1
|
Shao X, Guo F, Kim J, Ress D, Zhao C, Shou Q, Jann K, Wang DJJ. Laminar multi-contrast fMRI at 7T allows differentiation of neuronal excitation and inhibition underlying positive and negative BOLD responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.01.24305167. [PMID: 39040201 PMCID: PMC11261924 DOI: 10.1101/2024.04.01.24305167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A major challenge for human neuroimaging using functional MRI is the differentiation of neuronal excitation and inhibition which may induce positive and negative BOLD responses. Here we present an innovative multi-contrast laminar functional MRI technique that offers comprehensive and quantitative imaging of neurovascular (CBF, CBV, BOLD) and metabolic (CMRO2) responses across cortical layers at 7 Tesla. This technique was first validated through a finger-tapping experiment, revealing 'double-peak' laminar activation patterns within the primary motor cortex. By employing a ring-shaped visual stimulus that elicited positive and negative BOLD responses, we further observed distinct neurovascular and metabolic responses across cortical layers and eccentricities in the primary visual cortex. This suggests potential feedback inhibition of neuronal activities in both superficial and deep cortical layers underlying the negative BOLD signals in the fovea, and also illustrates the neuronal activities in visual areas adjacent to the activated eccentricities.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - JungHwan Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
2
|
Akif A, Staib L, Herman P, Rothman DL, Yu Y, Hyder F. In vivo neuropil density from anatomical MRI and machine learning. Cereb Cortex 2024; 34:bhae200. [PMID: 38771239 PMCID: PMC11107380 DOI: 10.1093/cercor/bhae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.
Collapse
Affiliation(s)
- Adil Akif
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
| | - Lawrence Staib
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Department of Electrical Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, United States
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Magnetic Resonance Research Center, Yale University, 300 Cedar St, New Haven, CT 06520, United States
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Magnetic Resonance Research Center, Yale University, 300 Cedar St, New Haven, CT 06520, United States
| | - Yuguo Yu
- Research Institute of Intelligent and Complex Systems, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, 220 Handen Road, Shanghai, 200032, China
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Magnetic Resonance Research Center, Yale University, 300 Cedar St, New Haven, CT 06520, United States
| |
Collapse
|
3
|
Bohraus Y, Merkle H, Logothetis NK, Goense J. Laminar differences in functional oxygen metabolism in monkey visual cortex measured with calibrated fMRI. Cell Rep 2023; 42:113341. [PMID: 37897728 DOI: 10.1016/j.celrep.2023.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023] Open
Abstract
Blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) of cortical layers relies on the hemodynamic response and is biased toward large veins on the cortical surface. Functional changes in the cerebral metabolic rate of oxygen (ΔCMRO2) may reflect neural cortical function better than BOLD fMRI, but it is unknown whether the calibrated BOLD model for functional CMRO2 measurement remains valid at high resolution. Here, we measure laminar ΔCMRO2 elicited by visual stimulation in macaque primary visual cortex (V1) and find that ΔCMRO2 peaks in the middle of the cortex, in agreement with autoradiographic measures of metabolism. ΔCMRO2 values in gray matter are similar as found previously. Reductions in CMRO2 are associated with veins at the cortical surface, suggesting that techniques for vein removal may improve the accuracy of the model at very high resolution. However, our results show feasibility of laminar ΔCMRO2 measurement, providing a physiologically meaningful metric of laminar functional metabolism.
Collapse
Affiliation(s)
- Yvette Bohraus
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | | | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; Department of Physiology of Cognitive Processes, International Center for Primate Brain Research, Songjiang District, Shanghai 201602, China; Centre for Imaging Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jozien Goense
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL 61820, USA; Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
James S, Sanggaard S, Akif A, Mishra SK, Sanganahalli BG, Blumenfeld H, Verhagen JV, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. J Cereb Blood Flow Metab 2023; 43:1891-1904. [PMID: 37340791 PMCID: PMC10676132 DOI: 10.1177/0271678x231183887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Carbon dioxide (CO2) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO2-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance. We used an optical method in mice to simultaneously image fluorescent calcium (Ca2+) transients from neurons and reflectometric hemodynamic signals during brief sensory stimuli (i.e., hindpaw, odor) and CO2 exposure (i.e., 5%). Stimuli-induced neuronal and hemodynamic responses swiftly increased within locally activated regions exhibiting robust neurovascular coupling. However, hypercapnia produced slower global vasodilation which was temporally uncoupled to neuronal deactivation. With trends consistent across cerebral cortex and olfactory bulb as well as data from GCaMP6f/jRGECO1a mice (i.e., green/red Ca2+ fluorescence), these results unequivocally reveal that stimuli and CO2 generate comparable vasodilatory responses but contrasting neuronal responses. In summary, observations of stimuli-induced regional neurovascular coupling and CO2-induced global neurovascular uncoupling call for careful appraisal when using CO2 in gas mixtures to affect vascular tone and/or neuronal excitability, because CO2 is both a potent vasomodulator and a neuromodulator.
