicine, Boston University School of Medicine.,Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.,Department of Medicine, Boston University School of Medicine, 72 E. Concord St. Boston, MA 02118. ., Tel
| |
Collapse
|
38
|
Multi-Omics Analysis in β-Thalassemia Using an HBB Gene-Knockout Human Erythroid Progenitor Cell Model. Int J Mol Sci 2022; 23:ijms23052807. [PMID: 35269949 PMCID: PMC8911073 DOI: 10.3390/ijms23052807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
β-thalassemia is a hematologic disease that may be associated with significant morbidity and mortality. Increased expression of HBG1/2 can ameliorate the severity of β-thalassemia. Compared to the unaffected population, some β-thalassemia patients display elevated HBG1/2 expression levels in their red blood cells. However, the magnitude of up-regulation does not reach the threshold of self-healing, and thus, the molecular mechanism underlying HBG1/2 expression in the context of HBB-deficiency requires further elucidation. Here, we performed a multi-omics study examining chromatin accessibility, transcriptome, proteome, and phosphorylation patterns in the HBB homozygous knockout of the HUDEP2 cell line (HBB-KO). We found that up-regulation of HBG1/2 in HBB-KO cells was not induced by the H3K4me3-mediated genetic compensation response. Deletion of HBB in human erythroid progenitor cells resulted in increased ROS levels and production of oxidative stress, which led to an increased rate of apoptosis. Furthermore, in response to oxidative stress, slower cell cycle progression and proliferation were observed. In addition, stress erythropoiesis was initiated leading to increased intracellular HBG1/2 expression. This molecular model was also validated in the single-cell transcriptome of hematopoietic stem cells from β-hemoglobinopathy patients. These findings further the understanding of HBG1/2 gene regulatory networks and provide novel clinical insights into β-thalassemia phenotypic diversity.
Collapse
|
39
|
Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev 2021; 23:276-285. [PMID: 34729375 PMCID: PMC8526756 DOI: 10.1016/j.omtm.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genome editing is potentially a curative technique available to all individuals with β-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with β-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
40
|
Zhang H, Wang S, Liu D, Gao C, Han Y, Guo X, Qu X, Li W, Zhang S, Geng J, Zhang L, Mendelson A, Yazdanbakhsh K, Chen L, An X. EpoR-tdTomato-Cre mice enable identification of EpoR expression in subsets of tissue macrophages and hematopoietic cells. Blood 2021; 138:1986-1997. [PMID: 34098576 PMCID: PMC8767788 DOI: 10.1182/blood.2021011410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022] Open
Abstract
The erythropoietin receptor (EpoR) has traditionally been thought of as an erythroid-specific gene. Notably, accumulating evidence suggests that EpoR is expressed well beyond erythroid cells. However, the expression of EpoR in non-erythroid cells has been controversial. In this study, we generated EpoR-tdTomato-Cre mice and used them to examine the expression of EpoR in tissue macrophages and hematopoietic cells. We show that in marked contrast to the previously available EpoR-eGFPcre mice, in which a very weak eGFP signal was detected in erythroid cells, tdTomato was readily detectable in both fetal liver (FL) and bone marrow (BM) erythroid cells at all developmental stages and exhibited dynamic changes during erythropoiesis. Consistent with our recent finding that erythroblastic island (EBI) macrophages are characterized by the expression of EpoR, tdTomato was readily detected in both FL and BM EBI macrophages. Moreover, tdTomato was also detected in subsets of hematopoietic stem cells, progenitors, megakaryocytes, and B cells in BM as well as in spleen red pulp macrophages and liver Kupffer cells. The expression of EpoR was further shown by the EpoR-tdTomato-Cre-mediated excision of the floxed STOP sequence. Importantly, EPO injection selectively promoted proliferation of the EpoR-expressing cells and induced erythroid lineage bias during hematopoiesis. Our findings imply broad roles for EPO/EpoR in hematopoiesis that warrant further investigation. The EpoR-tdTomato-Cre mouse line provides a powerful tool to facilitate future studies on EpoR expression and regulation in various non-hematopoietic cells and to conditionally manipulate gene expression in EpoR-expressing cells for functional studies.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
- Laboratory of Membrane Biology and
| | - Shihui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
- Laboratory of Membrane Biology and
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | | | | | | | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Wei Li
- Laboratory of Membrane Biology and
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Jingyu Geng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Linlin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Avital Mendelson
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | | | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Xiuli An
- Laboratory of Membrane Biology and
| |
Collapse
|
41
|
