1
|
Mürner-Lavanchy I, Kao HT, Sele S, Koenig J, Kaess M. Prefrontal oxygenation during experimental pain in adolescents engaging in non-suicidal self-injury. J Affect Disord 2024; 370:100-108. [PMID: 39447965 DOI: 10.1016/j.jad.2024.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The intricate role of pain in non-suicidal self-injury (NSSI) makes the investigation of alterations in brain function during pain processing a critical yet underexplored topic. The aim of this study was to investigate fNIRS correlates of experimental pain and how these differed between adolescent patients engaging in NSSI and healthy controls. METHODS 154 adolescent patients with NSSI and 48 healthy controls underwent a heat pain stimulation with linearly increasing temperature from 32 °C to max. 50 °C, during which fNIRS activity was recorded. Associations between fNIRS activity and pain perception (i.e. pain threshold, pain tolerance and pain intensity) were examined using linear mixed models and linear regression analyses. RESULTS Across groups, we found a decrease in prefrontal oxygenation during increasing pain stimulation: Oxygenated hemoglobin was higher during baseline than during pain threshold (b = -0.36, p < .001) and higher during pain threshold than during pain tolerance (b = -0.10, p < .001). We did not find differential patterns of prefrontal oxygenation across the pain assessment between patients and healthy controls. Also, no association between pain intensity and fNIRS activity was found. LIMITATIONS fNIRS was only recorded in prefrontal regions and our design did not include a non-painful stimulation as a control condition. CONCLUSION While our study adds to the understanding of prefrontal hemodynamic changes associated with pain processing, it did not contribute further evidence to the few existing findings regarding altered neural processing of pain in adolescents engaging in NSSI.
Collapse
Affiliation(s)
- Ines Mürner-Lavanchy
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Han-Tin Kao
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Silvano Sele
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Su X, Li Y, Liu H, An S, Yao N, Li C, Shang M, Ma L, Yang J, Li J, Zhang M, Dun W, Huang ZG. Brain Network Dynamics in Women With Primary Dysmenorrhea During the Pain-Free Periovulation Phase. THE JOURNAL OF PAIN 2024; 25:104618. [PMID: 38945381 DOI: 10.1016/j.jpain.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
The human brain is a dynamic system that shows frequency-specific features. Neuroimaging studies have shown that both healthy individuals and those with chronic pain disorders experience pain influenced by various processes that fluctuate over time. Primary dysmenorrhea (PDM) is a chronic visceral pain that disrupts the coordinated activity of brain's functional network. However, it remains unclear whether the dynamic interactions across the whole-brain network over time and their associations with neurobehavioral symptoms are dependent on the frequency bands in patients with PDM during the pain-free periovulation phase. In this study, we used an energy landscape analysis to examine the interactions over time across the large-scale network in a sample of 59 patients with PDM and 57 healthy controls (HCs) at different frequency bands. Compared with HCs, patients with PDM exhibit aberrant brain dynamics, with more significant differences in the slow-4 frequency band. Patients with PDM show more indirect neural transition counts due to an unstable intermediate state, whereas neurotypical brain activity frequently transitions between 2 major states. This data-driven approach further revealed that the brains of individuals with PDM have more abnormal brain dynamics than HCs. Our results suggested that unstable brain dynamics were associated with the strength of brain functional segregation and the Pain Catastrophizing Scale score. Our findings provide preliminary evidence that atypical dynamics in the functional network may serve as a potential key feature and biological marker of patients with PDM during the pain-free phase. PERSPECTIVE: We applied energy landscape analysis on brain-imaging data to identify relatively stable and dominant brain activity patterns for patients with PDM. More atypical brain dynamics were found in the slow-4 band and were related to the strength of functional segregation, providing new insights into the dysfunction brain dynamics.
Collapse
Affiliation(s)
- Xing Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huiping Liu
- School of Future Technology, Xi'an Jiaotong University, Xi'an, China; Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Simeng An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Yao
- Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Applied Physics, Xi'an University of Technology, Xi'an, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Meiling Shang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, China; Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Ma
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Yang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianlong Li
- Department of Urology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanghuan Dun
- Rehabilitation Medicine Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Research Center for Brain-Inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. Netw Neurosci 2024; 8:808-836. [PMID: 39355438 PMCID: PMC11349032 DOI: 10.1162/netn_a_00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 10/03/2024] Open
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population- rather than individual-based inferences owing to limited within-person sampling. Here, three densely sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously unrecognized interindividual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tiara Bounyarith
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - David Braun
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Lotus Shareef-Trudeau
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Isaac Treves
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Quan S, Wang C, Huang J, Wang S, Jia T, Liang J, Zhao L, Liu J. Abnormal thalamocortical network dynamics in patients with migraine and its relationship with electroacupuncture treatment response. Brain Imaging Behav 2024:10.1007/s11682-024-00938-y. [PMID: 39340626 DOI: 10.1007/s11682-024-00938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Acupuncture is an effective and safe alternative treatment to prevent and treat migraine, but its central analgesic mechanism remains poorly understood. It is believed that the dysfunction of the thalamocortical connectivity network is an important contributor to migraine pathophysiology. This study aimed to investigate the abnormal thalamocortical network dynamics in patients with migraine without aura (MWoA) before and after an 8-week electroacupuncture treatment. A total of 143 patients with MWoA and 100 healthy controls (HC) were included, and resting-state functional magnetic resonance imaging (fMRI) data were acquired. Dynamic functional network connectivity (dFNC) was calculated for each subject. The modulation effect of electroacupuncture on clinical outcomes of migraine, dFNC, and their association were investigated. In our results, dFNC matrices were classified into two clusters (brain states). As compared with the HC, patients with MWoA had a higher proportion of brain states with a strong thalamocortical between-network connection, implying an abnormal balance of the network organization across dFNC brain states. Correlation analysis showed that this abnormality was associated with summarized clinical measurements of migraine. A total of 60 patients were willing to receive an 8-week electroacupuncture treatment, and 24 responders had 50% changes in headache frequency. In electroacupuncture responders, electroacupuncture could change the abnormal thalamocortical connectivities towards a pattern more similar to that of HC. Our findings suggested that electroacupuncture could relieve the symptoms of migraine and has the potential capacity to regulate the abnormal function of the thalamocortical circuits.
Collapse
Affiliation(s)
- Shilan Quan
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Chenxi Wang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Jia Huang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Shujun Wang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Tianzhe Jia
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jixin Liu
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| |
Collapse
|
5
|
Shoraka O, Syed M, Mandloi S, Thalheimer S, Kashani SN, Heller JE, Mohamed FB, Sharan AD, Talekar KS, Matias CM, Harrop JS, Krisa L, Alizadeh M. Periaqueductal gray connectivity in spinal cord injury-induced neuropathic pain. J Neuroimaging 2024. [PMID: 39252511 DOI: 10.1111/jon.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain (NP) is a debilitating condition following spinal cord injury (SCI). The role of periaqueductal gray (PAG) in NP development following SCI remains underexplored. Using resting-state functional MRI (rsfMRI), our study aimed to demonstrate the alterations in functional connectivity (FC) of PAG in NP following SCI. METHODS Ten SCI patients (SCI + NP, n = 7, and SCI - NP, n = 3), alongside 10 healthy controls (HCs), were enrolled. rsfMRI was conducted followed by seed-to-voxel analysis using PAG as the seed region and then group-based analysis comprising three groups (SCI + NP, SCI - NP, and HC). Age and gender were considered as confounding variables. RESULTS Compared to HCs, SCI + NP demonstrated decreased FC between PAG and right insula, right frontal orbital cortex, right pallidum, dorsal raphe nucleus (DRN), red nuclei (RN), substantia nigra (SN), and ventral posterolateral (VPL) thalamic nuclei. Compared to SCI - NP, SCI + NP demonstrated increased FC between PAG and posterior cingulate cortex (PCC), hippocampus, cerebellar vermis lobules IV and V, and thalamic structures (posterior and lateral pulvinar, the mediodorsal nuclei, and the ventral lateral nuclei). Additionally, decreased FC between the PAG and VPL, geniculate bodies, intralaminar nuclei of thalamus, DRN, RN, SN, and prefrontal cortex was observed in this comparison. CONCLUSIONS Altered FC between PAG and right anterior insula, VPL, DRN, RN, SN, cerebellar vermis lobules IV and V, frontal cortex, and PCC was associated with NP sequelae of SCI. Additionally, SCI was independently associated with decreased FC between PAG and right posterior insula, cerebellar lobules IV and V, and cerebellar vermis lobules III, IV, and V.
Collapse
Affiliation(s)
- Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Naghizadeh Kashani
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua E Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini D Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kiran S Talekar
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Caio M Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James S Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Mills EP, Bosma RL, Rogachov A, Cheng JC, Osborne NR, Kim JA, Besik A, Bhatia A, Davis KD. Pretreatment Brain White Matter Integrity Associated With Neuropathic Pain Relief and Changes in Temporal Summation of Pain Following Ketamine. THE JOURNAL OF PAIN 2024; 25:104536. [PMID: 38615801 DOI: 10.1016/j.jpain.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Neuropathic pain (NP) is a prevalent condition often associated with heightened pain responsiveness suggestive of central sensitization. Neuroimaging biomarkers of treatment outcomes may help develop personalized treatment strategies, but white matter (WM) properties have been underexplored for this purpose. Here we assessed whether WM pathways of the default mode network (DMN: medial prefrontal cortex [mPFC], posterior cingulate cortex, and precuneus) and descending pain modulation system (periaqueductal gray [PAG]) are associated with ketamine analgesia and attenuated temporal summation of pain (TSP, reflecting central sensitization) in NP. We used a fixel-based analysis of diffusion-weighted imaging data to evaluate WM microstructure (fiber density [FD]) and macrostructure (fiber bundle cross-section) within the DMN and mPFC-PAG pathways in 70 individuals who underwent magnetic resonance imaging and TSP testing; 35 with NP who underwent ketamine treatment and 35 age- and sex-matched pain-free individuals. Individuals with NP were assessed before and 1 month after treatment; those with ≥30% pain relief were considered responders (n = 18), or otherwise as nonresponders (n = 17). We found that WM structure within the DMN and mPFC-PAG pathways did not differentiate responders from nonresponders. However, pretreatment FD in the anterior limb of the internal capsule correlated with pain relief (r=.48). Moreover, pretreatment FD in the DMN (left mPFC-precuneus/posterior cingulate cortex; r=.52) and mPFC-PAG (r=.42) negatively correlated with changes in TSP. This suggests that WM microstructure in the DMN and mPFC-PAG pathway is associated with the degree to which ketamine reduces central sensitization. Thus, fixel metrics of WM structure may hold promise to predict ketamine NP treatment outcomes. PERSPECTIVE: We used advanced fixel-based analyses of MRI diffusion-weighted imaging data to identify pretreatment WM microstructure associated with ketamine outcomes, including analgesia and markers of attenuated central sensitization. Exploring associations between brain structure and treatment outcomes could contribute to a personalized approach to treatment for individuals with NP.
