1
|
Lee N. Mapping Binding Sites of Nucleoprotein Within the Influenza Virus RNA Genome. Methods Mol Biol 2025; 2890:211-224. [PMID: 39890729 DOI: 10.1007/978-1-0716-4326-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
With the advent of next-generation sequencing, a plethora of techniques have been developed to uncover nucleic acid interactions with unprecedented resolution. For example, UV-crosslinking and immunoprecipitation (CLIP) assays have been coupled to deep-sequencing to identify RNA-protein interactions and precisely map the RNA footprint regions. Here, we describe a CLIP-based technique that allows the genome-wide mapping of influenza nucleoprotein (NP)-binding sites to genomic viral RNA (vRNA). This method has been applied to show that the influenza viral genome is not uniformly coated with nucleoprotein, but instead enriched in certain regions and depleted in others. As subtle changes in genome sequence have been shown to globally alter NP-binding sites, this technique will be useful to deduce how different strains adjust their genome organization and what parameters govern NP-vRNA interactions.
Collapse
Affiliation(s)
- Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Wang L, Shi L, Liu H, Zhang J, Yang W, Schountz T, Ma W. Incompatible packaging signals and impaired protein functions hinder reassortment of bat H17N10 or H18N11 segment 7 with human H1N1 influenza A viruses. J Virol 2024; 98:e0086424. [PMID: 39162567 PMCID: PMC11406886 DOI: 10.1128/jvi.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Jakob C, Lovate GL, Desirò D, Gießler L, Smyth R, Marquet R, Lamkiewicz K, Marz M, Schwemmle M, Bolte H. Sequential disruption of SPLASH-identified vRNA-vRNA interactions challenges their role in influenza A virus genome packaging. Nucleic Acids Res 2023; 51:6479-6494. [PMID: 37224537 PMCID: PMC10325904 DOI: 10.1093/nar/gkad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
A fundamental step in the influenza A virus (IAV) replication cycle is the coordinated packaging of eight distinct genomic RNA segments (i.e. vRNAs) into a viral particle. Although this process is thought to be controlled by specific vRNA-vRNA interactions between the genome segments, few functional interactions have been validated. Recently, a large number of potentially functional vRNA-vRNA interactions have been detected in purified virions using the RNA interactome capture method SPLASH. However, their functional significance in coordinated genome packaging remains largely unclear. Here, we show by systematic mutational analysis that mutant A/SC35M (H7N7) viruses lacking several prominent SPLASH-identified vRNA-vRNA interactions involving the HA segment package the eight genome segments as efficiently as the wild-type virus. We therefore propose that the vRNA-vRNA interactions identified by SPLASH in IAV particles are not necessarily critical for the genome packaging process, leaving the underlying molecular mechanism elusive.
Collapse
Affiliation(s)
- Celia Jakob
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriel L Lovate
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany
| | - Daniel Desirò
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1QW, UK
| | - Lara Gießler
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Roland Marquet
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hardin Bolte
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Le Sage V, Kanarek JP, Lakdawala SS, Lee N. Local changes in viral RNA sequence drive global changes in influenza nucleoprotein binding. J Med Virol 2023; 95:e28896. [PMID: 37386887 PMCID: PMC10878429 DOI: 10.1002/jmv.28896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023]
Abstract
The genome of influenza A viruses (IAV) consists of eight negative-sense RNA segments that are coated by viral nucleoprotein (NP). Until recently, it was assumed that NP binds viral genomic RNA (vRNA) uniformly along the entire segment. However, genome-wide studies have revised the original model in that NP instead binds preferentially to certain regions of vRNA, while others are depleted for NP binding. Even strains with high sequence similarity exhibit distinct NP-binding profiles. Thus, it remains unknown how NP-binding specificity to vRNA is established. Here we introduced nucleotide changes to vRNA to examine whether primary sequence can affect NP binding. Our findings demonstrate that NP binding is indeed susceptible to sequence alterations, as NP peaks can be lost or appear de novo at mutated sites. Unexpectedly, nucleotide changes not only affect NP binding locally at the site of mutation, but also impact NP binding at distal regions that have not been modified. Taken together, our results suggest that NP binding is not regulated by primary sequence alone, but that a network formed by multiple segments governs the deposition of NP on vRNA.
Collapse
Affiliation(s)
- Valerie Le Sage
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Jack P. Kanarek
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Seema S. Lakdawala
- Emory University School of Medicine, Department of Microbiology and Immunology, 1510 Clifton Rd., Atlanta, GA 30322
| | - Nara Lee
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Taylor KY, Agu I, José I, Mäntynen S, Campbell AJ, Mattson C, Chou TW, Zhou B, Gresham D, Ghedin E, Díaz Muñoz SL. Influenza A virus reassortment is strain dependent. PLoS Pathog 2023; 19:e1011155. [PMID: 36857394 PMCID: PMC10010518 DOI: 10.1371/journal.ppat.1011155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 01/26/2023] [Indexed: 03/02/2023] Open
Abstract
RNA viruses can exchange genetic material during coinfection, an interaction that creates novel strains with implications for viral evolution and public health. Influenza A viral genetic exchange can occur when genome segments from distinct strains reassort in coinfected cells. Predicting potential genomic reassortment between influenza strains has been a long-standing goal. Experimental coinfection studies have shed light on factors that limit or promote reassortment. However, determining the reassortment potential between diverse Influenza A strains has remained elusive. To address this challenge, we developed a high throughput genotyping approach to quantify reassortment among a diverse panel of human influenza virus strains encompassing two pandemics (swine and avian origin), three specific epidemics, and both circulating human subtypes A/H1N1 and A/H3N2. We found that reassortment frequency (the proportion of reassortants generated) is an emergent property of specific pairs of strains where strain identity is a predictor of reassortment frequency. We detect little evidence that antigenic subtype drives reassortment as intersubtype (H1N1xH3N2) and intrasubtype reassortment frequencies were, on average, similar. Instead, our data suggest that certain strains bias the reassortment frequency up or down, independently of the coinfecting partner. We observe that viral productivity is also an emergent property of coinfections, but uncorrelated to reassortment frequency; thus viral productivity is a separate factor affecting the total number of reassortants produced. Assortment of individual segments among progeny and pairwise segment combinations within progeny generally favored homologous combinations. These outcomes were not related to strain similarity or shared subtype but reassortment frequency was closely correlated to the proportion of both unique genotypes and of progeny with heterologous pairwise segment combinations. We provide experimental evidence that viral genetic exchange is potentially an individual social trait subject to natural selection, which implies the propensity for reassortment is not evenly shared among strains. This study highlights the need for research incorporating diverse strains to discover the traits that shift the reassortment potential to realize the goal of predicting influenza virus evolution resulting from segment exchange.
