1
|
Li L, Yu D, Yang J, Zhang F, Zhang D, Lin Z, Zhai M, Wang J, Zhang T, Zhao L. Significant response to pembrolizumab plus lenvatinib in Epstein-Barr-virus-associated intrahepatic cholangiocarcinoma: a case report. Cancer Biol Ther 2024; 25:2338644. [PMID: 38650446 PMCID: PMC11042061 DOI: 10.1080/15384047.2024.2338644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The prognosis for advanced intrahepatic cholangiocarcinoma (iCCA) is poor, and there remains an urgent need to develop efficient systemic therapy. The efficacy of Pembrolizumab immunotherapy combined with lenvatinibin in iCCA is still unclear. The role of Epstein-Barr-virus (EBV) as a biomarker in iCCA for response to immunotherapy needs further exploration. CASE PRESENTATION We report a case of a 60-year-old female with EBV-associated advanced iCCA (EBVaiCCA) who progressed after first-line therapy. She accomplished an available response to the combination therapy of pembrolizumab with lenvatinib, with overall survival of 20 months. CONCLUSIONS As far as we know, this is the first case report about the application of Pembrolizumab with lenvatinib for EBVaiCCA patients. This case indicates that the combination of immunotherapy and antiangiogenic therapy provides a glimmer of hope for advanced EBVaiCCA patients.
Collapse
Affiliation(s)
- Lisha Li
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinru Yang
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhang
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dejun Zhang
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Lin
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglan Zhai
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
McGreevy O, Bosakhar M, Gilbert T, Quinn M, Fenwick S, Malik H, Goldring C, Randle L. The importance of preclinical models in cholangiocarcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108304. [PMID: 38653585 DOI: 10.1016/j.ejso.2024.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Cholangiocarcinoma (CCA) is an adenocarcinoma of the hepatobiliary system with a grim prognosis. Incidence is rising globally and surgery is currently the only curative treatment, but is only available for patients who are fit and diagnosed in an early-stage of disease progression. Great importance has been placed on developing preclinical models to help further our understanding of CCA and potential treatments to improve therapeutic outcomes. Preclinical models of varying complexity and cost have been established, ranging from more simplistic in vitro 2D CCA cell lines in culture, to more complex in vivo genetically engineered mouse models. Currently there is no single model that faithfully recaptures the complexities of human CCA and the in vivo tumour microenvironment. Instead a multi-model approach should be used when designing preclinical trials to study CCA and potential therapies.
Collapse
Affiliation(s)
- Owen McGreevy
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Mohammed Bosakhar
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Timothy Gilbert
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK; Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Marc Quinn
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK; Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Stephen Fenwick
- Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Hassan Malik
- Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool University Hospital, Prescot Street, L7 8XP, Liverpool, UK
| | - Christopher Goldring
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Laura Randle
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
3
|
Iyer SR, Nusser K, Jones K, Shinde P, Keddy C, Beach CZ, Aguero E, Force J, Shinde U, Davare MA. Discovery of oncogenic ROS1 missense mutations with sensitivity to tyrosine kinase inhibitors. EMBO Mol Med 2023; 15:e17367. [PMID: 37587872 PMCID: PMC10565643 DOI: 10.15252/emmm.202217367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
ROS1 is the largest receptor tyrosine kinase in the human genome. Rearrangements of the ROS1 gene result in oncogenic ROS1 kinase fusion proteins that are currently the only validated biomarkers for targeted therapy with ROS1 TKIs in patients. While numerous somatic missense mutations in ROS1 exist in the cancer genome, their impact on catalytic activity and pathogenic potential is unknown. We interrogated the AACR Genie database and identified 34 missense mutations in the ROS1 tyrosine kinase domain for further analysis. Our experiments revealed that these mutations have varying effects on ROS1 kinase function, ranging from complete loss to significantly increased catalytic activity. Notably, Asn and Gly substitutions at Asp2113 in the ROS1 kinase domain were found to be TKI-sensitive oncogenic variants in cell-based model systems. In vivo experiments showed that ROS1 D2113N induced tumor formation that was sensitive to crizotinib and lorlatinib, FDA-approved ROS1-TKIs. Collectively, these findings highlight the tumorigenic potential of specific point mutations within the ROS1 kinase domain and their potential as therapeutic targets with FDA-approved ROS1-TKIs.
Collapse
Affiliation(s)
- Sudarshan R Iyer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Kevin Nusser
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Kristen Jones
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Pushkar Shinde
- Department of Chemical PhysiologyOregon Health and Sciences UniversityORPortlandUSA
| | - Clare Keddy
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Catherine Z Beach
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Erin Aguero
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| | - Jeremy Force
- Department of Medicine, Division of Medical Oncology, Duke Cancer InstituteDuke UniversityNCDurhamUSA
| | - Ujwal Shinde
- Department of Chemical PhysiologyOregon Health and Sciences UniversityORPortlandUSA
| | - Monika A Davare
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Family Pediatric Research InstituteOregon Health and Sciences UniversityORPortlandUSA
| |
Collapse
|
4
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-022-00739-y. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany.,Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | | |
Collapse
|
5
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
6
|
Jiang Q, Li M, Li H, Chen L. Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed Pharmacother 2022; 150:112974. [PMID: 35447552 DOI: 10.1016/j.biopha.2022.112974] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical practice shows that when single-target drugs treat multi-factor diseases such as tumors, cardiovascular system and endocrine system diseases, it is often difficult to achieve good therapeutic effects, and even serious adverse reactions may occur. Multi-target drugs can simultaneously regulate multiple links of disease, improve efficacy, reduce adverse reactions, and improve drug resistance. They are ideal drugs for treating complex diseases, and therefore have become the main direction of drug development. At present, some multi-target drugs have been successfully used in many major diseases. Entrectinib is an oral small molecule inhibitor that targets TRK, ROS1, and ALK. It is used to treat locally advanced or metastatic solid tumors with NTRK1/2/3, ROS1 and ALK gene fusion mutations. It can pass through the blood-brain barrier and is the only TRK inhibitor clinically proven to be effective against primary and metastatic brain diseases. In 2019, entrectinib was approved by the FDA to treat adult patients with ROS1-positive metastatic non-small cell lung cancer. Case reports showed that continuous administration of entrectinib was effective and tolerable. In this review, we give a brief introduction to TKK, ROS1 and ALK, and on this basis, we give a detailed and comprehensive introduction to the mechanism of action, pharmacokinetics, pharmacodynamics, clinical efficacy, tolerability and drug interactions of entrectinib.
Collapse
Affiliation(s)
- Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Roles of fusion genes in digestive system cancers: dawn for cancer precision therapy. Crit Rev Oncol Hematol 2022; 171:103622. [PMID: 35124200 DOI: 10.1016/j.critrevonc.2022.103622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
For advanced and advanced tumors of the digestive system, personalized, precise treatment could be a lifesaving medicine. With the development of next-generation sequencing technology, detection of fusion genes in solid tumors has become more extensive. Some fusion gene targeting therapies have been written into the guidelines for digestive tract tumors, such as for neurotrophic receptor tyrosine kinase, fibroblast growth factor receptor 2. There are also many fusion genes being investigated as potential future therapeutic targets. This review focuses on the current detection methods for fusion genes, fusion genes written into the digestive system tumor guidelines, and potential fusion gene therapy targets in different organs to discuss the possibility of clinical treatments for these targets in digestive system tumors.
Collapse
|
8
|
Kankeu Fonkoua LA, Serrano Uson Junior PL, Mody K, Mahipal A, Borad MJ, Roberts LR. Novel and emerging targets for cholangiocarcinoma progression: therapeutic implications. Expert Opin Ther Targets 2022; 26:79-92. [PMID: 35034558 DOI: 10.1080/14728222.2022.2029412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a heterogeneous group of aggressive biliary malignancies. While surgery and liver transplantation are the only potentially curative modalities for early-stage disease, limited options are available for most patients with incurable-stage disease. Survival outcomes remain dismal. Recent molecular profiling efforts have led to improved understanding of the genomic landscape of CCA and to the identification of subgroups with distinct diagnostic, prognostic, and therapeutic implications. AREAS COVERED : We provide an updated review and future perspectives on features of cholangiocarcinogenesis that can be translated into therapeutic biomarkers and targets. We highlight the critical studies that have established current systemic chemotherapy and targeted therapeutics, while elaborating on novel targeted and immunotherapeutic approaches in development. Relevant literature and clinical studies were identified by searching PubMed and www.ClinicalTrials.gov. EXPERT OPINION : While therapies targeting the various molecular subgroups of CCA are rapidly emerging and changing treatment paradigms, their success has been limited by the genetic heterogeneity of CCA and the plasticity of the targets. Novel strategies aiming to combine immunotherapy, chemotherapy, and molecularly-targeted therapeutics will be required to offer durable clinical benefit and maximize survival.