Collapse
Affiliation(s)
- Shaun James
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Simon Sanggaard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA
- John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
6
|
Kuebler IRK, Jolton JA, Hermreck C, Hubbard NA, Wakabayashi KT. Contrasting dose-dependent effects of acute intravenous methamphetamine on lateral hypothalamic extracellular glucose dynamics in male and female rats. J Neurophysiol 2022; 128:819-836. [PMID: 36043803 PMCID: PMC9529272 DOI: 10.1152/jn.00257.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Glucose is the brain's primary energetic resource. The brain's use of glucose is dynamic, balancing delivery from the neurovasculature with local metabolism. Although glucose metabolism is known to differ in humans with and without methamphetamine use disorder (MUD), it is unknown how central glucose regulation changes with acute methamphetamine experience. Here, we determined how intravenous methamphetamine regulates extracellular glucose levels in a brain region implicated in MUD-like behavior, the lateral hypothalamus (LH). We measured extracellular LH glucose in awake adult male and female drug-naive Wistar rats using enzyme-linked amperometric glucose biosensors. Changes in LH glucose were monitored during a single session after: 1) natural nondrug stimuli (novel object presentation and a tail-touch), 2) increasing cumulative doses of intravenous methamphetamine (0.025, 0.05, 0.1, and 0.2 mg/kg), and 3) an injection of 60 mg of glucose. We found second-scale fluctuations in LH glucose in response to natural stimuli that differed by both stimulus type and sex. Although rapid, second-scale changes in LH glucose during methamphetamine injections were variable, slow, minute-scale changes following most injections were robust and resulted in a reduction in LH glucose levels. Dose and sex differences at this timescale indicated that female rats may be more sensitive to the impact of methamphetamine on central glucose regulation. These findings suggest that the effects of MUD on healthy brain function may be linked to how methamphetamine alters extracellular glucose regulation in the LH and point to possible mechanisms by which methamphetamine influences central glucose metabolism more broadly.NEW & NOTEWORTHY Enzyme-linked glucose biosensors were used to monitor lateral hypothalamic (LH) extracellular fluctuations during nondrug stimuli and intravenous methamphetamine injections in drug-naive awake male and female rats. Second-scale glucose changes occurred after nondrug stimuli, differing by modality and sex. Robust minute-scale decreases followed most methamphetamine injections. Sex differences at the minute-scale indicate female central glucose regulation is more sensitive to methamphetamine effects. We discuss likely mechanisms underlying these fluctuations, and their implications in methamphetamine use disorder.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Chase Hermreck
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Nicholas A Hubbard
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
7
|
Chen JJ, Uthayakumar B, Hyder F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J Cereb Blood Flow Metab 2022; 42:1139-1162. [PMID: 35296177 PMCID: PMC9207484 DOI: 10.1177/0271678x221077338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMRO2) to support brain function. Dynamic CMRO2 mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMRO2 changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMRO2 changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
Collapse
Affiliation(s)
- J Jean Chen
- Medical Biophysics, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Biranavan Uthayakumar
- Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Department of Radiology, Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Sanganahalli BG, Thompson GJ, Parent M, Verhagen JV, Blumenfeld H, Herman P, Hyder F. Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations. PLoS One 2022; 17:e0267916. [PMID: 35522646 PMCID: PMC9075615 DOI: 10.1371/journal.pone.0267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
The thalamus is a crucial subcortical hub that impacts cortical activity. Tracing experiments in animals and post-mortem humans suggest rich morphological specificity of the thalamus. Very few studies reported rodent thalamic activations by functional MRI (fMRI) as compared to cortical activations for different sensory stimuli. Here, we show different portions of the rat thalamus in response to tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimuli with high field fMRI (11.7T) using a custom-build quadrature surface coil to capture high sensitivity signals from superficial and deep brain regions simultaneously. Results demonstrate reproducible thalamic activations during both tactile and non-tactile stimuli. Forepaw and whisker stimuli activated broader regions within the thalamus: ventral posterior lateral (VPL), ventral posterior medial (VPM), lateral posterior mediorostral (LPMR) and posterior medial (POm) thalamic nuclei. Visual stimuli activated dorsal lateral geniculate nucleus (DLG) of the thalamus but also parts of the superior/inferior colliculus, whereas olfactory stimuli activated specifically the mediodorsal nucleus of the thalamus (MDT). BOLD activations in LGN and MDT were much stronger than in VPL, VPM, LPMR and POm. These fMRI-based thalamic activations suggest that forepaw and whisker (i.e., tactile) stimuli engage VPL, VPM, LPMR and POm whereas visual and olfactory (i.e., non-tactile) stimuli, respectively, recruit DLG and MDT exclusively.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Garth J. Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Maxime Parent
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Justus V. Verhagen
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Hal Blumenfeld
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Yale University, New Haven, Connecticut, United States of America
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Xu M, Bo B, Pei M, Chen Y, Shu CY, Qin Q, Hirschler L, Warnking JM, Barbier EL, Wei Z, Lu H, Herman P, Hyder F, Liu ZJ, Liang Z, Thompson GJ. High-resolution relaxometry-based calibrated fMRI in murine brain: Metabolic differences between awake and anesthetized states. J Cereb Blood Flow Metab 2022; 42:811-825. [PMID: 34910894 PMCID: PMC9014688 DOI: 10.1177/0271678x211062279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Functional magnetic resonance imaging (fMRI) techniques using the blood-oxygen level-dependent (BOLD) signal have shown great potential as clinical biomarkers of disease. Thus, using these techniques in preclinical rodent models is an urgent need. Calibrated fMRI is a promising technique that can provide high-resolution mapping of cerebral oxygen metabolism (CMRO2). However, calibrated fMRI is difficult to use in rodent models for several reasons: rodents are anesthetized, stimulation-induced changes are small, and gas challenges induce noisy CMRO2 predictions. We used, in mice, a relaxometry-based calibrated fMRI method which uses cerebral blood flow (CBF) and the BOLD-sensitive magnetic relaxation component, R2', the same parameter derived in the deoxyhemoglobin-dilution model of calibrated fMRI. This method does not use any gas challenges, which we tested on mice in both awake and anesthetized states. As anesthesia induces a whole-brain change, our protocol allowed us to overcome the former limitations of rodent studies using calibrated fMRI. We revealed 1.5-2 times higher CMRO2, dependent upon brain region, in the awake state versus the anesthetized state. Our results agree with alternative measurements of whole-brain CMRO2 in the same mice and previous human anesthesia studies. The use of calibrated fMRI in rodents has much potential for preclinical fMRI.
Collapse
Affiliation(s)
- Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Binshi Bo
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Mengchao Pei
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Chen
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Christina Y Shu
- Biomedical Engineering, Yale University, New Haven, CT, USA.,Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Lydiane Hirschler
- Grenoble Institut des Neurosciences, Inserm, Univ. Grenoble Alpes, Grenoble, France.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan M Warnking
- Grenoble Institut des Neurosciences, Inserm, Univ. Grenoble Alpes, Grenoble, France
| | - Emmanuel L Barbier
- Grenoble Institut des Neurosciences, Inserm, Univ. Grenoble Alpes, Grenoble, France
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA.,Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Biomedical Engineering, Yale University, New Haven, CT, USA.,Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA.,Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhifeng Liang
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
10
|
Averill LA, Jiang L, Purohit P, Coppoli A, Averill CL, Roscoe J, Kelmendi B, De Feyter HM, de Graaf RA, Gueorguieva R, Sanacora G, Krystal JH, Rothman DL, Mason GF, Abdallah CG. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221092734. [PMID: 35434443 PMCID: PMC9008809 DOI: 10.1177/24705470221092734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Background Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.