Collapse
Affiliation(s)
- Emily P Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariana Besik
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2024:15500594241264892. [PMID: 39056313 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Yin Y, He S, He N, Zhang W, Luo L, Chen L, Liu T, Tian M, Xu J, Chen S, Li F. Brain alterations in sensorimotor and emotional regions associated with temporomandibular disorders. Oral Dis 2024; 30:1367-1378. [PMID: 36516329 DOI: 10.1111/odi.14466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Temporomandibular disorders (TMD) are characterized by sensorimotor and psychological dysfunction, with evidence revealing the implication of a dysfunctional central nervous system. Previous magnetic resonance imaging (MRI) studies have reported brain alterations in TMD, but most studies focused on either structure or function by a single modality of MRI and investigated static functional connectivity (FC) in TMD. By combining structural and functional MRI data, the present study aimed to identify brain regions with structural abnormalities in TMD patients and examine static and dynamic FC seeded by these regions to investigate structural brain alterations and related disrupted FC underlying the pathophysiology of TMD. METHODS We recruited 30 TMD patients and 20 healthy controls who underwent 3.0 T MRI scanning with T1-weighted images using a three-dimensional magnetization-prepared rapid gradient-echo sequence and resting state functional images using a gradient-echo echo-planar imaging sequence. Cortical thickness, volume, surface area, and subcortical volume were calculated, where brain areas with significant structural between-group differences were treated as seeds for static and dynamic FC analyses. RESULTS In this preliminary study, we found between-group alterations in sensorimotor regions including decreased cortical thickness in the right sensorimotor cortex as well as decreased volume in the left putamen and associated reduced dynamic FC with the anterior midcingulate cortex; and alterations in emotion processing and regulation regions including decreased volume/surface area in the left posterior superior temporal gyrus and associated increased dynamic FC with the precuneus in TMD patients than controls, having all p < 0.05 with corrections for multiple comparisons. CONCLUSION Our findings of structural and functional abnormalities in brain regions implicated in sensorimotor and emotional functions provided evidence for the biopsychosocial model of TMD and facilitated our understanding of the pathophysiological mechanism underlying TMD. The associations between neuroimaging results and clinical measurements of TMD warrant further exploration.
Collapse
Affiliation(s)
- Yuanyuan Yin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shushu He
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Tian
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingchen Xu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Song Chen
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Chen Z, Li Q, Lu Y, Huang G, Huang Y, Pei X, Gong Y, Zhang B, Tang X, Liu Z, Guo T, Liang F. Contralateral acupuncture for migraine without aura: a randomized trial protocol with multimodal MRI. Front Neurosci 2024; 18:1344235. [PMID: 38560045 PMCID: PMC10979701 DOI: 10.3389/fnins.2024.1344235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Migraine is a common clinical disorder, ranks as the second most disabling disease worldwide, and often manifests with unilateral onset. Contralateral acupuncture (CAT), as a classical acupuncture method, has been proven to be effective in the treatment of migraine without aura (MWoA). However, its neural mechanisms have not been investigated using multimodal magnetic resonance imaging (MRI). Methods and analysis In this multimodal neuroimaging randomized trial, a total of 96 female MWoA participants and 30 female healthy controls (HCs) will be recruited. The 96 female MWoA participants will be randomized into three groups: Group A (CAT group), Group B [ipsilateral acupuncture (IAT) group], and Group C (sham CAT group) in a 1:1:1 allocation ratio. Each group will receive 30 min of treatment every other day, three times a week, for 8 weeks, followed by an 8-week follow-up period. The primary outcome is the intensity of the migraine attack. Data will be collected at baseline (week 0), at the end of the 8-week treatment period (weeks 1-8), and during the 8-week follow-up (weeks 9-16). Adverse events will be recorded. Multimodal MRI scans will be conducted at baseline and after 8-week treatment. Discussion This study hypothesized that CAT may treat MWoA by restoring pathological alterations in brain neural activity, particularly by restoring cross-integrated functional connectivity with periaqueductal gray (PAG) as the core pathological brain region. The findings will provide scientific evidence for CAT in the treatment of MWoA. Ethics and dissemination The Medical Ethics Committee of the Second Affiliated Hospital of Yunnan University of Chinese Medicine has given study approval (approval no. 2022-006). This trial has been registered with the Chinese Clinical Trials Registry (registration no. ChiCTR2300069456). Peer-reviewed papers will be used to publicize the trial's findings. Clinical trial registration https://clinicaltrials.gov/, identifier ChiCTR2300069456.
Collapse
Affiliation(s)
- Ziwen Chen
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qifu Li
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gaoyangzi Huang
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Ya Huang
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Xianmei Pei
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Yi Gong
- Kunming Psychiatry Hospital/Yunnan University of Chinese Medicine Teaching Hospital, Kunming, China
| | - Bingkui Zhang
- Kunming Psychiatry Hospital/Yunnan University of Chinese Medicine Teaching Hospital, Kunming, China
| | - Xin Tang
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Zili Liu
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Taipin Guo
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Kaufmann A, Parmigiani S, Kawagoe T, Zabaroff E, Wells B. Two models of mind blanking. Eur J Neurosci 2024; 59:786-795. [PMID: 37778749 DOI: 10.1111/ejn.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Mind blanking is a mental state in which attention does not bring any perceptual input into conscious awareness. As this state is still largely unexplored, we suggest that a comprehensive understanding of mind blanking can be achieved through a multifaceted approach combining self-assessment methods, neuroimaging and neuromodulation. In this article, we explain how electroencephalography and transcranial magnetic stimulation could be combined to help determine whether mind blanking is associated with a lack of mental content or a lack of linguistically or conceptually determinable mental content. We also question whether mind blanking occurs spontaneously or intentionally and whether these two forms are instantiated by the same or different neural correlates.
Collapse
Affiliation(s)
- Angelica Kaufmann
- Institut für Philosophie II, Ruhr-Universität Bochum, Bochum, Germany
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| | - Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| | - Toshikazu Kawagoe
- School of Humanities and Science, Kyushu Campus, Tokai University, Kumamoto, Japan
| | - Elliot Zabaroff
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| | - Barnaby Wells
- Mind and Cognition Lab, PhiLab, University of Milan, Milan, Italy
| |
Collapse
|
12
|
van Gool R, Far A, Drenthen GS, Jansen JFA, Goijen CP, Backes WH, Linden DEJ, Merkies ISJ, Faber CG, Upadhyay J, Hoeijmakers JGJ. Peripheral Pain Captured Centrally: Altered Brain Morphology on MRI in Small Fiber Neuropathy Patients With and Without an SCN9A Gene Variant. THE JOURNAL OF PAIN 2024; 25:730-741. [PMID: 37921732 DOI: 10.1016/j.jpain.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Amir Far
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Gerhard S Drenthen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, The Netherlands
| | - Celine P Goijen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Ingemar S J Merkies
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Neurology, Curaçao Medical Center, Willemstad, Kingdom of the Netherlands, Curaçao
| | - Catharina G Faber
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Janneke G J Hoeijmakers
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| |
Collapse
|
13
|
Coppola G, Abagnale C, Sebastianelli G, Goadsby PJ. Pathophysiology of cluster headache: From the trigeminovascular system to the cerebral networks. Cephalalgia 2024; 44:3331024231209317. [PMID: 38415635 DOI: 10.1177/03331024231209317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, and Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576471. [PMID: 38328109 PMCID: PMC10849545 DOI: 10.1101/2024.01.20.576471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population-rather than individual-based inferences due to limited within-individual sampling. Here, three densely-sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely-sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously-unrecognized inter-individual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
|
15
|
Bou Sader Nehme S, Sanchez-Sarasua S, Adel R, Tuifua M, Ali A, Essawy AE, Abdel Salam S, Hleihel W, Boué-Grabot E, Landry M. P2X4 signalling contributes to hyperactivity but not pain sensitization comorbidity in a mouse model of attention deficit/hyperactivity disorder. Front Pharmacol 2024; 14:1288994. [PMID: 38239187 PMCID: PMC10794506 DOI: 10.3389/fphar.2023.1288994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsivity that often persist until adulthood. Frequent comorbid disorders accompany ADHD and two thirds of children diagnosed with ADHD also suffer from behavioural disorders and from alteration of sensory processing. We recently characterized the comorbidity between ADHD-like symptoms and pain sensitisation in a pharmacological mouse model of ADHD, and we demonstrated the implication of the anterior cingulate cortex and posterior insula. However, few studies have explored the causal mechanisms underlying the interactions between ADHD and pain. The implication of inflammatory mechanisms has been suggested but the signalling pathways involved have not been explored. Methods: We investigated the roles of purinergic signalling, at the crossroad of pain and neuroinflammatory pathways, by using a transgenic mouse line that carries a total deletion of the P2X4 receptor. Results: We demonstrated that P2X4 deletion prevents hyperactivity in the mouse model of ADHD. In contrast, the absence of P2X4 lowered thermal pain thresholds in sham conditions and did not affect pain sensitization in ADHD-like conditions. We further analysed microglia reactivity and the expression of inflammatory markers in wild type and P2X4KO mice. Our results revealed that P2X4 deletion limits microglia reactivity but at the same time exerts proinflammatory effects in the anterior cingulate cortex and posterior insula. Conclusion: This dual role of P2X4 could be responsible for the differential effects noted on ADHD-like symptoms and pain sensitization and calls for further studies to investigate the therapeutic benefit of targeting the P2X4 receptor in ADHD patients.