Collapse
Affiliation(s)
- Kishana Y. Taylor
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
| | - Ilechukwu Agu
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
| | - Ivy José
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
| | - Sari Mäntynen
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
| | - A. J. Campbell
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
| | - Courtney Mattson
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
| | - Tsui-Wen Chou
- Center for Genomics and Systems Biology + Department of Biology New York University New York, United States of America
| | - Bin Zhou
- Center for Genomics and Systems Biology + Department of Biology New York University New York, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology + Department of Biology New York University New York, United States of America
| | - Elodie Ghedin
- Center for Genomics and Systems Biology + Department of Biology New York University New York, United States of America
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Samuel L. Díaz Muñoz
- Department of Microbiology and Molecular Genetics University of California, Davis Davis, California
- Genome Center University of California, Davis Davis, California
- * E-mail:
| |
Collapse
|
6
|
Šimičić P, Židovec-Lepej S. A Glimpse on the Evolution of RNA Viruses: Implications and Lessons from SARS-CoV-2. Viruses 2022; 15:1. [PMID: 36680042 PMCID: PMC9866536 DOI: 10.3390/v15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are characterised by extremely high genetic variability due to fast replication, large population size, low fidelity, and (usually) a lack of proofreading mechanisms of RNA polymerases leading to high mutation rates. Furthermore, viral recombination and reassortment may act as a significant evolutionary force among viruses contributing to greater genetic diversity than obtainable by mutation alone. The above-mentioned properties allow for the rapid evolution of RNA viruses, which may result in difficulties in viral eradication, changes in virulence and pathogenicity, and lead to events such as cross-species transmissions, which are matters of great interest in the light of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemics. In this review, we aim to explore the molecular mechanisms of the variability of viral RNA genomes, emphasising the evolutionary trajectory of SARS-CoV-2 and its variants. Furthermore, the causes and consequences of coronavirus variation are explored, along with theories on the origin of human coronaviruses and features of emergent RNA viruses in general. Finally, we summarise the current knowledge on the circulating variants of concern and highlight the many unknowns regarding SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
| | - Snježana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| |
Collapse
|
7
|
Jakob C, Paul-Stansilaus R, Schwemmle M, Marquet R, Bolte H. The influenza A virus genome packaging network - complex, flexible and yet unsolved. Nucleic Acids Res 2022; 50:9023-9038. [PMID: 35993811 PMCID: PMC9458418 DOI: 10.1093/nar/gkac688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
The genome of influenza A virus (IAV) consists of eight unique viral RNA segments. This genome organization allows genetic reassortment between co-infecting IAV strains, whereby new IAVs with altered genome segment compositions emerge. While it is known that reassortment events can create pandemic IAVs, it remains impossible to anticipate reassortment outcomes with pandemic prospects. Recent research indicates that reassortment is promoted by a viral genome packaging mechanism that delivers the eight genome segments as a supramolecular complex into the virus particle. This finding holds promise of predicting pandemic IAVs by understanding the intermolecular interactions governing this genome packaging mechanism. Here, we critically review the prevailing mechanistic model postulating that IAV genome packaging is orchestrated by a network of intersegmental RNA-RNA interactions. Although we find supporting evidence, including segment-specific packaging signals and experimentally proposed RNA-RNA interaction networks, this mechanistic model remains debatable due to a current shortage of functionally validated intersegmental RNA-RNA interactions. We speculate that identifying such functional intersegmental RNA-RNA contacts might be hampered by limitations of the utilized probing techniques and the inherent complexity of the genome packaging mechanism. Nevertheless, we anticipate that improved probing strategies combined with a mutagenesis-based validation could facilitate their discovery.
Collapse
Affiliation(s)
| | | | - Martin Schwemmle
- To whom correspondence should be addressed. Tel: +49 761 203 6526; Fax: +49 761 203 6626;
| | - Roland Marquet
- Correspondence may also be addressed to Roland Marquet. Tel: +33 3 88 41 70 54; Fax: +33 3 88 60 22 18;
| | - Hardin Bolte
- Institute of Virology, Medical Center – University of Freiburg, 79104 Freiburg, Germany,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
8
|
He D, Wang X, Wu H, Wang X, Yan Y, Li Y, Zhan T, Hao X, Hu J, Hu S, Liu X, Ding C, Su S, Gu M, Liu X. Genome-Wide Reassortment Analysis of Influenza A H7N9 Viruses Circulating in China during 2013-2019. Viruses 2022; 14:v14061256. [PMID: 35746727 PMCID: PMC9230085 DOI: 10.3390/v14061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Reassortment with the H9N2 virus gave rise to the zoonotic H7N9 avian influenza virus (AIV), which caused more than five outbreak waves in humans, with high mortality. The frequent exchange of genomic segments between H7N9 and H9N2 has been well-documented. However, the reassortment patterns have not been described and are not yet fully understood. Here, we used phylogenetic analyses to investigate the patterns of intersubtype and intrasubtype/intralineage reassortment across the eight viral segments. The H7N9 virus and its progeny frequently exchanged internal genes with the H9N2 virus but rarely with the other AIV subtypes. Before beginning the intrasubtype/intralineage reassortment analyses, five Yangtze River Delta (YRD A-E) and two Pearl River Delta (PRD A-B) clusters were divided according to the HA gene phylogeny. The seven reset segment genes were also nomenclatured consistently. As revealed by the tanglegram results, high intralineage reassortment rates were determined in waves 2–3 and 5. Additionally, the clusters of PB2 c05 and M c02 were the most dominant in wave 5, which could have contributed to the onset of the largest H7N9 outbreak in 2016–2017. Meanwhile, a portion of the YRD-C cluster (HP H7N9) inherited their PB2, PA, and M segments from the co-circulating YRD-E (LP H7N9) cluster during wave 5. Untanglegram results revealed that the reassortment rate between HA and NA was lower than HA with any of the other six segments. A multidimensional scaling plot revealed a robust genetic linkage between the PB2 and PA genes, indicating that they may share a co-evolutionary history. Furthermore, we observed relatively more robust positive selection pressure on HA, NA, M2, and NS1 proteins. Our findings demonstrate that frequent reassortment, particular reassorted patterns, and adaptive mutations shaped the H7N9 viral genetic diversity and evolution. Increased surveillance is required immediately to better understand the current state of the HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Yang Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| |
Collapse
|
9
|
Genetic and Antigenic Characterization of an Expanding H3 Influenza A Virus Clade in U.S. Swine Visualized by Nextstrain. mSphere 2022; 7:e0099421. [PMID: 35766502 PMCID: PMC9241524 DOI: 10.1128/msphere.00994-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically distinct clades of influenza A virus (IAV) in swine undermine efforts to control the disease. Swine producers commonly use vaccines, and vaccine strains are selected by identifying the most common hemagglutinin (HA) gene from viruses detected in a farm or a region.
Collapse
|
10
|
Bu L, Chen B, Xing L, Cai X, Liang S, Zhang L, Wang X, Song W. Generation of a pdmH1N1 2018 Influenza A Reporter Virus Carrying a mCherry Fluorescent Protein in the PA Segment. Front Cell Infect Microbiol 2022; 11:827790. [PMID: 35127568 PMCID: PMC8811159 DOI: 10.3389/fcimb.2021.827790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen associated with significant morbidity and mortality worldwide. Through serial passage in mice, we generated a recombinant pdmH1N1 2009 IAV, A/Guangdong/GLW/2018 (GLW/18-MA), which encodes an mCherry gene fused to the C-terminal of a polymerase acidic (PA) segment and demonstrated comparable growth kinetics to the wild-type. Nine mutations were identified in the GLW/18-MA genome: PA (I61M, E351G, and G631S), NP (E292G), HA1 (T164I), HA2 (N117S and P160S), NA (W61R), and NEP (K44R). The recombinant IAV reporter expresses mCherry, a red fluorescent protein, at a high level and maintains its genetic integrity after five generations of serial passages in Madin-Darby Canine Kidney cells (MDCK) cells. Moreover, the imaging is noninvasive and permits the monitoring of infection in living mice. Treatment with oseltamivir or baicalin followed by infection with the reporter IAV led to a decrease in fluorescent protein signal in living mice. This result demonstrates that the IAV reporter virus is a powerful tool to study viral pathogenicity and transmission and to develop and evaluate novel anti-viral drugs, inhibitors, and vaccines in the future.