Collapse
Affiliation(s)
- Lynnette A. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Prerana Purohit
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Anastasia Coppoli
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Christopher L. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Jeremy Roscoe
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Benjamin Kelmendi
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Robin A de Graaf
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, School of Public Health, Yale University School of
Medicine, New Haven, CT, USA
| | - Gerard Sanacora
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - John H. Krystal
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Douglas L. Rothman
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Graeme F. Mason
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Chadi G. Abdallah
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX, USA,Chadi G. Abdallah, Menninger Department of
Psychiatry, Baylor College of Medicine, 1977 Butler Blvd, E4187, Houston, TX
77030, USA.
| |
Collapse
|
11
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics and impulse firing across cortical depth. Eur J Neurosci 2021; 54:4230-4245. [PMID: 33901325 DOI: 10.1111/ejn.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal arises as a consequence of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen ( CMR O 2 ) that in turn are modulated by changes in neural activity. Recent advances in imaging have achieved sub-millimetre resolution and allowed investigation of the BOLD response as a function of cortical depth. Here, we adapt our previous theory relating the BOLD signal to neural activity to produce a quantitative model that incorporates venous blood draining between cortical layers. The adjustable inputs to the model are the neural activity and a parameter governing this blood draining. A three-layer version for transient neural inputs and a multi-layer version for constant or tonic neural inputs are able to account for a variety of experimental results, including negative BOLD signals.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain and Mind Research Centre, University of Sydney, Camperdown, NSW, Australia
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
| | - Leslie Farnell
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - William G Gibson
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Hubbard NA, Turner MP, Sitek KR, West KL, Kaczmarzyk JR, Himes L, Thomas BP, Lu H, Rypma B. Resting cerebral oxygen metabolism exhibits archetypal network features. Hum Brain Mapp 2021; 42:1952-1968. [PMID: 33544446 PMCID: PMC8046048 DOI: 10.1002/hbm.25352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Standard magnetic resonance imaging approaches offer high‐resolution but indirect measures of neural activity, limiting understanding of the physiological processes associated with imaging findings. Here, we used calibrated functional magnetic resonance imaging during the resting state to recover low‐frequency fluctuations of the cerebral metabolic rate of oxygen (CMRO2). We tested whether functional connections derived from these fluctuations exhibited organization properties similar to those established by previous standard functional and anatomical connectivity studies. Seventeen participants underwent 20 min of resting imaging during dual‐echo, pseudocontinuous arterial spin labeling, and blood‐oxygen‐level dependent (BOLD) signal acquisition. Participants also underwent a 10 min normocapnic and hypercapnic procedure. Brain‐wide, CMRO2 low‐frequency fluctuations were subjected to graph‐based and voxel‐wise functional connectivity analyses. Results demonstrated that connections derived from resting CMRO2 fluctuations exhibited complex, small‐world topological properties (i.e., high integration and segregation, cost efficiency) consistent with those observed in previous studies using functional and anatomical connectivity approaches. Voxel‐wise CMRO2 connectivity also exhibited spatial patterns consistent with four targeted resting‐state subnetworks: two association (i.e., frontoparietal and default mode) and two perceptual (i.e., auditory and occipital‐visual). These are the first findings to support the use of calibration‐derived CMRO2 low‐frequency fluctuations for detecting brain‐wide organizational properties typical of healthy participants. We discuss interpretations, advantages, and challenges in using calibration‐derived oxygen metabolism signals for examining the intrinsic organization of the human brain.
Collapse
Affiliation(s)
- Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Kevin R Sitek
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn L West
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jakub R Kaczmarzyk
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lyndahl Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Binu P Thomas
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hanzhang Lu
- Department of Radiology, John's Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Validating Linear Systems Analysis for Laminar fMRI: Temporal Additivity for Stimulus Duration Manipulations. Brain Topogr 2021; 34:88-101. [PMID: 33210193 PMCID: PMC7803719 DOI: 10.1007/s10548-020-00808-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
Advancements in ultra-high field (7 T and higher) magnetic resonance imaging (MRI) scanners have made it possible to investigate both the structure and function of the human brain at a sub-millimeter scale. As neuronal feedforward and feedback information arrives in different layers, sub-millimeter functional MRI has the potential to uncover information processing between cortical micro-circuits across cortical depth, i.e. laminar fMRI. For nearly all conventional fMRI analyses, the main assumption is that the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) signal adheres to the principles of linear systems theory. For laminar fMRI, however, directional blood pooling across cortical depth stemming from the anatomy of the cortical vasculature, potentially violates these linear system assumptions, thereby complicating analysis and interpretation. Here we assess whether the temporal additivity requirement of linear systems theory holds for laminar fMRI. We measured responses elicited by viewing stimuli presented for different durations and evaluated how well the responses to shorter durations predicted those elicited by longer durations. We find that BOLD response predictions are consistently good predictors for observed responses, across all cortical depths, and in all measured visual field maps (V1, V2, and V3). Our results suggest that the temporal additivity assumption for linear systems theory holds for laminar fMRI. We thus show that the temporal additivity assumption holds across cortical depth for sub-millimeter gradient-echo BOLD fMRI in early visual cortex.
Collapse
Affiliation(s)
- Jelle A van Dijk
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands.
| | - Alessio Fracasso
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalia Petridou
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ekstrom AD. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190634. [PMID: 33190605 DOI: 10.1098/rstb.2019.0634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is the dominant tool in cognitive neuroscience although its relation to underlying neural activity, particularly in the human brain, remains largely unknown. A major research goal, therefore, has been to uncover a 'Rosetta Stone' providing direct translation between the blood oxygen level-dependent (BOLD) signal, the local field potential and single-neuron activity. Here, I evaluate the proposal that BOLD signal changes equate to changes in gamma-band activity, which in turn may partially relate to the spiking activity of neurons. While there is some support for this idea in sensory cortices, findings in deeper brain structures like the hippocampus instead suggest both regional and frequency-wise differences. Relatedly, I consider four important factors in linking fMRI to neural activity: interpretation of correlations between these signals, regional variability in local vasculature, distributed neural coding schemes and varying fMRI signal quality. Novel analytic fMRI techniques, such as multivariate pattern analysis (MVPA), employ the distributed patterns of voxels across a brain region to make inferences about information content rather than whether a small number of voxels go up or down relative to baseline in response to a stimulus. Although unlikely to provide a Rosetta Stone, MVPA, therefore, may represent one possible means forward for better linking BOLD signal changes to the information coded by underlying neural activity. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Boulevard, Tucson, AZ 85721, USA.,Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Boulevard, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Linear systems analysis for laminar fMRI: Evaluating BOLD amplitude scaling for luminance contrast manipulations. Sci Rep 2020; 10:5462. [PMID: 32214136 PMCID: PMC7096513 DOI: 10.1038/s41598-020-62165-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/09/2020] [Indexed: 01/18/2023] Open
Abstract
A fundamental assumption of nearly all functional magnetic resonance imaging (fMRI) analyses is that the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) signal can be described as following linear systems theory. With the advent of ultra-high field (7T and higher) MRI scanners, it has become possible to perform sub-millimeter resolution fMRI in humans. A novel and promising application of sub-millimeter fMRI is measuring responses across cortical depth, i.e. laminar imaging. However, the cortical vasculature and associated directional blood pooling towards the pial surface strongly influence the cortical depth-dependent BOLD signal, particularly for gradient-echo BOLD. This directional pooling may potentially affect BOLD linearity across cortical depth. Here we assess whether the amplitude scaling assumption for linear systems theory holds across cortical depth. For this, we use stimuli with different luminance contrasts to elicit different BOLD response amplitudes. We find that BOLD amplitude across cortical depth scales with luminance contrast, and that this scaling is identical across cortical depth. Although nonlinearities may be present for different stimulus configurations and acquisition protocols, our results suggest that the amplitude scaling assumption for linear systems theory across cortical depth holds for luminance contrast manipulations in sub-millimeter laminar BOLD fMRI.