Collapse
Affiliation(s)
| | | | - Kabir Mody
- Rochester, MN, and Oncology in Jacksonville, FL, Mayo Clinic, USA
| | | | | | | |
Collapse
|
9
|
Ma WK, Voss DM, Scharner J, Costa ASH, Lin KT, Jeon HY, Wilkinson JE, Jackson M, Rigo F, Bennett CF, Krainer AR. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res 2021; 82:900-915. [PMID: 34921016 DOI: 10.1158/0008-5472.can-20-0948] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The M2 pyruvate kinase (PKM2) isoform is upregulated in most cancers and plays a crucial role in regulation of the Warburg effect, which is characterized by the preference for aerobic glycolysis over oxidative phosphorylation for energy metabolism. PKM2 is an alternative-splice isoform of the PKM gene and is a potential therapeutic target. Antisense oligonucleotides (ASO) that switch PKM splicing from the cancer-associated PKM2 to the PKM1 isoform have been shown to induce apoptosis in cultured glioblastoma cells when delivered by lipofection. Here, we explore the potential of ASO-based PKM splice switching as a targeted therapy for liver cancer. A more potent lead cEt/DNA ASO induced PKM splice-switching and inhibited the growth of cultured hepatocellular carcinoma (HCC) cells. This PKM isoform switch increased pyruvate-kinase activity and altered glucose metabolism. In an orthotopic HCC xenograft mouse model, the lead ASO and a second ASO targeting a non-overlapping site inhibited tumor growth. Finally, in a genetic HCC mouse model, a surrogate mouse-specific ASO induced Pkm splice switching and inhibited tumorigenesis, without observable toxicity. These results lay the groundwork for a potential ASO-based splicing therapy for HCC.
Collapse
Affiliation(s)
| | - Dillon M Voss
- Medical Scientist Training Program (MSTP), Stony Brook University School of Medicine
| | | | - Ana S H Costa
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai
| | | | | | - John E Wilkinson
- Unit for Laboratory Animal Medicine, University of Michigan–Ann Arbor
| | | | | | | | | |
Collapse
|
10
|
Marcus R, Ferri-Borgogno S, Hosein A, Foo WC, Ghosh B, Zhao J, Rajapakshe K, Brugarolas J, Maitra A, Gupta S. Oncogenic KRAS Requires Complete Loss of BAP1 Function for Development of Murine Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13225709. [PMID: 34830866 PMCID: PMC8616431 DOI: 10.3390/cancers13225709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary biliary malignancy that harbors a dismal prognosis. Oncogenic mutations of KRAS and loss-of-function mutations of BRCA1-associated protein 1 (BAP1) have been identified as recurrent somatic alterations in ICC. However, an autochthonous genetically engineered mouse model of ICC that genocopies the co-occurrence of these mutations has never been developed. By crossing Albumin-Cre mice bearing conditional alleles of mutant Kras and/or floxed Bap1, Cre-mediated recombination within the liver was induced. Mice with hepatic expression of mutant KrasG12D alone (KA), bi-allelic loss of hepatic Bap1 (BhomoA), and heterozygous loss of Bap1 in conjunction with mutant KrasG12D expression (BhetKA) developed primary hepatocellular carcinoma (HCC), but no discernible ICC. In contrast, mice with homozygous loss of Bap1 in conjunction with mutant KrasG12D expression (BhomoKA) developed discrete foci of HCC and ICC. Further, the median survival of BhomoKA mice was significantly shorter at 24 weeks when compared to the median survival of ≥40 weeks in BhetKA mice and approximately 50 weeks in BhomoA and KA mice (p < 0.001). Microarray analysis performed on liver tissue from KA and BhomoKA mice identified differentially expressed genes in the setting of BAP1 loss and suggests that deregulation of ferroptosis might be one mechanism by which loss of BAP1 cooperates with oncogenic Ras in hepato-biliary carcinogenesis. Our autochthonous model provides an in vivo platform to further study this lethal class of neoplasm.
Collapse
Affiliation(s)
- Rebecca Marcus
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
- Department of Surgical Oncology, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
- Correspondence:
| | - Sammy Ferri-Borgogno
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdel Hosein
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
- Advocate Aurora Health, Vince Lombardi Cancer Clinic, Sheboygan, WI 53081, USA
| | - Wai Chin Foo
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
| | - Jun Zhao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
| | - Kimal Rajapakshe
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonal Gupta
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.F.-B.); (A.H.); (B.G.); (J.Z.); (K.R.); (A.M.); (S.G.)
| |
Collapse
|
11
|
Aimar G, Paratore C, Zichi C, Marino D, Sperti E, Caglio A, Gamba T, De Vita F, Di Maio M. A review of molecularly targeted therapy in biliary tract carcinoma: what is the next step? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:448-464. [PMID: 36045702 PMCID: PMC9400771 DOI: 10.37349/etat.2021.00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with unresectable biliary tract carcinomas (BTCs) have a poor prognosis with a median overall survival of fewer than 12 months following systemic chemotherapy. In recent years, the identification of distinct molecular alterations with corresponding targeted therapies is modifying this therapeutic algorithm. The aim of this review is to present an overview of targeted therapy for BTCs, describing published available data and potential future challenges in ongoing trials. From clinicaltrials.gov online database all ongoing trials for BTCs (any stage) was examinated in July 2021, and data regarding study design, disease characteristics and type of treatments were registered. Oncogenic-driven therapy (targeted therapy) was investigated in 67 trials. According to research, 15 ongoing trials (22.4%) are investigating fibroblast growth factor (FGF) receptor (FGFR)-inhibitors in BTCs. Three (18.7%) are open-label randomized multicenter phase 3 trials, 8 (50%) are single-arm phase two trials, and 4 (25%) are phase one studies. Twelve (17.9%) clinical trials dealt with isocitrate dehydrogenase (IDH) 1/2 targeting therapy either in combination with cisplatin (Cis) and gemcitabine (Gem) as first-line treatment for BTCs or in monotherapy in patients with IDH1 mutant advanced malignancies, including cholangiocarcinoma (CCA). Nine (13.4%) clinical trials tested human epidermal growth factor receptor (HER) 2 targeting therapy. Four (44.4%) studies are phase I trials, two (22.2%) are phase I/II trials, and three (33.3%) phase II trials. Rare molecular alterations in BTCs, such as anaplastic lymphoma kinase (ALK), c-ros oncogene1 receptor tyrosine kinase (ROS1), and v-RAF murine sarcoma viral oncogene homologue B1 (BRAF), are also under investigation in a few trials. Forty-four clinical trials (17.2%) are investigating not oncogenic-driven multitarget therapy like multireceptor tyrosin kinase inhibitors and antiangiogenetic agents. In conclusion, this review shows that BTCs management is experiencing important innovations, especially in biomarker-based patient selection and in the new emerging therapeutic approach. Many ongoing trials could answer questions regarding the role of molecular inhibitors leading to new therapeutic frontiers for molecular subcategories of BTCs.
Collapse
Affiliation(s)
- Giacomo Aimar
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Chiara Paratore
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Clizia Zichi
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Donatella Marino
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Elisa Sperti
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Andrea Caglio
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Teresa Gamba
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Francesca De Vita
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10128 Turino, Italy
| |
Collapse
|
12
|
Recent Advances in Implantation-Based Genetic Modeling of Biliary Carcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13102292. [PMID: 34064809 PMCID: PMC8151177 DOI: 10.3390/cancers13102292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Biliary tract cancer (BTC) is often refractory to conventional therapeutics and is difficult to diagnose in the early stages. In addition, the pathogenesis of BTC is not fully understood, despite recent advances in cancer genome analysis. To address these issues, the development of fine disease models is critical for BTC. Although still limited in number, there are various platforms for genetic models of BTC owing to newly emerging technology. Among these, implantation-based models have recently drawn attention for their convenience, flexibility, and scalability. To highlight the relevance of this approach, we comprehensively summarize the advantages and disadvantages of BTC models developed using diverse approaches. Currently available research data on intra- and extrahepatic cholangiocarcinoma and gallbladder carcinoma are presented in this review. This information will likely help in selecting the optimal models for various applications and develop novel innovative models based on these technologies. Abstract Epithelial cells in the biliary system can develop refractory types of cancers, which are often associated with inflammation caused by viruses, parasites, stones, and chemicals. Genomic studies have revealed recurrent genetic changes and deregulated signaling pathways in biliary tract cancer (BTC). The causal roles have been at least partly clarified using various genetically engineered mice. Technical advances in Cre-LoxP technology, together with hydrodynamic tail injection, CRISPR/Cas9 technology, in vivo electroporation, and organoid culture have enabled more precise modeling of BTC. Organoid-based genetic modeling, combined with implantation in mice, has recently drawn attention as a means to accelerate the development of BTC models. Although each model may not perfectly mimic the disease, they can complement one another, or two different approaches can be integrated to establish a novel model. In addition, a comparison of the outcomes among these models with the same genotype provides mechanistic insights into the interplay between genetic alterations and the microenvironment in the pathogenesis of BTCs. Here, we review the current status of genetic models of BTCs in mice to provide information that facilitates the wise selection of models and to inform the future development of ideal disease models.
