1
|
Caputo B, De Marco CM, Pichler V, Bottà G, Bennett KL, Amambua-Ngwa A, Assogba SB, Opondo KO, Clarkson CS, Tennessen JA, Weetman D, Miles A, Della Torre A. Population genomic evidence of a putative 'far-west' African cryptic taxon in the Anopheles gambiae complex. Commun Biol 2024; 7:1115. [PMID: 39256556 PMCID: PMC11387608 DOI: 10.1038/s42003-024-06809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identified a putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather may have originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, this taxon lacks insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.
Collapse
Affiliation(s)
- Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Carlo M De Marco
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Giordano Bottà
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Kelly L Bennett
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Sessinou B Assogba
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Kevin O Opondo
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Chris S Clarkson
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Jacob A Tennessen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Alistair Miles
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy.
| |
Collapse
|
2
|
Amaya Romero JE, Chenal C, Ben Chehida Y, Miles A, Clarkson CS, Pedergnana V, Wertheim B, Fontaine MC. Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides. Genome Biol Evol 2024; 16:evae172. [PMID: 39226386 PMCID: PMC11370803 DOI: 10.1093/gbe/evae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.
Collapse
Affiliation(s)
- Jorge E Amaya Romero
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Clothilde Chenal
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Institut des Science de l’Évolution de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
3
|
Adams K, Roux O. No sexual pheromones in Anopheles mosquitoes? CURRENT OPINION IN INSECT SCIENCE 2024; 64:101227. [PMID: 38936474 DOI: 10.1016/j.cois.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Swarming behavior is the cornerstone of the anopheline mating system. At dusk, males congregate in monospecific swarms in which females come to find a mate once in their lives. Although many Anopheles species coexist in sympatry, hybrids are infrequent, suggesting the existence of strong premating reproductive barriers. Chemical cues, particularly pheromones, often play a crucial role in bringing sexes together in a species-specific manner among insects. While the existence of sexual pheromones in Anopheles species has been postulated, only a few studies developed experimental designs to investigate their presence. Here, we discuss the contrasting and debatable findings regarding both long-range and contact sex pheromones in the context of swarm ecology in Anopheles species.
Collapse
Affiliation(s)
- Kelsey Adams
- Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA; Howard Hughes Medical Institute, Chevy Chase, USA
| | - Olivier Roux
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Barraclough TG. Does selection favour the maintenance of porous species boundaries? J Evol Biol 2024; 37:616-627. [PMID: 38599591 DOI: 10.1093/jeb/voae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
The endpoint of speciation has been viewed as complete isolation and the absence of gene flow between species. If the influx of genes from another species is maladaptive because species have different adaptations and genetic backgrounds, selection should favour the closing of species boundaries and zero gene flow, a process known as reinforcement. Recently, numerous cases of gene flow between species have been identified, many of which involved adaptive introgression of beneficial alleles. These cases could reflect transient states on the way to closed species boundaries or the result of declining strength or efficacy of selection for reinforcement as the level of gene flow approaches zero. An alternative hypothesis, however, is that selection favours porous species boundaries that allow beneficial alleles to cross, especially in changing environments. This perspective evaluates the conditions that would be needed for selection to favour porous species boundaries and the evidence for them. A contrast is made between hybridization in sexual eukaryotes and gene transfer via homologous recombination in bacteria. Current evidence is inconclusive on whether non-zero gene flow is favoured by selection. Studies are needed that quantify selection gradients on rates of gene flow and test for evolution towards intermediate values, especially experiments that manipulate conditions and track evolution for multiple generations. Estimation of gene flow networks for more clades and regional assemblages using emerging genome data will also allow the evolutionary determinants of interspecific gene flow to be better understood.
Collapse
|
5
|
Connolly JB, Burt A, Christophides G, Diabate A, Habtewold T, Hancock PA, James AA, Kayondo JK, Lwetoijera DW, Manjurano A, McKemey AR, Santos MR, Windbichler N, Randazzo F. Considerations for first field trials of low-threshold gene drive for malaria vector control. Malar J 2024; 23:156. [PMID: 38773487 PMCID: PMC11110314 DOI: 10.1186/s12936-024-04952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - George Christophides
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Tibebu Habtewold
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, St. Mary's Campus, Imperial College London, London, UK
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Jonathan K Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | | | - Alphaxard Manjurano
- Malaria Research Unit and Laboratory Sciences, Mwanza Medical Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrew R McKemey
- Department of Life Sciences, Silwood Park, Imperial College London, London, UK
| | - Michael R Santos
- Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - Nikolai Windbichler
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Caputo B, De Marco C, Pichler V, Bottà G, Bennett K, Clarkson C, Tennessen J, Weetman D, Miles A, Torre AD. Speciation within the Anopheles gambiae complex: high-throughput whole genome sequencing reveals evidence of a putative new cryptic taxon in 'far-west' Africa. RESEARCH SQUARE 2024:rs.3.rs-3914444. [PMID: 38562903 PMCID: PMC10984024 DOI: 10.21203/rs.3.rs-3914444/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1,190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identify a novel putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, these populations lack insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.
Collapse
Affiliation(s)
- B. Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “Sapienza”, Rome Italy
| | - C.M. De Marco
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “Sapienza”, Rome Italy
| | - V. Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “Sapienza”, Rome Italy
| | - G. Bottà
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “Sapienza”, Rome Italy
| | - K.L. Bennett
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - C.S. Clarkson
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - J.A. Tennessen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - D. Weetman
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - A. Miles
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - A. della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “Sapienza”, Rome Italy
| |
Collapse
|
7
|
Jeon J, Kim HC, Klein TA, Choi KS. Analysis of geometric morphometrics and molecular phylogeny for Anopheles species in the Republic of Korea. Sci Rep 2023; 13:22009. [PMID: 38086890 PMCID: PMC10716165 DOI: 10.1038/s41598-023-49536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Human malaria, transmitted by Anopheles mosquitoes, is the most predominant mosquito-borne disease that is responsible for hundreds of thousands of deaths worldwide each year. In the Republic of Korea (ROK), there are currently several hundred malaria cases annually, mostly near the demilitarized zone (DMZ). Eight species of Anopheles mosquitoes are currently known to be present in the ROK. Similar to other major malaria vectors in Africa and India, it is very challenging to morphologically differentiate Anopheles mosquitoes in the ROK due to their extremely similar morphology. In this study, wing geometric morphometrics (WGM) were used to differentiate the eight Anopheles species collected at six locations near the DMZ, Seoul and Pyeongtaek from April-October 2021. Phylogenetic analysis was also performed using cytochrome c oxidase subunit 1 (COI), internal transcribed spacer 2 (ITS2), and tyrosine hydroxylase (TH) genes for comparison with WGM analysis and to infer evolutionary relationships. The results of cross-validation (overall accuracy = 74.8%) demonstrated that species identification using WGM alone was not possible with a high accuracy for all eight species. While phylogenetic analyses based on the COI region could not clearly distinguish some species, the analysis based on ITS2 and TH was more useful for resolving the phylogenetic correlation of the eight species. Our results may improve Anopheles species identification strategies for effective identification and control of malaria vectors in the ROK.
Collapse
Affiliation(s)
- Jiseung Jeon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Heung Chul Kim
- U Inc., Daesakwan-ro 34-gil, Yongsan-gu, Seoul, 04409, Republic of Korea
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, Pyeongtaek, APO AP 96281-5281, USA
- PSC 450, Box 75R, Pyeongtaek, APO AP 96206, USA
| | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Front Bioeng Biotechnol 2023; 11:1261123. [PMID: 37965050 PMCID: PMC10641379 DOI: 10.3389/fbioe.2023.1261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Pollegioni P, Persampieri T, Minuz RL, Bucci A, Trusso A, Martino SD, Leo C, Bruttini M, Ciolfi M, Waldvogel A, Tripet F, Simoni A, Crisanti A, Müller R. Introgression of a synthetic sex ratio distortion transgene into different genetic backgrounds of Anopheles coluzzii. INSECT MOLECULAR BIOLOGY 2023; 32:56-68. [PMID: 36251429 PMCID: PMC10092091 DOI: 10.1111/imb.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The development of genetically modified mosquitoes (GMM) and their subsequent field release offers innovative approaches for vector control of malaria. A non-gene drive self-limiting male-bias Ag(PMB)1 strain has been developed in a 47-year-old laboratory G3 strain of Anopheles gambiae s.l. When Ag(PMB)1 males are crossed to wild-type females, expression of the endonuclease I-PpoI during spermatogenesis causes the meiotic cleavage of the X chromosome in sperm cells, leading to fertile offspring with a 95% male bias. However, World Health Organization states that the functionality of the transgene could differ when inserted in different genetic backgrounds of Anopheles coluzzii which is currently a predominant species in several West-African countries and thus a likely recipient for a potential release of self-limiting GMMs. In this study, we introgressed the transgene from the donor Ag(PMB)1 by six serial backcrosses into two recipient colonies of An. coluzzii that had been isolated in Mali and Burkina Faso. Scans of informative Single Nucleotide Polymorphism (SNP) markers and whole-genome sequencing analysis revealed a nearly complete introgression of chromosomes 3 and X, but a remarkable genomic divergence in a large region of chromosome 2 between the later backcrossed (BC6) transgenic offspring and the recipient paternal strains. These findings suggested to extend the backcrossing breeding strategy beyond BC6 generation and increasing the introgression efficiency of critical regions that have ecological and epidemiological implications through the targeted selection of specific markers. Disregarding differential introgression efficiency, we concluded that the phenotype of the sex ratio distorter is stable in the BC6 introgressed An. coluzzii strains.