Collapse
Affiliation(s)
- Jelle A van Dijk
- Experimental Psychology, Utrecht University, Utrecht, NL, Netherlands.
- Spinoza Centre for Neuroimaging, Amsterdam, NL, Netherlands.
| | - Alessio Fracasso
- Spinoza Centre for Neuroimaging, Amsterdam, NL, Netherlands
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, NL, Netherlands
| | - Natalia Petridou
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, NL, Netherlands
| | - Serge O Dumoulin
- Experimental Psychology, Utrecht University, Utrecht, NL, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, NL, Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, NL, Netherlands
| |
Collapse
|
16
|
Chen X, Tong C, Han Z, Zhang K, Bo B, Feng Y, Liang Z. Sensory evoked fMRI paradigms in awake mice. Neuroimage 2020; 204:116242. [DOI: 10.1016/j.neuroimage.2019.116242] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
|
17
|
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 2019; 197:742-760. [DOI: 10.1016/j.neuroimage.2017.07.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
|
18
|
Mishra A, Majumdar S, Wang F, Wilson GH, Gore JC, Chen LM. Functional connectivity with cortical depth assessed by resting state fMRI of subregions of S1 in squirrel monkeys. Hum Brain Mapp 2019; 40:329-339. [PMID: 30251760 PMCID: PMC6289644 DOI: 10.1002/hbm.24375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
Whereas resting state blood oxygenation-level dependent (BOLD) functional MRI has been widely used to assess functional connectivity between cortical regions, the laminar specificity of such measures is poorly understood. This study aims to determine: (a) whether the resting state functional connectivity (rsFC) between two functionally related cortical regions varies with cortical depth, (b) the relationship between layer-resolved tactile stimulus-evoked activation pattern and interlayer rsFC pattern between two functionally distinct but related somatosensory areas 3b and 1, and (c) the effects of spatial resolution on rsFC measures. We examined the interlayer rsFC between areas 3b and 1 of squirrel monkeys under anesthesia using tactile stimulus-driven and resting state BOLD acquisitions at submillimeter resolution. Consistent with previous observations in the areas 3b and 1, we detected robust stimulus-evoked BOLD activations with foci were confined mainly to the upper layers (centered at 21% of the cortical depth). By carefully placing seeds in upper, middle, and lower layers of areas 3b and 1, we observed strong rsFC between upper and middle layers of these two areas. The layer-resolved activation patterns in areas 3b and 1 agree with their interlayer rsFC patterns, and are consistent with the known anatomical connections between layers. In summary, using BOLD rsFC pattern, we identified an interlayer interareal microcircuit that shows strong intrinsic functional connections between upper and middle layer areas 3b and 1. RsFC can be used as a robust invasive tool to probe interlayer corticocortical microcircuits.
Collapse
Affiliation(s)
- Arabinda Mishra
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - Shantanu Majumdar
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - Feng Wang
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - George H. Wilson
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - John C. Gore
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| | - Li Min Chen
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
19
|
Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb Blood Flow Metab 2018; 38:2057-2072. [PMID: 30334644 PMCID: PMC6282226 DOI: 10.1177/0271678x18803372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| | - Alberto Vazquez
- Departments of Radiology and Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
20
|
Yu Y, Herman P, Rothman DL, Agarwal D, Hyder F. Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab 2018; 38:1339-1353. [PMID: 28589753 PMCID: PMC6092772 DOI: 10.1177/0271678x17708691] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insatiable appetite for energy to support human brain function is mainly supplied by glucose oxidation (CMRglc(ox)). But how much energy is consumed for signaling and nonsignaling processes in gray/white matter is highly debated. We examined this issue by combining metabolic measurements of gray/white matter and a theoretical calculation of bottom-up energy budget using biophysical properties of neuronal/glial cells in conjunction with species-exclusive electrophysiological and morphological data. We calculated a CMRglc(ox)-derived budget and confirmed it with experimental results measured by PET, autoradiography, 13C-MRS, and electrophysiology. Several conserved principles were observed regarding the energy costs for brain's signaling and nonsignaling components in both human and rat. The awake resting cortical signaling processes and mass-dependent nonsignaling processes, respectively, demand ∼70% and ∼30% of CMRglc(ox). Inhibitory neurons and glia need 15-20% of CMRglc(ox), with the rest demanded by excitatory neurons. Nonsignaling demands dominate in white matter, in near opposite contrast to gray matter demands. Comparison between 13C-MRS data and calculations suggests ∼1.2 Hz glutamatergic signaling rate in the awake human cortex, which is ∼4 times lower than signaling in the rat cortex. Top-down validated bottom-up budgets could allow computation of anatomy-based CMRglc(ox) maps and accurate cellular level interpretation of brain metabolic imaging.