Collapse
|
13
|
Baiocchi L, Sato K, Ekser B, Kennedy L, Francis H, Ceci L, Lenci I, Alvaro D, Franchitto A, Onori P, Gaudio E, Wu C, Chakraborty S, Glaser S, Alpini G. Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opin Investig Drugs 2021; 30:365-375. [PMID: 33226854 PMCID: PMC8441992 DOI: 10.1080/13543784.2021.1854725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a devastating liver tumor with a poor prognosis. While less than 50% of the patients with CCA may benefit from surgical resection, the rest undergoes chemotherapy with disappointing results (mean survival <2 years). Alternative pharmacological treatments are needed to improve the outcomes in patients with CCA.Areas covered: In this review, we discuss CCA-related (1) experimental systems used in preclinical studies; (2) pharmacological targets identified by genetic analysis; (3) results obtained in preliminary trials in human with their pros and cons; and (4) possible targeting of endocrinal modulation. A PubMed bibliographic search matching the term 'cholangiocarcinoma' with 'experimental model', 'preclinical model', 'genetic target', 'targeted therapy', 'clinical trial', or 'translational research' was conducted and manuscripts published between 2010 and 2020 were retrieved for reading and reviewing.Expert opinion: Several factors contribute to the translational gap between bench research and clinical practice in CCA. The tumor heterogeneity, lack of a preclinical model recapitulating the different features of CCA, and difficult patient enrollment in clinical trials are elements to consider for basic and clinical research in CCA. Establishment of international networks formed by experts in the field of CCA may improve future research and its translational findings on patients.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
14
|
Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 2021; 18:35-55. [PMID: 32760015 PMCID: PMC8830365 DOI: 10.1038/s41571-020-0408-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.
Collapse
Affiliation(s)
- Alexander Drilon
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Chelsea Jenkins
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Sudarshan Iyer
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Schoenfeld
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare Keddy
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
15
|
Wang M, Chen Z, Guo P, Wang Y, Chen G. Therapy for advanced cholangiocarcinoma: Current knowledge and future potential. J Cell Mol Med 2020; 25:618-628. [PMID: 33277810 PMCID: PMC7812297 DOI: 10.1111/jcmm.16151] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/22/2020] [Indexed: 01/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary epithelial tumour that can emerge at any point in the biliary tree. It is commonly classified based on its anatomical site of development into intrahepatic cholangiocarcinoma (ICC), perihilar cholangiocarcinoma (PCC) and distal cholangiocarcinoma (DCC), each of which is associated with varying patient demographics, molecular characteristics and treatment options. CCA patients have poor overall prognoses and 5‐year survival rates. Additionally, CCA is often diagnosed at an advanced stage, with surgical treatment restricted to early‐stage disease. Owing to an increase in the incidence of ICC, that of CCA is also on the rise, with a corresponding increase in the associated mortality, particularly in South America and Asia. Therefore, the development of an effective treatment is crucial to improve the survival of CCA patients. We aimed to systematically review the current understanding of advanced CCA treatment and discuss potential effective strategies.
Collapse
Affiliation(s)
- Mingxun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pengyi Guo
- Department of Cardiothoracic Surgery, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Public Health and Management School, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Emerging pathways for precision medicine in management of cholangiocarcinoma. Surg Oncol 2020; 35:47-55. [PMID: 32827952 DOI: 10.1016/j.suronc.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common biliary tract malignancy with a dismal prognosis. Surgical resection with a negative microscopic margin offers the only hope for long-term survival. However, the majority of patients present with advanced disease not amenable to curative resection, mainly due to late presentation and aggressive nature of the disease. Unfortunately, due to the heterogeneous nature of CCA as well as limitations of available chemotherapy medications, traditional chemotherapy regimens offer limited survival benefit. Recent advances in genomic studies and next-generation sequencing techniques have assisted in better understanding of cholangiocarcinogenesis and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in management of CCA with encouraging results in preclinical studies and early clinical trials. In this review, we present emerging therapies for precision medicine in CCA.
Collapse
|
17
|
Jakubowski CD, Mohan AA, Kamel IR, Yarchoan M. Response to Crizotinib in ROS1 Fusion-Positive Intrahepatic Cholangiocarcinoma. JCO Precis Oncol 2020; 4:825-828. [PMID: 35050759 PMCID: PMC9797238 DOI: 10.1200/po.20.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Christopher D. Jakubowski
- Bloomberg-Kimmel Institute for Cancer
Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins
University School of Medicine, Baltimore, MD
| | - Aditya A. Mohan
- Bloomberg-Kimmel Institute for Cancer
Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins
University School of Medicine, Baltimore, MD
| | - Ihab R. Kamel
- Russell H. Morgan Department of Radiology
and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer
Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins
University School of Medicine, Baltimore, MD,Mark Yarchoan, Johns Hopkins University School of Medicine, 1450
Orleans St, Baltimore, MD 21287; Twitter: @MarkYarchoan; e-mail:
| |
Collapse
|
18
|
Massironi S, Pilla L, Elvevi A, Longarini R, Rossi RE, Bidoli P, Invernizzi P. New and Emerging Systemic Therapeutic Options for Advanced Cholangiocarcinoma. Cells 2020; 9:E688. [PMID: 32168869 PMCID: PMC7140695 DOI: 10.3390/cells9030688] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) represents a disease entity that comprises a heterogeneous group of biliary malignant neoplasms, with variable clinical presentation and severity. It may be classified according to its anatomical location and distinguished in intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA), each subtype implying distinct epidemiology, biology, prognosis, and strategy for clinical management. Its incidence has increased globally over the past few decades, and its mortality rate remains high due to both its biological aggressiveness and resistance to medical therapy. Surgery is the only potentially curative treatment and is the standard approach for resectable CCA; however, more than half of the patients have locally advanced or metastatic disease at presentation. For patients with unresectable CCA, the available systemic therapies are of limited effectiveness. However, the advances of the comprehension of the complex molecular landscape of CCA and its tumor microenvironment could provide new keys to better understand the pathogenesis, the mechanisms of resistance and ultimately to identify promising new therapeutic targets. Recently, clinical trials targeting isocitrate dehydrogenase (IDH)-1 mutations and fibroblast growth factor receptor (FGFR)-2 fusions, as well as immunotherapy showed promising results. All these new and emerging therapeutic options are herein discussed.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (A.E.); (P.I.)
| | - Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (L.P.); (R.L.); (P.B.)
| | - Alessandra Elvevi
- Division of Gastroenterology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (A.E.); (P.I.)
| | - Raffaella Longarini
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (L.P.); (R.L.); (P.B.)
| | - Roberta Elisa Rossi
- Gastrointestinal and Hepato-Pancreatic Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale Tumori (INT, National Cancer Institute) - Università degli Studi di Milano, 20100 Milan, Italy;
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (L.P.); (R.L.); (P.B.)
| | - Pietro Invernizzi
- Division of Gastroenterology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (A.E.); (P.I.)
| |
Collapse
|
19
|
Erice O, Vallejo A, Ponz-Sarvise M, Saborowski M, Vogel A, Calvisi DF, Saborowski A, Vicent S. Genetic Mouse Models as In Vivo Tools for Cholangiocarcinoma Research. Cancers (Basel) 2019; 11:cancers11121868. [PMID: 31769429 PMCID: PMC6966555 DOI: 10.3390/cancers11121868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.
Collapse
Affiliation(s)
- Oihane Erice
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Adrian Vallejo
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Diego F. Calvisi
- Institute for Pathology, Regensburg University, 93053 Regensburg, Germany;
| | - Anna Saborowski
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| | - Silvestre Vicent
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| |
Collapse
|
20
|
Vicent S, Lieshout R, Saborowski A, Verstegen MMA, Raggi C, Recalcati S, Invernizzi P, van der Laan LJW, Alvaro D, Calvisi DF, Cardinale V. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:79-97. [PMID: 30851232 DOI: 10.1111/liv.14094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.
Collapse
Affiliation(s)
- Silvestre Vicent
- Program in Solid Tumors, Center for Applied Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospita, l, University of Milano, Bicocca, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Fouassier L, Marzioni M, Afonso MB, Dooley S, Gaston K, Giannelli G, Rodrigues CMP, Lozano E, Mancarella S, Segatto O, Vaquero J, Marin JJG, Coulouarn C. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int 2019; 39 Suppl 1:43-62. [PMID: 30903728 DOI: 10.1111/liv.14102] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.
Collapse
Affiliation(s)
- Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Heidelberg University, Mannheim, Germany
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Serena Mancarella
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Javier Vaquero
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Sorbonne Université, CNRS, Ecole Polytech., Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| |
Collapse
|
22
|
Saborowski A, Wolff K, Spielberg S, Beer B, Hartleben B, Erlangga Z, Becker D, Dow LE, Marhenke S, Woller N, Unger K, Schirmacher P, Manns MP, Marquardt JU, Vogel A, Saborowski M. Murine Liver Organoids as a Genetically Flexible System to Study Liver Cancer In Vivo and In Vitro. Hepatol Commun 2019; 3:423-436. [PMID: 30859153 PMCID: PMC6396372 DOI: 10.1002/hep4.1312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
The rising incidence of cholangiocarcinoma (CCA) coupled with a low 5‐year survival rate that remains below 10% delineates the urgent need for more effective treatment strategies. Although several recent studies provided detailed information on the genetic landscape of this fatal malignancy, versatile model systems to functionally dissect the immediate clinical relevance of the identified genetic alterations are still missing. To enhance our understanding of CCA pathophysiology and facilitate rapid functional annotation of putative CCA driver and tumor maintenance genes, we developed a tractable murine CCA model by combining the cyclization recombination (Cre)‐lox system, RNA interference, and clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology with liver organoids, followed by subsequent transplantation into immunocompetent, syngeneic mice. Histologically, resulting tumors displayed cytokeratin 19–positive ductal structures surrounded by a desmoplastic stroma—hallmark features of human CCAs. Despite their initial biliary phenotype in vitro, organoids retained the plasticity to induce a broader differentiation spectrum of primary liver cancers following transplantation into recipient mice, depending on their genetic context. Thus, the organoid system combines the advantage of using nontransformed, premalignant cells to recapitulate liver tumorigenesis as a multistep process, with the advantage of a reproducible and expandable cell culture system that abrogates the need for recurrent isolations of primary cells. Conclusion: Genetically modified liver organoids are able to transform into histologically accurate CCAs. Depending on the oncogenic context, they are also able to give rise to liver cancers that show features of hepatocellular carcinomas. The model can be used to functionally explore candidate cancer genes of primary liver cancers in immunocompetent animals and evaluate novel treatment regimens.