Collapse
Affiliation(s)
- Paola Pollegioni
- Research Institute on Terrestrial EcosystemsNational Research CouncilTerniItaly
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Tania Persampieri
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Roxana L. Minuz
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Alessandro Bucci
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Alessandro Trusso
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Salvatore Di Martino
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Chiara Leo
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Marco Bruttini
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
- Tuscan Centre of Precision Medicine, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
| | - Marco Ciolfi
- Research Institute on Terrestrial EcosystemsNational Research CouncilTerniItaly
| | | | - Frédéric Tripet
- Centre for Applied Entomology and ParasitologyKeele UniversityNewcastle‐under‐LymeUK
| | - Alekos Simoni
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Andrea Crisanti
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Ruth Müller
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
- Unit Entomology, Department of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| |
Collapse
|
10
|
Gene drive in species complexes: defining target organisms. Trends Biotechnol 2023; 41:154-164. [PMID: 35868886 DOI: 10.1016/j.tibtech.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/24/2023]
Abstract
Engineered gene drives, which bias their own inheritance to increase in frequency in target populations, are being developed to control mosquito malaria vectors. Such mosquitoes can belong to complexes of both vector and nonvector species that can produce fertile interspecific hybrids, making vertical gene drive transfer (VGDT) to sibling species biologically plausible. While VGDT to other vectors could positively impact human health protection goals, VGDT to nonvectors might challenge biodiversity ones. Therefore, environmental risk assessment of gene drive use in species complexes invites more nuanced considerations of target organisms and nontarget organisms than for transgenes not intended to increase in frequency in target populations. Incorporating the concept of target species complexes offers more flexibility when assessing potential impacts from VGDT.
Collapse
|
11
|
Schneemann H, Munzur AD, Thompson KA, Welch JJ. The diverse effects of phenotypic dominance on hybrid fitness. Evolution 2022; 76:2846-2863. [PMID: 36221216 PMCID: PMC10092378 DOI: 10.1111/evo.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
When divergent populations interbreed, their alleles are brought together in hybrids. In the initial F1 cross, most divergent loci are heterozygous. Therefore, F1 fitness can be influenced by dominance effects that could not have been selected to function well together. We present a systematic study of these F1 dominance effects by introducing variable phenotypic dominance into Fisher's geometric model. We show that dominance often reduces hybrid fitness, which can generate optimal outbreeding followed by a steady decline in F1 fitness, as is often observed. We also show that "lucky" beneficial effects sometimes arise by chance, which might be important when hybrids can access novel environments. We then show that dominance can lead to violations of Haldane's Rule (reduced fitness of the heterogametic F1) but strengthens Darwin's Corollary (F1 fitness differences between cross directions). Taken together, results show that the effects of dominance on hybrid fitness can be surprisingly difficult to isolate, because they often resemble the effects of uniparental inheritance or expression. Nevertheless, we identify a pattern of environment-dependent heterosis that only dominance can explain, and for which there is some suggestive evidence. Our results also show how existing data set upper bounds on the size of dominance effects. These bounds could explain why additive models often provide good predictions for later-generation recombinant hybrids, even when dominance qualitatively changes outcomes for the F1.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Aslı D Munzur
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Ken A Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Current address: Department of Biology, Stanford University & Department of Plant Biology, Carnegie Institution for Science, Stanford, USA
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
12
|
Tondossama N, Coulibaly ZI, Traoré I, Ako BA, Zoh DD, Virgillito C, Guindo-Coulibaly N, Serini P, Assouho FK, Dia I, Touré AO, Adja MA, Caputo B, della Torre A, Pichler V. High Levels of Admixture in Anopheles gambiae Populations from Côte d'Ivoire Revealed by Multilocus Genotyping. INSECTS 2022; 13:1090. [PMID: 36555000 PMCID: PMC9782310 DOI: 10.3390/insects13121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Anopheles coluzzii and An. gambiae-the two most recently radiated species of the An. gambiae complex and the major Afrotropical malaria vector species-are identified by markers in the X-centromeric IGS rDNA region. Putative IGS-hybrids are rarely found in the field, except in restricted areas where genomic studies have led to the hypothesis that the observed IGS-patterns are due to cryptic taxa rather than to hybridization between the two species. We investigated the genome-wide levels of admixture in two villages in Côte d'Ivoire where high levels of IGS-hybrids have been detected, confirming unparalleled high frequencies in the coastal village. Genotyping of 24 Ancestry Informative Markers (AIMs) along the three chromosomes produced discordant results between the IGS-marker and the multilocus genotype obtained for AIMs across the whole genome (29%) as well as AIMs on chromosome-X (considered to be fundamental for species reproductive isolation) only (21%). Results highlight a complicated pattern of admixture that deserves deeper genomic analyses to understand better possible underlying causes (from extensive processes of hybridization to the existence of different cryptic taxa), and stress the need of developing advanced diagnostics for An. coluzzii, An. gambiae and putative new taxa, instrumental for assessing taxon-specific epidemiological characters.
Collapse
Affiliation(s)
- Naminata Tondossama
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouet Boigny Cocody, Abidjan 01 BP V34, Côte d’Ivoire
- Entomology and Herpetology Unit, Institut Pasteur de Côte d’Ivoire, Abidjan 01 PB 490, Côte d’Ivoire
| | - Zanakoungo I. Coulibaly
- Entomology and Herpetology Unit, Institut Pasteur de Côte d’Ivoire, Abidjan 01 PB 490, Côte d’Ivoire
| | - Issouf Traoré
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouet Boigny Cocody, Abidjan 01 BP V34, Côte d’Ivoire
- Entomology and Herpetology Unit, Institut Pasteur de Côte d’Ivoire, Abidjan 01 PB 490, Côte d’Ivoire
| | - Bérenger A. Ako
- Malaria Unit, Institut Pasteur de Côte d’Ivoire, Abidjan 01 PB 490, Côte d’Ivoire
| | - Danielle D. Zoh
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouet Boigny Cocody, Abidjan 01 BP V34, Côte d’Ivoire
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké 01 BP 1500, Côte d’Ivoire
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “La Sapienza,” Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouet Boigny Cocody, Abidjan 01 BP V34, Côte d’Ivoire
| | - Paola Serini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “La Sapienza,” Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Fabrice K. Assouho
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké 01 BP 1500, Côte d’Ivoire
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
| | - Andre O. Touré
- Malaria Unit, Institut Pasteur de Côte d’Ivoire, Abidjan 01 PB 490, Côte d’Ivoire
| | - Maurice A. Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouet Boigny Cocody, Abidjan 01 BP V34, Côte d’Ivoire
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké 01 BP 1500, Côte d’Ivoire
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “La Sapienza,” Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandra della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “La Sapienza,” Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma “La Sapienza,” Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Dagilis AJ, Peede D, Coughlan JM, Jofre GI, D'Agostino ERR, Mavengere H, Tate AD, Matute DR. A need for standardized reporting of introgression: Insights from studies across eukaryotes. Evol Lett 2022; 6:344-357. [PMID: 36254258 PMCID: PMC9554761 DOI: 10.1002/evl3.294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
With the rise of affordable next-generation sequencing technology, introgression-or the exchange of genetic materials between taxa-has become widely perceived to be a ubiquitous phenomenon in nature. Although this claim is supported by several keystone studies, no thorough assessment of the frequency of introgression across eukaryotes in nature has been performed to date. In this manuscript, we aim to address this knowledge gap by examining patterns of introgression across eukaryotes. We collated a single statistic, Patterson's D, which can be used as a test for introgression across 123 studies to further assess how taxonomic group, divergence time, and sequencing technology influence reports of introgression. Overall, introgression has mostly been measured in plants and vertebrates, with less attention given to the rest of the Eukaryotes. We find that the most frequently used metrics to detect introgression are difficult to compare across studies and even more so across biological systems due to differences in study effort, reporting standards, and methodology. Nonetheless, our analyses reveal several intriguing patterns, including the observation that differences in sequencing technologies may bias values of Patterson's D and that introgression may differ throughout the course of the speciation process. Together, these results suggest the need for a unified approach to quantifying introgression in natural communities and highlight important areas of future research that can be better assessed once this unified approach is met.