Yu L, Myers G, Ku CJ, Schneider E, Wang Y, Singh SA, Jearawiriyapaisarn N, White A, Moriguchi T, Khoriaty R, Yamamoto M, Rosenfeld MG, Pedron J, Bushweller JH, Lim KC, Engel JD. An erythroid-to-myeloid cell fate conversion is elicited by LSD1 inactivation. Blood 2021; 138:1691-1704. [PMID: 34324630 PMCID: PMC8569417 DOI: 10.1182/blood.2021011682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 01/28/2023] Open
Abstract
Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of β-globinopathies (sickle cell disease and β-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor-like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology
| | - Greggory Myers
- Department of Cell and Developmental Biology
- Department of Internal Medicine, and
| | - Chia-Jui Ku
- Department of Cell and Developmental Biology
| | | | - Yu Wang
- Department of Cell and Developmental Biology
| | - Sharon A Singh
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Andrew White
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Takashi Moriguchi
- Division of Medical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Rami Khoriaty
- Department of Cell and Developmental Biology
- Department of Internal Medicine, and
| | - Masayuki Yamamoto
- Department of Cell and Developmental Biology
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA; and
| | - Julien Pedron
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville , VA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville , VA
| | | | | |
Collapse
|
42
|
Rosanwo TO, Bauer DE. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy. Mol Ther 2021; 29:3163-3178. [PMID: 34628053 PMCID: PMC8571174 DOI: 10.1016/j.ymthe.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing produces genetic modifications in somatic cells, offering novel curative possibilities for sickle cell disease and β-thalassemia. These opportunities leverage clinical knowledge of hematopoietic stem cell transplant and gene transfer. Advantages to this mode of ex vivo therapy include locus-specific alteration of patient hematopoietic stem cell genomes, lack of allogeneic immune response, and avoidance of insertional mutagenesis. Despite exciting progress, many aspects of this approach remain to be optimized for ideal clinical implementation, including the efficiency and specificity of gene modification, delivery to hematopoietic stem cells, and robust and nontoxic engraftment of gene-modified cells. This review highlights genome editing as compared to other genetic therapies, the differences between editing strategies, and the clinical prospects and challenges of implementing genome editing as a novel treatment. As the world's most common monogenic disorders, the β-hemoglobinopathies are at the forefront of bringing genome editing to the clinic and hold promise for molecular medicine to address human disease at its root.
Collapse
Affiliation(s)
- Tolulope O Rosanwo
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston MA, USA; Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Daniel E Bauer
- Department of Pediatrics, Harvard Medical School, Boston MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
43
|
Mussolino C, Strouboulis J. Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Front Genome Ed 2021; 3:618111. [PMID: 34713248 PMCID: PMC8525358 DOI: 10.3389/fgeed.2021.618111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue oxygenation throughout life depends on the activity of hemoglobin (Hb) one of the hemeproteins that binds oxygen in the lungs and secures its delivery throughout the body. Hb is composed of four monomers encoded by eight different genes the expression of which is tightly regulated during development, resulting in the formation of distinct hemoglobin tetramers in each developmental stage. Mutations that alter hemoglobin structure or its regulated expression result in a large group of diseases typically referred to as hemoglobinopathies that are amongst the most common genetic defects worldwide. Unprecedented efforts in the last decades have partially unraveled the complex mechanisms that control globin gene expression throughout development. In addition, genome wide association studies have revealed protective genetic traits capable of ameliorating the clinical manifestations of severe hemoglobinopathies. This knowledge has fueled the exploration of innovative therapeutic approaches aimed at modifying the genome or the epigenome of the affected cells to either restore hemoglobin function or to mimic the effect of protective traits. Here we describe the key steps that control the switch in gene expression that concerns the different globin genes during development and highlight the latest efforts in altering globin regulation for therapeutic purposes.
Collapse
Affiliation(s)
- Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Strouboulis
- Laboratory of Molecular Erythropoiesis, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
44
|
BCL11A promotes myeloid leukemogenesis by repressing PU.1 target genes. Blood Adv 2021; 6:1827-1843. [PMID: 34714913 PMCID: PMC8941473 DOI: 10.1182/bloodadvances.2021004558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
BCL11A promotes myeloid leukemogenesis via the repression of PU.1 target genes. Inhibition of corepressors abrogates the BCL11A function, inducing growth suppression and inhibition of engraftment in AML.