Collapse
Affiliation(s)
- Sarah Bou Sader Nehme
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Sandra Sanchez-Sarasua
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
- Faculty of Health Sciences, University of Jaume I, Castellon, Spain
| | - Ramy Adel
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marie Tuifua
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
| | - Awatef Ali
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amina E. Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sherine Abdel Salam
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Eric Boué-Grabot
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
| | - Marc Landry
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
| |
Collapse
|
16
|
Osumi M, Sumitani M, Iwatsuki K, Hoshiyama M, Imai R, Morioka S, Hirata H. Resting-state Electroencephalography Microstates Correlate with Pain Intensity in Patients with Complex Regional Pain Syndrome. Clin EEG Neurosci 2024; 55:121-129. [PMID: 37844609 DOI: 10.1177/15500594231204174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Objective: Severe pain and other symptoms in complex regional pain syndrome (CRPS), such as allodynia and hyperalgesia, are associated with abnormal resting-state brain network activity. No studies to date have examined resting-state brain networks in CRPS patients using electroencephalography (EEG), which can clarify the temporal dynamics of brain networks. Methods: We conducted microstate analysis using resting-state EEG signals to prospectively reveal direct correlations with pain intensity in CRPS patients (n = 17). Five microstate topographies were fitted back to individual CRPS patients' EEG data, and temporal microstate measures were subsequently calculated. Results: Our results revealed five distinct microstates, termed microstates A to E, from resting EEG data in patients with CRPS. Microstates C, D and E were significantly correlated with pain intensity before pain treatment. Particularly, microstates D and E were significantly improved together with pain alleviation after pain treatment. As microstates D and E in the present study have previously been related to attentional networks and the default mode network, improvement in these networks might be related to pain relief in CRPS patients. Conclusions: The functional alterations of these brain networks affected the pain intensity of CRPS patients. Therefore, EEG microstate analyses may be used to identify surrogate markers for pain intensity.
Collapse
Affiliation(s)
- Michihiro Osumi
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Health Sciences, Faculty of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Ryota Imai
- School of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
17
|
Qiu E, Xing X, Wang Y, Tian L. Altered functional connectivity of the thalamus and salience network in patients with cluster headache: a pilot study. Neurol Sci 2024; 45:269-276. [PMID: 37578630 DOI: 10.1007/s10072-023-07011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Previous studies have shown that the salience network (SN) and the thalamus are involved in cluster headache (CH) attacks. However, very little is known regarding the altered thalamus-SN functional connectivity in CH. The aim of this study was to explore alterations of functional connectivity between the thalamus and the SN in patients with CH to further gain insight into the pathophysiology of CH. MATERIALS AND METHODS The resting-state functional MRI (rs-fMRI) data of 21 patients with CH in the headache attack remission state during in-bout periods and 21 age- and sex-matched normal controls were obtained. The rs-fMRI data were analyzed by the independent component analysis (ICA) method, and the thalamus-SN functional connectivity in patients with right-sided and left-sided CH was compared with that in normal controls. RESULTS Decreased functional connectivity was found between the thalamus, both ipsilateral and contralateral to the headache side, and the SN during headache remission state in both right-sided CH patients and left-sided CH patients. CONCLUSIONS The findings suggest that the decreased functional connectivity between the thalamus and SN might be one of the pathologies underpinning the CH. This helps us to understand better the nature of the brain dysfunction in CH and the basic pathologies of CH, which implies that this deserves further investigation.
Collapse
Affiliation(s)
- Enchao Qiu
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Xinbo Xing
- Department of Radiology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yan Wang
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lixia Tian
- Department of Biomedical Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
18
|
Mathew J, Perez TM, Adhia DB, De Ridder D, Mani R. Is There a Difference in EEG Characteristics in Acute, Chronic, and Experimentally Induced Musculoskeletal Pain States? a Systematic Review. Clin EEG Neurosci 2024; 55:101-120. [PMID: 36377346 DOI: 10.1177/15500594221138292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroencephalographic (EEG) alterations have been demonstrated in acute, chronic, and experimentally induced musculoskeletal (MSK) pain conditions. However, there is no cumulative evidence on the associated EEG characteristics differentiating acute, chronic, and experimentally induced musculoskeletal pain states, especially compared to healthy controls. The present systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (PRISMA) to review and summarize available evidence for cortical brain activity and connectivity alterations in acute, chronic, and experimentally induced MSK pain states. Five electronic databases were systematically searched from their inception to 2022. A total of 3471 articles were screened, and 26 full articles (five studies on chronic pain and 21 studies on experimentally induced pain) were included for the final synthesis. Using the Downs and Black risk of assessment tool, 92% of the studies were assessed as low to moderate quality. The review identified a 'very low' level of evidence for the changes in EEG and subjective outcome measures for both chronic and experimentally induced MSK pain based on the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. Overall, the findings of this review indicate a trend toward decreased alpha and beta EEG power in evoked chronic clinical pain conditions and increased theta and alpha power in resting-state EEG recorded from chronic MSK pain conditions. EEG characteristics are unclear under experimentally induced pain conditions.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Tyson Michael Perez
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Meeker TJ, Saffer MI, Frost J, Chien JH, Mullins RJ, Cooper S, Bienvenu OJ, Lenz FA. Vigilance to Painful Laser Stimuli is Associated with Increased State Anxiety and Tense Arousal. J Pain Res 2023; 16:4151-4164. [PMID: 38058982 PMCID: PMC10697823 DOI: 10.2147/jpr.s412782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Pain is frequently accompanied by enhanced arousal and hypervigilance to painful sensations. Here, we describe our findings in an experimental vigilance task requiring healthy participants to indicate when randomly timed moderately painful stimuli occur in a long train of mildly painful stimuli. Methods During a continuous performance task with painful laser stimuli (CPTpain), 18 participants rated pain intensity, unpleasantness, and salience. We tested for a vigilance decrement over time using classical metrics including correct targets (hits), incorrectly identified non-targets (false alarms), hit reaction time, and false alarm reaction time. We measured state anxiety and tense arousal before and after the task. Results We found a vigilance decrement across four 12.5-minute blocks of painful laser stimuli in hits [F3,51=2.91; p=0.043; time block 1>block 4 (t=2.77; p=0.035)]. Both self-report state anxiety (tpaired,17=3.34; p=0.0039) and tense arousal (tpaired,17=3.20; p=0.0053) increased after the task. We found a vigilance decrement during our laser pain vigilance task consistent with vigilance decrements found in other stimulus modalities. Furthermore, state anxiety positively correlated with tense arousal. Discussion CPTpain acutely increased tense arousal and state anxiety, consistent with previous results implicating the reciprocal interaction of state anxiety and acute painful sensations and the role of pain in augmenting tense arousal. These results may indicate a psychological process which predisposes the hypervigilant to developing greater acute pain, resulting in positive feedback, greater pain and anxiety.
Collapse
Affiliation(s)
- Timothy J Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Mark I Saffer
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jodie Frost
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jui-Hong Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Roger J Mullins
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Sean Cooper
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - O Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Fred A Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. NATURE MENTAL HEALTH 2023; 1:827-840. [PMID: 37974566 PMCID: PMC10653280 DOI: 10.1038/s44220-023-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2023] [Indexed: 11/19/2023]
Abstract
People spend a remarkable 30-50% of awake life thinking about something other than what they are currently doing. These experiences of being "off-task" can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental wellbeing and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers, and facilitate therapy developments toward the goals of better understanding and improving mental health.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University
| | - Julia W. Y. Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary
| | | | | | | |
Collapse
|
21
|
Ma M, Li Y, Shao Y, Weng X. Effect of total sleep deprivation on effective EEG connectivity for young male in resting-state networks in different eye states. Front Neurosci 2023; 17:1204457. [PMID: 37928738 PMCID: PMC10620317 DOI: 10.3389/fnins.2023.1204457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Background Many studies have investigated the effect of total sleep deprivation (TSD) on resting-state functional networks, especially the default mode network (DMN) and sensorimotor network (SMN), using functional connectivity. While it is known that the activities of these networks differ based on eye state, it remains unclear how TSD affects them in different eye states. Therefore, we aimed to examine the effect of TSD on DMN and SMN in different eye states using effective functional connectivity via isolated effective coherence (iCoh) in exact low-resolution brain electromagnetic tomography (eLORETA). Methods Resting-state electroencephalogram (EEG) signals were collected from 24 male college students, and each participant completed a psychomotor vigilance task (PVT) while behavioral data were acquired. Each participant underwent 36-h TSD, and the data were acquired in two sleep-deprivation times (rested wakefulness, RW: 0 h; and TSD: 36 h) and two eye states (eyes closed, EC; and eyes open, EO). Changes in neural oscillations and effective connectivity were compared based on paired t-test. Results The behavioral results showed that PVT reaction time was significantly longer in TSD compared with that of RW. The EEG results showed that in the EO state, the activity of high-frequency bands in the DMN and SMN were enhanced compared to those of the EC state. Furthermore, when compared with the DMN and SMN of RW, in TSD, the activity of DMN was decreased, and SMN was increased. Moreover, the changed effective connectivity in the DMN and SMN after TSD was positively correlated with an increased PVT reaction time. In addition, the effective connectivity in the different network (EO-EC) of the SMN was reduced in the β band after TSD compared with that of RW. Conclusion These findings indicate that TSD impairs alertness and sensory information input in the SMN to a greater extent in an EO than in an EC state.
Collapse
Affiliation(s)
- Mengke Ma
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yutong Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Sanchis-Alfonso V, Beser-Robles M, Ten-Esteve A, Ramírez-Fuentes C, Alberich-Bayarri Á, Espert R, García-Larrea L, Martí-Bonmatí L. Brain network functional connectivity changes in patients with anterior knee pain: a resting-state fMRI exploratory study. Eur Radiol Exp 2023; 7:60. [PMID: 37806998 PMCID: PMC10560652 DOI: 10.1186/s41747-023-00378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND This study investigates the functional brain connectivity in patients with anterior knee pain (AKP). While biomechanical models are frequently employed to investigate AKP, it is important to recognize that pain can manifest even in the absence of structural abnormalities. Leveraging the capabilities of functional magnetic resonance imaging (fMRI), this research aims to investigate the brain mechanisms present in AKP patients. METHODS Forty-five female subjects (24 AKP patients, 21 controls) underwent resting-state fMRI and T1-weighted structural MRI. Functional brain connectivity patterns were analyzed, focusing on pain network areas, and the influence of catastrophizing thoughts was evaluated. RESULTS Comparing patients and controls, several findings emerged. First, patients with AKP exhibited increased correlation between the right supplementary motor area and cerebellum I, as well as decreased correlation between the right insula and the left rostral prefrontal cortex and superior frontal gyrus. Second, in AKP patients with catastrophizing thoughts, there was increased correlation of the left lateral parietal cortex with two regions of the right cerebellum (II and VII) and the right pallidum, and decreased correlation between the left medial frontal gyrus and the right thalamus. Furthermore, the correlation between these regions showed promising results for discriminating AKP patients from controls, achieving a cross-validation accuracy of 80.5%. CONCLUSIONS Resting-state fMRI revealed correlation differences in AKP patients compared to controls and based on catastrophizing thoughts levels. These findings shed light on neural correlates of chronic pain in AKP, suggesting that functional brain connectivity alterations may be linked to pain experience in this population. RELEVANCE STATEMENT Etiopathogenesis of pain in anterior knee pain patients might not be limited to the knee, but also to underlying alterations in the central nervous system: cortical changes might lead a perpetuation of pain. KEY POINTS • Anterior knee pain patients exhibit distinct functional brain connectivity compared to controls, and among catastrophizing subgroups. • Resting-state fMRI reveals potential for discriminating anterior knee pain patients with 80.5% accuracy. • Functional brain connectivity differences improve understanding of pain pathogenesis and objective anterior knee pain identification.