Collapse
Affiliation(s)
- Ling Bu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boqian Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuhua Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying Zhang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Center of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Turner JCM, Barman S, Feeroz MM, Hasan MK, Akhtar S, Walker D, Jeevan T, Mukherjee N, El-Shesheny R, Seiler P, Franks J, McKenzie P, Kercher L, Webster RG, Webby RJ. Distinct but connected avian influenza virus activities in wetlands and live poultry markets in Bangladesh, 2018-2019. Transbound Emerg Dis 2022; 69:e605-e620. [PMID: 34989481 DOI: 10.1111/tbed.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.
Collapse
Affiliation(s)
- Jasmine C M Turner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Md Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - David Walker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Su W, Sia SF, Choy KT, Ji Y, Chen D, Lau EHY, Fu G, Huang Y, Liu J, Peiris M, Pu J, Yen HL. Limited onward transmission potential of reassortment genotypes from chickens co-infected with H9N2 and H7N9 avian influenza viruses. Emerg Microbes Infect 2021; 10:2030-2041. [PMID: 34666614 PMCID: PMC8567909 DOI: 10.1080/22221751.2021.1996209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The segmented genome of influenza A virus has conferred significant evolutionary advantages to this virus through genetic reassortment, a mechanism that facilitates the rapid expansion of viral genetic diversity upon influenza co-infections. Therefore, co-infection of genetically diverse avian influenza viruses in poultry may pose a significant public health risk in generating novel reassortants with increased zoonotic potential. This study investigated the reassortment patterns of a Pearl River Delta-lineage avian influenza A(H7N9) virus and four genetically divergent avian influenza A(H9N2) viruses upon co-infection in embryonated chicken eggs and chickens. To characterize “within-host” and “between-host” genetic diversity, we further monitored the viral genotypes that were subsequently transmitted to contact chickens in serial transmission experiments. We observed that co-infection with A(H7N9) and A(H9N2) viruses may lead to the emergence of novel reassortant viruses in ovo and in chickens, albeit with different reassortment patterns. Novel reassortants detected in donor chickens co-infected with different combinations of the same A(H7N9) virus and different A(H9N2) viruses showed distinct onward transmission potential to contact chickens. Sequential transmission of novel reassortant viruses was only observed in one out of four co-infection combinations. Our results demonstrated different patterns by which influenza viruses may acquire genetic diversity through co-infection in ovo, in vivo, and under sequential transmission conditions.
Collapse
Affiliation(s)
- Wen Su
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Sin Fun Sia
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Yue Ji
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Dongdong Chen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Eric Ho Yin Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, People's Republic of China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, People's Republic of China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
13
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
14
|
Yang B, Yang KD. Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Front Immunol 2021; 12:690976. [PMID: 34335596 PMCID: PMC8320726 DOI: 10.3389/fimmu.2021.690976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Different emerging viral infections may emerge in different regions of the world and pose a global pandemic threat with high fatality. Clarification of the immunopathogenesis of different emerging viral infections can provide a plan for the crisis management and prevention of emerging infections. This perspective article describes how an emerging viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage or/and immunopathology. We classified immunopathogenesis of common emerging viral infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola); 2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19); 3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent enhancement of infection with altered immunity (e.g., Dengue). A practical guide to early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of an emerging viral infection is provided to prevent and reduce the transmission, and to do rapid diagnoses followed by the early treatment of virus neutralization for reduction of morbidity and mortality of an emerging viral infection such as COVID-19.
Collapse
Affiliation(s)
- Betsy Yang
- Department of Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States
| | - Kuender D. Yang
- DIvision of Medical Research, Mackay Children’s Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Trifkovic S, Gilbertson B, Fairmaid E, Cobbin J, Rockman S, Brown LE. Gene Segment Interactions Can Drive the Emergence of Dominant Yet Suboptimal Gene Constellations During Influenza Virus Reassortment. Front Microbiol 2021; 12:683152. [PMID: 34335507 PMCID: PMC8317023 DOI: 10.3389/fmicb.2021.683152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
A segmented genome enables influenza virus to undergo reassortment when two viruses infect the same cell. Although reassortment is involved in the creation of pandemic influenza strains and is routinely used to produce influenza vaccines, our understanding of the factors that drive the emergence of dominant gene constellations during this process is incomplete. Recently, we defined a spectrum of interactions between the gene segments of the A/Udorn/307/72 (H3N2) (Udorn) strain that occur within virus particles, a major interaction being between the NA and PB1 gene segments. In addition, we showed that the Udorn PB1 is preferentially incorporated into reassortant viruses that express the Udorn NA. Here we use an influenza vaccine seed production model where eggs are coinfected with Udorn and the high yielding A/Puerto Rico/8/34 (H1N1) (PR8) virus and track viral genotypes through the reassortment process under antibody selective pressure to determine the impact of Udorn NA-PB1 co-selection. We discovered that 86% of the reassortants contained the PB1 from the Udorn parent after the initial co-infection and this bias towards Udorn PB1 was maintained after two further passages. Included in these were certain gene constellations containing Udorn HA, NA, and PB1 that confered low replicative fitness yet rapidly became dominant at the expense of more fit progeny, even when co-infection ratios of the two viruses favoured PR8. Fitness was not compromised, however, in the corresponding reassortants that also contained Udorn NP. Of particular note is the observation that relatively unfit reassortants could still fulfil the role of vaccine seed candidates as they provided high haemagglutinin (HA) antigen yields through co-production of non-infectious particles and/or by more HA molecules per virion. Our data illustrate the dynamics and complexity of reassortment and highlight how major gene segment interactions formed during packaging, in addition to antibody pressure, initially restrict the reassortant viruses that are formed.