The transcriptional repressor BCL11A is involved in hematological malignancies, B-cell development, and fetal-to-adult hemoglobin switching. However, the molecular mechanism by which it promotes the development of myeloid leukemia remains largely unknown. We find that Bcl11a cooperates with the pseudokinase Trib1 in the development of acute myeloid leukemia (AML). Bcl11a promotes the proliferation and engraftment of Trib1-expressing AML cells in vitro and in vivo. Chromatin immunoprecipitation sequencing analysis showed that, upon DNA binding, Bcl11a is significantly associated with PU.1, an inducer of myeloid differentiation, and that Bcl11a represses several PU.1 target genes, such as Asb2, Clec5a, and Fcgr3. Asb2, as a Bcl11a target gene that modulates cytoskeleton and cell-cell interaction, plays a key role in Bcl11a-induced malignant progression. The repression of PU.1 target genes by Bcl11a is achieved by sequence-specific DNA-binding activity and recruitment of corepressors by Bcl11a. Suppression of the corepressor components HDAC and LSD1 reverses the repressive activity. Moreover, treatment of AML cells with the HDAC inhibitor pracinostat and the LSD1 inhibitor GSK2879552 resulted in growth inhibition in vitro and in vivo. High BCL11A expression is associated with worse prognosis in humans with AML. Blocking of BCL11A expression upregulates the expression of PU.1 target genes and inhibits the growth of HL-60 cells and their engraftment to the bone marrow, suggesting that BCL11A is involved in human myeloid malignancies via the suppression of PU.1 transcriptional activity.
Collapse
|
45
|
De Simone G, Quattrocchi A, Mancini B, di Masi A, Nervi C, Ascenzi P. Thalassemias: From gene to therapy. Mol Aspects Med 2021; 84:101028. [PMID: 34649720 DOI: 10.1016/j.mam.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
Thalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and β are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δβ-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alberto Quattrocchi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Benedetta Mancini
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Accademia Nazionale dei Lincei, Via della Lungara 10, 00165, Roma, Italy.
| |
Collapse
|
46
|
Shen Y, Li R, Teichert K, Montbleau KE, Verboon JM, Voit RA, Sankaran VG. Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing. PLoS Genet 2021; 17:e1009835. [PMID: 34634037 PMCID: PMC8530301 DOI: 10.1371/journal.pgen.1009835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and β-thalassemia. BCL11A has been identified as a key regulator of HbF silencing, although its precise mechanisms of action remain incompletely understood. Recent studies have identified pathogenic mutations that cause heterozygous loss-of-function of BCL11A and result in a distinct neurodevelopmental disorder that is characterized by persistent HbF expression. While the majority of cases have deletions or null mutations causing haploinsufficiency of BCL11A, several missense variants have also been identified. Here, we perform functional studies on these variants to uncover specific liabilities for BCL11A's function in HbF silencing. We find several mutations in an N-terminal C2HC zinc finger that increase proteasomal degradation of BCL11A. We also identify a distinct C-terminal missense variant in the fifth zinc finger domain that we demonstrate causes loss-of-function through disruption of DNA binding. Our analysis of missense variants causing loss-of-function in vivo illuminates mechanisms by which BCL11A silences HbF and also suggests potential therapeutic avenues for HbF induction to treat sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Yong Shen
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Rick Li
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kristian Teichert
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kara E. Montbleau
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeffrey M. Verboon
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard A. Voit
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
47
|
Parker WB, Thottassery JV. 5-Aza-4'-thio-2'-deoxycytidine, a new orally bioavailable non-toxic "best-in-class" DNMT1 depleting agent in clinical development. J Pharmacol Exp Ther 2021; 379:211-222. [PMID: 34503994 DOI: 10.1124/jpet.121.000758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is an enzyme that functions as a maintenance methyltransferase during DNA replication, and depletion of this enzyme from cells is considered to be a rational goal in DNA methylation dependent disorders. Two DNMT1 depleting agents aza-dCyd (5-aza-2'-deoxycytidine, decitabine) and aza-Cyd (5-aza-cytidine, azacitidine) are currently used for the treatment of myelodysplastic syndromes and acute myeloid leukemia, and have also been investigated for non-oncology indications such as sickle cell disease. However, these agents have several off-target activities leading to significant toxicities that limit dosing and duration of treatment. Development of more selective inhibitors of DNMT1 could therefore afford treatment for long durations at effective doses. We have discovered that 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) is as effective as aza-dCyd in depleting DNMT1 in mouse tumor models, but with markedly low toxicity. In this review we describe the preclinical studies that led to the development of aza-T-dCyd as a superior DNMT1 depleting agent with respect to aza-dCyd, and will describe its pharmacology, metabolism, and mechanism of action. In an effort to understand why aza-T-dCyd is a more selective DNMT1 depleting agent than aza-dCyd, we will also compare and contrast the activities of these two agents. Significance Statement Aza-T-dCyd is a potent DNMT1 depleting agent. Although similar in structure to decitabine (aza-dCyd) its metabolism and mechanism of action is different than that of aza-dCyd, resulting in less off target activity and less toxicity. The larger therapeutic index of aza-T-dCyd (DNMT1 depletion vs toxicity) in mice suggests that it would be a better clinical candidate to selectively deplete DNMT1 from target cells and determine whether or not depletion of DNMT1 is an effective target for various diseases.