Collapse
Affiliation(s)
| | - María Beser-Robles
- Biomedical Imaging Research Group (GIBI230), Hospital Universitario Y Politécnico E Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), Hospital Universitario Y Politécnico E Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Technologies for Health and Well-Being, Polytechnic University of Valencia, Valencia, Spain
| | | | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230), Hospital Universitario Y Politécnico E Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Raúl Espert
- Departamento de Psicobiología, Unidad de Neuropsicología, Hospital Clinic Universitari, Universidad de Valencia, Valencia, Spain
| | - Luis García-Larrea
- Center for Neuroscience Research of Lyon (CRNL), NeuroPain Team, U 1028, INSERM, Lyon-1 University, Bron, France
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), Hospital Universitario Y Politécnico E Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Radiology Department, Hospital Universitario Y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
23
|
Boulakis PA, Mortaheb S, van Calster L, Majerus S, Demertzi A. Whole-Brain Deactivations Precede Uninduced Mind-Blanking Reports. J Neurosci 2023; 43:6807-6815. [PMID: 37643862 PMCID: PMC10552942 DOI: 10.1523/jneurosci.0696-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Mind-blanking (MB) is termed as the inability to report our immediate-past mental content. In contrast to mental states with reportable content, such as mind-wandering or sensory perceptions, the neural correlates of MB started getting elucidated only recently. A notable particularity that pertains to MB studies is the way MB is instructed for reporting, like by deliberately asking participants to "empty their minds." Such instructions were shown to induce fMRI activations in frontal brain regions, typically associated with metacognition and self-evaluative processes, suggesting that MB may be a result of intentional mental content suppression. Here, we aim at examining this hypothesis by determining the neural correlates of MB without induction. Using fMRI combined with experience-sampling in 31 participants (22 female), univariate analysis of MB reports revealed deactivations in occipital, frontal, parietal, and thalamic areas, but no activations in prefrontal regions. These findings were confirmed using Bayesian region-of-interest analysis on areas previously shown to be implicated in induced MB, where we report evidence for frontal deactivations during MB reports compared with other mental states. Contrast analysis between reports of MB and content-oriented mental states also revealed deactivations in the left angular gyrus. We propose that these effects characterize a neuronal profile of MB, where key thalamocortical nodes are unable to communicate and formulate reportable content. Collectively, we show that study instructions for MB lead to differential neural activation. These results provide mechanistic insights linked to the phenomenology of MB and point to the possibility of MB being expressed in different forms.SIGNIFICANCE STATEMENT This study explores how brain activity changes when individuals report unidentifiable thoughts, a phenomenon known as mind-blanking (MB). It aims to detect changes in brain activations and deactivations when MB is reported spontaneously, as opposed to the neural responses that have been previously reported when MB is induced. By means of brain imaging and experience-sampling, the study points to reduced brain activity in a wide number of regions, including those mesio-frontally which were previously detected as activated during induced MB. These results enhance our understanding of the complexity of spontaneous thinking and contribute to broader discussions on consciousness and reportable experience.
Collapse
Affiliation(s)
- Paradeisios Alexandros Boulakis
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - Sepehr Mortaheb
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - Laurens van Calster
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Steve Majerus
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
24
|
Gaynor N, Fitzgerald L. Mind-Wandering and Its Relationship With Psychological Wellbeing and Obsessive-Compulsive Symptomatology in the Context of Covid-19. Psychol Rep 2023:332941231203563. [PMID: 37787173 DOI: 10.1177/00332941231203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mind-wandering (MW) as a research topic has received considerable attention over the last several decades. The recent differentiation between spontaneous and deliberate MW has suggested a particular effect of the former on psychopathology; in that increased spontaneous MW may precede mental illness. The present study sought to explore MW as a potential contributing factor to poor mental health in the context of the Covid-19 pandemic. More specifically, we sought to determine firstly, whether the effects of MW frequency, type and content on subjective psychological wellbeing was consistent with previous findings after controlling for the impacts of Covid-related stress. Secondly, previous research has demonstrated an effect of both Covid-stress and spontaneous MW on the experience of obsessive-compulsive symptomatology (OCS), and so the present study explored this relationship further by assessing whether Covid-stress mediated the relationship between spontaneous MW and OCS. Participants completed measures of MW, OCS and psychological wellbeing through an online questionnaire. The results indicated that increased spontaneous MW was indicative of both poorer subjective psychological wellbeing and OCS, with Covid-stress partially mediating the relationship between spontaneous MW and OCS. Our findings provide further support for the adverse effect of unintentional MW on psychological wellbeing, as well as for the differentiation between both forms of the cognitive phenomenon. Additionally, they provide an important insight into one of the factors that may have preceded poor mental health among the Irish population during Covid-19. Future research may build upon the present study by exploring similar relationships among clinical populations.
Collapse
Affiliation(s)
- Niamh Gaynor
- School of Psychology, Dublin City University, Dublin, Ireland
| | - Lisa Fitzgerald
- School of Psychology, Dublin City University, Dublin, Ireland
| |
Collapse
|
25
|
He H, Hu L, Tan S, Tang Y, Duan M, Yao D, Zhao G, Luo C. Functional Changes of White Matter Are Related to Human Pain Sensitivity during Sustained Nociception. Bioengineering (Basel) 2023; 10:988. [PMID: 37627873 PMCID: PMC10451736 DOI: 10.3390/bioengineering10080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is considered an unpleasant perceptual experience associated with actual or potential somatic and visceral harm. Human subjects have different sensitivity to painful stimulation, which may be related to different painful response pattern. Excellent studies using functional magnetic resonance imaging (fMRI) have found the effect of the functional organization of white matter (WM) on the descending pain modulatory system, which suggests that WM function is feasible during pain modulation. In this study, 26 pain sensitive (PS) subjects and 27 pain insensitive (PIS) subjects were recruited based on cold pressor test. Then, all subjects underwent the cold bottle test (CBT) in normal (26 degrees temperature stimulating) and cold (8 degrees temperature stimulating) conditions during fMRI scan, respectively. WM functional networks were obtained using K-means clustering, and the functional connectivity (FC) was assessed among WM networks, as well as gray matter (GM)-WM networks. Through repeated measures ANOVA, decreased FC was observed between the GM-cerebellum network and the WM-superior temporal network, as well as the WM-sensorimotor network in the PS group under the cold condition, while this difference was not found in PIS group. Importantly, the changed FC was positively correlated with the state and trait anxiety scores, respectively. This study highlighted that the WM functional network might play an integral part in pain processing, and an altered FC may be related to the descending pain modulatory system.
Collapse
Affiliation(s)
- Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
| | - Lan Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
| | - Saiying Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
| | - Yingjie Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Guocheng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.H.); (L.H.); (S.T.); (Y.T.); (M.D.); (D.Y.)
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| |
Collapse
|
26
|
Tabibnia G, Ghahremani DG, Pochon JBF, Diaz MP, London ED. Negative affect and craving during abstinence from smoking are both linked to default mode network connectivity. Drug Alcohol Depend 2023; 249:109919. [PMID: 37270935 PMCID: PMC10516582 DOI: 10.1016/j.drugalcdep.2023.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Negative affect and craving during abstinence from cigarettes predict resumption of smoking. Therefore, understanding their neural substrates may guide development of new interventions. Negative affect and craving have traditionally been linked to functions of the brain's threat and reward networks, respectively. However, given the role of default mode network (DMN), particularly the posterior cingulate cortex (PCC), in self-related thought, we examined whether DMN activity underlies both craving and negative affective states in adults who smoke. METHODS 46 adults who smoke abstained from smoking overnight and underwent resting-state fMRI, after self-reporting their psychological symptoms (negative affect) and craving on the Shiffman-Jarvik Withdrawal Scale and state anxiety (negative affect) on the Spielberger State-Trait Anxiety Inventory. Within-DMN functional connectivity using 3 different anterior PCC seeds was tested for correlations with self-report measures. Additionally, independent component analysis with dual regression was performed to measure associations of self-report with whole-brain connectivity of the DMN component. RESULTS Craving correlated positively with connectivity of all three anterior PCC seeds with posterior PCC clusters (pcorr<0.04). The measures of negative affective states correlated positively with connectivity of the DMN component to various brain regions, including posterior PCC (pcorr=0.02) and striatum (pcorr<0.008). Craving and state anxiety were correlated with connectivity of an overlapping region of PCC (pcorr=0.003). Unlike the state measures, nicotine dependence and trait anxiety were not associated with PCC connectivity within DMN. CONCLUSIONS Although negative affect and craving are distinct subjective states, they appear to share a common neural pathway within the DMN, particularly involving the PCC.
Collapse
Affiliation(s)
- Golnaz Tabibnia
- Department of Psychological Science, University of California, Irvine, CA, USA.
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jean-Baptiste F Pochon
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Maylen Perez Diaz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Chen J, Wang X, Xu Z. The Relationship Between Chronic Pain and Cognitive Impairment in the Elderly: A Review of Current Evidence. J Pain Res 2023; 16:2309-2319. [PMID: 37441267 PMCID: PMC10335316 DOI: 10.2147/jpr.s416253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chronic pain and cognitive impairment are prevalent geriatric syndromes in the population of older adults, and they are the main cause of disability in people over sixty-five years of age. As the global population continues to age, chronic pain and cognitive impairment will affect an increasing number of older adults. While numerous studies in recent years have shown that chronic pain is associated with cognitive decline, the exact mechanisms linking the two remain unclear. In this review, we aim to present the available evidence on the connection between chronic pain and cognitive impairment and to discuss the potential mechanisms by which chronic pain affects cognitive function. In addition, we review potential therapeutic interventions targeting psychological factors, microglia activation, and altered gut flora that may improve and prevent cognitive decline in people with chronic pain.