Collapse
Affiliation(s)
| | - David Peede
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
- Center for Computational Molecular BiologyBrown UniversityProvidenceRIUSA
| | - Jenn M. Coughlan
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Gaston I. Jofre
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
| | - Emmanuel R. R. D'Agostino
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Heidi Mavengere
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
| | | | | |
Collapse
|
14
|
Mallet J, Mullen SP. Reproductive isolation is a heuristic, not a measure: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1175-1182. [PMID: 36063161 DOI: 10.1111/jeb.14052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
Reproductive isolation is the heuristic basis of the biological species concept, but what is it? Westram et al. (this issue) propose that it is a measurable quantity, "barrier strength," that prevents gene flow among populations. However, their attempt to make the concept of reproductive isolation more scientific is unlikely to satisfy the diverse opinions of all evolutionary biologists. There are many different opinions about the nature of species, even under the biological species concept. Complete reproductive isolation, where gene flow is effectively zero, is regarded by some biologists as an important end point of speciation. Others, including Westram et al., argue for a more nuanced approach, and they also suggest that reproductive isolation may differ in different parts of the genome due to variation in genetic linkage to divergently selected loci. In contrast to both these approaches, we favour as a key criterion of speciation the stable coexistence of divergent populations in sympatry. Obviously, such populations must be reproductively isolated in some sense, but neither the fraction of the genome that is exchanged, nor measures of overall barrier strength acting on neutral variation will yield very precise predictions as to species status. Although an overall measure of reproductive isolation is virtually unattainable for these reasons, its early generation components, such as assortative mating, divergent selection, or hybrid inviability and sterility are readily measurable and remain informative. For example, we can make the prediction that to remain divergent in sympatry, almost all sexual species will require strong assortative mating, as well as some sort of ecological or intrinsic selection against hybrids and introgressed variants.
Collapse
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Sean P Mullen
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Perfect association between spatial swarm segregation and the X-chromosome speciation island in hybridizing Anopheles coluzzii and Anopheles gambiae populations. Sci Rep 2022; 12:10800. [PMID: 35750745 PMCID: PMC9232630 DOI: 10.1038/s41598-022-14865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
The sibling species An. coluzzii and An. gambiae s.s. are major malaria vectors thought to be undergoing sympatric speciation with gene flow. In the absence of intrinsic post-zygotic isolation between the two taxa, speciation is thought possible through the association of assortative mating and genomic regions protected from gene flow by recombination suppression. Such genomic islands of speciation have been described in pericentromeric regions of the X, 2L and 3L chromosomes. Spatial swarm segregation plays a major role in assortative mating between sympatric populations of the two species and, given their importance for speciation, genes responsible for such pre-mating reproductive barriers are expected to be protected within divergence islands. In this study 2063 male and 266 female An. coluzzii and An. gambiae s.s. individuals from natural swarms in Burkina Faso, West Africa were sampled. These were genotyped at 16 speciation island SNPs, and characterized as non-hybrid individuals, F1 hybrids or recombinant F1+n backcrossed individuals. Their genotypes at each speciation island were associated with their participation in An. coluzzii and An. gambiae-like swarms. Despite extensive introgression between the two species, the X-island genotype of non-hybrid individuals (37.6%), F1 hybrids (0.1%) and F1+n recombinants (62.3%) of either sex perfectly associated to each swarm type. Associations between swarm type and the 3L and 2L speciation islands were weakened or broken down by introgression. The functional demonstration of a close association between spatial segregation behaviour and the X speciation island lends further support to sympatric speciation models facilitated by pericentric recombination suppression in this important species complex.
Collapse
|
16
|
Beeton NJ, Wilkins A, Ickowicz A, Hayes KR, Hosack GR. Spatial modelling for population replacement of mosquito vectors at continental scale. PLoS Comput Biol 2022; 18:e1009526. [PMID: 35648783 PMCID: PMC9191746 DOI: 10.1371/journal.pcbi.1009526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/13/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful deployments. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii, two closely related subspecies within the species complex Anopheles gambiae sensu lato (s.l.), are among the dominant malaria vectors in sub-Saharan Africa. These two subspecies readily hybridise and compete in the wild and are also known to have distinct niches, each with spatially and temporally varying carrying capacities driven by precipitation and land use factors. We model the spread and persistence of a population-modifying gene drive system in these subspecies across sub-Saharan Africa by simulating introductions of genetically modified mosquitoes across the African mainland and its offshore islands. We explore transmission of the gene drive between the two subspecies that arise from different hybridisation mechanisms, the effects of both local dispersal and potential wind-aided migration to the spread, and the development of resistance to the gene drive. Given the best current available knowledge on the subspecies’ life histories, we find that an introduced gene drive system with typical characteristics can plausibly spread from even distant offshore islands to the African mainland with the aid of wind-driven migration, with resistance beginning to take over within a decade. Our model accounts for regional to continental scale mechanisms, and demonstrates a range of realistic dynamics including the effect of prevailing wind on spread and spatio-temporally varying carrying capacities for subspecies. As a result, it is well-placed to answer future questions relating to mosquito gene drives as important life history parameters become better understood. Conventional control methods have dramatically reduced malaria, but it still kills over 300,000 children in Africa each year, and this number could increase as their effectiveness wanes. Novel control methods using gene drives rapidly reduce or modify malaria vector populations in laboratory settings, and hence are now being considered for field applications. We use modelling to assess how a gene drive might spread and persist in the malaria-carrying subspecies Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii. These two subspecies interbreed and compete, so we model how these interactions affect the spread of the drive at a continental scale. In scenarios that allow mosquitoes to travel on prevailing wind currents, we find that a gene drive can potentially spread across national borders—and jump from offshore islands to the African mainland—but spread is eventually arrested when the drive allele is ousted by a resistant allele. As we learn more about the population dynamics of both genetically modified and wild mosquitoes, and as gene drive systems are further developed to allow local containment and evade resistance, our model will be able to answer more detailed questions about how they can be applied in the field effectively and safely.
Collapse
Affiliation(s)
- Nicholas J. Beeton
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
- * E-mail: (NJB); (AW)
| | - Andrew Wilkins
- Mineral Resources, CSIRO, 1 Technology Court, Pullenvale QLD, Australia
- * E-mail: (NJB); (AW)
| | - Adrien Ickowicz
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
| | - Keith R. Hayes
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
| | | |
Collapse
|
17
|
Caputo B, Tondossoma N, Virgillito C, Pichler V, Serini P, Calzetta M, Manica M, Coulibaly ZI, Dia I, Akré M, Offianan A, Della Torre A. Is Côte D'Ivoire a new high hybridization zone for the two major malaria vectors, Anopheles coluzzii and An. gambiae (Diptera, Culicidae)? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105215. [PMID: 35063691 DOI: 10.1016/j.meegid.2022.105215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Anopheles gambiae and An. coluzzii are very closely related and recently differentiated species representing the main malaria vectors in the Afrotropical region and responsible of up to >3 infective bites/person/night in Côte D'Ivoire, where prevention and control has stagnated in recent years. The aim of the present study was to genetically and ecologically characterize An. gambiae and An. coluzzii populations from two villages of Côte D'Ivoire, lying in the coastal forest belt and 250 km inland in the Guinean savannah mosaic belt, respectively. Results reveal high frequencies of both species in both study sites and high frequencies of hybrids (4-33%) along the whole year of sampling. Consistently with observations for the well-known high hybridization zone at the far-west of the species range, hybrid frequencies were higher in the coastal village and highest when the two species occurred at more balanced frequencies, supporting the "frequency-dependent hybridization" ecological speciation theory. Pilot genotyping revealed signatures of genomic admixture in both chromosome-X and -3. Coupled with previous reports of hybrids in the region, the results point to the coastal region of Côte D'Ivoire as a possible regions of high hybridization. Preliminary characterization of parameters relevant for malaria transmission and control (e.g. possibly higher sporozoite rates and indoor biting preferences in hybrids than in the parental species) highlight the possible relevance of the breakdown of reproductive barriers between An. gambiae and An. coluzzii not only in the field of ecological evolution, but also in malaria epidemiology and control.