Collapse
|
48
|
Li Y, Magee JA. Transcriptional reprogramming in neonatal hematopoietic stem and progenitor cells. Exp Hematol 2021; 101-102:25-33. [PMID: 34303776 PMCID: PMC8557639 DOI: 10.1016/j.exphem.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cells (HSCs) and lineage-committed hematopoietic progenitor cells (HPCs) undergo profound shifts in gene expression during the neonatal and juvenile stages of life. Temporal changes in HSC/HPC gene expression underlie concomitant changes in self-renewal capacity, lineage biases, and hematopoietic output. Moreover, they can modify disease phenotypes. For example, childhood leukemias have distinct driver mutation profiles relative to adult leukemias, and they may arise from distinct cells of origin. The putative relationship between neonatal HSC/HPC ontogeny and childhood blood disorders highlights the importance of understanding how, at a mechanistic level, HSCs transition from fetal to adult transcriptional states. In this perspective piece, we summarize recent work indicating that the transition is uncoordinated and imprecisely timed. We discuss implications of these findings, including mechanisms that might enable neonatal HSCs and HPCs to acquire adultlike properties over a drawn-out period, in lieu of precise gene regulatory networks. The transition from fetal to adult transcriptional programs coincides with a pulse of type I interferon signaling that activates many genes associated with the adultlike state. This pulse may sensitize HSCs/HPCs to mutations that drive leukemogenesis shortly after birth. If we can understand how developmental switches modulate HSC and HPC fate after birth-both under normal circumstances and in the setting of disease-causing mutations-we can potentially reprogram these switches to treat or prevent childhood leukemias.
Collapse
|
49
|
A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Blood 2021; 137:1652-1657. [PMID: 33227819 DOI: 10.1182/blood.2020006425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
DNA methyltransferase 1 (DNMT1) is a major epigenetic regulator of the formation of large macromolecular complexes that repress human γ-globin expression by maintaining DNA methylation. However, very little is known about the association of DNMT1 variants with β-thalassemia phenotypes. We systematically investigated associations between variants in DNMT1 and phenotypes in 1142 β-thalassemia subjects and identified a novel missense mutation (c.2633G>A, S878F) in the DNMT1 bromo-adjacent homology-1 (BAH1) domain. We functionally characterized this mutation in CD34+ cells from patients and engineered HuDEP-2 mutant cells. Our results demonstrate that DNMT1 phosphorylation is abrogated by substituting serine with phenylalanine at position 878, resulting in lower stability and catalytic activity loss. S878F mutation also attenuated DNMT1 interactions with BCL11A, GATA1, and HDAC1/2, and reduced recruitment of DNMT1 to the γ-globin (HBG) promoters, leading to epigenetic derepression of γ-globin expression. By analyzing the F-cell pattern, we demonstrated that the effect of DNMT1 mutation on increased fetal hemoglobin (HbF) is heterocellular. Furthermore, introduction of S878F mutation into erythroid cells by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) recapitulated γ-globin reactivation. Thus, the natural S878F DNMT1 mutation is a novel modulator of HbF synthesis and represents a potential new therapeutic target for β-hemoglobinopathies.
Collapse
|
50
|
Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nat Genet 2021; 53:1177-1186. [PMID: 34341563 PMCID: PMC8610173 DOI: 10.1038/s41588-021-00904-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Hereditary persistence of fetal hemoglobin (HPFH) ameliorates β-hemoglobinopathies by inhibiting the developmental switch from γ-globin (HBG1/HBG2) to β-globin (HBB) gene expression. Some forms of HPFH are associated with γ-globin promoter variants that either disrupt binding motifs for transcriptional repressors or create new motifs for transcriptional activators. How these variants sustain γ-globin gene expression postnatally remains undefined. We mapped γ-globin promoter sequences functionally in erythroid cells harboring different HPFH variants. Those that disrupt a BCL11A repressor binding element induce γ-globin expression by facilitating the recruitment of transcription factors NF-Y to a nearby proximal CCAAT box and GATA1 to an upstream motif. The proximal CCAAT element becomes dispensable for HPFH variants that generate new binding motifs for activators NF-Y or KLF1, but GATA1 recruitment remains essential. Our findings define distinct mechanisms through which transcription factors and their cis-regulatory elements activate γ-globin expression in different forms of HPFH, some of which are being recreated by therapeutic genome editing.
Collapse
|