Collapse
Affiliation(s)
- Jintao Chen
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Xinyi Wang
- Department of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Zherong Xu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
28
|
Li MT, Sun JW, Zhan LL, Antwi CO, Lv YT, Jia XZ, Ren J. The effect of seed location on functional connectivity: evidence from an image-based meta-analysis. Front Neurosci 2023; 17:1120741. [PMID: 37325032 PMCID: PMC10264592 DOI: 10.3389/fnins.2023.1120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Default mode network (DMN) is the most involved network in the study of brain development and brain diseases. Resting-state functional connectivity (rsFC) is the most used method to study DMN, but different studies are inconsistent in the selection of seed. To evaluate the effect of different seed selection on rsFC, we conducted an image-based meta-analysis (IBMA). Methods We identified 59 coordinates of seed regions of interest (ROIs) within the default mode network (DMN) from 11 studies (retrieved from Web of Science and Pubmed) to calculate the functional connectivity; then, the uncorrected t maps were obtained from the statistical analyses. The IBMA was performed with the t maps. Results We demonstrate that the overlap of meta-analytic maps across different seeds' ROIs within DMN is relatively low, which cautions us to be cautious with seeds' selection. Discussion Future studies using the seed-based functional connectivity method should take the reproducibility of different seeds into account. The choice of seed may significantly affect the connectivity results.
Collapse
Affiliation(s)
- Meng-Ting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Jia-Wei Sun
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Lin-Lin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | | | - Ya-Ting Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xi-Ze Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- School of Psychology, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
29
|
Stroman PW, Powers JM, Ioachim G. Proof-of-concept of a novel structural equation modelling approach for the analysis of functional magnetic resonance imaging data applied to investigate individual differences in human pain responses. Hum Brain Mapp 2023; 44:2523-2542. [PMID: 36773275 PMCID: PMC10028631 DOI: 10.1002/hbm.26228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
A novel network analysis method is demonstrated for applications with functional magnetic resonance imaging (fMRI) data. The method is based on structural equation modeling (SEM) plus modeling of physiological responses in order to explain blood oxygenation-level dependent (BOLD) responses across interconnected regions. The method, termed structural and physiological modeling (SAPM) aims to overcome a weakness of previous analysis methods by estimating both input and output signaling of every region of a network. The results also provide weighting factors (B) which describe the influence of each input signal to a region on its output signaling to another region. The SAPM method is demonstrated by applying it to fMRI data from the brainstem and spinal cord in 55 healthy participants undergoing repeated applications of a heat pain stimulation paradigm. Data are also analyzed using our established SEM method for comparison. The results with both methods indicate that individual differences in nociceptive processing are mediated by differences in descending regulation of spinal cord neurons under the influence of both the nucleus tractus solitarius and periaqueductal gray region. The SAPM results show that BOLD responses in the entire network can be explained during all periods of the stimulation paradigm based on two latent (unobserved) input signaling sources, and a model of the predicted BOLD responses to the heat stimulus. The results demonstrate the concept of our novel SAPM method and provide evidence for its validity. Additional studies are needed to further develop the method and its applications to investigations of complex neural processes across networks.
Collapse
Affiliation(s)
- Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Queen's University, Kingston, Ontario, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
30
|
Büchel C. The role of expectations, control and reward in the development of pain persistence based on a unified model. eLife 2023; 12:81795. [PMID: 36972108 PMCID: PMC10042542 DOI: 10.7554/elife.81795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic, or persistent pain affects more than 10% of adults in the general population. This makes it one of the major physical and mental health care problems. Although pain is an important acute warning signal that allows the organism to take action before tissue damage occurs, it can become persistent and its role as a warning signal thereby inadequate. Although per definition, pain can only be labeled as persistent after 3 months, the trajectory from acute to persistent pain is likely to be determined very early and might even start at the time of injury. The biopsychosocial model has revolutionized our understanding of chronic pain and paved the way for psychological treatments for persistent pain, which routinely outperform other forms of treatment. This suggests that psychological processes could also be important in shaping the very early trajectory from acute to persistent pain and that targeting these processes could prevent the development of persistent pain. In this review, we develop an integrative model and suggest novel interventions during early pain trajectories, based on predictions from this model.
Collapse
Affiliation(s)
- Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Chen F, Zhang S, Li P, Xu K, Liu C, Geng B, Piao R, Liu P. Disruption of Periaqueductal Gray-default Mode Network Functional Connectivity in Patients with Crohn's Disease with Abdominal Pain. Neuroscience 2023; 517:96-104. [PMID: 36898497 DOI: 10.1016/j.neuroscience.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Abdominal pain in Crohn's disease (CD) has been known to be associated with changes in the central nervous system. The periaqueductal gray (PAG) plays a well-established role in pain processing. However, the role of PAG-related network and the effect of pain on the network in CD remain unclear.Resting-state functional magnetic imaging (fMRI) data were collected from 24 CD patients in remission with abdominal pain, 24 CD patients without abdominal pain and 28 healthy controls (HCs). Using the subregions of PAG (dorsomedial (dmPAG), dorsolateral (dlPAG), lateral (lPAG) and ventrolateral (vlPAG)) as seeds, the seed-based FC maps were calculated and one-way analysis of variance (ANOVA) was performed to investigate the differences among the three groups.Results showed that the group differences were mainly involved in the FC of the vlPAG with the precuneus, medial prefrontal cortex (mPFC) as well as orbitofrontal cortex (OFC), and the FC of the right lateral PAG (lPAG) with the precuneus, inferior parietal lobule (IPL), angular gyrus and premotor cortex. The FC values of all these regions decreased successively in the order of HCs, CD without abdominal pain and CD with abdominal pain. The pain score was negatively correlated with the FC of the l/vlPAG with the precuneus, angular gyrus and mPFC in CD patients with abdominal pain.This study implicated the disrupt communication between the PAG and the default mode network (DMN). These findings complemented neuroimaging evidence for the pathophysiology of visceral pain in CD patients.
Collapse
Affiliation(s)
- Fenrong Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xi'an 710003, China
| | - Shuming Zhang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Pengyu Li
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Ke Xu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Chengxiang Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Bowen Geng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Ruiqing Piao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China.
| |
Collapse
|
32
|
Altered functional connectivity within and between resting-state networks in patients with vestibular migraine. Neuroradiology 2023; 65:591-598. [PMID: 36520172 DOI: 10.1007/s00234-022-03102-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Previous functional magnetic resonance imaging studies have substantiated changes in multiple brain regions of functional activity in patients with vestibular migraine. However, few studies have assessed functional connectivity within and between specific brain networks in vestibular migraine. METHODS Our study subjects included 37 patients with vestibular migraine and 35 healthy controls, and the quality of magnetic resonance images of all subjects met the requirements. Independent component analysis was performed to identify resting-state networks, and we investigated changes in functional connectivity patterns within and between brain networks. We also used Pearson correlation analysis to assess the relationship between changes in functional connectivity and the clinical features of patients with vestibular migraine. RESULTS A total of 14 independent components were identified. Compared to healthy controls, patients with vestibular migraine exhibited decreased intra-network functional connectivity in the executive control network and weakened functional connectivity between the anterior default mode network and the ventral attention network, between the anterior default mode network and the salience network, and between the right frontoparietal network and the auditory network. Moreover, the functional connectivity between the salience network and the dorsal attention network was increased. However, the functional connectivity of networks and clinical characteristics of vestibular migraine patients did not demonstrate any significant correlation. CONCLUSION In conclusion, our study suggested that patients with vestibular migraine also have abnormal multisensory integration during the interictal period and that the attention network is involved. Changing within- and between-network functional connectivity may indicate that vestibular cortex areas are in a sensitive state.
Collapse
|
33
|
Wong YS, Willoughby AR, Machado L. Reconceptualizing mind wandering from a switching perspective. PSYCHOLOGICAL RESEARCH 2023; 87:357-372. [PMID: 35348846 PMCID: PMC9928802 DOI: 10.1007/s00426-022-01676-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Mind wandering is a universal phenomenon in which our attention shifts away from the task at hand toward task-unrelated thoughts. Despite it inherently involving a shift in mental set, little is known about the role of cognitive flexibility in mind wandering. In this article we consider the potential of cognitive flexibility as a mechanism for mediating and/or regulating the occurrence of mind wandering. Our review begins with a brief introduction to the prominent theories of mind wandering-the executive failure hypothesis, the decoupling hypothesis, the process-occurrence framework, and the resource-control account of sustained attention. Then, after discussing their respective merits and weaknesses, we put forward a new perspective of mind wandering focused on cognitive flexibility, which provides an account more in line with the data to date, including why older populations experience a reduction in mind wandering. After summarizing initial evidence prompting this new perspective, drawn from several mind-wandering and task-switching studies, we recommend avenues for future research aimed at further understanding the importance of cognitive flexibility in mind wandering.
Collapse
Affiliation(s)
- Yi-Sheng Wong
- Department of Psychology and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand.
- Brain Research New Zealand, Auckland, New Zealand.
- School of Psychology and Clinical Language Sciences, University of Reading Malaysia, Nusajaya, Malaysia.
| | - Adrian R Willoughby
- School of Psychology and Clinical Language Sciences, University of Reading Malaysia, Nusajaya, Malaysia
- Department of Psychology, Monash University Malaysia, Subang Jaya, Malaysia
| | - Liana Machado
- Department of Psychology and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand
- Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
34
|
Sarnoff RP, Bhatt RR, Osadchiy V, Dong T, Labus JS, Kilpatrick LA, Chen Z, Subramanyam V, Zhang Y, Ellingson BM, Naliboff B, Chang L, Mayer EA, Gupta A. A multi-omic brain gut microbiome signature differs between IBS subjects with different bowel habits. Neuropharmacology 2023; 225:109381. [PMID: 36539012 DOI: 10.1016/j.neuropharm.2022.109381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Alterations of the brain-gut-microbiome system (BGM) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), yet bowel habit-specific alterations have not been elucidated. In this cross-sectional study, we apply a systems biology approach to characterize BGM patterns related to predominant bowel habit. Fecal samples and resting state fMRI were obtained from 102 premenopausal women (36 constipation-predominant IBS (IBS-C), 27 diarrhea-predominant IBS (IBS-D), 39 healthy controls (HCs)). Data integration analysis using latent components (DIABLO) was used to integrate data from the phenome, microbiome, metabolome, and resting-state connectome to predict HCs vs IBS-C vs IBS-D. Bloating and visceral sensitivity, distinguishing IBS from HC, were negatively associated with beneficial microbes and connectivity involving the orbitofrontal cortex. This suggests that gut interactions may generate aberrant central autonomic and descending pain pathways in IBS. The connection between IBS symptom duration, key microbes, and caudate connectivity may provide mechanistic insight to the chronicity of pain in IBS. Compared to IBS-C and HCs, IBS-D had higher levels of many key metabolites including tryptophan and phenylalanine, and increased connectivity between the sensorimotor and default mode networks; thus, suggestingan influence on diarrhea, self-related thoughts, and pain perception in IBS-D ('bottom-up' mechanism). IBS-C's microbiome and metabolome resembled HCs, but IBS-C had increased connectivity in the default mode and salience networks compared to IBS-D, which may indicate importance of visceral signals, suggesting a more 'top-down' BGM pathophysiology. These BGM characteristics highlight possible mechanistic differences for variations in the IBS bowel habit phenome. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
Affiliation(s)
- Rachel P Sarnoff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Ravi R Bhatt
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tien Dong
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA; UCLA Microbiome Center, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jennifer S Labus
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Lisa A Kilpatrick
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Zixi Chen
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA
| | | | - Yurui Zhang
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA
| | - Benjamin M Ellingson
- Departments of Radiological Sciences, Psychiatry, and Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bruce Naliboff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Lin Chang
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA; UCLA Microbiome Center, USA.
| | - Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA; UCLA Microbiome Center, USA.
| |
Collapse
|
35
|
Detailed organisation of the human midbrain periaqueductal grey revealed using ultra-high field magnetic resonance imaging. Neuroimage 2023; 266:119828. [PMID: 36549431 DOI: 10.1016/j.neuroimage.2022.119828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The midbrain periaqueductal grey (PAG) is a critical region for the mediation of pain-related behavioural responses. Neuronal tract tracing techniques in experimental animal studies have demonstrated that the lateral column of the PAG (lPAG) displays a crude somatotopy, which is thought to be critical for the selection of contextually appropriate behavioural responses, without the need for higher brain input. In addition to the different behavioural responses to cutaneous and muscle pain - active withdrawal versus passive coping - there is evidence that cutaneous pain is processed in the region of the lPAG and muscle pain in the adjacent ventrolateral PAG (vlPAG). Given the fundamental nature of these behavioural responses to cutaneous and muscle pain, these PAG circuits are assumed to have been preserved, though yet to be definitively documented in humans. Using ultra-high field (7-Tesla) functional magnetic resonance imaging we determined the locations of signal intensity changes in the PAG during noxious cutaneous heat stimuli and muscle pain in healthy control participants. Images were processed and blood oxygen level dependant (BOLD) signal changes within the PAG determined. It was observed that noxious cutaneous stimulation of the lip, cheek, and ear evoked maximal increases in BOLD activation in the rostral contralateral PAG, whereas noxious cutaneous stimulation of the thumb and toe evoked increases in the caudal contralateral PAG. Analysis of individual participants demonstrated that these activations were located in the lPAG. Furthermore, we found that deep muscular pain evoked the greatest increases in signal intensity in the vlPAG. These data suggest that the crude somatotopic organization of the PAG may be phyletically preserved between experimental animals and humans, with a body-face delineation capable of producing an appropriate behavioural response based on the location and tissue origin of a noxious stimulus.
Collapse
|
36
|
Song I, Lee TH. Considering dynamic nature of the brain: the clinical importance of connectivity variability in machine learning classification and prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525765. [PMID: 36747828 PMCID: PMC9901018 DOI: 10.1101/2023.01.26.525765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain connectivity of resting-state fMRI (rs-fMRI) represents an intrinsic state of brain architecture, and it has been used as a useful neural marker for detecting psychiatric conditions as well as for predicting psychosocial characteristics. However, most studies using brain connectivity have focused more on the strength of functional connectivity over time (static-FC) but less attention to temporal characteristics of connectivity changes (FC-variability). The primary goal of the current study was to investigate the effectiveness of using the FC-variability in classifying an individual's pathological characteristics from others and predicting psychosocial characteristics. In addition, the current study aimed to prove that benefits of the FC-variability are reliable across various analysis procedures. To this end, three open public large resting-state fMRI datasets including individuals with Autism Spectrum Disorder (ABIDE; N = 1249), Schizophrenia disorder (COBRE; N = 145), and typical development (NKI; N = 672) were utilized for the machine learning (ML) classification and prediction based on their static-FC and the FC-variability metrics. To confirm the robustness of FC-variability utility, we benchmarked the ML classification and prediction with various brain parcellations and sliding window parameters. As a result, we found that the ML performances were significantly improved when the ML included FC-variability features in classifying pathological populations from controls (e.g., individuals with autism spectrum disorder vs. typical development) and predicting psychiatric severity (e.g., score of autism diagnostic observation schedule), regardless of parcellation selection and sliding window size. Additionally, the ML performance deterioration was significantly prevented with FC-variability features when excessive features were inputted into the ML models, yielding more reliable results. In conclusion, the current finding proved the usefulness of the FC-variability and its reliability.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech
- School of Neuroscience, Virginia Tech
| |
Collapse
|
37
|
Sanmugananthan VV, Cheng JC, Hemington KS, Rogachov A, Osborne NR, Bosma RL, Kim JA, Inman RD, Davis KD. Can we characterize A-P/IAP behavioural phenotypes in people with chronic pain? FRONTIERS IN PAIN RESEARCH 2023; 4:1057659. [PMID: 36874441 PMCID: PMC9975728 DOI: 10.3389/fpain.2023.1057659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Two behavioural phenotypes in healthy people have been delineated based on their intrinsic attention to pain (IAP) and whether their reaction times (RT) during a cognitively-demanding task are slower (P-type) or faster (A-type) during experimental pain. These behavioural phenotypes were not previously studied in chronic pain populations to avoid using experimental pain in a chronic pain context. Since pain rumination (PR) may serve as a supplement to IAP without needing noxious stimuli, we attempted to delineate A-P/IAP behavioural phenotypes in people with chronic pain and determined if PR can supplement IAP. Behavioural data acquired in 43 healthy controls (HCs) and 43 age-/sex-matched people with chronic pain associated with ankylosing spondylitis (AS) was retrospectively analyzed. A-P behavioural phenotypes were based on RT differences between pain and no-pain trials of a numeric interference task. IAP was quantified based on scores representing reported attention towards or mind-wandering away from experimental pain. PR was quantified using the pain catastrophizing scale, rumination subscale. The variability in RT was higher during no-pain trials in the AS group than HCs but was not significantly different in pain trials. There were no group differences in task RTs in no-pain and pain trials, IAP or PR scores. IAP and PR scores were marginally significantly positively correlated in the AS group. RT differences and variability were not significantly correlated with IAP or PR scores. Thus, we propose that experimental pain in the A-P/IAP protocols can confound testing in chronic pain populations, but that PR could be a supplement to IAP to quantify attention to pain.
Collapse
Affiliation(s)
- Vaidhehi Veena Sanmugananthan
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie Rae Osborne
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Robert D Inman
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
39
|
Alhajri N, Boudreau SA, Graven-Nielsen T. Decreased Default Mode Network Connectivity Following 24 Hours of Capsaicin-induced Pain Persists During Immediate Pain Relief and Facilitation. THE JOURNAL OF PAIN 2022; 24:796-811. [PMID: 36521671 DOI: 10.1016/j.jpain.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prolonged experimental pain models can help assess cortical mechanisms underlying the transition from acute to chronic pain such as resting-state functional connectivity (rsFC), especially in early stages. This crossover study determined the effects of 24-hour-capsaicin-induced pain on the default mode network rsFC, a major network in the dynamic pain connectome. Electroencephalographic rsFC measured by Granger causality was acquired from 24 healthy volunteers (12 women) at baseline, 1hour, and 24hours following the application of a control or capsaicin patch on the right forearm. The control patch was received maximum 1 week before the capsaicin patch. Following 24hours, the patch was cooled and later heated to assess rsFC changes in response to pain relief and facilitation, respectively. Compared to baseline, decreased rsFC at alpha oscillations (8-10Hz) was found following 1hour and 24hours of capsaicin application for connections projecting from medial prefrontal cortex (mPFC) and right angular gyrus (rAG) but not left angular gyrus (lAG) or posterior cingulate cortex (PCC): mPFC-PCC (1hour:P < .001, 24hours:P = .002), mPFC-rAG (1hour:P < .001, 24hours:P = .001), rAG-mPFC (1hour:P < .001, 24hours:P = .001), rAG-PCC (1hour:P < .001, 24hours:P = .004). Comparable decreased rsFC following 1hour and 24hours (P≤0.008) was found at beta oscillations, however, decreased projections from PCC were also found: PCC-rAG (P≤0.005) and PCC-lAG (P≤0.006). Pain NRS scores following 24hours (3.7±0.4) was reduced by cooling (0.3±0.1, P = .004) and increased by heating (4.8±0.6, P = .016). However, neither cooling nor heating altered rsFC. This study shows that 24hours of experimental pain induces a robust decrease in DMN connectivity that persists during pain relief or facilitation suggesting a possible shift to attentional and emotional processing in persistent pain. PERSPECTIVE: This article shows decreased DMN connectivity that might reflect possible attentional and emotional changes during acute and prolonged pain. Understanding these changes could potentially help clinicians in developing therapeutic methods that can better target these attentional and emotional processes before developing into more persistent states.
Collapse
Affiliation(s)
- Najah Alhajri
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Shellie Ann Boudreau
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
40
|
Wen YR, Shi J, Hu ZY, Lin YY, Lin YT, Jiang X, Wang R, Wang XQ, Wang YL. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci 2022; 15:1056966. [PMID: 36533133 PMCID: PMC9752114 DOI: 10.3389/fnmol.2022.1056966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Chronic pain is often accompanied by emotional dysfunction. Transcranial direct current stimulation (tDCS) has been used for reducing pain, depressive and anxiety symptoms in chronic pain patients, but its therapeutic effect remains unknown. Objectives To ascertain the treatment effect of tDCS on pain, depression, and anxiety symptoms of patients suffering from chronic pain, and potential factors that modulate the effectiveness of tDCS. Methods Literature search was performed on PubMed, Embase, Web of Science, and Cochrane Library from inception to July 2022. Randomized controlled trials that reported the effects of tDCS on pain and depression and anxiety symptoms in patients with chronic pain were included. Results Twenty-two studies were included in this review. Overall pooled results indicated that the use of tDCS can effectively alleviate short-term pain intensity [standard mean difference (SMD): -0.43, 95% confidence interval (CI): -0.75 to -0.12, P = 0.007] and depressive symptoms (SMD: -0.31, 95% CI, -0.47 to -0.14, P < 0.001), middle-term depressive symptoms (SMD: -0.35, 95% CI: -0.58 to -0.11, P = 0.004), long-term depressive symptoms (ES: -0.38, 95% CI: -0.64 to -0.13, P = 0.003) and anxiety symptoms (SMD: -0.26, 95% CI: -0.51 to -0.02, P = 0.03) compared with the control group. Conclusion tDCS may be an effective short-term treatment for the improvement of pain intensity and concomitant depression and anxiety symptoms in chronic pain patients. Stimulation site, stimulation frequency, and type of chronic pain were significant influence factors for the therapeutic effect of tDCS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=297693, identifier: CRD42022297693.