Collapse
Affiliation(s)
- Sanja Trifkovic
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad Gilbertson
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Emily Fairmaid
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joanna Cobbin
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Rockman
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Seqirus, Parkville, VIC, Australia
| | - Lorena E Brown
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Tohma K, Lepore CJ, Martinez M, Degiuseppe JI, Khamrin P, Saito M, Mayta H, Nwaba AUA, Ford-Siltz LA, Green KY, Galeano ME, Zimic M, Stupka JA, Gilman RH, Maneekarn N, Ushijima H, Parra GI. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog 2021; 17:e1009744. [PMID: 34255807 PMCID: PMC8318288 DOI: 10.1371/journal.ppat.1009744] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/28/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission. Norovirus is a highly diverse enteric pathogen. The large genomic database accumulated in the last three decades advanced our understanding of norovirus diversity; however, this information is limited by geographical bias, sporadic times of collection, and missing or incomplete genome sequences. In this multinational collaborative study, we mined archival samples collected since the 1970s and sequenced nearly full-length new genomes from 281 historical noroviruses, including the first full-length genomic sequences for three genotypes. Using this novel dataset, we found evidence for restrictions in the recombination of genetically disparate viruses and that diversifying selection results in new variants with different epidemiological profiles. These new insights on the diversification of noroviruses could provide baseline information for the study of future epidemics and ultimately the prevention of norovirus infections.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Cara J. Lepore
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Magaly Martinez
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- IICS, National University of Asuncion, Asuncion, Paraguay
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Holger Mayta
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Amy U. Amanda Nwaba
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Lauren A. Ford-Siltz
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | | | - Mirko Zimic
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Robert H. Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Gabriel I. Parra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mettier J, Marc D, Sedano L, Da Costa B, Chevalier C, Le Goffic R. Study of the host specificity of PB1-F2-associated virulence. Virulence 2021; 12:1647-1660. [PMID: 34125653 PMCID: PMC8205076 DOI: 10.1080/21505594.2021.1933848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Influenza A viruses cause important diseases in both human and animal. The PB1-F2 protein is a virulence factor expressed by some influenza viruses. Its deleterious action for the infected host is mostly described in mammals, while the available information is scarce in avian hosts. In this work, we compared the effects of PB1-F2 in avian and mammalian hosts by taking advantage of the zoonotic capabilities of an avian H7N1 virus. In vitro, the H7N1 virus did not behave differently when PB1-F2 was deficient while a H3N2 virus devoid of PB1-F2 was clearly less inflammatory. Likewise, when performing in vivo challenges of either chickens or embryonated eggs, with the wild-type or the PB1-F2 deficient virus, no difference could be observed in terms of mortality, host response or tropism. PB1-F2 therefore does not appear to play a major role as a virulence factor in the avian host. However, when infecting NF-κB-luciferase reporter mice with the H7N1 viruses, a massive PB1-F2-dependent inflammation was quantified, highlighting the host specificity of PB1-F2 virulence. Surprisingly, a chimeric 7:1 H3N2 virus harboring an H7N1-origin segment 2 (i.e. expressing the avian PB1-F2) induced a milder inflammatory response than its PB1-F2-deficient counterpart. This result shows that the pro-inflammatory activity of PB1-F2 is governed by complex mechanisms involving components from both the virus and its infected host. Thus, a mere exchange of segment 2 between strains is not sufficient to transmit the deleterious character of PB1-F2.
Collapse
Affiliation(s)
- Joëlle Mettier
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| | - Daniel Marc
- UMR1282 Infectiologie Et Santé Publique, INRAE, Nouzilly, France
| | - Laura Sedano
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- Université Paris-Saclay, INRAE, UVSQ, UMR892 VIM, Jouy-en-Josas, France
| |
Collapse
|
18
|
Li X, Zhao Y, Qiao S, Gu M, Gao R, Ge Z, Xu X, Wang X, Ma J, Hu J, Hu S, Liu X, Chen S, Peng D, Jiao X, Liu X. The Packaging Regions of G1-Like PB2 Gene Contribute to Improving the Survival Advantage of Genotype S H9N2 Virus in China. Front Microbiol 2021; 12:655057. [PMID: 33967991 PMCID: PMC8096984 DOI: 10.3389/fmicb.2021.655057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The genotype S (G57) H9N2 virus, which first emerged in 2007 with the substitution of the G1-like PB2 gene for F98-like ones, has become the predominant genotype in the past 10 years. However, whether this substitution plays a role in the fitness of genotype S H9N2 viruses remains unknown. Comparison of the PB2 genes of F98-like and G1-like viruses revealed a close homology in amino acid sequences but great variations at nucleotide levels. We then determined if the packaging region, a unique sequence in each segment utilized for the assembly of the vRNA into virions, played a role in the fitness of the S genotype. The chimeric H9N2 virus with PB2 segments of the G1-like packaging regions significantly increased viral protein levels and polymerase activity. Substituting the packaging regions in the two terminals of F98-like PB2 with the sequence of G1-like further improved its competitive advantage. Substitution of the packaging regions of F98-like PB2 with those of G1-like sequences increased the infectivity of the chimeric virus in the lungs and brains of chicken at 3 days post infection (dpi) and extended the lengths of virus shedding time. Our study suggests that the packaging regions of the G1-like PB2 gene contribute to improve the survival advantage of the genotype S H9N2 virus in China.
Collapse
Affiliation(s)
- Xiuli Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ying Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shumiao Qiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhichuang Ge
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Li X, Gu M, Zheng Q, Gao R, Liu X. Packaging signal of influenza A virus. Virol J 2021; 18:36. [PMID: 33596956 PMCID: PMC7890907 DOI: 10.1186/s12985-021-01504-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza A virus (IAV) contains a genome with eight single-stranded, negative-sense RNA segments that encode 17 proteins. During its assembly, all eight separate viral RNA (vRNA) segments are incorporated into virions in a selective manner. Evidence suggested that the highly selective genome packaging mechanism relies on RNA-RNA or protein-RNA interactions. The specific structures of each vRNA that contribute to mediating the packaging of the vRNA into virions have been described and identified as packaging signals. Abundant research indicated that sequences required for genome incorporation are not series and are varied among virus genotypes. The packaging signals play important roles in determining the virus replication, genome incorporation and genetic reassortment of influenza A virus. In this review, we discuss recent studies on influenza A virus packaging signals to provide an overview of their characteristics and functions.
Collapse
Affiliation(s)
- Xiuli Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China
| | - Qinmei Zheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.
| |
Collapse
|
20
|
Li X, Gu M, Wang X, Gao R, Bu X, Hao X, Ma J, Hu J, Hu S, Liu X, Chen S, Peng D, Jiao X, Liu X. G1-like M and PB2 genes are preferentially incorporated into H7N9 progeny virions during genetic reassortment. BMC Vet Res 2021; 17:80. [PMID: 33588843 PMCID: PMC7885445 DOI: 10.1186/s12917-021-02786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background Genotype S H9N2 viruses have become predominant in poultry in China since 2010. These viruses frequently donate their whole internal gene segments to other emerging influenza A subtypes such as the novel H7N9, H5N6, and H10N8 viruses. We recently reported that the PB2 and M genes of the genotype S H9N2 virus, which are derived from the G1-like virus, enhance the fitness of H5Nx and H7N9 avian influenza viruses in chickens and mice. However, whether the G1-like PB2 and M genes are preferentially incorporated into progeny virions during virus reassortment remains unclear; whether the G1-like PB2 and M genes from different subtypes are differentially incorporated into new virion progeny remains unknown. Results We conducted a reassortment experiment with the use of a H7N9 virus as the backbone and found that G1-like M/PB2 genes were preferentially incorporated in progeny virions over F/98-like M/PB2 genes. Importantly, the preference varied among G1-like M/PB2 genes of different subtypes. When competing with F/98-like M/PB2 genes during reassortment, both the M and PB2 genes from the H7N9 virus GD15 showed an advantage, whereas only the PB2 gene from the H9N2 virus CZ73 and the M gene from the H9N2 virus AH320 displayed the advantage. Conclusion Our findings highlight the preferential and variable advantages of H9N2-derived G1-like M and PB2 genes in incorporating them into H7N9 progeny virions over SH14-derived F/98-like M/PB2 genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02786-0.