Collapse
Affiliation(s)
- Yuguo Yu
- 1 School of Life Science and the Collaborative Innovation Center for Brain Science, the Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Peter Herman
- 2 Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA.,3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- 2 Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA.,3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Divyansh Agarwal
- 3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA.,6 Currently at Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fahmeed Hyder
- 2 Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA.,3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics, and impulse firing. J Neurophysiol 2018; 119:979-989. [PMID: 29187550 DOI: 10.1152/jn.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging signal arises as a consequence of changes in blood flow and oxygen usage that in turn are modulated by changes in neural activity. Much attention has been given to both theoretical and experimental aspects of the energetics but not to the neural activity. Here we identify the best energetic theory for the steady-state BOLD signal on the basis of correct predictions of experimental observations. This theory is then used, together with the recently determined relationship between energetics and neural activity, to predict how the BOLD signal changes with activity. Unlike existing treatments, this new theory incorporates a nonzero baseline activity in a completely consistent way and is thus able to account for both sustained positive and negative BOLD signals. We also show that the increase in BOLD signal for a given increase in activity is significantly smaller the larger the baseline activity, as is experimentally observed. Furthermore, the decline of the positive BOLD signal arising from deeper cortical laminae in response to an increase in neural firing is shown to arise as a consequence of the larger baseline activity in deeper laminae. Finally, we provide quantitative relations integrating BOLD responses, energetics, and impulse firing, which among other predictions give the same results as existing theories when the baseline activity is zero. NEW & NOTEWORTHY We use a recently established relation between energetics and neural activity to give a quantitative account of BOLD dependence on neural activity. The incorporation of a nonzero baseline neural activity accounts for positive and negative BOLD signals, shows that changes in neural activity give BOLD changes that are smaller the larger the baseline, and provides a basis for the observed inverse relation between BOLD responses and the depth of cortical laminae giving rise to them.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales , Australia.,Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia
| | - L Farnell
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| | - W G Gibson
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| |
Collapse
|
22
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
23
|
Thompson GJ. Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 2017; 180:448-462. [PMID: 28899744 DOI: 10.1016/j.neuroimage.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resting state fMRI (rsfMRI) as a technique showed much initial promise for use in psychiatric and neurological diseases where diagnosis and treatment were difficult. To realize this promise, many groups have moved towards examining "dynamic rsfMRI," which relies on the assumption that rsfMRI measurements on short time scales remain relevant to the underlying neural and metabolic activity. Many dynamic rsfMRI studies have demonstrated differences between clinical or behavioral groups beyond what static rsfMRI measured, suggesting a neurometabolic basis. Correlative studies combining dynamic rsfMRI and other physiological measurements have supported this. However, they also indicate multiple mechanisms and, if using correlation alone, it is difficult to separate cause and effect. Hypothesis-driven studies are needed, a few of which have begun to illuminate the underlying neurometabolic mechanisms that shape observed differences in dynamic rsfMRI. While the number of potential noise sources, potential actual neurometabolic sources, and methodological considerations can seem overwhelming, dynamic rsfMRI provides a rich opportunity in systems neuroscience. Even an incrementally better understanding of the neurometabolic basis of dynamic rsfMRI would expand rsfMRI's research and clinical utility, and the studies described herein take the first steps on that path forward.
Collapse
Affiliation(s)
- Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
24
|
Hubbard NA, Turner MP, Ouyang M, Himes L, Thomas BP, Hutchison JL, Faghihahmadabadi S, Davis SL, Strain JF, Spence J, Krawczyk DC, Huang H, Lu H, Hart J, Frohman TC, Frohman EM, Okuda DT, Rypma B. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis. Hum Brain Mapp 2017; 38:5375-5390. [PMID: 28815879 DOI: 10.1002/hbm.23727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Minhui Ouyang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lyndahl Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Binu P Thomas
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | | | - Scott L Davis
- Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Daniel C Krawczyk
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Huang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Teresa C Frohman
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Elliot M Frohman
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Petridou N, Siero JCW. Laminar fMRI: What can the time domain tell us? Neuroimage 2017; 197:761-771. [PMID: 28736308 DOI: 10.1016/j.neuroimage.2017.07.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/06/2017] [Accepted: 07/19/2017] [Indexed: 01/30/2023] Open
Abstract
The rapid developments in functional MRI (fMRI) acquisition methods and hardware technologies in recent years, particularly at high field (≥7 T), have enabled unparalleled visualization of functional detail at a laminar or columnar level, bringing fMRI close to the intrinsic resolution of brain function. These advances highlight the potential of high resolution fMRI to be a valuable tool to study the fundamental processing performed in cortical micro-circuits, and their interactions such as feedforward and feedback processes. Notably, because fMRI measures neuronal activity via hemodynamics, the ultimate resolution it affords depends on the spatial specificity of hemodynamics to neuronal activity at a detailed spatial scale, and by the evolution of this specificity over time. Several laminar (≤1 mm spatial resolution) fMRI studies have examined spatial characteristics of the measured hemodynamic signals across cortical depth, in light of understanding or improving the spatial specificity of laminar fMRI. Few studies have examined temporal features of the hemodynamic response across cortical depth. Temporal features of the hemodynamic response offer an additional means to improve the specificity of fMRI, and could help target neuronal processes and neurovascular coupling relationships across laminae, for example by differences in the onset times of the response across cortical depth. In this review, we discuss factors that affect the timing of neuronal and hemodynamic responses across laminae, touching on the neuronal laminar organization, and focusing on the laminar vascular organization. We provide an overview of hemodynamics across the cortical vascular tree based on optical imaging studies, and review temporal aspects of hemodynamics that have been examined across cortical depth in high spatiotemporal resolution fMRI studies. Last, we discuss the limits and potential of high spatiotemporal resolution fMRI to study laminar neurovascular coupling and neuronal processes.
Collapse
Affiliation(s)
- Natalia Petridou
- Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Jeroen C W Siero
- Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Evaluation of Visual-Evoked Cerebral Metabolic Rate of Oxygen as a Diagnostic Marker in Multiple Sclerosis. Brain Sci 2017; 7:brainsci7060064. [PMID: 28604606 PMCID: PMC5483637 DOI: 10.3390/brainsci7060064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
A multiple sclerosis (MS) diagnosis often relies upon clinical presentation and qualitative analysis of standard, magnetic resonance brain images. However, the accuracy of MS diagnoses can be improved by utilizing advanced brain imaging methods. We assessed the accuracy of a new neuroimaging marker, visual-evoked cerebral metabolic rate of oxygen (veCMRO2), in classifying MS patients and closely age- and sex-matched healthy control (HC) participants. MS patients and HCs underwent calibrated functional magnetic resonance imaging (cfMRI) during a visual stimulation task, diffusion tensor imaging, T1- and T2-weighted imaging, neuropsychological testing, and completed self-report questionnaires. Using resampling techniques to avoid bias and increase the generalizability of the results, we assessed the accuracy of veCMRO2 in classifying MS patients and HCs. veCMRO2 classification accuracy was also examined in the context of other evoked visuofunctional measures, white matter microstructural integrity, lesion-based measures from T2-weighted imaging, atrophy measures from T1-weighted imaging, neuropsychological tests, and self-report assays of clinical symptomology. veCMRO2 was significant and within the top 16% of measures (43 total) in classifying MS status using both within-sample (82% accuracy) and out-of-sample (77% accuracy) observations. High accuracy of veCMRO2 in classifying MS demonstrated an encouraging first step toward establishing veCMRO2 as a neurodiagnostic marker of MS.