Collapse
Affiliation(s)
- Yu-Rong Wen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Shi
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Hu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Yang Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - You-Tian Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Yu-Ling Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Timtim SH, Simmons AN, Hays C, Strigo I, Sorg S, Ellis R, Keltner JR. HIV peripheral neuropathy-related degeneration of white matter tracts to sensorimotor cortex. J Neurovirol 2022; 28:505-513. [PMID: 36207560 PMCID: PMC9797459 DOI: 10.1007/s13365-022-01051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus-associated distal sensory polyneuropathy (HIV-DSP) affects up to 50% of people with HIV and is associated with depression, unemployment, and generally worsened quality of life. Previous work on the cortical mechanism of HIV neuropathy found decreased gray matter volume in the bilateral midbrain, thalamus, and posterior cingulate cortex, but structural connectivity in this context remains under-studied. Here we examine alterations in white matter microstructure using diffusion imaging, hypothesizing that cortical white matter degeneration would be observed in continuation of the peripheral white matter atrophy previously observed in HIV-DSP. Male HIV seropositive patients (n = 57) experiencing varying degrees of HIV neuropathy underwent single-shell diffusion tensor imaging with 51 sampling directions. The scans were pooled using tractography and connectometry to create a quantitative map of white matter tract integrity, measured in generalized fractional anisotropy (GFA). The relationship between GFA and neuropathy severity was evaluated with linear regression. Correction for multiple comparisons was done using false discovery rate (FDR), a statistical method commonly used in genomics and imaging to minimize false positives when thousands of individual comparisons are made. Neuropathy severity was associated with decreased GFA along thalamocortical radiations leading along the lateral thalamus to sensorimotor cortex, with r = -0.405 (p < 0.001; FDR), as well as with the superior bilateral cingulum (r = -0.346 (p < 0.05; FDR)). Among a population of HIV neuropathy patients, greater neuropathy severity was correlated with lower white matter integrity running from midbrain to somatosensory cortex. This suggests ascending deafferentation extending from damaged peripheral nerves further downstream than seen previously, into the axons of third-order neurons. There is also evidence of cingulum degeneration, implying some more complex mechanism beyond the ascending atrophy observed here.
Collapse
Affiliation(s)
- Sara H Timtim
- UCSD, University of California San Diego School of Medicine, San Diego, CA, USA.
| | - Alan N Simmons
- UCSD, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Chelsea Hays
- UCSD, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Irina Strigo
- UCSF, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Scott Sorg
- UCSD, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Ronald Ellis
- UCSD, University of California San Diego School of Medicine, San Diego, CA, USA
| | - John R Keltner
- UCSD, University of California San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|
42
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients. Sci Rep 2022; 12:17135. [PMID: 36224244 PMCID: PMC9556524 DOI: 10.1038/s41598-022-21557-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
MRI-based resting-state functional connectivity (rsFC) has been shown to predict response to pharmacological and non-pharmacological treatments for chronic pain, but not yet for motor cortex transcranial magnetic stimulation (M1-rTMS). Twenty-seven fibromyalgia syndrome (FMS) patients participated in this double-blind, crossover, and sham-controlled study. Ten daily treatments of 10 Hz M1-rTMS were given over 2 weeks. Before treatment series, patients underwent resting-state fMRI and clinical pain evaluation. Significant pain reduction occurred following active, but not sham, M1-rTMS. The following rsFC patterns predicted reductions in clinical pain intensity after the active treatment: weaker rsFC of the default-mode network with the middle frontal gyrus (r = 0.76, p < 0.001), the executive control network with the rostro-medial prefrontal cortex (r = 0.80, p < 0.001), the thalamus with the middle frontal gyrus (r = 0.82, p < 0.001), and the pregenual anterior cingulate cortex with the inferior parietal lobule (r = 0.79, p < 0.001); and stronger rsFC of the anterior insula with the angular gyrus (r = - 0.81, p < 0.001). The above regions process the attentional and emotional aspects of pain intensity; serve as components of the resting-state networks; are modulated by rTMS; and are altered in FMS. Therefore, we suggest that in FMS, the weaker pre-existing interplay between pain-related brain regions and networks, the larger the pain relief resulting from M1-rTMS.
Collapse
Affiliation(s)
- Yuval Argaman
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- grid.413731.30000 0000 9950 8111Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- grid.6451.60000000121102151Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel ,grid.413731.30000 0000 9950 8111Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- grid.18098.380000 0004 1937 0562Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Hays Weeks CC, Simmons AN, Strigo IA, Timtim S, Ellis RJ, Keltner JR. Distal neuropathic pain in HIV is associated with functional connectivity patterns in default mode and salience networks. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1004060. [PMID: 36313219 PMCID: PMC9596968 DOI: 10.3389/fpain.2022.1004060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
HIV-associated distal neuropathic pain (DNP) is one of the most prevalent, disabling, and treatment-resistant complications of HIV, but its biological underpinnings are incompletely understood. While data specific to mechanisms underlying HIV DNP are scarce, functional neuroimaging of chronic pain more broadly implicates the role of altered resting-state functional connectivity within and between salience network (SN) and default mode network (DMN) regions. However, it remains unclear the extent to which HIV DNP is associated with similar alterations in connectivity. The current study aimed to bridge this gap in the literature through examination of resting-state functional connectivity patterns within SN and DMN regions among people with HIV (PWH) with and without DNP. Resting state functional magnetic resonance imaging (rs-fMRI) scans were completed among 62 PWH with HIV-associated peripheral neuropathy, of whom 27 reported current DNP and 35 did not. Using subgrouping group iterative multiple estimation, we compared connectivity patterns in those with current DNP to those without. We observed weaker connectivity between the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) and stronger connectivity between the anterior cingulate cortex (ACC) and thalamus among those reporting DNP. Overall, these findings implicate altered within DMN (i.e., MPFC-PCC) and within SN (i.e., ACC-thalamus) connectivity as potential manifestations of adaptation to pain from neuropathy and/or mechanisms underlying the development/maintenance of DNP. Findings are discussed in the context of differential brain response to pain (i.e., mind wandering, pain aversion, pain facilitation/inhibition) and therapeutic implications.
Collapse
Affiliation(s)
| | - Alan N. Simmons
- CESAMH, VA San Diego Healthcare System, San Diego, United States,Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Irina A. Strigo
- Department of Psychiatry, UC San Francisco, CA, United States
| | - Sara Timtim
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Ronald J. Ellis
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States,Department of Neurosciences, UC San Diego, La Jolla, CA, United States
| | - John R. Keltner
- CESAMH, VA San Diego Healthcare System, San Diego, United States,Department of Psychiatry, UC San Diego, La Jolla, CA, United States,Correspondence: John R. Keltner
| |
Collapse
|
44
|
Crawford L, Mills E, Meylakh N, Macey PM, Macefield VG, Henderson LA. Brain activity changes associated with pain perception variability. Cereb Cortex 2022; 33:4145-4155. [PMID: 36069972 DOI: 10.1093/cercor/bhac332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pain perception can be modulated by several factors. Phenomena like temporal summation leads to increased perceived pain, whereas behavioral conditioning can result in analgesic responses. Furthermore, during repeated, identical noxious stimuli, pain intensity can vary greatly in some individuals. Understanding these variations is important, given the increase in investigations that assume stable baseline pain for accurate response profiles, such as studies of analgesic mechanisms. We utilized functional magnetic resonance imaging to examine the differences in neural circuitry between individuals displaying consistent pain ratings and those who experienced variable pain during a series of identical noxious stimuli. We investigated 63 healthy participants: 31 were assigned to a "consistent" group, and 32 were assigned to a "variable" group dependent on pain rating variability. Variable pain ratings were associated with reduced signal intensity in the dorsolateral prefrontal cortex (dlPFC). Furthermore, the dlPFC connectivity with the primary somatosensory cortex and temperoparietal junction was significantly reduced in variable participants. Our results suggest that investigators should consider variability of baseline pain when investigating pain modulatory paradigms. Additionally, individuals with consistent and variable pain ratings differ in their dlPFC activity and connectivity with pain-sensitive regions during noxious stimulation, possibly reflecting the differences in attentional processing and catastrophizing during pain.
Collapse
Affiliation(s)
- L Crawford
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - E Mills
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - N Meylakh
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - P M Macey
- UCLA School of Nursing, University of California, Los Angeles, California 90095, United States
| | - V G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Anatomy & Physiology, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - L A Henderson
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Blomberg R, Signoret C, Danielsson H, Perini I, Rönnberg J, Capusan AJ. Aberrant resting-state connectivity of auditory, ventral attention/salience and default-mode networks in adults with attention deficit hyperactivity disorder. Front Neurosci 2022; 16. [PMID: 36148149 PMCID: PMC9485623 DOI: 10.3389/fnins.2022.972730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background Numerous resting-state studies on attention deficit hyperactivity disorder (ADHD) have reported aberrant functional connectivity (FC) between the default-mode network (DMN) and the ventral attention/salience network (VA/SN). This finding has commonly been interpreted as an index of poorer DMN regulation associated with symptoms of mind wandering in ADHD literature. However, a competing perspective suggests that dysfunctional organization of the DMN and VA/SN may additionally index increased sensitivity to the external environment. The goal of the current study was to test this latter perspective in relation to auditory distraction by investigating whether ADHD-adults exhibit aberrant FC between DMN, VA/SN, and auditory networks. Methods Twelve minutes of resting-state fMRI data was collected from two adult groups: ADHD (n = 17) and controls (n = 17); from which the FC between predefined regions comprising the DMN, VA/SN, and auditory networks were analyzed. Results A weaker anticorrelation between the VA/SN and DMN was observed in ADHD. DMN and VA/SN hubs also exhibited aberrant FC with the auditory network in ADHD. Additionally, participants who displayed a stronger anticorrelation between the VA/SN and auditory network at rest, also performed better on a cognitively demanding behavioral task that involved ignoring a distracting auditory stimulus. Conclusion Results are consistent with the hypothesis that auditory distraction in ADHD is linked to aberrant interactions between DMN, VA/SN, and auditory systems. Our findings support models that implicate dysfunctional organization of the DMN and VA/SN in the disorder and encourage more research into sensory interactions with these major networks.