Collapse
Affiliation(s)
- Xiuli Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinxin Bu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Ma
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
21
|
Chen S, Quan K, Wang H, Li S, Xue J, Qin T, Chu D, Fan G, Du Y, Peng D. A Live Attenuated H9N2 Avian Influenza Vaccine Prevents the Viral Reassortment by Exchanging the HA and NS1 Packaging Signals. Front Microbiol 2021; 11:613437. [PMID: 33613465 PMCID: PMC7890077 DOI: 10.3389/fmicb.2020.613437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The H9N2 avian influenza virus is not only an important zoonotic pathogen, it can also easily recombine with other subtypes to generate novel reassortments, such as the H7N9 virus. Although H9N2 live attenuated vaccines can provide good multiple immunities, including humoral, cellular, and mucosal immunity, the risk of reassortment between the vaccine strain and wild-type virus is still a concern. Here, we successfully rescued an H9N2 live attenuated strain [rTX-NS1-128 (mut)] that can interdict reassortment, which was developed by exchanging the mutual packaging signals of HA and truncated NS1 genes and confirmed by RT-PCR and sequencing. The dynamic growth results showed that rTX-NS1-128 (mut) replication ability in chick embryos was not significantly affected by our construction strategy compared to the parent virus rTX strain. Moreover, rTX-NS1-128 (mut) had good genetic stability after 15 generations and possessed low pathogenicity and no contact transmission characteristics in chickens. Furthermore, chickens were intranasally immunized by rTX-NS1-128 (mut) with a single dose, and the results showed that the hemagglutination inhibition (HI) titers peaked at 3 weeks after vaccination and lasted at least until 11 weeks. The cellular immunity (IL-6 and IL-12) and mucosal immunity (IgA and IgG) in the nasal and trachea samples were significantly increased compared to inactivated rTX. Recombinant virus provided a good cross-protection against homologous TX strain (100%) and heterologous F98 strain (80%) challenge. Collectively, these data indicated that rTX-NS1-128(mut) lost the ability for independent reassortment of HA and NS1-128 and will be expected to be used as a potential live attenuated vaccine against H9N2 subtype avian influenza.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hui Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Yuanzhao Du
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
22
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
23
|
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021; 13:212. [PMID: 33573231 PMCID: PMC7912471 DOI: 10.3390/v13020212] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks-in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996-have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.
Collapse
Affiliation(s)
- Josanne H. Verhagen
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
24
|
Piasecka J, Jarmolowicz A, Kierzek E. Organization of the Influenza A Virus Genomic RNA in the Viral Replication Cycle-Structure, Interactions, and Implications for the Emergence of New Strains. Pathogens 2020; 9:pathogens9110951. [PMID: 33203084 PMCID: PMC7696059 DOI: 10.3390/pathogens9110951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The influenza A virus is a human pathogen causing respiratory infections. The ability of this virus to trigger seasonal epidemics and sporadic pandemics is a result of its high genetic variability, leading to the ineffectiveness of vaccinations and current therapies. The source of this variability is the accumulation of mutations in viral genes and reassortment enabled by its segmented genome. The latter process can induce major changes and the production of new strains with pandemic potential. However, not all genetic combinations are tolerated and lead to the assembly of complete infectious virions. Reports have shown that viral RNA segments co-segregate in particular circumstances. This tendency is a consequence of the complex and selective genome packaging process, which takes place in the final stages of the viral replication cycle. It has been shown that genome packaging is governed by RNA–RNA interactions. Intersegment contacts create a network, characterized by the presence of common and strain-specific interaction sites. Recent studies have revealed certain RNA regions, and conserved secondary structure motifs within them, which may play functional roles in virion assembly. Growing knowledge on RNA structure and interactions facilitates our understanding of the appearance of new genome variants, and may allow for the prediction of potential reassortment outcomes and the emergence of new strains in the future.
Collapse
|
25
|
tenOever BR. Synthetic Virology: Building Viruses to Better Understand Them. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038703. [PMID: 31871242 DOI: 10.1101/cshperspect.a038703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generally comprised of less than a dozen components, RNA viruses can be viewed as well-designed genetic circuits optimized to replicate and spread within a given host. Understanding the molecular design that enables this activity not only allows one to disrupt these circuits to study their biology, but it provides a reprogramming framework to achieve novel outputs. Recent advances have enabled a "learning by building" approach to better understand virus biology and create valuable tools. Below is a summary of how modifying the preexisting genetic framework of influenza A virus has been used to track viral movement, understand virus replication, and identify host factors that engage this viral circuitry.
Collapse
Affiliation(s)
- Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
26
|
Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc Natl Acad Sci U S A 2020; 117:20814-20825. [PMID: 32769208 PMCID: PMC7456104 DOI: 10.1073/pnas.2001813117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In 2016/2017, highly pathogenic avian influenza (HPAI) virus of the subtype H5 spilled over into wild birds and caused the largest known HPAI epidemic in Europe, affecting poultry and wild birds. During its spread, the virus frequently exchanged genetic material (reassortment) with cocirculating low-pathogenic avian influenza viruses. To determine where and when these reassortments occurred, we analyzed Eurasian avian influenza viruses and identified a large set of H5 HPAI reassortants. We found that new genetic material likely came from wild birds across their migratory range and from domestic ducks not only in China, but also in central Europe. This knowledge is important to understand how the virus could adapt to wild birds and become established in wild bird populations. Highly pathogenic avian influenza (HPAI) viruses of the H5 A/goose/Guangdong/1/96 lineage can cause severe disease in poultry and wild birds, and occasionally in humans. In recent years, H5 HPAI viruses of this lineage infecting poultry in Asia have spilled over into wild birds and spread via bird migration to countries in Europe, Africa, and North America. In 2016/2017, this spillover resulted in the largest HPAI epidemic on record in Europe and was associated with an unusually high frequency of reassortments between H5 HPAI viruses and cocirculating low-pathogenic avian influenza viruses. Here, we show that the seven main H5 reassortant viruses had various combinations of gene segments 1, 2, 3, 5, and 6. Using detailed time-resolved phylogenetic analysis, most of these gene segments likely originated from wild birds and at dates and locations that corresponded to their hosts’ migratory cycles. However, some gene segments in two reassortant viruses likely originated from domestic anseriforms, either in spring 2016 in east China or in autumn 2016 in central Europe. Our results demonstrate that, in addition to domestic anseriforms in Asia, both migratory wild birds and domestic anseriforms in Europe are relevant sources of gene segments for recent reassortant H5 HPAI viruses. The ease with which these H5 HPAI viruses reassort, in combination with repeated spillovers of H5 HPAI viruses into wild birds, increases the risk of emergence of a reassortant virus that persists in wild bird populations yet remains highly pathogenic for poultry.