Collapse
Affiliation(s)
- Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Naminata Tondossoma
- Unité de Paludologie, Institut Pasteur de Côte D'Ivoire, Abidjan, Côte D'Ivoire; Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte D'Ivoire
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy; Unité de Paludologie, Institut Pasteur de Côte D'Ivoire, Abidjan, Côte D'Ivoire; Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte D'Ivoire; Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Paola Serini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy; Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | | | - Ibrahima Dia
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Maurice Akré
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte D'Ivoire
| | - Andre Offianan
- Unité de Paludologie, Institut Pasteur de Côte D'Ivoire, Abidjan, Côte D'Ivoire
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
18
|
Lanzaro GC, Campos M, Crepeau M, Cornel A, Estrada A, Gripkey H, Haddad Z, Kormos A, Palomares S. Selection of sites for field trials of genetically engineered mosquitoes with gene drive. Evol Appl 2021; 14:2147-2161. [PMID: 34603489 PMCID: PMC8477601 DOI: 10.1111/eva.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, Plasmodium falciparum, coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one. Deploying this technology awaits ecologically contained field trial evaluations. Here, we consider a process for site selection, the first critical step in designing a trial. Our goal is to identify a site that maximizes prospects for success, minimizes risk, and serves as a fair, valid, and convincing test of efficacy and impacts of a GEM product intended for large-scale deployment in Africa. We base site selection on geographic, geological, and biological, rather than social or legal, criteria. We recognize the latter as critically important but not as a first step in selecting a site. We propose physical islands as being the best candidates for a GEM field trial and present an evaluation of 22 African islands. We consider geographic and genetic isolation, biological complexity, island size, and topography and identify two island groups that satisfy key criteria for ideal GEM field trial sites.
Collapse
Affiliation(s)
- Gregory C. Lanzaro
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Melina Campos
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Marc Crepeau
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Anthony Cornel
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Abram Estrada
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Hans Gripkey
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Ziad Haddad
- California Institute of TechnologyJet Propulsion LaboratoryPasadenaCaliforniaUSA
| | - Ana Kormos
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Steven Palomares
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
19
|
Campos M, Rona LDP, Willis K, Christophides GK, MacCallum RM. Unravelling population structure heterogeneity within the genome of the malaria vector Anopheles gambiae. BMC Genomics 2021; 22:422. [PMID: 34103015 PMCID: PMC8185951 DOI: 10.1186/s12864-021-07722-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background Whole genome re-sequencing provides powerful data for population genomic studies, allowing robust inferences of population structure, gene flow and evolutionary history. For the major malaria vector in Africa, Anopheles gambiae, other genetic aspects such as selection and adaptation are also important. In the present study, we explore population genetic variation from genome-wide sequencing of 765 An. gambiae and An. coluzzii specimens collected from across Africa. We used t-SNE, a recently popularized dimensionality reduction method, to create a 2D-map of An. gambiae and An. coluzzii genes that reflect their population structure similarities. Results The map allows intuitive navigation among genes distributed throughout the so-called “mainland” and numerous surrounding “island-like” gene clusters. These gene clusters of various sizes correspond predominantly to low recombination genomic regions such as inversions and centromeres, and also to recent selective sweeps. Because this mosquito species complex has been studied extensively, we were able to support our interpretations with previously published findings. Several novel observations and hypotheses are also made, including selective sweeps and a multi-locus selection event in Guinea-Bissau, a known intense hybridization zone between An. gambiae and An. coluzzii. Conclusions Our results present a rich dataset that could be utilized in functional investigations aiming to shed light onto An. gambiae s.l genome evolution and eventual speciation. In addition, the methodology presented here can be used to further characterize other species not so well studied as An. gambiae, shortening the time required to progress from field sampling to the identification of genes and genomic regions under unique evolutionary processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07722-y.
Collapse
Affiliation(s)
- Melina Campos
- Department of Life Sciences, Imperial College London, London, UK
| | - Luisa D P Rona
- Department of Life Sciences, Imperial College London, London, UK.,Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM, CNPq), Rio de Janeiro, Brazil
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
20
|
The origin of island populations of the African malaria mosquito, Anopheles coluzzii. Commun Biol 2021; 4:630. [PMID: 34040154 PMCID: PMC8155153 DOI: 10.1038/s42003-021-02168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Anopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this species' geographic range. Our population genomic analyses included a description of the structure of mainland populations, island populations, and connectivity between them. Three genetic clusters are identified among mainland populations and genetic distances (FST) fits an isolation-by-distance model. Genomic analyses are applied to estimate the demographic history and ancestry for each island. Taken together with the unique biogeography and history of human occupation for each island, they present a coherent explanation underlying levels of genetic isolation between mainland and island populations. We discuss the relationship of our findings to the suitability of São Tomé and Príncipe islands as candidate sites for potential field trials of genetic-based malaria control strategies.
Collapse
|
21
|
Caputo B, Pichler V, Bottà G, De Marco C, Hubbart C, Perugini E, Pinto J, Rockett KA, Miles A, Della Torre A. Novel genotyping approaches to easily detect genomic admixture between the major Afrotropical malaria vector species, Anopheles coluzzii and An. gambiae. Mol Ecol Resour 2021; 21:1504-1516. [PMID: 33590707 PMCID: PMC8252489 DOI: 10.1111/1755-0998.13359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
The two most efficient and most recently radiated Afrotropical vectors of human malaria - Anopheles coluzzii and An. gambiae - are identified by single-locus diagnostic PCR assays based on species-specific markers in a 4 Mb region on chromosome-X centromere. Inherently, these diagnostic assays cannot detect interspecific autosomal admixture shown to be extensive at the westernmost and easternmost extremes of the species range. The main aim of this study was to develop novel, easy-to-implement tools for genotyping An. coluzzii and An. gambiae-specific ancestral informative markers (AIMs) identified from the Anopheles gambiae 1000 genomes (Ag1000G) project. First, we took advantage of this large set of data in order to develop a multilocus approach to genotype 26 AIMs on all chromosome arms valid across the species range. Second, we tested the multilocus assay on samples from Guinea Bissau, The Gambia and Senegal, three countries spanning the westernmost hybridization zone, where conventional species diagnostic is problematic due to the putative presence of a novel "hybrid form". The multilocus assay was able to capture patterns of admixture reflecting those revealed by the whole set of AIMs and provided new original data on interspecific admixture in the region. Third, we developed an easy-to-use, cost-effective PCR approach for genotyping two AIMs on chromosome-3 among those included in the multilocus approach, opening the possibility for advanced identification of species and of admixed specimens during routine large scale entomological surveys, particularly, but not exclusively, at the extremes of the range, where WGS data highlighted unexpected autosomal admixture.
Collapse
Affiliation(s)
- Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Giordano Bottà
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy.,Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - Carlo De Marco
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - Eleonora Perugini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Joao Pinto
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - Alistair Miles
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,MRC Centre for Genomics and Global Health, University of Oxford, Oxford, UK
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| |
Collapse
|
22
|
Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt A. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malar J 2021; 20:170. [PMID: 33781254 PMCID: PMC8006393 DOI: 10.1186/s12936-021-03674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, London, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ace R North
- Department of Zoology, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
23
|
Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. INSECTS 2020; 11:insects11120893. [PMID: 33352887 PMCID: PMC7767042 DOI: 10.3390/insects11120893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary A comparison of the genomes of the African malaria vectors, Anopheles gambiae and A. coluzzii, revealed that immune genes are highly diverged. Although these two species frequently co-occur within a single site, they occur in distinct larval habitats. Our results taken in the context of known differences in the larval habitats occupied by these taxa support the hypothesis that observed genetic divergence may be driven by immune response to microbial agents specific to these habitats. Strict within species mating may have subsequently evolved in part to maintain immunocompetence which might be compromised by dysregulation of immune pathways in hybrids. We conclude that the evolution of immune gene divergence among this important group of species may serve as a useful model to explore ecological speciation in general. Abstract During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.
Collapse
|
24
|
Tennessen JA, Ingham VA, Toé KH, Guelbéogo WM, Sagnon N, Kuzma R, Ranson H, Neafsey DE. A population genomic unveiling of a new cryptic mosquito taxon within the malaria-transmitting Anopheles gambiae complex. Mol Ecol 2020; 30:775-790. [PMID: 33253481 DOI: 10.1111/mec.15756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.