Collapse
|
27
|
Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage 2017; 199:718-729. [PMID: 28502845 DOI: 10.1016/j.neuroimage.2017.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Laminar organization of neuronal circuits is a recurring feature of how the brain processes information. For instance, different layers compartmentalize different cell types, synaptic activities, and have unique intrinsic and extrinsic connections that serve as units for specialized signal processing. Functional MRI is an invaluable tool to investigate laminar processing in the in vivo human brain, but it measures neuronal activity indirectly by way of the hemodynamic response. Therefore, the accuracy of high-resolution laminar fMRI depends on how precisely it can measure localized microvascular changes nearest to the site of evoked activity. To determine the specificity of fMRI responses to the true neurophysiological responses across layers, the flexibility to invasive procedures in animal models has been necessary. In this review, we will examine different fMRI contrasts and their appropriate uses for layer-specific fMRI, and how localized laminar processing was examined in the neocortex and olfactory bulb. Through collective efforts, it was determined that microvessels, including capillaries, are regulated within single layers and that several endogenous and contrast-enhanced fMRI contrast mechanisms can separate these neural-specific vascular changes from the nonspecific, especially cerebral blood volume-weighted fMRI with intravenous contrast agent injection. We will also propose some open questions that are relevant for the successful implementation of layer-specific fMRI and its potential future directions to study laminar processing when combined with optogenetics.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
28
|
Guidi M, Huber L, Lampe L, Gauthier CJ, Möller HE. Lamina-dependent calibrated BOLD response in human primary motor cortex. Neuroimage 2016; 141:250-261. [DOI: 10.1016/j.neuroimage.2016.06.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
|
29
|
Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J Cereb Blood Flow Metab 2016; 36:1695-1707. [PMID: 27562867 PMCID: PMC5076793 DOI: 10.1177/0271678x16664531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
Abstract
Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMRO2) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1FL) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1FL than in VPL, similar to LFP regional differences. CBF and CMRO2 responses were both comparably larger in S1FL and VPL. Despite different levels of CBF-CMRO2 and LFP-MUA couplings in VPL and S1FL, the CMRO2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1FL can have similar metabolic demands.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Hal Blumenfeld
- Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Neurology, Yale University, New Haven, USA Department of Neurobiology, Yale University, New Haven, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| |
Collapse
|
30
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
31
|
Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM. Simultaneous EEG-fMRI for working memory of the human brain. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:363-78. [PMID: 27043850 DOI: 10.1007/s13246-016-0438-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
Collapse
Affiliation(s)
- Rana Fayyaz Ahmad
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia. .,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Aamir Saeed Malik
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia. .,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia.,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Faruque Reza
- Department of Neurosciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.,Centre for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.,Centre for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
32
|
Shu CY, Sanganahalli BG, Coman D, Herman P, Hyder F. New horizons in neurometabolic and neurovascular coupling from calibrated fMRI. PROGRESS IN BRAIN RESEARCH 2016; 225:99-122. [PMID: 27130413 DOI: 10.1016/bs.pbr.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurovascular coupling relates changes in neuronal activity to constriction/dilation of microvessels. However neurometabolic coupling, which is less well known, relates alterations in neuronal activity with metabolic demands. The link between the blood oxygenation level dependent (BOLD) signal and neural activity opened doors for functional MRI (fMRI) to be a powerful neuroimaging tool in the neurosciences. But due to the complex makeup of BOLD contrast, researchers began to investigate the relationship between BOLD signal and blood flow and/or volume changes during functional brain activation, which together provided the tools to measure oxygen consumption on the basis of the biophysical model of BOLD. This field is called calibrated fMRI, thereby allowed probing of both neurometabolic and neurovascular couplings for a variety of health conditions in animals and humans. Calibrated fMRI may provide brain disorder biomarkers that could be used for monitoring effective therapies.
Collapse
Affiliation(s)
- C Y Shu
- Yale University, New Haven, CT, United States
| | - B G Sanganahalli
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - D Coman
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - P Herman
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - F Hyder
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States.
| |
Collapse
|
33
|
Heinzle J, Koopmans PJ, den Ouden HE, Raman S, Stephan KE. A hemodynamic model for layered BOLD signals. Neuroimage 2016; 125:556-570. [DOI: 10.1016/j.neuroimage.2015.10.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 01/16/2023] Open
|
34
|
Shu CY, Sanganahalli BG, Coman D, Herman P, Rothman DL, Hyder F. Quantitative β mapping for calibrated fMRI. Neuroimage 2015; 126:219-28. [PMID: 26619788 DOI: 10.1016/j.neuroimage.2015.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022] Open
Abstract
The metabolic and hemodynamic dependencies of the blood oxygenation level-dependent (BOLD) signal form the basis for calibrated fMRI, where the focus is on oxidative energy demanded by neural activity. An important part of calibrated fMRI is the power-law relationship between the BOLD signal and the deoxyhemoglobin concentration, which in turn is related to the ratio between oxidative demand (CMRO2) and blood flow (CBF). The power-law dependence between BOLD signal and deoxyhemoglobin concentration is signified by a scaling exponent β. Until recently most studies assumed a β value of 1.5, which is based on numerical simulations of the extravascular BOLD component. Since the basal value of CMRO2 and CBF can vary from subject-to-subject and/or region-to-region, a method to independently measure β in vivo should improve the accuracy of calibrated fMRI results. We describe a new method for β mapping through characterizing R2' - the most sensitive relaxation component of BOLD signal (i.e., the reversible magnetic susceptibility component that is predominantly of extravascular origin at high magnetic field) - as a function of intravascular magnetic susceptibility induced by an FDA-approved superparamagnetic contrast agent. In α-chloralose anesthetized rat brain, at 9.4 T, we measured β values of ~0.8 uniformly across large neocortical swathes, with lower magnitude and more heterogeneity in subcortical areas. Comparison of β maps in rats anesthetized with medetomidine and α-chloralose revealed that β is independent of neural activity levels at these resting states. We anticipate that this method for β mapping can help facilitate calibrated fMRI for clinical studies.