Collapse
|
27
|
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038489. [PMID: 31871237 DOI: 10.1101/cshperspect.a038489] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
28
|
Rodriguez P, Marcos-Villar L, Zamarreño N, Yángüez E, Nieto A. Mutations of the segment-specific nucleotides at the 3' end of influenza virus NS segment control viral replication. Virology 2019; 539:104-113. [PMID: 31706162 DOI: 10.1016/j.virol.2019.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022]
Abstract
The vRNAs of influenza A viruses contain 12 and 13 nucleotide-long sequences at their 3' and 5' termini respectively that are highly conserved and constitute the vRNA promoter. These sequences and the next three segment-specific nucleotides show inverted partial complementarity and are followed by several unpaired nucleotides of poorly characterized function at the 3' end. We have performed systematic point-mutations at the segment-specific nucleotides 15-18 of the 3'-end of a NS-like vRNA segment. All NS-like vRNAs containing mutations at position 15, and some at positions 16-18 showed reduced transcription/replication efficiency in a transfection/infection system. In addition, the replication of recombinant viruses containing mutations at position 15 was impaired both in single and multi-cycle experiments. This reduction was the consequence of a decreased expression of the NS segment. The data indicate that NS1 plays a role in the transcription/replication of its own segment, which elicits a global defect on virus replication.
Collapse
Affiliation(s)
- Paloma Rodriguez
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, 28049, Madrid, Spain; CIBER de Enfermedades Respiratorias CIBERES, Spain
| | - Laura Marcos-Villar
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, 28049, Madrid, Spain; CIBER de Enfermedades Respiratorias CIBERES, Spain
| | - Noelia Zamarreño
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, 28049, Madrid, Spain; CIBER de Enfermedades Respiratorias CIBERES, Spain
| | - Emilio Yángüez
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, 28049, Madrid, Spain; CIBER de Enfermedades Respiratorias CIBERES, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, 28049, Madrid, Spain; CIBER de Enfermedades Respiratorias CIBERES, Spain.
| |
Collapse
|
29
|
Shafiuddin M, Boon ACM. RNA Sequence Features Are at the Core of Influenza A Virus Genome Packaging. J Mol Biol 2019; 431:4217-4228. [PMID: 30914291 PMCID: PMC6756997 DOI: 10.1016/j.jmb.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 11/23/2022]
Abstract
The influenza A virus (IAV), a respiratory pathogen for humans, poses serious medical and economic challenges to global healthcare systems. The IAV genome, consisting of eight single-stranded viral RNA segments, is incorporated into virions by a complex process known as genome packaging. Specific RNA sequences within the viral RNA segments serve as signals that are necessary for genome packaging. Although efficient packaging is a prerequisite for viral infectivity, many of the mechanistic details about this process are still missing. In this review, we discuss the recent advances toward the understanding of IAV genome packaging and focus on the RNA features that play a role in this process.
Collapse
Affiliation(s)
- Md Shafiuddin
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Gultyaev AP, Richard M, Spronken MI, Olsthoorn RCL, Fouchier RAM. Conserved structural RNA domains in regions coding for cleavage site motifs in hemagglutinin genes of influenza viruses. Virus Evol 2019; 5:vez034. [PMID: 31456885 PMCID: PMC6704317 DOI: 10.1093/ve/vez034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a multibasic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein is the main determinant of the conversion of low pathogenic avian influenza viruses into highly pathogenic strains, facilitating HA cleavage and virus replication in a broader range of host cells. In nature, substitutions or insertions in HA RNA genomic segments that code for multiple basic amino acids have been observed only in the HA genes of two out of sixteen subtypes circulating in birds, H5 and H7. Given the compatibility of MBCS motifs with HA proteins of numerous subtypes, this selectivity was hypothesized to be determined by the existence of specific motifs in HA RNA, in particular structured domains. In H5 and H7 HA RNAs, predictions of such domains have yielded alternative conserved stem-loop structures with the cleavage site codons in the hairpin loops. Here, potential RNA secondary structures were analyzed in the cleavage site regions of HA segments of influenza viruses of different types and subtypes. H5- and H7-like stem-loop structures were found in all known influenza A virus subtypes and in influenza B and C viruses with homology modeling. Nucleotide covariations supported this conservation to be determined by RNA structural constraints that are stronger in the domain-closing bottom stems as compared to apical parts. The structured character of this region in (sub-)types other than H5 and H7 indicates its functional importance beyond the ability to evolve toward an MBCS responsible for a highly pathogenic phenotype.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Monique I Spronken
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
31
|
Jacobs NT, Onuoha NO, Antia A, Steel J, Antia R, Lowen AC. Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nat Commun 2019; 10:3526. [PMID: 31387995 PMCID: PMC6684657 DOI: 10.1038/s41467-019-11428-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
Abstract
Segmentation of viral genomes into multiple RNAs creates the potential for replication of incomplete viral genomes (IVGs). Here we use a single-cell approach to quantify influenza A virus IVGs and examine their fitness implications. We find that each segment of influenza A/Panama/2007/99 (H3N2) virus has a 58% probability of being replicated in a cell infected with a single virion. Theoretical methods predict that IVGs carry high costs in a well-mixed system, as 3.6 virions are required for replication of a full genome. Spatial structure is predicted to mitigate these costs, however, and experimental manipulations of spatial structure indicate that local spread facilitates complementation. A virus entirely dependent on co-infection was used to assess relevance of IVGs in vivo. This virus grows robustly in guinea pigs, but is less infectious and does not transmit. Thus, co-infection allows IVGs to contribute to within-host spread, but complete genomes may be critical for transmission.
Collapse
Affiliation(s)
- Nathan T Jacobs
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina O Onuoha
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Antia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
32
|
Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology 2019; 532:30-38. [PMID: 31003122 DOI: 10.1016/j.virol.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
We performed swine influenza virus (SIV) surveillance in Midwest USA and isolated 100 SIVs including endemic and reassortant H1 and H3 viruses with 2009 pandemic H1N1 genes. To determine virus evolution when different genotypes and subtypes of influenza A viruses circulating in the same swine herd, a virus survival experiment was conducted in pigs mimicking field situations. Five different SIVs were used to infect five pigs individually, then two groups of sentinel pigs were introduced to investigate virus transmission. Results showed that each virus replicated efficiently in lungs of each infected pig, but only reassortant H3N2 and H1N2v viruses transmitted to the primary contact pigs. Interestingly, the parental H1N2v was the majority of virus detected in the second group of sentinel pigs. These data indicate that the H1N2v seems to be more viable in swine herds than other SIV genotypes, and reassortment can enhance viral fitness and transmission.
Collapse
|
33
|
The Nonstructural NS1 Protein of Influenza Viruses Modulates TP53 Splicing through Host Factor CPSF4. J Virol 2019; 93:JVI.02168-18. [PMID: 30651364 DOI: 10.1128/jvi.02168-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAV) are known to modulate and "hijack" several cellular host mechanisms, including gene splicing and RNA maturation machineries. These modulations alter host cellular responses and enable an optimal expression of viral products throughout infection. The interplay between the host protein p53 and IAV, in particular through the viral nonstructural protein NS1, has been shown to be supportive for IAV replication. However, it remains unknown whether alternatively spliced isoforms of p53, known to modulate p53 transcriptional activity, are affected by IAV infection and contribute to IAV replication. Using a TP53 minigene, which mimics intron 9 alternative splicing, we have shown here that the NS1 protein of IAV changes the expression pattern of p53 isoforms. Our results demonstrate that CPSF4 (cellular protein cleavage and polyadenylation specificity factor 4) independently and the interaction between NS1 and CPSF4 modulate the alternative splicing of TP53 transcripts, which may result in the differential activation of p53-responsive genes. Finally, we report that CPSF4 and most likely beta and gamma spliced p53 isoforms affect both viral replication and IAV-associated type I interferon secretion. All together, our data show that cellular p53 and CPSF4 factors, both interacting with viral NS1, have a crucial role during IAV replication that allows IAV to interact with and alter the expression of alternatively spliced p53 isoforms in order to regulate the cellular innate response, especially via type I interferon secretion, and perform efficient viral replication.IMPORTANCE Influenza A viruses (IAV) constitute a major public health issue, causing illness and death in high-risk populations during seasonal epidemics or pandemics. IAV are known to modulate cellular pathways to promote their replication and avoid immune restriction via the targeting of several cellular proteins. One of these proteins, p53, is a master regulator involved in a large panel of biological processes, including cell cycle arrest, apoptosis, or senescence. This "cellular gatekeeper" is also involved in the control of viral infections, and viruses have developed a wide diversity of mechanisms to modulate/hijack p53 functions to achieve an optimal replication in their hosts. Our group and others have previously shown that p53 activity is finely modulated by different multilevel mechanisms during IAV infection. Here, we characterized IAV nonstructural protein NS1 and the cellular factor CPSF4 as major partners involved in the IAV-induced modulation of the TP53 alternative splicing that was associated with a strong modulation of p53 activity and notably the p53-mediated antiviral response.