Collapse
Affiliation(s)
- Jacob A Tennessen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute, Cambridge, MA, USA
| | | | - Kobié Hyacinthe Toé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - N'Falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Rebecca Kuzma
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute, Cambridge, MA, USA
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniel E Neafsey
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute, Cambridge, MA, USA
| |
Collapse
|
25
|
Zheng XL. Unveiling mosquito cryptic species and their reproductive isolation. INSECT MOLECULAR BIOLOGY 2020; 29:499-510. [PMID: 32741005 PMCID: PMC7754467 DOI: 10.1111/imb.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are major vectors of many infectious pathogens or parasites. Understanding cryptic species and the speciation of disease vectors has important implications for vector management, evolution and host-pathogen and/or host-parasite interactions. Currently, mosquito cryptic species have been reported in many studies, most of which focus on the reproductive isolation of cryptic species and mainly on Anopheles gambiae sensu lato complex. Emerging species within the primary malaria vector Anopheles gambiae show different ecological preferences and significant prezygotic reproductive isolation, while Aedes mariae and Aedes zammitii show postmating reproductive isolation. However, data reporting the reproductive isolation in Culex and Aedes albopictus mosquito cryptic species is absent. The lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups; what mosquito cryptic species evolutionary processes bring about reproductive isolation in the absence of morphological differentiation? How does Wolbachia infection affect in mosquitoes' reproductive isolation? In this review, we provide a summary of recent advances in the discovery and identification of sibling or cryptic species within mosquito genera.
Collapse
Affiliation(s)
- XL. Zheng
- Department of Pathogen Biology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Niang A, Sawadogo SP, Dabiré RK, Tripet F, Diabaté A. Assessment of the ecologically dependent post-zygotic isolation between Anopheles coluzzii and Anopheles gambiae. PLoS One 2020; 15:e0240625. [PMID: 33119635 PMCID: PMC7595400 DOI: 10.1371/journal.pone.0240625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
Within the Anopheles gambiae complex, the sibling species An. coluzzii and An. gambiae are undergoing sympatric speciation. These species are characterized by rare hybrids in most of their geographical distribution. A strong assortative mating mediated by spatial swarm segregation has been shown whereas no intrinsic post-zygotic barriers have been found in laboratory conditions. To test the role of the hybridisation in reproductive isolation in natural populations transplant experiment are therefore needed to establish the significance of post-zygotic barriers. Previous studies indicated that predation is one of the major forces driving ecological divergence between An. gambiae and An. coluzzii. Here we extended these studies to their hybrids. Parental species and their F1 hybrids from reciprocal crosses were generated by the forced-mating technique as follows: female An. coluzzii × male An. coluzzii; female An. coluzzii × male An. gambiae; female An. gambiae × male An. coluzzii and female An. gambiae × Male An. gambiae. First instar larvae of each group from the crossing (here after An. coluzzii, Hybrid COL/GAM, Hybrid GAM/COL and An. gambiae, respectively) were transplanted in a field experiment with predation effect. Emergence success, development time of larvae and body size of the newly emerging adults were estimated as fitness components and then compared between parental species and F1 hybrids in absence and in presence of predators. Our findings confirm that An. coluzzii had higher fitness than An. gambiae in presence of predators versus in absence of predators. Moreover, the fitness of the F1 hybrid COL/GAM whose female parent was An. coluzzii matched that of An. coluzzii while that of the F1 reciprocal hybrid GAM/COL was similar to An. gambiae.
Collapse
Affiliation(s)
- Abdoulaye Niang
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | | | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
27
|
Mallet J. Alternative views of biological species: reproductively isolated units or genotypic clusters? Natl Sci Rev 2020; 7:1401-1407. [PMID: 34692169 PMCID: PMC8288880 DOI: 10.1093/nsr/nwaa116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, USA
| |
Collapse
|
28
|
Quilodrán CS, Montoya-Burgos JI, Currat M. Harmonizing hybridization dissonance in conservation. Commun Biol 2020; 3:391. [PMID: 32694629 PMCID: PMC7374702 DOI: 10.1038/s42003-020-1116-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
A dramatic increase in the hybridization between historically allopatric species has been induced by human activities. However, the notion of hybridization seems to lack consistency in two respects. On the one hand, it is inconsistent with the biological species concept, which does not allow for interbreeding between species, and on the other hand, it is considered either as an evolutionary process leading to the emergence of new biodiversity or as a cause of biodiversity loss, with conservation implications. In the first case, we argue that conservation biology should avoid the discussion around the species concept and delimit priorities of conservation units based on the impact on biodiversity if taxa are lost. In the second case, we show that this is not a paradox but an intrinsic property of hybridization, which should be considered in conservation programmes. We propose a novel view of conservation guidelines, in which human-induced hybridization may also be a tool to enhance the likelihood of adaptation to changing environmental conditions or to increase the genetic diversity of taxa affected by inbreeding depression. The conservation guidelines presented here represent a guide for the development of programmes aimed at protecting biodiversity as a dynamic evolutionary system.
Collapse
Affiliation(s)
- Claudio S Quilodrán
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
- Laboratory of Anthropology, Genetics and Peopling History, Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Juan I Montoya-Burgos
- Laboratory of Vertebrate Evolution, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| |
Collapse
|
29
|
Hancock PA, Hendriks CJM, Tangena JA, Gibson H, Hemingway J, Coleman M, Gething PW, Cameron E, Bhatt S, Moyes CL. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol 2020; 18:e3000633. [PMID: 32584814 PMCID: PMC7316233 DOI: 10.1371/journal.pbio.3000633] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Mitigating the threat of insecticide resistance in African malaria vector populations requires comprehensive information about where resistance occurs, to what degree, and how this has changed over time. Estimating these trends is complicated by the sparse, heterogeneous distribution of observations of resistance phenotypes in field populations. We use 6,423 observations of the prevalence of resistance to the most important vector control insecticides to inform a Bayesian geostatistical ensemble modelling approach, generating fine-scale predictive maps of resistance phenotypes in mosquitoes from the Anopheles gambiae complex across Africa. Our models are informed by a suite of 111 predictor variables describing potential drivers of selection for resistance. Our maps show alarming increases in the prevalence of resistance to pyrethroids and DDT across sub-Saharan Africa from 2005 to 2017, with mean mortality following insecticide exposure declining from almost 100% to less than 30% in some areas, as well as substantial spatial variation in resistance trends.
Collapse
Affiliation(s)
| | | | - Julie-Anne Tangena
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Harry Gibson
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Peter W. Gething
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
- Curtin University, Bentley, Perth, Australia
| | - Ewan Cameron
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Hospital, London, United Kingdom
| | | |
Collapse
|
30
|
Redmond SN, Sharma A, Sharakhov I, Tu Z, Sharakhova M, Neafsey DE. Linked-read sequencing identifies abundant microinversions and introgression in the arboviral vector Aedes aegypti. BMC Biol 2020; 18:26. [PMID: 32164699 PMCID: PMC7068900 DOI: 10.1186/s12915-020-0757-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Background Aedes aegypti is the principal mosquito vector of Zika, dengue, and yellow fever viruses. Two subspecies of Ae. aegypti exhibit phenotypic divergence with regard to habitat, host preference, and vectorial capacity. Chromosomal inversions have been shown to play a major role in adaptation and speciation in dipteran insects and would be of great utility for studies of Ae. aegypti. However, the large and highly repetitive genome of Ae. aegypti makes it difficult to detect inversions with paired-end short-read sequencing data, and polytene chromosome analysis does not provide sufficient resolution to detect chromosome banding patterns indicative of inversions. Results To characterize chromosomal diversity in this species, we have carried out deep Illumina sequencing of linked-read (10X Genomics) libraries in order to discover inversion loci as well as SNPs. We analyzed individuals from colonies representing the geographic limits of each subspecies, one contact zone between subspecies, and a closely related sister species. Despite genome-wide SNP divergence and abundant microinversions, we do not find any inversions occurring as fixed differences between subspecies. Many microinversions are found in regions that have introgressed and have captured genes that could impact behavior, such as a cluster of odorant-binding proteins that may play a role in host feeding preference. Conclusions Our study shows that inversions are abundant and widely shared among subspecies of Aedes aegypti and that introgression has occurred in regions of secondary contact. This library of 32 novel chromosomal inversions demonstrates the capacity for linked-read sequencing to identify previously intractable genomic rearrangements and provides a foundation for future population genetics studies in this species.