Collapse
Affiliation(s)
- Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Katharina Wolff
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Steffi Spielberg
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Benedikt Beer
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Björn Hartleben
- Institute of Pathology Hannover Medical School Hannover Germany
| | - Zulrahman Erlangga
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Diana Becker
- Department of Medicine I, Lichtenberg Research Group Johannes Gutenberg University Mainz Germany
| | - Lukas E Dow
- Meyer Cancer Center, Division of Hematology & Medical Oncology, Department of Medicine Weill Cornell Medicine New York NY
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics Helmholtz Zentrum München Neuherberg Germany
| | - Peter Schirmacher
- Institute of Pathology University Hospital Heidelberg Heidelberg Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Jens U Marquardt
- Department of Medicine I, Lichtenberg Research Group Johannes Gutenberg University Mainz Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany
| |
Collapse
|
23
|
Wang LY, Gong S, Gao LP, Hou LX, He W. Apatinib for treating advanced intrahepatic cholangiocarcinoma after failed chemotherapy: A case report and literature review. Medicine (Baltimore) 2018; 97:e13372. [PMID: 30544406 PMCID: PMC6310551 DOI: 10.1097/md.0000000000013372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Intrahepatic cholangiocarcinoma (ICC) originates from the secondary branch of the bile duct and the intrahepatic bile duct epithelial cells, and is a rare pathological type of primary liver cancer. Recently, apatinib has been successfully used for a variety of malignancies. PATIENT CONCERNS A 23-year-old female was noted with intermittent right upper abdominal distension, abdominal pain, and vomiting after eating for more than 1 month. The enhanced CT scan revealed multiple intrahepatic lesions, portal vein and right branch tumor emboli were present. DIAGNOSIS Combined with the patient's medical history and pathology and immunohistochemistry, the diagnosis was confirmed as locally advanced unresectable ICC (cT4N1M1, Stage IVB). INTERVENTIONS The disease progressed after six cycles of gemcitabine plus capecitabine chemotherapy. She received oral apatinib treatment since September 30, 2017. Due to related adverse reactions, the patient could not tolerate the treatment, and the subsequent reduction therapy was given. OUTCOMES On April 11, 2018, the review of CT evaluation suggested that the disease was progressed. Hence, in this patient, apatinib as second-line treatment for advanced ICC showed a progression-free survival with 6 months. LESSONS Apatinib as second-line treatment for advanced ICC is effective, and the adverse effects are tolerable. However, the efficacy and safety of apatinib in the treatment of ICC need to be further confirmed by large sample of prospective randomized controlled trials.
Collapse
|
24
|
Animal models of cholangiocarcinoma: What they teach us about the human disease. Clin Res Hepatol Gastroenterol 2018; 42:403-415. [PMID: 29753731 DOI: 10.1016/j.clinre.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
Despite recent advances, pathogenesis of cholangiocarcinoma, a highly lethal cancer, remains enigmatic. Furthermore, treatment options are still limited and often disappointing. For this reason, in the last few years there has been a mounting interest towards the generation of experimental models able to reproduce the main features associated with this aggressive behavior. Toxic and infestation-induced, genetically engineered and cell implantation rodent models have been generated, contributing to a deeper understanding of the complex cell biology of the tumor, sustained by multiple cell interactions and driven by a huge variety of molecular perturbations. Herein, we will overview the most relevant animal models of biliary carcinogenesis, highlighting the methodological strategy, the molecular, histological and clinical phenotypes consistent with the human condition, their particular strengths and weaknesses and the novel therapeutic approaches that have been developed.
Collapse
|
25
|
Pellino A, Loupakis F, Cadamuro M, Dadduzio V, Fassan M, Guido M, Cillo U, Indraccolo S, Fabris L. Precision medicine in cholangiocarcinoma. Transl Gastroenterol Hepatol 2018; 3:40. [PMID: 30148225 DOI: 10.21037/tgh.2018.07.02] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma is one of the epithelial cancers with the poorest prognosis and the narrowest therapeutic choice in humans. Compared with other cancer types, cholangiocarcinoma has been often neglected by oncology and liver research studies, thereby leaving many issues unsolved. Apart from the early and marked aggressiveness, one of the main reasons of the still unsatisfying clinical management of cholangiocarcinoma is its wide tumor heterogeneity needing more than other diseases a 'precision medicine' approach. In this regard, in the last few years there has been an awakening of interest aimed at dissecting the complex molecular and genomic profile of cholangiocarcinoma. Thus, a range of molecular players have been recently identified as putative mechanistic determinants of cholangiocarcinoma invasiveness, encompassing tyrosine kinase receptors, metabolic enzymes, transcription factors, small GTPases, ubiquitin ligases, and chromatin-remodelling proteins, whose aberrant expression may derive from stochastic mutations as well as from pro-oncogenic paracrine signals released by the stromal microenvironment, which is particularly exuberant in cholangiocarcinoma. Herein, we sought to overview the most relevant observations unravelling the genomic landscape of cholangiocarcinoma, and the prognostic and predictive biomarkers that consequently have been emerging. Then, we will discuss innovative treatment approaches derived from conventional chemotherapy, targeted therapies, antiangiogenic therapies and immunotherapy, and how they are opening new avenues towards a precision medicine in cholangiocarcinoma.
Collapse
Affiliation(s)
- Antonio Pellino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Fotios Loupakis
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Vincenzo Dadduzio
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Maria Guido
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.,Department of Internal Medicine, Yale Liver Center (YLC), School of Medicine, Yale University New Haven, CT, USA
| |
Collapse
|
26
|
Lombardi P, Marino D, Fenocchio E, Chilà G, Aglietta M, Leone F. Emerging molecular target antagonists for the treatment of biliary tract cancer. Expert Opin Emerg Drugs 2018; 23:63-75. [PMID: 29468924 DOI: 10.1080/14728214.2018.1444749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Biliary tract cancers (BTCs) are a heterogeneous group of cancers, characterized by low incidence but poor prognosis. Even after complete surgical resection for early stage, relapse is frequent and the lack of effective treatments contributes to the dismal prognosis. To date, the only standard treatment in first-line is cisplatin/gemcitabine combination, whereas no standard in 2nd-line has been defined. Hence, the current goal is to better understand the biology of BTCs, discovering new treatment methods and improving clinical outcomes. Areas covered: The development of next-generation-sequencing has unveiled the picture of the molecular signatures characterizing BTCs, leading to the identification of actionable mutations in biomarker-driven clinical trials. In this review we will cover the genetic landscape of BTC, focusing on the efficacy of existing treatments. Furthermore, we will discuss emerging molecular targets and evaluate the findings of pre-clinical studies. Finally, the encouraging results of clinical trials involving targeted therapies or immunotherapy will be reviewed. Expert opinion: FGFR fusion rearrangements and IDH1 or IDH2 mutations are the most promising targeted treatments under evaluation. In addition, innovative trial design will allow to offer a chance for tailored medicine to infrequent subgroups of BTCs patients based on their molecular features rather than their histology.
Collapse
Affiliation(s)
- Pasquale Lombardi
- a Department of Oncology , University of Turin Medical School , Turin , Italy
| | - Donatella Marino
- b Medical Oncology , Candiolo Cancer Institute - FPO- IRCCS , Candiolo , Italy
| | | | - Giovanna Chilà
- a Department of Oncology , University of Turin Medical School , Turin , Italy
| | - Massimo Aglietta
- a Department of Oncology , University of Turin Medical School , Turin , Italy.,b Medical Oncology , Candiolo Cancer Institute - FPO- IRCCS , Candiolo , Italy
| | - Francesco Leone
- a Department of Oncology , University of Turin Medical School , Turin , Italy
| |
Collapse
|
27
|
The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets. Oncotarget 2018; 7:46750-46767. [PMID: 27102149 PMCID: PMC5216834 DOI: 10.18632/oncotarget.8775] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/10/2016] [Indexed: 01/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a relatively rare malignancy that arises from the epithelial cells of the intrahepatic, perihilar and distal biliary tree. Intrahepatic CCA (ICC) represents the second most common primary liver cancer, after hepatocellular cancer. Two-thirds of the patients with ICC present with locally advanced or metastatic disease. Despite standard treatment with gemcitabine and cisplatin, prognosis remains dismal with a median survival of less than one year. Several biological plausibilities can account for its poor clinical outcomes. First, despite the advent of next generation and whole exome sequencing, no oncogenic addiction loops have been validated as clinically actionable targets. Second, the anatomical, pathological and molecular heterogeneity, and rarity of CCA confer an ongoing challenge of instituting adequately powered clinical trials. Last, most of the studies were not biomarker-driven, which may undermine the potential benefit of targeted therapy in distinct subpopulations carrying the unique molecular signature. Recent whole genome sequencing efforts have identified known mutations in genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), v-raf murine sarcoma viral oncogene homolog (BRAF) and tumor protein p53 (TP53), novel mutations in isocitrate dehydrogenase (IDH), BRCA1-Associated Protein 1 (BAP1) and AT-rich interactive domain-containing protein 1A (ARID1A), and novel fusions such as fibroblast growth factor receptor 2 (FGFR2) and ROS proto-oncogene 1 (ROS1). In this review, we will discuss the evolving genetic landscape of CCA, with an in depth focus on novel fusions (e.g. FGFR2 and ROS1) and somatic mutations (e.g. IDH1/2), which are promising actionable molecular targets.