Collapse
|
34
|
H5N8 and H7N9 packaging signals constrain HA reassortment with a seasonal H3N2 influenza A virus. Proc Natl Acad Sci U S A 2019; 116:4611-4618. [PMID: 30760600 PMCID: PMC6410869 DOI: 10.1073/pnas.1818494116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (IAV) has a segmented genome, which (i) allows for exchange of gene segments in coinfected cells, termed reassortment, and (ii) necessitates a selective packaging mechanism to ensure incorporation of a complete set of segments into virus particles. Packaging signals serve as segment identifiers and enable segment-specific packaging. We have previously shown that packaging signals limit reassortment between heterologous IAV strains in a segment-dependent manner. Here, we evaluated the extent to which packaging signals prevent reassortment events that would raise concern for pandemic emergence. Specifically, we tested the compatibility of hemagglutinin (HA) packaging signals from H5N8 and H7N9 avian IAVs with a human seasonal H3N2 IAV. By evaluating reassortment outcomes, we demonstrate that HA segments carrying H5 or H7 packaging signals are significantly disfavored for incorporation into a human H3N2 virus in both cell culture and a guinea pig model. However, incorporation of the heterologous HAs was not excluded fully, and variants with heterologous HA packaging signals were detected at low levels in vivo, including in naïve contact animals. This work indicates that the likelihood of reassortment between human seasonal IAV and avian IAV is reduced by divergence in the RNA packaging signals of the HA segment. These findings offer important insight into the molecular mechanisms governing IAV emergence and inform efforts to estimate the risks posed by H7N9 and H5N8 subtype avian IAVs.
Collapse
|
35
|
Learning the sequence of influenza A genome assembly during viral replication using point process models and fluorescence in situ hybridization. PLoS Comput Biol 2019; 15:e1006199. [PMID: 30689627 PMCID: PMC6366722 DOI: 10.1371/journal.pcbi.1006199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 02/07/2019] [Accepted: 11/20/2018] [Indexed: 11/19/2022] Open
Abstract
Within influenza virus infected cells, viral genomic RNA are selectively packed into progeny virions, which predominantly contain a single copy of 8 viral RNA segments. Intersegmental RNA-RNA interactions are thought to mediate selective packaging of each viral ribonucleoprotein complex (vRNP). Clear evidence of a specific interaction network culminating in the full genomic set has yet to be identified. Using multi-color fluorescence in situ hybridization to visualize four vRNP segments within a single cell, we developed image-based models of vRNP-vRNP spatial dependence. These models were used to construct likely sequences of vRNP associations resulting in the full genomic set. Our results support the notion that selective packaging occurs during cytoplasmic transport and identifies the formation of multiple distinct vRNP sub-complexes that likely form as intermediate steps toward full genomic inclusion into a progeny virion. The methods employed demonstrate a statistically driven, model based approach applicable to other interaction and assembly problems.
Collapse
|
36
|
Amorim MJ. A Comprehensive Review on the Interaction Between the Host GTPase Rab11 and Influenza A Virus. Front Cell Dev Biol 2019; 6:176. [PMID: 30687703 PMCID: PMC6333742 DOI: 10.3389/fcell.2018.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
This year marks the 100th anniversary of one of the deadliest pandemic outbreaks, commonly referred as the Spanish Flu, that was caused by influenza A virus (IAV). Since then, IAV has been in governmental agendas worldwide, and a lot of effort has been put into understanding the pathogen's lifecycle, predict and mitigate the emergence of the strains that provoke yearly epidemics and pandemic events. Despite decades of research and seminal contributions there is still a lot to be investigated. In particular for this review, IAV lifecycle that takes place inside the host cell is not fully understood. Two steps that need clarification include genome transport to budding sites and genome assembly, the latter a complex process challenged by the nature of IAV genome that is divided into eight distinct parts. Assembly of such segmented genome is crucial to form fully infectious viral particles but is also critical for the emergence of viruses with pandemic potential that arise when avian and human IAV strains co-infect a host. The host GTPase Rab11 was separately implicated in both steps, and, interestingly these processes are beginning to emerge as being intimately related. Rab11 was initially proposed to be involved in the budding/release of IAV virions. It was subsequently shown to transport progeny genome, and later proposed to promote assembly of viral genome, but the underlying bridging mechanism the two is far from clear. For simplicity, this Rab11-centric review provides an initial separate account of Rab11 involvement in genome transport and in assembly. IAV genome assembly is a complicated molecular biology process, and therefore earned a dedicated section on how/if the viral genome forms a genomic supramolecular complex. Both topics present intricate challenges, outstanding questions, and unique controversies. At the end of the review, I will explore possible mechanisms intertwining IAV vRNP transport and genome assembly. Importantly, Rab11 has recently emerged as a key factor subverted by evolutionary unrelated viral families (Paramyxo, Bunya, and Orthomyxoviruses, among many others) and bacteria (Salmonella and Shigella) relevant to human health. This review provides a framework to identify common biological principles among the lifecycles of these pathogens.
Collapse
Affiliation(s)
- Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
37
|
Non-Uniform and Non-Random Binding of Nucleoprotein to Influenza A and B Viral RNA. Viruses 2018; 10:v10100522. [PMID: 30257455 PMCID: PMC6213415 DOI: 10.3390/v10100522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022] Open
Abstract
The genomes of influenza A and B viruses have eight, single-stranded RNA segments that exist in the form of a viral ribonucleoprotein complex in association with nucleoprotein (NP) and an RNA-dependent RNA polymerase complex. We previously used high-throughput RNA sequencing coupled with crosslinking immunoprecipitation (HITS-CLIP) to examine where NP binds to the viral RNA (vRNA) and demonstrated for two H1N1 strains that NP binds vRNA in a non-uniform, non-random manner. In this study, we expand on those initial observations and describe the NP-vRNA binding profile for a seasonal H3N2 and influenza B virus. We show that, similar to H1N1 strains, NP binds vRNA in a non-uniform and non-random manner. Each viral gene segment has a unique NP binding profile with areas that are enriched for NP association as well as free of NP-binding. Interestingly, NP-vRNA binding profiles have some conservation between influenza A viruses, H1N1 and H3N2, but no correlation was observed between influenza A and B viruses. Our study demonstrates the conserved nature of non-uniform NP binding within influenza viruses. Mapping of the NP-bound vRNA segments provides information on the flexible NP regions that may be involved in facilitating assembly.