Collapse
Affiliation(s)
- Seth N Redmond
- Institute of Vector Borne Disease, Monash University, Melbourne, Australia. .,Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Atashi Sharma
- Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Igor Sharakhov
- Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Maria Sharakhova
- Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Daniel E Neafsey
- Harvard TH Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
31
|
James SL, Marshall JM, Christophides GK, Okumu FO, Nolan T. Toward the Definition of Efficacy and Safety Criteria for Advancing Gene Drive-Modified Mosquitoes to Field Testing. Vector Borne Zoonotic Dis 2020; 20:237-251. [PMID: 32155390 PMCID: PMC7153640 DOI: 10.1089/vbz.2019.2606] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mosquitoes containing gene drive systems are being developed as complementary tools to prevent transmission of malaria and other mosquito-borne diseases. As with any new tool, decision makers and other stakeholders will need to balance risks (safety) and benefits (efficacy) when considering the rationale for testing and deploying gene drive-modified mosquito products. Developers will benefit from standards for judging whether an investigational gene drive product meets acceptability criteria for advancing to field trials. Such standards may be formalized as preferred product characteristics and target product profiles, which describe the desired attributes of the product category and of a particular product, respectively. This report summarizes discussions from two scientific workshops aimed at identifying efficacy and safety characteristics that must be minimally met for an investigational gene drive-modified mosquito product to be deemed viable to move from contained testing to field release and the data that will be needed to support an application for first field release.
Collapse
Affiliation(s)
- Stephanie L James
- Foundation for the National Institutes of Health, North Bethesda, Maryland
| | | | | | | | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
32
|
Schmidt H, Lee Y, Collier TC, Hanemaaijer MJ, Kirstein OD, Ouledi A, Muleba M, Norris DE, Slatkin M, Cornel AJ, Lanzaro GC. Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events. Commun Biol 2019; 2:473. [PMID: 31886413 PMCID: PMC6923408 DOI: 10.1038/s42003-019-0717-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023] Open
Abstract
The mosquito Anopheles gambiae s.s. is distributed across most of sub-Saharan Africa and is of major scientific and public health interest for being an African malaria vector. Here we present population genomic analyses of 111 specimens sampled from west to east Africa, including the first whole genome sequences from oceanic islands, the Comoros. Genetic distances between populations of A. gambiae are discordant with geographic distances but are consistent with a stepwise migration scenario in which the species increases its range from west to east Africa through consecutive founder events over the last ~200,000 years. Geological barriers like the Congo River basin and the East African rift seem to play an important role in shaping this process. Moreover, we find a high degree of genetic isolation of populations on the Comoros, confirming the potential of these islands as candidate sites for potential field trials of genetically engineered mosquitoes for malaria control.
Collapse
Affiliation(s)
- Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Oscar D. Kirstein
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Ahmed Ouledi
- Université des Comores, Grande Comore, Union of the Comoros
| | | | - Douglas E. Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA 94720 USA
| | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, University of California - Kearney Research and Extension Center, Parlier, CA 93648 USA
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| |
Collapse
|
33
|
Akpodiete NO, Diabate A, Tripet F. Effect of water source and feed regime on development and phenotypic quality in Anopheles gambiae (s.l.): prospects for improved mass-rearing techniques towards release programmes. Parasit Vectors 2019; 12:210. [PMID: 31060574 PMCID: PMC6503376 DOI: 10.1186/s13071-019-3465-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/29/2019] [Indexed: 12/03/2022] Open
Abstract
Background In many malaria-endemic sub-Saharan countries, insecticide resistance poses a threat to existing mosquito control measures, underscoring the need for complementary control methods such as sterile and/or genetically-modified mosquito release programmes. The sibling species Anopheles gambiae and An. coluzzii are responsible for malaria transmission in most of this region. In their natural habitat, these species generally breed in clean, soft water and it is believed that divergent preference in their larval breeding sites have played a role in their speciation process. Mosquito release programmes rely on the rearing of mosquitoes at high larval densities. Current rearing protocols often make use of deionised water regardless of the strain reared. They also depend on a delicate balance between the need for adequate feeding and the negative effect of toxic ammonia and food waste build-up on mosquito development, making managing and improving water quality in the insectary imperative. Methods Here, we investigated the impact of water source and feed regimes on emergence rate and phenotypic quality of mosquitoes in the insectary. First-instar larvae of An. gambiae (Kisumu strain) and An. coluzzii (Mopti and VK3 strains) were reared in three water sources with varying degrees of hardness (deionised, mineral and a mix of the two), with a daily water change. Larvae were fed daily using two standardised feeding regimes, solution and powder feed. Results Water source had a significant impact on mosquito size and development time for all strains. Earlier emergence of significantly larger mosquitoes was observed in mineral water with the smallest mosquitoes developing later from deionised water. Wing-length was significantly longer in mineral, mixed water and in powder feed, irrespective of sex, strains or water types. Deionised water was the least favourable for mosquito quality across all strains. Conclusions Mineral water and powder feed should be used in rearing protocols to improve mosquito quality where the optimal quality of mosquitoes is desired. Although results obtained were not significant for improved mosquito numbers, the phenotypic quality of mosquitoes reared was significantly improved in mineral water and mix water. Further studies are recommended on the impact mineral water has on other fitness traits such as longevity, fecundity and mating competitiveness. Electronic supplementary material The online version of this article (10.1186/s13071-019-3465-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nwamaka O Akpodiete
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK.
| |
Collapse
|
34
|
Hanemaaijer MJ, Collier TC, Chang A, Shott CC, Houston PD, Schmidt H, Main BJ, Cornel AJ, Lee Y, Lanzaro GC. The fate of genes that cross species boundaries after a major hybridization event in a natural mosquito population. Mol Ecol 2018; 27:4978-4990. [DOI: 10.1111/mec.14947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Travis C. Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture Agricultural Research Service Hilo Hawaii
| | - Allison Chang
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Chloe C. Shott
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Bradley J. Main
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
- Mosquito Control Research Laboratory, Department of Entomology and Nematology University of California Parlier California
- School of Health Systems & Public Health University of Pretoria Pretoria South Africa
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| |
Collapse
|
35
|
Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat Commun 2018; 9:5282. [PMID: 30538253 PMCID: PMC6290077 DOI: 10.1038/s41467-018-07615-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/12/2018] [Indexed: 12/01/2022] Open
Abstract
Increasing insecticide resistance in malaria-transmitting vectors represents a public health threat, but underlying mechanisms are poorly understood. Here, a data integration approach is used to analyse transcriptomic data from comparisons of insecticide resistant and susceptible Anopheles populations from disparate geographical regions across the African continent. An unbiased, integrated analysis of this data confirms previously described resistance candidates but also identifies multiple novel genes involving alternative resistance mechanisms, including sequestration, and transcription factors regulating multiple downstream effector genes, which are validated by gene silencing. The integrated datasets can be interrogated with a bespoke Shiny R script, deployed as an interactive web-based application, that maps the expression of resistance candidates and identifies co-regulated transcripts that may give clues to the function of novel resistance-associated genes. Increasing insecticide resistance of mosquitoes represents a public health threat, and underlying mechanisms are poorly understood. Here, Ingham et al. identify putative insecticide resistance genes in Anopheles gambiae populations across Africa and develop a web-based application that maps their expression.
Collapse
|
36
|
Ward CM, Baxter SW. Assessing Genomic Admixture between Cryptic Plutella Moth Species following Secondary Contact. Genome Biol Evol 2018; 10:2973-2985. [PMID: 30321345 PMCID: PMC6250210 DOI: 10.1093/gbe/evy224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Cryptic species are genetically distinct taxa without obvious variation in morphology and are occasionally discovered using molecular or sequence data sets of populations previously thought to be a single species. The world-wide Brassica pest, Plutella xylostella (diamondback moth), has been a problematic insect in Australia since 1882, yet a morphologically cryptic species with apparent endemism (P. australiana) was only recognized in 2013. Plutella xylostella and P. australiana are able to hybridize under laboratory conditions, and it was unknown whether introgression of adaptive traits could occur in the field to improve fitness and potentially increase pressure on agriculture. Phylogenetic reconstruction of 29 nuclear genomes confirmed P. xylostella and P. australiana are divergent, and molecular dating with 13 mitochondrial genes estimated a common Plutella ancestor 1.96 ± 0.175 Ma. Sympatric Australian populations and allopatric Hawaiian P. xylostella populations were used to test whether neutral or adaptive introgression had occurred between the two Australian species. We used three approaches to test for genomic admixture in empirical and simulated data sets including 1) the f3 statistic at the level of the population, 2) pairwise comparisons of Nei's absolute genetic divergence (dXY) between populations, and 3) changes in phylogenetic branch lengths between individuals across 50-kb genomic windows. These complementary approaches all supported reproductive isolation of the Plutella species in Australia, despite their ability to hybridize. Finally, we highlight the most divergent genomic regions between the two cryptic Plutella species and find they contain genes involved with processes including digestion, detoxification, and DNA binding.