Collapse
Affiliation(s)
- Christina Y Shu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Shu CY, Herman P, Coman D, Sanganahalli BG, Wang H, Juchem C, Rothman DL, de Graaf RA, Hyder F. Brain region and activity-dependent properties of M for calibrated fMRI. Neuroimage 2015; 125:848-856. [PMID: 26529646 DOI: 10.1016/j.neuroimage.2015.10.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Calibrated fMRI extracts changes in oxidative energy demanded by neural activity based on hemodynamic and metabolic dependencies of the blood oxygenation level-dependent (BOLD) response. This procedure requires the parameter M, which is determined from the dynamic range of the BOLD signal between deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic). Since it is unclear if the range of M-values in human calibrated fMRI is due to regional/state differences, we conducted a 9.4T study to measure M-values across brain regions in deep (α-chloralose) and light (medetomidine) anesthetized rats, as verified by electrophysiology. Because BOLD signal is captured differentially by gradient-echo (R2*) and spin-echo (R2) relaxation rates, we measured M-values by the product of the fMRI echo time and R2' (i.e., the reversible magnetic susceptibility component), which is given by the absolute difference between R2* and R2. While R2' mapping was shown to be dependent on the k-space sampling method used, at nominal spatial resolutions achieved at high magnetic field of 9.4T the M-values were quite homogenous across cortical gray matter. However cortical M-values varied in relation to neural activity between brain states. The findings from this study could improve precision of future calibrated fMRI studies by focusing on the global uniformity of M-values in gray matter across different resting activity levels.
Collapse
Affiliation(s)
- Christina Y Shu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Peter Herman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Helen Wang
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA; Department of Neurology, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Merkle CW, Srinivasan VJ. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography. Neuroimage 2015; 125:350-362. [PMID: 26477654 DOI: 10.1016/j.neuroimage.2015.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/15/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022] Open
Abstract
The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs.
Collapse
Affiliation(s)
- Conrad W Merkle
- Department of Biomedical Engineering, University of California at Davis 451 E. Health Sciences Dr. GBSF 2303 Davis CA 95616, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California at Davis 451 E. Health Sciences Dr. GBSF 2303 Davis CA 95616, USA.
| |
Collapse
|
37
|
Pan WJ, Billings JCW, Grooms JK, Shakil S, Keilholz SD. Considerations for resting state functional MRI and functional connectivity studies in rodents. Front Neurosci 2015; 9:269. [PMID: 26300718 PMCID: PMC4525377 DOI: 10.3389/fnins.2015.00269] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022] Open
Abstract
Resting state functional MRI (rs-fMRI) and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies. These types of interwoven human and animal experiments have a potentially large impact on neuroscience and clinical practice. However, impediments exist to the optimal application of rs-fMRI in small animals, some similar to those encountered in humans and some quite different. In this review we identify the most prominent of these barriers, discuss differences between rs-fMRI in rodents and in humans, highlight best practices for animal studies, and review selected applications of rs-fMRI in rodents. Our goal is to facilitate the integration of human and animal work to the benefit of both fields.
Collapse
Affiliation(s)
- Wen-Ju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA
| | | | - Joshua K Grooms
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA
| | - Sadia Shakil
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA, USA
| | - Shella D Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA ; Neuroscience Program, Emory University Atlanta, GA, USA
| |
Collapse
|
38
|
Shen Q, Huang S, Duong TQ. Ultra-high spatial resolution basal and evoked cerebral blood flow MRI of the rat brain. Brain Res 2014; 1599:126-36. [PMID: 25557404 DOI: 10.1016/j.brainres.2014.12.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 11/18/2022]
Abstract
Cerebral blood flow (CBF) is tightly coupled to metabolism and neural activity under normal physiological conditions, and is often perturbed in disease states. The goals of this study were to implement a high-resolution (up to 50×38μm(2)) CBF MRI protocol of the rat brain, create a digital CBF atlas, report CBF values for 30+ brain structures based on the atlas, and explore applications of high-resolution CBF fMRI of forepaw stimulation. Excellent blood-flow contrasts were observed among different cortical and subcortical structures. CBF MRI showed column-like alternating bright and dark bands in the neocortices, reflecting the layout of descending arterioles and ascending venules, respectively. CBF MRI also showed lamina-like alternating bright and dark layers across the cortical thicknesses, consistent with the underlying vascular density. CBF profiles across the cortical thickness showed two peaks in layers IV and VI and a shallow trough in layer V. Whole-brain CBF was about 0.89ml/g/min, with the highest CBF values found amongst the neocortical structures (1ml/g/min, range: 0.89-1.16ml/g/min) and the lowest CBF values in the corpus callosum (0.32ml/g/min), yielding a gray:white matter CBF ratio of 3.1. CBF fMRI responses peaked across layers IV-V, whereas the BOLD fMRI responses showed a peak in the superficial layers II-III. High-resolution basal CBF MRI, evoked CBF fMRI, and CBF brain atlas can be used to study neurological disorders (such as ischemic stroke).
Collapse
Affiliation(s)
- Qiang Shen
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, 8403 Floyd Curl Dr, TX 78229, United States; Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Shiliang Huang
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, 8403 Floyd Curl Dr, TX 78229, United States
| | - Timothy Q Duong
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, 8403 Floyd Curl Dr, TX 78229, United States; Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, United States; Department of Radiology, University of Texas Health Science Center, San Antonio, TX, United States; Department of Physiology, University of Texas Health Science Center, San Antonio, TX, United States; South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
39
|
Abstract
Hemodynamic signals are widely used to infer neural activity in the brain. We tested the hypothesis that hemodynamic signals faithfully report neural activity during voluntary behaviors by measuring cerebral blood volume (CBV) and neural activity in the somatosensory cortex and frontal cortex of head-fixed mice during locomotion. Locomotion induced a large and robust increase in firing rate and gamma-band (40-100 Hz) power in the local field potential in the limb representations in somatosensory cortex, and was accompanied by increases in CBV, demonstrating that hemodynamic signals are coupled with neural activity in this region. However, in the frontal cortex, CBV did not change during locomotion, but firing rate and gamma-band power both increased, indicating a decoupling of neural activity from the hemodynamic signal. These results show that hemodynamic signals are not faithful indicators of the mean neural activity in the frontal cortex during locomotion; thus, the results from fMRI and other hemodynamic imaging methodologies for studying neural processes must be interpreted with caution.