Collapse
|
38
|
Smyth RP, Negroni M, Lever AM, Mak J, Kenyon JC. RNA Structure-A Neglected Puppet Master for the Evolution of Virus and Host Immunity. Front Immunol 2018; 9:2097. [PMID: 30283444 PMCID: PMC6156135 DOI: 10.3389/fimmu.2018.02097] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
The central dogma of molecular biology describes the flow of genetic information from DNA to protein via an RNA intermediate. For many years, RNA has been considered simply as a messenger relaying information between DNA and proteins. Recent advances in next generation sequencing technology, bioinformatics, and non-coding RNA biology have highlighted the many important roles of RNA in virtually every biological process. Our understanding of RNA biology has been further enriched by a number of significant advances in probing RNA structures. It is now appreciated that many cellular and viral biological processes are highly dependent on specific RNA structures and/or sequences, and such reliance will undoubtedly impact on the evolution of both hosts and viruses. As a contribution to this special issue on host immunity and virus evolution, it is timely to consider how RNA sequences and structures could directly influence the co-evolution between hosts and viruses. In this manuscript, we begin by stating some of the basic principles of RNA structures, followed by describing some of the critical RNA structures in both viruses and hosts. More importantly, we highlight a number of available new tools to predict and to evaluate novel RNA structures, pointing out some of the limitations readers should be aware of in their own analyses.
Collapse
Affiliation(s)
- Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Matteo Negroni
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000, Strasbourg, France
| | - Andrew M Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Homerton College, Cambridge, United Kingdom
| |
Collapse
|
39
|
|
40
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
41
|
Kong W. Influenza virus associated with ocular complications. THE LANCET. INFECTIOUS DISEASES 2018; 18:602-603. [DOI: 10.1016/s1473-3099(18)30280-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
|
42
|
Conserved secondary structures predicted within the 5′ packaging signal region of influenza A virus PB2 segment. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Williams GD, Townsend D, Wylie KM, Kim PJ, Amarasinghe GK, Kutluay SB, Boon ACM. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun 2018; 9:465. [PMID: 29386621 PMCID: PMC5792457 DOI: 10.1038/s41467-018-02886-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/04/2018] [Indexed: 02/03/2023] Open
Abstract
Influenza A virus nucleoprotein (NP) association with viral RNA (vRNA) is essential for packaging, but the pattern of NP binding to vRNA is unclear. Here we applied photoactivatable ribonucleoside enhanced cross-linking and immunoprecipitation (PAR-CLIP) to assess the native-state of NP-vRNA interactions in infected human cells. NP binds short fragments of RNA (~12 nucleotides) non-uniformly and without apparent sequence specificity. Moreover, NP binding is reduced at specific locations within the viral genome, including regions previously identified as required for viral genome segment packaging. Synonymous mutations designed to alter the predicted RNA structures in these low-NP-binding regions impact genome packaging and result in virus attenuation, whereas control mutations or mutagenesis of NP-bound regions have no effect. Finally, we demonstrate that the sequence conservation of low-NP-binding regions is required in multiple genome segments for propagation of diverse mammalian and avian IAV in host cells.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Medicine at Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Dana Townsend
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Kristine M Wylie
- Department of Pediatrics at Washington University School of Medicine, St Louis, MO, 63110, USA
- The McDonnell Genome Institute at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Preston J Kim
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Biochemistry and Biophysics at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Adrianus C M Boon
- Department of Medicine at Washington University School of Medicine, St Louis, MO, 63110, USA.
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA.
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
44
|
Abstract
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity.
Collapse
Affiliation(s)
- Maria C White
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
45
|
Abstract
Influenza A virus (IAV) continues to pose an enormous and unpredictable global public health threat, largely due to the continual evolution of escape from preexisting immunity and the potential for zoonotic emergence. Understanding how the unique genetic makeup and structure of IAV populations influences their transmission and evolution is essential for developing more-effective vaccines, therapeutics, and surveillance capabilities. Owing to their mutation-prone replicase and unique genome organization, IAV populations exhibit enormous amounts of diversity both in terms of sequence and functional gene content. Here, I review what is currently known about the genetic and genomic diversity present within IAV populations and how this diversity may shape the replicative and evolutionary dynamics of these viruses.
Collapse
|
46
|
Lee N, Le Sage V, Nanni AV, Snyder DJ, Cooper VS, Lakdawala SS. Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res 2017; 45:8968-8977. [PMID: 28911100 PMCID: PMC5587783 DOI: 10.1093/nar/gkx584] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments that are coated by viral nucleoprotein (NP) molecules. Classically, the interaction between NP and viral RNA (vRNA) is depicted as a uniform pattern of ‘beads on a string’. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP), we identified the vRNA binding profiles of NP for two H1N1 IAV strains in virions. Contrary to the prevailing model for vRNA packaging, NP does not bind vRNA uniformly in the A/WSN/1933 and A/California/07/2009 strains, but instead each vRNA segment exhibits a unique binding profile, containing sites that are enriched or poor in NP association. Intriguingly, both H1N1 strains have similar yet distinct NP binding profiles despite extensive sequence conservation. Peaks identified by HITS-CLIP were verified as true NP binding sites based on insensitivity to DNA antisense oligonucleotide-mediated RNase H digestion. Moreover, nucleotide content analysis of NP peaks revealed that these sites are relatively G-rich and U-poor compared to the genome-wide nucleotide content, indicating an as-yet unidentified sequence bias for NP association in vivo. Taken together, our genome-wide study of NP–vRNA interaction has implications for the understanding of influenza vRNA architecture and genome packaging.
Collapse
Affiliation(s)
- Nara Lee
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Valerie Le Sage
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Adalena V Nanni
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Dan J Snyder
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Vaughn S Cooper
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Seema S Lakdawala
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
47
|
Affiliation(s)
- Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
48
|
Diaz A, Marthaler D, Corzo C, Muñoz-Zanzi C, Sreevatsan S, Culhane M, Torremorell M. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Sci Rep 2017; 7:11886. [PMID: 28928365 PMCID: PMC5605543 DOI: 10.1038/s41598-017-11272-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.
Collapse
Affiliation(s)
- Andres Diaz
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Douglas Marthaler
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Cesar Corzo
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Claudia Muñoz-Zanzi
- School of Public Health, University of Minnesota, Minneapolis, 55454, United States of America
| | - Srinand Sreevatsan
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Montserrat Torremorell
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America.
| |
Collapse
|
49
|
Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017; 48:49. [PMID: 28915920 PMCID: PMC5603032 DOI: 10.1186/s13567-017-0453-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Abstract
In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.
Collapse
Affiliation(s)
- Min Gu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lijun Xu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Yangzhou Entry-Exit Inspection and Quarantine Bureau, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
50
|
Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. J Virol 2017; 91:JVI.00745-17. [PMID: 28659482 PMCID: PMC5571239 DOI: 10.1128/jvi.00745-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 02/08/2023] Open
Abstract
Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.
Collapse
|