Collapse
|
28
|
Ilyas SI, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15:95-111. [PMID: 28994423 PMCID: PMC5819599 DOI: 10.1038/nrclinonc.2017.157] [Citation(s) in RCA: 1015] [Impact Index Per Article: 169.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma is a disease entity comprising diverse epithelial tumours with features of cholangiocyte differentiation: cholangiocarcinomas are categorized according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA). Each subtype has a distinct epidemiology, biology, prognosis, and strategy for clinical management. The incidence of cholangiocarcinoma, particularly iCCA, has increased globally over the past few decades. Surgical resection remains the mainstay of potentially curative treatment for all three disease subtypes, whereas liver transplantation after neoadjuvant chemoradiation is restricted to a subset of patients with early stage pCCA. For patients with advanced-stage or unresectable disease, locoregional and systemic chemotherapeutics are the primary treatment options. Improvements in external-beam radiation therapy have facilitated the treatment of cholangiocarcinoma. Moreover, advances in comprehensive whole-exome and transcriptome sequencing have defined the genetic landscape of each cholangiocarcinoma subtype. Accordingly, promising molecular targets for precision medicine have been identified, and are being evaluated in clinical trials, including those exploring immunotherapy. Biomarker-driven trials, in which patients are stratified according to anatomical cholangiocarcinoma subtype and genetic aberrations, will be essential in the development of targeted therapies. Targeting the rich tumour stroma of cholangiocarcinoma in conjunction with targeted therapies might also be useful. Herein, we review the evolving developments in the epidemiology, pathogenesis, and management of cholangiocarcinoma.
Collapse
Affiliation(s)
- Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | - Shahid A Khan
- Department of Hepatology, St Mary's Hospital, Imperial College London, Praed Street, London W2 1NY, UK
- Department of Hepatology, Hammersmith Hospital, Imperial College London, Ducane Road, London W12 0HS, UK
| | - Christopher L Hallemeier
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | - Robin K Kelley
- The University of California, San Francisco Medical Center, 505 Parnassus Avenue, San Francisco, California 94143, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| |
Collapse
|
29
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
30
|
Abstract
ROS1 is a receptor tyrosine kinase that has recently been shown to undergo gene rearrangements in~1%-2% of non-small cell lung carcinoma (NSCLC) and in a variety of other tumours including cholangiocarcinoma, gastric carcinoma, colorectal carcinoma and in spitzoid neoplasms, glioblastoma and inflammatory myofibroblastic tumours. The ROS1 gene fusion undergoes constitutive activation, regulates cellular proliferation and is implicated in carcinogenesis. ROS1 fusions can be detected by fluorescence in situ hybridisation, real-time PCR, sequencing-based techniques and immunohistochemistry-based methods in clinical laboratories. The small molecule tyrosine kinase inhibitor, crizotinib has been shown to be an effective inhibitor of ROS1 and has received Food and Drug Administration approval for treatment of advanced NSCLC. The current review is an update on the clinical findings and detection methods of ROS1 in clinical laboratories in NSCLC and other tumours.
Collapse
Affiliation(s)
- Prodipto Pal
- Department of Laboratory Medicine and Pathobiology, University Health Network - University of Toronto, Toronto, Canada
| | - Zanobia Khan
- Department of Laboratory Medicine and Pathobiology, University Health Network - Lakeridge Regional Health Center, Toronto, Canada
| |
Collapse
|
31
|
Ohara N, Haraguchi N, Koseki J, Nishizawa Y, Kawai K, Takahashi H, Nishimura J, Hata T, Mizushima T, Yamamoto H, Ishii H, Doki Y, Mori M. Low expression of the GOPC is a poor prognostic marker in colorectal cancer. Oncol Lett 2017; 14:4483-4490. [PMID: 29085445 PMCID: PMC5649543 DOI: 10.3892/ol.2017.6817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
The Golgi-associated PDZ- and coiled-coil motif-containing (GOPC) protein controls the intracellular trafficking of numerous integral membrane proteins. Knockdown of GOPC increases activation of the mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 pathway and cancer cell progression in colorectal cancer. The present study aimed to clarify the correlation between GOPC expression and prognosis in colorectal cancer. Total RNA was extracted from 153 clinical colorectal cancer specimens and GOPC expression was evaluated using reverse transcription-quantitative polymerase chain reaction. The correlation between GOPC expression and clinicopathological factors was analyzed, along with the association of GOPC expression with overall survival (OS) and with recurrence-free survival (RFS). Lower expression of GOPC was significantly associated with a high frequency of venous invasion (P=0.001) and to poorer OS and RFS based on Kaplan-Meier analysis. In addition, multivariate analyses using a Cox proportional hazards model identified lower expression of GOPC to be an independent prognostic factor for colorectal cancer (hazard ratio=2.800; 95% confidence interval; 1.121-7.648; P=0.027). Lower expression of GOPC revealed a high frequency of venous invasion and associated with poorer prognosis for patients with colorectal cancer.
Collapse
Affiliation(s)
- Nobuyoshi Ohara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Jun Koseki
- Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yujiro Nishizawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenji Kawai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Kayhanian H, Smyth EC, Braconi C. Emerging molecular targets and therapy for cholangiocarcinoma. World J Gastrointest Oncol 2017; 9:268-280. [PMID: 28808500 PMCID: PMC5534395 DOI: 10.4251/wjgo.v9.i7.268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer arising from the biliary tree with a poor prognosis and limited therapeutic options. Recent large scale molecular characterisation studies have identified recurrent genetic alterations in CCA which may be amenable to therapeutic targeting. In this review we explore the genomic landscape of CCA and examine results from trials of molecularly targeted agents and immunotherapy in this disease. Challenges in CCA diagnosis, treatment and trial design are discussed and we reflect on future directions which may lead to improved outcomes for CCA patients.
Collapse
|
33
|
Zhao DY, Lim KH. Current biologics for treatment of biliary tract cancers. J Gastrointest Oncol 2017; 8:430-440. [PMID: 28736630 PMCID: PMC5506280 DOI: 10.21037/jgo.2017.05.04] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Biliary tract cancers (BTC) is a group of malignancies that arise from the epithelial cells of the biliary tree. These cancers are typically classified by anatomic site of origin: intrahepatic cholangiocarcinoma (IHCC) and extrahepatic cholangiocarcinoma (EHCC), and gallbladder cancer (GBC). To date, complete surgical resection remains the mainstay of treatment especially for earlier stage disease. Unfortunately, most patients present with advanced or metastatic disease, when systemic chemotherapy is the only treatment option. Due to the paucity of effective treatments, BTCs have a dismal prognosis. There is a tremendous need to better understand the disease biology, discover new therapies, and improve clinical outcomes for this challenging disease. Next-generation sequencing has produced a more accurate and detailed picture of the molecular signatures in BTCs. The three BTC histologic subtypes are, in fact, quite molecularly distinct. IHCC commonly contain FGFR2 fusions and IDH 1 and 2 mutations, whereas EHCC and GBC tend to carry mutations in EGFR, HER2, and MAPK pathway. In light of this emerging knowledge, clinical trials have become more biomarker-driven, which allows capturing of subsets of patients that are most likely to respond to certain therapies. Many new and promising targeted therapeutics are currently in the pipeline. Here we review the genetic landscape of BTCs while focusing on new molecular targets and targeted therapeutics currently being investigated in biomarker-driven clinical trials.