Collapse
Affiliation(s)
- Rina Blomberg
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
- Linnaeus Center HEAD, Linköping University, Linköping, Sweden
- Swedish Institute for Disability Research, Linköping University, Linköping, Sweden
- *Correspondence: Rina Blomberg,
| | - Carine Signoret
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
- Linnaeus Center HEAD, Linköping University, Linköping, Sweden
- Swedish Institute for Disability Research, Linköping University, Linköping, Sweden
| | - Henrik Danielsson
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
- Linnaeus Center HEAD, Linköping University, Linköping, Sweden
- Swedish Institute for Disability Research, Linköping University, Linköping, Sweden
| | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Jerker Rönnberg
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
- Linnaeus Center HEAD, Linköping University, Linköping, Sweden
- Swedish Institute for Disability Research, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Andrea Johansson Capusan
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry and Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
46
|
Abstract
Pain is an unpleasant sensory and emotional experience. Understanding the neural mechanisms of acute and chronic pain and the brain changes affecting pain factors is important for finding pain treatment methods. The emergence and progress of non-invasive neuroimaging technology can help us better understand pain at the neural level. Recent developments in identifying brain-based biomarkers of pain through advances in advanced imaging can provide some foundations for predicting and detecting pain. For example, a neurologic pain signature (involving brain regions that receive nociceptive afferents) and a stimulus intensity-independent pain signature (involving brain regions that do not show increased activity in proportion to noxious stimulus intensity) were developed based on multivariate modeling to identify processes related to the pain experience. However, an accurate and comprehensive review of common neuroimaging techniques for evaluating pain is lacking. This paper reviews the mechanism, clinical application, reliability, strengths, and limitations of common neuroimaging techniques for assessing pain to promote our further understanding of pain.
Collapse
Affiliation(s)
- Jing Luo
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Bo Gou
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China.
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
47
|
Chen XF, He P, Xu KH, Jin YH, Chen Y, Wang B, Hu X, Qi L, Wang MW, Li J. Disrupted Spontaneous Neural Activity and Its Interaction With Pain and Emotion in Temporomandibular Disorders. Front Neurosci 2022; 16:941244. [PMID: 36090263 PMCID: PMC9453298 DOI: 10.3389/fnins.2022.941244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Temporomandibular disorders (TMD), especially pain-related TMD, are closely related to social and psychological factors. We aimed to measure changes in spontaneous brain activity and its related functional connectivity (FC), as well as FC characteristics within the mood-regulating circuits (MRC) in TMD patients by resting-state functional magnetic resonance imaging (RS-fMRI), and to analyze the relationship between these parameters and emotional symptoms. Materials and Methods Twenty-one adult TMD patients and thirty demographically matched healthy controls (HCs) underwent clinical scale evaluation and RS-fMRI scanning. After processing RS-fMRI data, the values of the amplitude of low-frequency fluctuation (ALFF) between the two groups were compared. Regions with abnormal ALFF values were selected as areas of interest (ROIs) to compare the differences of whole-brain seed-based FC between groups. The FCs between regions within MRC were also analyzed and compared. In addition, the relationships between RS-fMRI characteristics and pain and mood were explored by correlation and mediation analyses. Results Compared with HCs, TMD patients showed increased ALFF in the right parahippocampal gyrus (PHG), the right supplementary motor area, and the bilateral precentral gyrus, with decreased ALFF in the right cerebelum_crus2. Patients showed enhanced right PHG-related FC in the vermis and posterior cingulate cortex, orbitofrontal cortex (OFC)-related FC in the striatal-frontal regions, while decreased dorsolateral prefrontal cortex-related FC in the amygdala. In TMD patients, ALFF values in the right PHG and FC values between the right PHG and the vermis were positively correlated with depressive symptoms. Abnormal FCs in the left striatal-orbitofrontal pathway were correlated with pain and depressive symptoms. More importantly, mediation analysis revealed that chronic pain mediates the relationship between FC of right PHG with vermis and depressive symptoms, and abnormal FC in the left striatal-orbitofrontal pathway can mediate the association between pain and depressive symptoms. Conclusion TMD patients have dysregulated spontaneous activity and FC in the default mode network, sensorimotor network and pain-related regions, as well as dysfunction of the fronto-striatal-limbic circuits. The development of negative emotions in TMD may be related to the dysfunction of components within the reward system (especially hippocampus complex, OFC, striatum) due to chronic pain.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ping He
- Department of Orthodontics, Hangzhou Stomatological Hospital, Hangzhou, China
| | - Kuang-Hui Xu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yi-Han Jin
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Chen
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bin Wang
- Department of Orthodontics, Hangzhou Stomatological Hospital, Hangzhou, China
| | - Xu Hu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Le Qi
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ming-Wei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Jie Li,
| |
Collapse
|
48
|
Fan X, Ren H, Bu C, Lu Z, Wei Y, Xu F, Fu L, Ma L, Kong C, Wang T, Zhang Y, Liu Q, Huang W, Bu H, Yuan J. Alterations in local activity and functional connectivity in patients with postherpetic neuralgia after short-term spinal cord stimulation. Front Mol Neurosci 2022; 15:938280. [PMID: 36034501 PMCID: PMC9405669 DOI: 10.3389/fnmol.2022.938280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe efficacy of short-term spinal cord stimulation (stSCS) as a treatment for neuropathic pain in patients with postherpetic neuralgia (PHN) has already been validated. However, the potential alterations in brain functionality that are induced by such treatment have yet to be completely elucidated.MethodsThis study use resting-state functional magnetic resonance imaging (rs-fMRI) to detect the changes in regional homogeneity (ReHo) and degree centrality (DC) related to stimulator-induced pain relief in patients with PHN. A total of 10 patients with PHN underwent an MRI protocol at baseline and after stSCS. Alterations in ReHo and DC were then compared between baseline and after stSCS. We investigated the relationship between clinical parameters and functional changes in the brain.ResultsClinical parameters on pain, emotion, and sleep quality were correlated with ReHo and DC. ReHo and DC were significantly altered in the middle temporal gyrus, precuneus, superior frontal gyrus, supramarginal gyrus, inferior parietal lobule, rolandic operculum, middle occipital gyrus, superior parietal gyrus, and the precentral gyrus after stSCS. A significant correlation was detected between ReHo changes in the middle occipital gyrus, precuneus, inferior parietal gyrus, and changes in pain, emotion, and sleep quality. A significant negative correlation was detected between DC changes in the middle temporal gyrus, rolandic operculum, supramarginal gyrus, precuneus, inferior parietal gyrus, and changes in pain, emotion, and sleep quality.ConclusionThis study found that stSCS is able to induce ReHo and DC changes in patients with PHN, thus suggesting that stSCS can change brain function to alleviate pain, sleep, and emotional disorder.
Collapse
Affiliation(s)
- Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xiaochong Fan
| | - Huan Ren
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiao Bu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Lu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuxing Xu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Fu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Letian Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cunlong Kong
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingying Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Huilian Bu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jingjing Yuan
| |
Collapse
|
49
|
Abstract
Chronic pain affects 20% of adults and is one of the leading causes of disability worldwide. Women and girls are disproportionally affected by chronic pain. About half of chronic pain conditions are more common in women, with only 20% having a higher prevalence in men. There are also sex and gender differences in acute pain sensitivity. Pain is a subjective experience made up of sensory, cognitive, and emotional components. Consequently, there are multiple dimensions through which sex and gender can influence the pain experience. Historically, most preclinical pain research was conducted exclusively in male animals. However, recent studies that included females have revealed significant sex differences in the physiological mechanisms underlying pain, including sex specific involvement of different genes and proteins as well as distinct interactions between hormones and the immune system that influence the transmission of pain signals. Human neuroimaging has revealed sex and gender differences in the neural circuitry associated with pain, including sex specific brain alterations in chronic pain conditions. Clinical pain research suggests that gender can affect how an individual contextualizes and copes with pain. Gender may also influence the susceptibility to develop chronic pain. Sex and gender biases can impact how pain is perceived and treated clinically. Furthermore, the efficacy and side effects associated with different pain treatments can vary according to sex and gender. Therefore, preclinical and clinical research must include sex and gender analyses to understand basic mechanisms of pain and its relief, and to develop personalized pain treatment.
Collapse
Affiliation(s)
- Natalie R Osborne
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
50
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Source localized infraslow neurofeedback training in people with chronic painful knee osteoarthritis: A randomized, double-blind, sham-controlled feasibility clinical trial. Front Neurosci 2022; 16:899772. [PMID: 35968375 PMCID: PMC9366917 DOI: 10.3389/fnins.2022.899772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Persistent pain is a key symptom in people living with knee osteoarthritis (KOA). Infra-slow Neurofeedback (ISF-NF) training is a recent development focusing on modulating cortical slow-wave activity to improve pain outcomes. A parallel, two-armed double-blinded, randomized sham-controlled, feasibility clinical trial aimed to determine the feasibility and safety of a novel electroencephalography-based infraslow fluctuation neurofeedback (EEG ISF-NF) training in people with KOA and determine the variability of clinical outcomes and EEG changes following NF training. Eligible participants attended nine 30-min ISF-NF training sessions involving three cortical regions linked to pain. Feasibility measures were monitored during the trial period. Pain and functional outcomes were measured at baseline, post-intervention, and follow-up after 2 weeks. Resting-state EEG was recorded at baseline and immediate post-intervention. Participants were middle-aged (61.7 ± 7.6 years), New Zealand European (90.5%), and mostly females (62%) with an average knee pain duration of 4 ± 3.4 years. The study achieved a retention rate of 91%, with 20/22 participants completing all the sessions. Participants rated high levels of acceptance and “moderate to high levels of perceived effectiveness of the training.” No serious adverse events were reported during the trial. Mean difference (95% CI) for clinical pain and function measures are as follows for pain severity [active: 0.89 ± 1.7 (−0.27 to 2.0); sham: 0.98 ± 1.1 (0.22–1.7)], pain interference [active: 0.75 ± 2.3 (−0.82 to 2.3); Sham: 0.89 ± 2.1 (−0.60 to 2.4)], pain unpleasantness [active: 2.6 ± 3.7 (0.17–5.1); sham: 2.8 ± 3 (0.62–5.0)] and physical function [active: 6.2 ± 13 (−2.6 to 15); sham: 1.6 ± 12 (−6.8 to 10)]. EEG sources demonstrated frequency-specific neuronal activity, functional connectivity, and ISF ratio changes following NF training. The findings of the study indicated that the ISF-NF training is a feasible, safe, and acceptable intervention for pain management in people with KOA, with high levels of perceived effectiveness. The study also reports the variability in clinical, brain activity, and connectivity changes following training.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- *Correspondence: Jerin Mathew,
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|