Collapse
Affiliation(s)
- Christopher M Ward
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Australia
| | - Simon W Baxter
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Australia
| |
Collapse
|
37
|
Cornel AJ, Lee Y, Almeida APG, Johnson T, Mouatcho J, Venter M, de Jager C, Braack L. Mosquito community composition in South Africa and some neighboring countries. Parasit Vectors 2018; 11:331. [PMID: 29859109 PMCID: PMC5984792 DOI: 10.1186/s13071-018-2824-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background A century of studies have described particular aspects of relatively few mosquito species in southern Africa, mostly those species involved with disease transmission, specifically malaria and arboviruses. Patterns of community composition such as mosquito abundance and species diversity are often useful measures for medical entomologists to guide broader insights and projections regarding disease dynamics and potential introduction, spread or maintenance of globally spreading pathogens. However, little research has addressed these indicators in southern Africa. Results We collected 7882 mosquitoes from net and light traps at 11 localities comprising 66 species in 8 genera. We collected an additional 8 species using supplementary collection techniques such as larval sampling, sweep-netting and indoor pyrethrum knockdown catches. Highest diversity and species richness was found in the Okavango Delta of Botswana and in South Africa’s Kruger National Park, while the lowest diversity and abundances were in the extreme southern tip of South Africa and in semi-desert Kalahari close to the South Africa border with Botswana. Species composition was more similar between proximal localities than distant ones (Linear model P-value = 0.005). Multiple arbovirus vector species were detected in all localities we surveyed (proportion of vector mosquito numbers were > 0.5 in all locations except Shingwedzi). Their proportions were highest (> 90%) in Vilankulo and Kogelberg. Conclusions Multiple known arbovirus vector species were found in all study sites, whereas anopheline human malaria vector species in only some sites. The combination of net traps and light traps effectively sampled mosquito species attracted to carbon-dioxide or light, accounting for 89% of the 74 species collected. The 11% remaining species were collected using supplementary collection techniques mentioned above. The diversity of species weas highest in savanna type habitats, whereas low diversities were found in the drier Kalahari sands regions and the southern Cape fynbos regions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2824-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony J Cornel
- Department of Entomology & Nematology, University of California, Davis, USA. .,UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Yoosook Lee
- Department of Entomology & Nematology, University of California, Davis, USA
| | - António Paulo Gouveia Almeida
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.,Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Todd Johnson
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marietjie Venter
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Christiaan de Jager
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Buchman AB, Ivy T, Marshall JM, Akbari OS, Hay BA. Engineered Reciprocal Chromosome Translocations Drive High Threshold, Reversible Population Replacement in Drosophila. ACS Synth Biol 2018. [PMID: 29608276 DOI: 10.1101/088393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Replacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions using gene drive provides a self-perpetuating method of disease prevention. Mechanisms that require the gene drive element and linked cargo to exceed a high threshold frequency in order for spread to occur are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold frequency required for drive. Reciprocal chromosome translocations were proposed as a tool for bringing about high threshold population replacement in 1940 and 1968. However, translocations able to achieve this goal have only been reported once, in the spider mite Tetranychus urticae, a haplo-diploid species in which there is strong selection in haploid males for fit homozygotes. We report the creation of engineered translocation-bearing strains of Drosophila melanogaster, generated through targeted chromosomal breakage and homologous recombination. These strains drive high threshold population replacement in laboratory populations. While it remains to be shown that engineered translocations can bring about population replacement in wild populations, these observations suggest that further exploration of engineered translocations as a tool for controlled population replacement is warranted.
Collapse
Affiliation(s)
- Anna B Buchman
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Tobin Ivy
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - John M Marshall
- School of Public Health , University of California , Berkeley , California 94720 , United States
| | - Omar S Akbari
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Bruce A Hay
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| |
Collapse
|
39
|
Buchman AB, Ivy T, Marshall JM, Akbari OS, Hay BA. Engineered Reciprocal Chromosome Translocations Drive High Threshold, Reversible Population Replacement in Drosophila. ACS Synth Biol 2018; 7:1359-1370. [PMID: 29608276 DOI: 10.1021/acssynbio.7b00451] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions using gene drive provides a self-perpetuating method of disease prevention. Mechanisms that require the gene drive element and linked cargo to exceed a high threshold frequency in order for spread to occur are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold frequency required for drive. Reciprocal chromosome translocations were proposed as a tool for bringing about high threshold population replacement in 1940 and 1968. However, translocations able to achieve this goal have only been reported once, in the spider mite Tetranychus urticae, a haplo-diploid species in which there is strong selection in haploid males for fit homozygotes. We report the creation of engineered translocation-bearing strains of Drosophila melanogaster, generated through targeted chromosomal breakage and homologous recombination. These strains drive high threshold population replacement in laboratory populations. While it remains to be shown that engineered translocations can bring about population replacement in wild populations, these observations suggest that further exploration of engineered translocations as a tool for controlled population replacement is warranted.
Collapse
Affiliation(s)
- Anna B Buchman
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Tobin Ivy
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - John M Marshall
- School of Public Health , University of California , Berkeley , California 94720 , United States
| | - Omar S Akbari
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| | - Bruce A Hay
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- Division of Biological Sciences , University of California , San Diego , California 92161 , United States
| |
Collapse
|
40
|
Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep 2018; 8:6594. [PMID: 29700344 PMCID: PMC5920108 DOI: 10.1038/s41598-018-24923-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species.
Collapse
|
41
|
Main BJ, Everitt A, Cornel AJ, Hormozdiari F, Lanzaro GC. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii. Parasit Vectors 2018; 11:225. [PMID: 29618373 PMCID: PMC5885317 DOI: 10.1186/s13071-018-2817-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. RESULTS We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. CONCLUSIONS The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase COEAE5G in the resistant An. coluzzii colony suggests resistance to other insecticides like organophosphates. Additional gene expression studies involving other tissues (e.g. fat body) would provide a more comprehensive view of genes underlying metabolic insecticide resistance in An. coluzzii from Mali. Identifying genetic markers linked to these regulatory alleles is an important next step that would substantially improve insecticide resistance surveillance and population genetic studies in this important vector species.
Collapse
Affiliation(s)
- Bradley J Main
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA.
| | - Amanda Everitt
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Anthony J Cornel
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, MIND Institute and UC-Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
42
|
Raban R, Akbari OS. Gene drives may be the next step towards sustainable control of malaria. Pathog Glob Health 2018; 111:399-400. [PMID: 29566584 DOI: 10.1080/20477724.2017.1453587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Robyn Raban
- a Section of Cell and Developmental Biology , University of California , San Diego , CA , USA
| | - Omar S Akbari
- a Section of Cell and Developmental Biology , University of California , San Diego , CA , USA
| |
Collapse
|
43
|
Hanemaaijer MJ, Houston PD, Collier TC, Norris LC, Fofana A, Lanzaro GC, Cornel AJ, Lee Y. Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Res 2018; 7:347. [PMID: 31069048 PMCID: PMC6489993 DOI: 10.12688/f1000research.13807.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/05/2022] Open
Abstract
Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following Anopheles species and chromosomal forms: An. arabiensis, An. coluzzii (The Forest and Mopti chromosomal forms) and An. gambiae (The Bamako and Savannah chromosomal forms). The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among An. arabiensis, An. coluzzii and An. gambiae or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.
Collapse
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Laura C. Norris
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Abdrahamane Fofana
- Malaria Research and Training Center, University of Bamako, Bamako, E2528, Mali
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Anthony J. Cornel
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California Davis, Davis, CA, 93648, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| |
Collapse
|
44
|
Hanemaaijer MJ, Houston PD, Collier TC, Norris LC, Fofana A, Lanzaro GC, Cornel AJ, Lee Y. Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Res 2018; 7:347. [PMID: 31069048 PMCID: PMC6489993 DOI: 10.12688/f1000research.13807.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 10/12/2023] Open
Abstract
Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following Anopheles species and chromosomal forms: An. arabiensis, An. coluzzii (The Forest and Mopti chromosomal forms) and An. gambiae (The Bamako and Savannah chromosomal forms). The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among An. arabiensis, An. coluzzii and An. gambiae or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.