Collapse
Affiliation(s)
- Diana Y. Zhao
- Medical Scientist Training Program, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
34
|
Rahnemai-Azar AA, Weisbrod AB, Dillhoff M, Schmidt C, Pawlik TM. Intrahepatic cholangiocarcinoma: current management and emerging therapies. Expert Rev Gastroenterol Hepatol 2017; 11:439-449. [PMID: 28317403 DOI: 10.1080/17474124.2017.1309290] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a malignancy with an increasing incidence and a high-case fatality. While surgery offers the best hope at long-term survival, only one-third of tumors are amenable to surgical resection at the time of the diagnosis. Unfortunately, conventional chemotherapy offers limited survival benefit in the management of unresectable or metastatic disease. Recent advances in understanding the molecular pathogenesis of iCCA and the use of next-generation sequencing techniques have provided a chance to identify 'target-able' molecular aberrations. These novel molecular therapies offer the promise to personalize therapy for patients with iCCA and, in turn, improve the outcomes of patients. Area covered: We herein review the current management options for iCCA with a focus on defining both established and emerging therapies. Expert commentary: Surgical resection remains as an only hope for cure in iCCA patients. However, frequently the diagnosis is delayed till advanced stages when surgery cannot be offered; signifying the urge for specific diagnostic tumor biomarkers and targeted therapies. New advances in genomic profiling have contributed to a better understanding of the landscape of molecular alterations in iCCA and offer hope for the development of novel diagnostic biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Amir A Rahnemai-Azar
- a Department of Surgery , University of Washington Medical Center , Seattle , WA , USA
| | - Allison B Weisbrod
- b Department of Surgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Mary Dillhoff
- b Department of Surgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Carl Schmidt
- b Department of Surgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Timothy M Pawlik
- b Department of Surgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|
35
|
Song CQ, Li Y, Mou H, Moore J, Park A, Pomyen Y, Hough S, Kennedy Z, Fischer A, Yin H, Anderson DG, Conte D, Zender L, Wang XW, Thorgeirsson S, Weng Z, Xue W. Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology 2017; 152:1161-1173.e1. [PMID: 27956228 PMCID: PMC6204228 DOI: 10.1053/j.gastro.2016.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS It has been a challenge to identify liver tumor suppressors or oncogenes due to the genetic heterogeneity of these tumors. We performed a genome-wide screen to identify suppressors of liver tumor formation in mice, using CRISPR-mediated genome editing. METHODS We performed a genome-wide CRISPR/Cas9-based knockout screen of P53-null mouse embryonic liver progenitor cells that overexpressed MYC. We infected p53-/-;Myc;Cas9 hepatocytes with the mGeCKOa lentiviral library of 67,000 single-guide RNAs (sgRNAs), targeting 20,611 mouse genes, and transplanted the transduced cells subcutaneously into nude mice. Within 1 month, all the mice that received the sgRNA library developed subcutaneous tumors. We performed high-throughput sequencing of tumor DNA and identified sgRNAs increased at least 8-fold compared to the initial cell pool. To validate the top 10 candidate tumor suppressors from this screen, we collected data from patients with hepatocellular carcinoma (HCC) using the Cancer Genome Atlas and COSMIC databases. We used CRISPR to inactivate candidate tumor suppressor genes in p53-/-;Myc;Cas9 cells and transplanted them subcutaneously into nude mice; tumor formation was monitored and tumors were analyzed by histology and immunohistochemistry. Mice with liver-specific disruption of p53 were given hydrodynamic tail-vein injections of plasmids encoding Myc and sgRNA/Cas9 designed to disrupt candidate tumor suppressors; growth of tumors and metastases was monitored. We compared gene expression profiles of liver cells with vs without tumor suppressor gene disrupted by sgRNA/Cas9. Genes found to be up-regulated after tumor suppressor loss were examined in liver cancer cell lines; their expression was knocked down using small hairpin RNAs, and tumor growth was examined in nude mice. Effects of the MEK inhibitors AZD6244, U0126, and trametinib, or the multi-kinase inhibitor sorafenib, were examined in human and mouse HCC cell lines. RESULTS We identified 4 candidate liver tumor suppressor genes not previously associated with liver cancer (Nf1, Plxnb1, Flrt2, and B9d1). CRISPR-mediated knockout of Nf1, a negative regulator of RAS, accelerated liver tumor formation in mice. Loss of Nf1 or activation of RAS up-regulated the liver progenitor cell markers HMGA2 and SOX9. RAS pathway inhibitors suppressed the activation of the Hmga2 and Sox9 genes that resulted from loss of Nf1 or oncogenic activation of RAS. Knockdown of HMGA2 delayed formation of xenograft tumors from cells that expressed oncogenic RAS. In human HCCs, low levels of NF1 messenger RNA or high levels of HMGA2 messenger RNA were associated with shorter patient survival time. Liver cancer cells with inactivation of Plxnb1, Flrt2, and B9d1 formed more tumors in mice and had increased levels of mitogen-activated protein kinase phosphorylation. CONCLUSIONS Using a CRISPR-based strategy, we identified Nf1, Plxnb1, Flrt2, and B9d1 as suppressors of liver tumor formation. We validated the observation that RAS signaling, via mitogen-activated protein kinase, contributes to formation of liver tumors in mice. We associated decreased levels of NF1 and increased levels of its downstream protein HMGA2 with survival times of patients with HCC. Strategies to inhibit or reduce HMGA2 might be developed to treat patients with liver cancer.
Collapse
MESH Headings
- Animals
- Benzimidazoles/pharmacology
- Blotting, Western
- Butadienes/pharmacology
- CRISPR-Cas Systems
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- Cytoskeletal Proteins
- DNA, Neoplasm/genetics
- Enzyme Inhibitors
- Gene Expression Regulation, Neoplastic
- Genes, Neurofibromatosis 1
- Genome-Wide Association Study
- HMGA Proteins/genetics
- HMGA2 Protein/genetics
- Hepatocytes/metabolism
- High-Throughput Nucleotide Sequencing
- Humans
- Immunohistochemistry
- Liver Neoplasms/genetics
- Liver Neoplasms, Experimental/genetics
- Membrane Glycoproteins/genetics
- Mice
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinases/genetics
- Nerve Tissue Proteins/genetics
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Nitriles/pharmacology
- Phenylurea Compounds/pharmacology
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- Pyridones/pharmacology
- Pyrimidinones/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Sequence Analysis, DNA
- Sorafenib
- Survival Analysis
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Proteins/genetics
- ras Proteins/genetics
Collapse
Affiliation(s)
- Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yingxiang Li
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jill Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Angela Park
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Soren Hough
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andrew Fischer
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hao Yin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lars Zender
- Department of Internal Medicine VIII, University Department of Medicine, University Hospital Tübingen, Tübingen, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University, Tübingen, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Snorri Thorgeirsson
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts; Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
36
|
Bupathi M, Ahn DH, Bekaii-Saab T. Therapeutic options for intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2017; 6:91-100. [PMID: 28503556 PMCID: PMC5411274 DOI: 10.21037/hbsn.2016.12.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
Biliary tract cancer (BTC) is a heterogeneous group of cancers, which is composed of intrahepatic cholangiocarcinoma (ICCA), extrahepatic cholangiocarcinoma (ECCA), gallbladder cancers and ampullary carcinomas. While all anatomic subgroups are treated uniformly, our understanding about the pathogenesis has allowed us to reason that each group represents a clinically and genetically diverse disease. The majority of patients present with locally advanced or metastatic disease, where the standard treatment is combination systemic cytotoxic chemotherapy with gemcitabine and cisplatin. While most receive a clinical benefit from chemotherapy, patients eventually progress where no standardized therapies are available in the refractory setting. With the use of next generation sequencing, we have come to understand that ICCA is a diverse genomic disease with many actionable alterations that may serve as potential therapeutic targets. Further studies investigating the role of novel targeted agents (as a single agent or with combination chemotherapy) will hopefully provide additional treatment options for this highly lethal disease.
Collapse
Affiliation(s)
- Manojkumar Bupathi
- Medical Oncology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Daniel H. Ahn
- Hematology/Medical Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | |
Collapse
|
37
|
Ahn DH, Bekaii-Saab T. Biliary cancer: intrahepatic cholangiocarcinoma vs. extrahepatic cholangiocarcinoma vs. gallbladder cancers: classification and therapeutic implications. J Gastrointest Oncol 2017; 8:293-301. [PMID: 28480068 DOI: 10.21037/jgo.2016.10.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biliary cancers (BCs) are a diverse group of tumors that arise from the bile duct epithelium and are divided into cholangiocarcinomas of the intrahepatic and extrahepatic cholangiocarcinoma (EHCC) and cancer of the gallbladder. Despite improvements in treatment and diagnosis, BCs are often diagnosed at an advanced stage and associated with poor prognosis and limited treatment options. Recent discoveries have allowed us to have a better understanding of the genomic diversity in BC, and identify genes that are likely contributing to its pathogenesis, proliferation and treatment resistance. Additionally, these advances have allowed us to reason that each anatomic group within BC behave as distinct diseases, with differences in prognosis and outcomes. Based on this knowledge, recent advances have allowed us to identify actionable mutations that form rational therapeutic targets with novel agents, where their relevance will be better understood through the completion of prospective clinical trials.
Collapse
Affiliation(s)
- Daniel H Ahn
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | |
Collapse
|
38
|
Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G, Labianca R. Cholangiocarcinoma. Crit Rev Oncol Hematol 2016; 116:11-31. [PMID: 28693792 DOI: 10.1016/j.critrevonc.2016.11.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Biliary tract cancer accounts for <1% of all cancers and affects chiefly an elderly population, with predominance in men. We distinguish cholangiocarcinoma (intrahepatic, hilar and distal) and gallbladder cancer, with different pathogenesis and prognosis. The treatment is based on surgery (whenever possible), radiotherapy in selected cases, and chemotherapy. The standard cytotoxic treatment for advanced/metastatic disease is represented by the combination of gemcitabine and cisplatin, whereas fluoropyrimidines are generally administered in second line setting. At the present time, no biologic drug demonstrated a clear efficacy in this cancer, although the molecular characterisation could provide a promising basis for experimental treatments. A good supportive care and an early palliative care are warranted in most patients and should be delivered as a part of a global approach.
Collapse
Affiliation(s)
| | - Luca Tondulli
- Medical Oncology Unit, Borgo Roma Hospital, Verona, Italy
| | - Gemma Gatta
- Italian National Cancer Institute, Milan, Italy
| | | | | | | |
Collapse
|
39
|
Oikawa T. Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology 2016; 64:645-51. [PMID: 26849406 DOI: 10.1002/hep.28485] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Liver and biliary tract cancers are highly aggressive, are heterogeneous in their phenotypic traits, and result in clinical outcomes that are difficult to manage. Cancers have subpopulations of cells termed "cancer stem cells" (CSCs) that share common intrinsic signaling pathways for self-renewal and differentiation with normal stem cells. These CSCs likely have the potential to evolve over time and to give rise to new genetically and functionally diverse subclones by accumulating genetic mutations. Extrinsic signaling from the tumor microenvironment, including the CSC niche, has been implicated in tumor initiation/progression and heterogeneity through dynamic crosstalk. CSCs have become recognized as pivotal sources of tumor initiation/progression, relapse/metastasis, and chemoresistance. CONCLUSION The origins of CSCs are hypothesized to derive from the transformation of normal stem/progenitors and/or from the reprogramming of adult cells that converts them to stem/progenitor traits; however, the precise mechanisms have not yet been fully elucidated. (Hepatology 2016;64:645-651).