Collapse
|
40
|
Auffret M, Samim I, Lepore M, Gruetter R, Just N. Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat. Brain Struct Funct 2014; 221:695-707. [PMID: 25366973 DOI: 10.1007/s00429-014-0933-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
The ability of Mn(2+) to follow Ca(2+) pathways upon stimulation transform them into remarkable surrogate markers of neuronal activity using activity-induced manganese-dependent MRI (AIM-MRI). In the present study, a precise follow-up of physiological parameters during MnCl2 and mannitol infusions improved the reproducibility of AIM-MRI allowing in-depth evaluation of the technique. Pixel-by-pixel T1 data were investigated using histogram distributions in the barrel cortex (BC) and the thalamus before and after Mn(2+) infusion, after blood brain barrier opening and after BC activation. Mean BC T1 values dropped significantly upon trigeminal nerve (TGN) stimulation (-38 %, P = 0.02) in accordance with previous literature findings. T1 histogram distributions showed that 34 % of T1s in the range 600-1500 ms after Mn(2+ )+ mannitol infusions shifted to 50-350 ms after TGN stimulation corresponding to a twofold increase of the percentage of pixels with the lowest T1s in BC. Moreover, T1 changes in response to stimulation increased significantly from superficial cortical layers (I-III) to deeper layers (V-VI). Cortical cytoarchitecture detection during a functional paradigm was performed extending the potential of AIM-MRI. Quantitative AIM-MRI could thus offer a means to interpret local neural activity across cortical layers while identification of the role of calcium dynamics in vivo during brain activation could play a key role in resolving neurovascular coupling mechanisms.
Collapse
Affiliation(s)
- Matthieu Auffret
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Idrees Samim
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mario Lepore
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nathalie Just
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
41
|
Krieger SN, Gauthier CJ, Ivanov D, Huber L, Roggenhofer E, Sehm B, Turner R, Egan GF. Regional reproducibility of calibrated BOLD functional MRI: Implications for the study of cognition and plasticity. Neuroimage 2014; 101:8-20. [DOI: 10.1016/j.neuroimage.2014.06.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 02/02/2023] Open
|
42
|
Shulman RG, Hyder F, Rothman DL. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior. J Cereb Blood Flow Metab 2014; 34:1721-35. [PMID: 25160670 PMCID: PMC4269754 DOI: 10.1038/jcbfm.2014.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/12/2014] [Accepted: 07/21/2014] [Indexed: 02/05/2023]
Abstract
Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), (13)C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Departments of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
- Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
43
|
BOLD matches neuronal activity at the mm scale: A combined 7T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 2014; 101:177-84. [DOI: 10.1016/j.neuroimage.2014.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/14/2014] [Accepted: 07/06/2014] [Indexed: 01/10/2023] Open
|
44
|
Martin C. Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 2014; 8:211. [PMID: 25191214 PMCID: PMC4137227 DOI: 10.3389/fnins.2014.00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologs within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges.
Collapse
Affiliation(s)
- Chris Martin
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
45
|
Srinivasan VJ, Radhakrishnan H. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation. Neuroimage 2014; 102 Pt 2:393-406. [PMID: 25111471 DOI: 10.1016/j.neuroimage.2014.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/28/2014] [Accepted: 08/02/2014] [Indexed: 11/15/2022] Open
Abstract
The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of >1mm were measured during a forepaw stimulus. The results provide a comprehensive picture of when and where changes in RBC content and speed occur during and immediately following cortical activation. In summary, the earliest and largest microvascular RBC content changes occurred in the middle cortical layers, while post-stimulus undershoots were most prominent superficially. These laminar variations in positive and negative responses paralleled known distributions of excitatory and inhibitory synapses, suggesting neuronal underpinnings. Additionally, the RBC speed response consistently returned to baseline more promptly than RBC content after the stimulus across cortical layers, supporting a "flow-volume mismatch" of hemodynamic origin.
Collapse
Affiliation(s)
- Vivek J Srinivasan
- Department of Biomedical Engineering, University of California at Davis, 451 E. Health Sciences Dr. GBSF 2303, Davis, CA 95616, USA.
| | - Harsha Radhakrishnan
- Department of Biomedical Engineering, University of California at Davis, 451 E. Health Sciences Dr. GBSF 2303, Davis, CA 95616, USA
| |
Collapse
|
46
|
Siero JCW, Hendrikse J, Hoogduin H, Petridou N, Luijten P, Donahue MJ. Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 2014; 73:2283-95. [PMID: 24989338 DOI: 10.1002/mrm.25349] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Owing to variability in vascular dynamics across cerebral cortex, blood-oxygenation-level-dependent (BOLD) spatial and temporal characteristics should vary as a function of cortical-depth. Here, the positive response, initial dip (ID), and post-stimulus undershoot (PSU) of the BOLD response in human visual cortex are investigated as a function of cortical depth and stimulus duration at 7 Tesla (T). METHODS Gradient-echo echo-planar-imaging BOLD fMRI with high spatial and temporal resolution was performed in 7 healthy volunteers and measurements of the ID, PSU, and positive BOLD response were made as a function of cortical depth and stimulus duration (0.5-8 s). Exploratory analyses were applied to understand whether functional mapping could be achieved using the ID, rather than positive, BOLD signal characteristics RESULTS The ID was largest in outer cortical layers, consistent with previously reported upstream propagation of vasodilation along the diving arterioles in animals. The positive BOLD signal and PSU showed different relationships across the cortical depth with respect to stimulus duration. CONCLUSION The ID and PSU were measured in humans at 7T and exhibited similar trends to those recently reported in animals. Furthermore, while evidence is provided for the ID being a potentially useful feature for better understanding BOLD signal dynamics, such as laminar neurovascular coupling, functional mapping based on the ID is extremely difficult.
Collapse
Affiliation(s)
- Jeroen C W Siero
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Rudolf Magnus Institute, Department of Neurosurgery and Neurology, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Hoogduin
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalia Petridou
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Luijten
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Neurology, Vanderbilt School of Medicine, Nashville, Tennessee, USA.,Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Li B, Gong L, Wu R, Li A, Xu F. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers. Neuroimage 2014; 95:29-38. [DOI: 10.1016/j.neuroimage.2014.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
|
48
|
Wehrl HF, Martirosian P, Schick F, Reischl G, Pichler BJ. Assessment of rodent brain activity using combined [15O]H2O-PET and BOLD-fMRI. Neuroimage 2014; 89:271-9. [DOI: 10.1016/j.neuroimage.2013.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 12/01/2022] Open
|
49
|
He B, Coleman T, Genin GM, Glover G, Hu X, Johnson N, Liu T, Makeig S, Sajda P, Ye K. Grand challenges in mapping the human brain: NSF workshop report. IEEE Trans Biomed Eng 2013; 60:2983-92. [PMID: 24108705 DOI: 10.1109/tbme.2013.2283970] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This report summarizes the outcomes of the NSF Workshop on Mapping and Engineering the Brain, held at Arlington, VA, during August 13-14, 2013. Three grand challenges were identified, including high spatiotemporal resolution neuroimaging, perturbation-based neuroimaging, and neuroimaging in naturalistic environments. It was highlighted that each grand challenge requires groundbreaking discoveries, enabling technologies, appropriate knowledge transfer, and multi- and transdisciplinary education and training for success.
Collapse
|