Collapse
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Laura C. Norris
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Abdrahamane Fofana
- Malaria Research and Training Center, University of Bamako, Bamako, E2528, Mali
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Anthony J. Cornel
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California Davis, Davis, CA, 93648, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| |
Collapse
|
45
|
Fouet C, Atkinson P, Kamdem C. Human Interventions: Driving Forces of Mosquito Evolution. Trends Parasitol 2018; 34:127-139. [PMID: 29301722 DOI: 10.1016/j.pt.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
One of the most common strategies for controlling mosquito-borne diseases relies on the use of chemical pesticides to repel or kill the mosquito vector. Pesticide exposure interferes with several key biological functions in the mosquito and triggers a variety of adaptive responses whose underlying mechanisms are only partially elucidated. The availability of reference genome sequences opens up the possibility of tracking signatures of evolutionary changes, including the most recent, across the genomes of many vector species. In this review, we highlight the recent genomic changes, which contribute to the fascinating adaptation of malaria vectors of the sub-Saharan African region to intensive insecticide-based interventions. We emphasize the operational significance of detailed genomic knowledge for current monitoring and decision-making.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Peter Atkinson
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Colince Kamdem
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
46
|
Genetic diversity of the African malaria vector Anopheles gambiae. Nature 2017; 552:96-100. [PMID: 29186111 DOI: 10.1038/nature24995] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes, which transmit the disease. To gain a deeper understanding of how mosquito populations are evolving, here we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, and identified over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide-resistance genes, with several sweeps spreading over large geographical distances and between species. The design of new tools for mosquito control using gene-drive systems will need to take account of high levels of genetic diversity in natural mosquito populations.
Collapse
|
47
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
48
|
Pombi M, Kengne P, Gimonneau G, Tene-Fossog B, Ayala D, Kamdem C, Santolamazza F, Guelbeogo WM, Sagnon N, Petrarca V, Fontenille D, Besansky NJ, Antonio-Nkondjio C, Dabiré RK, Della Torre A, Simard F, Costantini C. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol Appl 2017; 10:1102-1120. [PMID: 29151864 PMCID: PMC5680640 DOI: 10.1111/eva.12517] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Explaining how and why reproductive isolation evolves and determining which forms of reproductive isolation have the largest impact on the process of population divergence are major goals in the study of speciation. By studying recent adaptive radiations in incompletely isolated taxa, it is possible to identify barriers involved at early divergence before other confounding barriers emerge after speciation is complete. Sibling species of the Anopheles gambiae complex offer opportunities to provide insights into speciation mechanisms. Here, we studied patterns of reproductive isolation among three taxa, Anopheles coluzzii, An. gambiae s.s. and Anopheles arabiensis, to compare its strength at different spatial scales, to dissect the relative contribution of pre‐ versus postmating isolation, and to infer the involvement of ecological divergence on hybridization. Because F1 hybrids are viable, fertile and not uncommon, understanding the dynamics of hybridization in this trio of major malaria vectors has important implications for how adaptations arise and spread across the group, and in planning studies of the safety and efficacy of gene drive as a means of malaria control. We first performed a systematic review and meta‐analysis of published surveys reporting on hybrid prevalence, showing strong reproductive isolation at a continental scale despite geographically restricted exceptions. Second, we exploited our own extensive field data sets collected at a regional scale in two contrasting environmental settings, to assess: (i) levels of premating isolation; (ii) spatio/temporal and frequency‐dependent dynamics of hybridization, (iii) relationship between reproductive isolation and ecological divergence and (iv) hybrid viability penalty. Results are in accordance with ecological speciation theory predicting a positive association between the strength of reproductive isolation and degree of ecological divergence, and indicate that postmating isolation does contribute to reproductive isolation among these species. Specifically, only postmating isolation was positively associated with ecological divergence, whereas premating isolation was correlated with phylogenetic distance.
Collapse
Affiliation(s)
- Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | - Pierre Kengne
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon
| | | | - Billy Tene-Fossog
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon
| | - Diego Ayala
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Centre International de Recherches Médicales de Franceville Franceville Gabon
| | - Colince Kamdem
- Department of Entomology University of California Riverside CA USA
| | - Federica Santolamazza
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | | | - N'Falé Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP) Ouagadougou Burkina Faso
| | - Vincenzo Petrarca
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | - Didier Fontenille
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Institut Pasteur du Cambodge Phnom Penh Cambodia
| | - Nora J Besansky
- Eck Institute for Global Health & Department of Biological Sciences University of Notre Dame Notre Dame IN USA
| | | | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS) Bobo-Dioulasso Burkina Faso
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma "Sapienza"RomeItaly.,Istituto Pasteur Italia-Fondazione Cenci-Bolognetti Rome Italy
| | - Frédéric Simard
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon.,Institut de Recherche en Sciences de la Santé (IRSS) Bobo-Dioulasso Burkina Faso
| | - Carlo Costantini
- Institut de Recherche pour le Développement (IRD) UMR MIVEGEC (University of Montpellier, CNRS 5290 IRD 224) Centre IRD de Montpellier Montpellier France.,Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale (OCEAC) Yaoundé Cameroon.,Institut de Recherche en Sciences de la Santé (IRSS) Bobo-Dioulasso Burkina Faso
| |
Collapse
|
49
|
Mixão V, Gabaldón T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast 2017; 35:5-20. [PMID: 28681409 PMCID: PMC5813172 DOI: 10.1002/yea.3242] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Hybridization between different species can result in the emergence of new lineages and adaptive phenotypes. Occasionally, hybridization in fungal organisms can drive the appearance of opportunistic lifestyles or shifts to new hosts, resulting in the emergence of novel pathogens. In recent years, an increasing number of studies have documented the existence of hybrids in diverse yeast clades, including some comprising human pathogens. Comparative and population genomics studies performed on these clades are enabling us to understand what roles hybridization may play in the evolution and emergence of a virulence potential towards humans. Here we survey recent genomic studies on several yeast pathogenic clades where hybrids have been identified, and discuss the broader implications of hybridization in the evolution and emergence of pathogenic lineages. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Verónica Mixão
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
50
|
Sougoufara S, Sokhna C, Diagne N, Doucouré S, Sembène PMB, Harry M. The implementation of long-lasting insecticidal bed nets has differential effects on the genetic structure of the African malaria vectors in the Anopheles gambiae complex in Dielmo, Senegal. Malar J 2017; 16:337. [PMID: 28810861 PMCID: PMC5558778 DOI: 10.1186/s12936-017-1992-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes belonging to the Anopheles gambiae complex are the main vectors of malaria in sub-Saharan Africa. Among these, An. gambiae, Anopheles coluzzii and Anopheles arabiensis are the most efficient vectors and are largely distributed in sympatric locations. However, these species present ecological and behavioural differences that impact their vectorial capacity and complicate vector-control efforts, mainly based on long-lasting insecticidal bed nets (LLINs) and indoor residual spraying (IRS). In this study, the genetic structure of these three species in a Senegalese village (Dielmo) was investigated using microsatellite data in samples collected in 2006 before implementation of LLINs, in 2008, when they were introduced, and in 2010, 2 years after the use of LLINs. RESULTS In this study 611 individuals were included, namely 136 An. coluzzii, 101 An. gambiae, 6 An. coluzzii/An. gambiae hybrids and 368 An. arabiensis. According to the species, the effect of the implementation of LLINs in Dielmo is differentiated. Populations of the sister species An. coluzzii and An. gambiae regularly experienced bottleneck events, but without significant inbreeding. The Fst values suggested in 2006 a breakdown of assortative mating resulting in hybrids, but the introduction of LLINs was followed by a decrease in the number of hybrids. This suggests a decrease in mating success of hybrids, ecological maladaptation, or a lesser probability of mating between species due to a decrease in An. coluzzii population size. By contrast, the introduction of LLINs has favoured the sibling species An. arabiensis. In this study, some spatial and temporal structuration between An. arabiensis populations were detected, especially in 2008, and the higher genetic diversity observed could result from a diversifying selection. CONCLUSIONS This work demonstrates the complexity of the malaria context and shows the need to study the genetic structure of Anopheles populations to evaluate the effectiveness of vector-control tools and successful management of malaria vector control.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France. .,Département de Biologie Animale, Faculté des Sciences et Techniques/Université Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh Sokhna
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France
| | - Nafissatou Diagne
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France
| | - Souleymane Doucouré
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UM63, CNRS 7278, IRD 198, INSERM 1095, IHU-Méditerranée Infection, Marseille, France
| | - Pape MBacké Sembène
- Département de Biologie Animale, Faculté des Sciences et Techniques/Université Cheikh Anta Diop, Dakar, Senegal
| | - Myriam Harry
- UMR EGCE (Évolution, Génomes, Comportement, Écologie) CNRS, IRD-Université Paris-Sud, IDEEV, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|