Collapse
Affiliation(s)
- Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Chiang NJ, Hsu C, Chen JS, Tsou HH, Shen YY, Chao Y, Chen MH, Yeh TS, Shan YS, Huang SF, Chen LT. Expression levels of ROS1/ALK/c-MET and therapeutic efficacy of cetuximab plus chemotherapy in advanced biliary tract cancer. Sci Rep 2016; 6:25369. [PMID: 27136744 PMCID: PMC4853728 DOI: 10.1038/srep25369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/15/2016] [Indexed: 12/26/2022] Open
Abstract
Aberrant expression of ROS1, ALK or c-MET (RAM) is implicated in carcinogenesis and cancer drug resistance. We retrospectively evaluated the effect of RAM expression on outcomes for advanced biliary tract cancer patients, who were treated with gemcitabine plus oxaliplatin (GEMOX), with or without cetuximab, in a randomized phase II trial. RAM expression levels on archived tissue sections were scored using immunohistochemistry (IHC). Of 110 tumors with IHC staining for all three markers, 18 were RAMhigh (IHC intensity 3+ for any markers). Ninety-two tumors were RAMlow (IHC intensity <3+ for all markers). All RAMhigh tumors were intra-hepatic cholangiocarcinomas (IHCC). Of the patients with IHCC (n = 80), median overall survival (OS) of RAMhigh group was inferior to that of the RAMlow group (5.7 vs. 11.7 months, p = 0.021). In multivariate analysis RAMhigh remained an independently adverse prognostic factor, with a hazard ratio of 2.01 (p = 0.039). In the RAMlow group, GEMOX treatment with cetuximab significantly improved the disease control rate (68% vs. 41%, p = 0.044), median progression-free survival (7.3 vs. 4.9 months, p = 0.026), and marginally prolonged median OS (14.1 vs 9.6 months, p = 0.056), compared to GEMOX treatment alone. Future trials of anti-EGFR inhibitors for IHCC may consider RAM expression as a patient stratification factor.
Collapse
Affiliation(s)
- Nai-Jung Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University Hospital, and National Taiwan University Cancer Center, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jen-Shi Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Hui Tsou
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, Taiwan
| | - Ying-Ying Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Clinical Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 898] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
42
|
Lim SM, Yoo JE, Lim KH, Meng Tai DW, Cho BC, Park YN. Rare Incidence of ROS1 Rearrangement in Cholangiocarcinoma. Cancer Res Treat 2016; 49:185-192. [PMID: 27121721 PMCID: PMC5266400 DOI: 10.4143/crt.2015.497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/02/2016] [Indexed: 12/23/2022] Open
Abstract
Purpose The recent discovery and characterization of an oncogenic ROS1 gene rearrangement has raised significant interest because small molecule inhibitors are effective in these tumors. The aim of this study was to determine frequency and clinicopathological features associated with ROS1 rearrangement in patients with cholangiocarcinoma (CCA). Materials and Methods A total of 261 patients who underwent surgery for CCA between October 1997 and August 2013 were identified from an international, multi-institutional database. ROS1 rearrangement was evaluated by break-apart fluorescence in situ hybridization using tissue microarrays of these patients. Results Of 261 CCA evaluated, three cases (1.1%) showed ROS1 rearrangement by fluorescence in situ hybridization (FISH), all of which were derived from intrahepatic origin. ROS1 protein expression was observed in 38 samples (19.1%). Significantly larger tumor size was observed in ROS1 immunohistochemistry (IHC)–negative patients compared with ROS1 IHC–positive patients. ROS1 FISH–positive patients had a single tumor with a median size of 4 cm and well-to-moderate differentiation. Overall, there was no difference in terms of baseline characteristics, overall survival, and recurrence-free survival between ROS1-positive and -negative patients. Conclusion ROS1 rearrangement was detected in 1.1% of CCA patients. Although rare, conduct of clinical trials using ROS1 inhibitors in these genetically unique patients is warranted.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore
| | - David Wai Meng Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Inoue M, Toki H, Matsui J, Togashi Y, Dobashi A, Fukumura R, Gondo Y, Minowa O, Tanaka N, Mori S, Takeuchi K, Noda T. Mouse models for ROS1-fusion-positive lung cancers and their application to the analysis of multikinase inhibitor efficiency. Carcinogenesis 2016; 37:452-60. [PMID: 26964870 DOI: 10.1093/carcin/bgw028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
ROS1-fusion genes, resulting from chromosomal rearrangement, have been reported in 1-2% of human non-small cell lung cancer cases. More than 10 distinct ROS1-fusion genes, including break-point variants, have been identified to date. In this study, to investigate the in vivo oncogenic activities of one of the most frequently detected fusions, CD74-ROS1, as well as another SDC4-ROS1 fusion that has also been reported in several studies, we generated transgenic (TG) mouse strains that express either of the two ROS1-fusion genes specifically in lung alveolar type II cells. Mice in all TG lines developed tumorigenic nodules in the lung, and a few strains of both TG mouse lines demonstrated early-onset nodule development (multiple tumor lesions present in the lung at 2-4 weeks after birth); therefore, these two strains were selected for further investigation. Tumors developed progressively in the untreated TG mice of both lines, whereas those receiving oral administration of an ALK/MET/ROS1 inhibitor, crizotinib, and an ALK/ROS1 inhibitor, ASP3026, showed marked reduction in the tumor burden. Collectively, these data suggest that each of these two ROS1-fusion genes acts as a driver for the pathogenesis of lung adenocarcinoma in vivo The TG mice developed in this study are expected to serve as valuable tools for exploring novel therapeutic agents against ROS1-fusion-positive lung cancer.
Collapse
Affiliation(s)
- Maki Inoue
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan, Division of Cell Biology
| | - Hideaki Toki
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Junko Matsui
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Yuki Togashi
- Pathology Project for Molecular Targets and Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | | | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba 305-0074, Japan and
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba 305-0074, Japan and
| | - Osamu Minowa
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Norio Tanaka
- Project for Development of Innovative Research on Cancer Therapeutics, The Genome Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, The Genome Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets and Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tetsuo Noda
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan, Division of Cell Biology,
| |
Collapse
|
44
|
Xie D, Ren Z, Fan J, Gao Q. Genetic profiling of intrahepatic cholangiocarcinoma and its clinical implication in targeted therapy. Am J Cancer Res 2016; 6:577-586. [PMID: 27152236 PMCID: PMC4851838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a treatment-refractory primary liver cancer with an increasing incidence and mortality worldwide in recent years. Lack of a stereotyped genetic signature and limited understanding of genomic landscape make the development of effective targeted therapies challenging. Recent application of advanced technologies such as next-generation sequencing (NGS) has broadened our understanding of genetic heterogeneity in iCCA and many potentially actionable genetic alterations have been identified. This review explores the recent advances in defining genetic alterations in iCCAs, which may present potent therapeutic targets. Chromatin remodeling genes and genes encoding isocitrate dehydrogenase and tyrosine kinase receptors as well as their downstream effectors are among the most frequently altered genes. Clinical trials testing the effect of new targeted agents on iCCA patients, especially those with the above genetic markers are under way. However, the complex interplay of environmental and evolutionary factors contributing to the genetic variability in iCCA calls for a more cautionary use of NGS in tailoring targeted regimen to the patients. Next-generation functional testing may complement NGS to execute precision medicine in future.
Collapse
Affiliation(s)
- Diyang Xie
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan UniversityShanghai 200032, P. R. China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
| |
Collapse
|
45
|
Fior-Gozlan M, Giovannini D, Rabeyrin M, Mc Leer-Florin A, Laverrière MH, Bichard P. Monocentric study of bile aspiration associated with biliary brushing performed during endoscopic retrograde cholangiopancreatography in 239 patients with symptomatic biliary stricture. Cancer Cytopathol 2015; 124:330-9. [PMID: 26700399 DOI: 10.1002/cncy.21667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/16/2015] [Accepted: 11/17/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The cytologic diagnosis obtained by brushing or biopsy in malignant biliary strictures is considered to be highly specific but poorly sensitive. The diagnostic association of biliary brushing and bile exfoliate cytology has been suggested but is rarely performed in clinical practice. The objective of this study was to assess the diagnostic performance of bile aspiration associated with biliary brushing during therapeutic endoscopic retrograde cholangiopancreatography (ERCP). METHODS From 2004 to 2009, 239 consecutive patients who underwent ERCP were included in the study. The biliary strictures were considered clinically benign in 26% of patients, uncertain in 25%, and malignant in 49%. The 298 cytologic samples collected were divided in 3 groups: bile aspiration alone (26%), biliary brushing alone (20%), and bile aspiration combined with brushing (54%). The definitive diagnosis of malignancy was obtained by biopsy, surgery, and fine-needle aspiration or was determined by an unfavorable disease course. RESULTS The cytologic diagnoses were as follows: 149 samples were benign (50%), 114 were malignant (38%), 34 had atypia (12%), and 1 had no diagnostic value. The procedure output values were as follows: for bile aspiration alone, sensitivity was 56.4%, specificity was 93.9%, the positive predictive value (PPV) was 91.7%, and the negative predictive value (NPV) was 64.6%; for brushing alone, sensitivity was 62.5%, both specificity and the PPV were 100%, and the NPV was 73%; and, for bile aspiration and brushing combined, sensitivity was 81%, both specificity and the PPV were 100%, and the NPV was 75%. CONCLUSIONS For patients who have symptomatic biliary stricture, bile aspiration during ERCP is a simple and safe procedure. Bile aspiration combined with brushing significantly increases the yield of cytology for malignant biliary tumors (sensitivity, 81%), particularly in cholangiocarcinomas. Cancer Cytopathol 2016;124:330-9. © 2015 American Cancer Society.
Collapse
Affiliation(s)
| | - Diane Giovannini
- Pathology Department, Grenoble University Hospital, Grenoble, France
| | - Maud Rabeyrin
- Pathology Department, Edouard Herriot Hospital, Lyon, France
| | | | | | - Philippe Bichard
- Endoscopy Department, Grenoble University Hospital, Grenoble, France
| |
Collapse
|
46
|
Lee KH, Lee KB, Kim TY, Han SW, Oh DY, Im SA, Kim TY, Yi NJ, Lee KW, Suh KS, Jang JJ, Bang YJ. Clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma. BMC Cancer 2015; 15:721. [PMID: 26475437 PMCID: PMC4609147 DOI: 10.1186/s12885-015-1737-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND More knowledge about genetic and molecular features of cholangiocarcinoma is needed to develop effective therapeutic strategies. We investigated the clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma. METHODS One hundred ninety-four patients with curatively resected intrahepatic cholangiocarcinoma were included in this study. Tumor tissue specimens were collected and analyzed for ROS1 gene rearrangement using fluorescence in situ hybridization (FISH) and ROS1 protein expression using immunohistochemistry (IHC). RESULTS ROS1 immunohistochemistry was positive (moderate or strong staining) in 72 tumors (37.1 %). ROS1 protein expression was significantly correlated with well differentiated tumors, papillary or mucinous histology, oncocytic/hepatoid or intestinal type tumors, and periductal infiltrating or intraductal growing tumors (vs. mass-forming cholangiocarcinoma). ROS-expressing tumors were associated with better disease-free survival (30.1 months for ROS1 expression (+) tumors vs. 9.0 months for ROS1 (-) tumors, p = 0.006). Moreover, ROS1 expression was an independent predictor of better disease-free survival in a multivariate analysis (HR 0.607, 95 % CI 0.377-0.976; p = 0.039). Although break-apart FISH was successfully performed in 102 samples, a split pattern indicative of ROS1 gene rearrangement was not found in the examined samples. CONCLUSION ROS1 protein expression was associated with well-differentiated histology and better survival in our patients with resected intrahepatic cholangiocarcinoma. ROS1 gene rearrangement by break-apart FISH was not found in the examined samples.
Collapse
Affiliation(s)
- Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyoung-Bun Lee
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Ja-June Jang
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Moeini A, Sia D, Bardeesy N, Mazzaferro V, Llovet JM. Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma. Clin Cancer Res 2015; 22:291-300. [PMID: 26405193 DOI: 10.1158/1078-0432.ccr-14-3296] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a molecularly heterogeneous hepatobiliary neoplasm with poor prognosis and limited therapeutic options. The incidence of this neoplasm is growing globally. One third of iCCA tumors are amenable to surgical resection, but most cases are diagnosed at advanced stages with chemotherapy as the only established standard of practice. No molecular therapies are currently available for the treatment of this neoplasm. The poor understanding of the biology of iCCA and the lack of known oncogenic addiction loops has hindered the development of effective targeted therapies. Studies with sophisticated animal models defined IDH mutation as the first gatekeeper in the carcinogenic process and led to the discovery of striking alternative cellular origins. RNA- and exome-sequencing technologies revealed the presence of recurrent novel fusion events (FGFR2 and ROS1 fusions) and somatic mutations in metabolic (IDH1/2) and chromatin-remodeling genes (ARID1A, BAP1). These latest advancements along with known mutations in KRAS/BRAF/EGFR and 11q13 high-level amplification have contributed to a better understanding of the landscape of molecular alterations in iCCA. More than 100 clinical trials testing molecular therapies alone or in combination with chemotherapy including iCCA patients have not reported conclusive clinical benefits. Recent discoveries have shown that up to 70% of iCCA patients harbor potential actionable alterations that are amenable to therapeutic targeting in early clinical trials. Thus, the first biomarker-driven trials are currently underway.
Collapse
Affiliation(s)
- Agrin Moeini
- Liver Cancer Translational Research Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Catalonia, Spain. Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Translational Research Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Catalonia, Spain. Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York. Gastrointestinal Surgery and Liver Transplantation Unit, Department of Surgery, National Cancer Institute IRCCS Foundation, Milan, Italy
| | - Nabeel Bardeesy
- Cancer Center, Center for Regenerative Medicine, and Department of Molecular Biology, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, Department of Surgery, National Cancer Institute IRCCS Foundation, Milan, Italy
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Catalonia, Spain. Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York. Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.
| |
Collapse
|
48
|
Lim SM, Choi J, Chang JH, Sohn J, Jacobson K, Policht F, Schulz J, Cho BC, Kim SH. Lack of ROS1 Gene Rearrangement in Glioblastoma Multiforme. PLoS One 2015; 10:e0137678. [PMID: 26366867 PMCID: PMC4569301 DOI: 10.1371/journal.pone.0137678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, and the prognosis remains poor. Rearrangement of ROS1 gene, which was shown to have an oncogenic potential, was previously discovered in GBM cell lines. In this pilot study, we aimed to identify the incidence of ROS1 rearrangement in GBM patient tissues to explore novel biomarkers for therapeutic strategy. Formalin-fixed and paraffin-embedded (FFPE) tissue sections from 109 patients with GBM were screened for ROS1 rearrangement by anti-ROS immunohistochemistry (IHC) and ROS1 break-apart fluorescent in situ hybridization (FISH) assays. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and Isocitrate dehydrogenase 1 (IDH1) mutation status were also assessed. All samples were interpreted by two experienced pathologists who were blinded to the clinical data. A total of 109 samples were collected and all samples were examined for ROS1 rearrangement by IHC and FISH assays, and none was found to harbor ROS1 rearrangement. MGMT gene methylation was found in 42 (39.2%) cases, and IDH1 mutation was found in 6 (5.5%) cases. In this study, ROS1 rearrangement was not identified in GBM patients, and thus it is difficult to classify ROS1 rearrangement as a novel molecular subset in GBM patients for now.
Collapse
Affiliation(s)
- Sun Min Lim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Junjeong Choi
- Department of Pharmacy, College of Pharmacy, Yonsei University, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jinyoung Sohn
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Kyungbuk, Korea
| | - Kristine Jacobson
- Abbott Molecular Diagnostics, Des Plaines, Illinois, United States of America
| | - Frank Policht
- Abbott Molecular Diagnostics, Des Plaines, Illinois, United States of America
| | - John Schulz
- Abbott Molecular Diagnostics, Des Plaines, Illinois, United States of America
| | - Byoung Chul Cho
- Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (BCC); (SHK)
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (BCC); (SHK)
| |
Collapse
|
49
|
Saha SK, Parachoniak CA, Bardeesy N. IDH mutations in liver cell plasticity and biliary cancer. Cell Cycle 2015; 13:3176-82. [PMID: 25485496 DOI: 10.4161/15384101.2014.965054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer associated with the bile ducts within the liver. These tumors are characterized by frequent gain-of-function mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes-that are also common in subsets of neural, haematopoietic and bone tumors, but rare or absent in the other types of gastrointestinal malignancy. Mutant IDH acts through a novel mechanism of oncogenesis, producing high levels of the metabolite 2-hydroxyglutarate, which interferes with the function of α-ketoglutarate-dependent enzymes that regulate diverse cellular processes including histone demethylation and DNA modification. Recently, we used in vitro stem cell systems and genetically engineered mouse models (GEMMs) to demonstrate that mutant IDH promotes ICC formation by blocking hepatocyte differentiation and increasing pools of hepatic progenitors that are susceptible to additional oncogenic hits leading to ICC. We found that silencing of HNF4A-encoding a master transcriptional regulator of hepatocyte identity and quiescence-was critical to mutant IDH-mediated inhibition of liver differentiation. In line with these findings, human ICC with IDH mutations are characterized by a hepatic progenitor cell transcriptional signature suggesting that they are a distinct ICC subtype as compared to IDH wild type tumors. The role of mutant IDH in controlling hepatic differentiation state suggests the potential of newly developed inhibitors of the mutant enzyme as a form of differentiation therapy in a solid tumor.
Collapse
Affiliation(s)
- Supriya K Saha
- a Cancer Center and Center for Regenerative Medicine; Massachusetts General Hospital; Department of Medicine; Harvard Medical School , Boston , MA USA
| | | | | |
Collapse
|
50
|
Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A 2015; 112:E5381-90. [PMID: 26372962 DOI: 10.1073/pnas.1515281112] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib's dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1(G2032R) mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure-function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies.
Collapse
|