1
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2024:S0167-7799(24)00249-X. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
2
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562303. [PMID: 37873352 PMCID: PMC10592828 DOI: 10.1101/2023.10.13.562303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene drive elements promote the spread of linked traits, even when their presence confers a fitness cost to carriers, and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs (the Cleaver/Toxin) that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage (the Rescue/Antidote). ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. We demonstrate the essential features of ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61, whose expression is required in male and female gametes for their survival. Resistant (uncleavable but functional) alleles, which can slow or prevent drive, were not observed. Modeling shows plant ClvRs are likely to be robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications in plant breeding, weed control, and conservation are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Michelle L. Johnson
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Tobin Ivy
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Igor Antoshechkin
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Bruce A. Hay
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| |
Collapse
|
4
|
Davydova S, Liu J, Kandul NP, Braswell WE, Akbari OS, Meccariello A. Next-generation genetic sexing strain establishment in the agricultural pest Ceratitis capitata. Sci Rep 2023; 13:19866. [PMID: 37964160 PMCID: PMC10646097 DOI: 10.1038/s41598-023-47276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 11/16/2023] Open
Abstract
Tephritid fruit fly pests pose an increasing threat to the agricultural industry due to their global dispersion and a highly invasive nature. Here we showcase the feasibility of an early-detection SEPARATOR sex sorting approach through using the non-model Tephritid pest, Ceratitis capitata. This system relies on female-only fluorescent marker expression, accomplished through the use of a sex-specific intron of the highly-conserved transformer gene from C. capitata and Anastrepha ludens. The herein characterized strains have 100% desired phenotype outcomes, allowing accurate male-female separation during early development. Overall, we describe an antibiotic and temperature-independent sex-sorting system in C. capitata, which, moving forward, may be implemented in other non-model Tephritid pest species. This strategy can facilitate the establishment of genetic sexing systems with endogenous elements exclusively, which, on a wider scale, can improve pest population control strategies like sterile insect technique.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Junru Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nikolay P Kandul
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - W Evan Braswell
- USDA APHIS PPQ Science and Technology Insect Management and Molecular Diagnostic Laboratory, 22675 North Moorefield Road, Edinburg, TX, 78541, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Xia Q, Tariq K, Hahn DA, Handler AM. Sequence and expression analysis of the spermatogenesis-specific gene cognates, wampa and Prosα6T, in Drosophila suzukii. Genetica 2023:10.1007/s10709-023-00189-7. [PMID: 37300797 DOI: 10.1007/s10709-023-00189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The sterile insect technique (SIT) is a highly effective biologically-based method for the population suppression of highly invasive insect pests of medical and agricultural importance. The efficacy of SIT could be significantly enhanced, however, by improved methods of male sterilization that avoid the fitness costs of irradiation. An alternative sterilization method is possible by gene-editing that targets genes essential for sperm maturation and motility, rendering them nonfunctional, similar to the CRISPR-Cas9 targeting of β2-tubulin in the genetic model system, Drosophila melanogaster. However, since genetic strategies for sterility are susceptible to breakdown or resistance in mass-reared populations, alternative targets for sterility are important for redundancy or strain replacement. Here we have identified and characterized the sequence and transcriptional expression of two genes in a Florida strain of Drosophila suzukii, that are cognates of the D. melanogaster spermatocyte-specific genes wampa and Prosalpha6T. Wampa encodes a coiled-coil dynein subunit required for axonemal assembly, and the proteasome subunit gene, Prosalpha6T, is required for spermatid individualization and nuclear maturation. The reading frames of these genes differed from their NCBI database entries derived from a D. suzukii California strain by 44 and 8 nucleotide substitutions/polymorphisms, respectively, though all substitutions were synonymous resulting in identical peptide sequences. Expression of both genes is predominant in the male testis, and they share similar transcriptional profiles in adult males with β2-tubulin. Their amino acid sequences are highly conserved in dipteran species, including pest species subject to SIT control, supporting their potential use in targeted male sterilization strategies.
Collapse
Affiliation(s)
- Qinwen Xia
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611, USA
| | - Kaleem Tariq
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, 32608, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611, USA
| | - Alfred M Handler
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, 32608, USA.
| |
Collapse
|
6
|
Yan Y, Hosseini B, Scheld A, Pasham S, Rehling T, Schetelig MF. Effects of antibiotics on the in vitro expression of tetracycline-off constructs and the performance of Drosophila suzukii female-killing strains. Front Bioeng Biotechnol 2023; 11:876492. [PMID: 36865029 PMCID: PMC9971817 DOI: 10.3389/fbioe.2023.876492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic control strategies such as the Release of Insects Carrying a Dominant Lethal (RIDL) gene and Transgenic Embryonic Sexing System (TESS) have been demonstrated in the laboratory and/or deployed in the field. These strategies are based on tetracycline-off (Tet-off) systems which are regulated by antibiotics such as Tet and doxycycline (Dox). Here, we generated several Tet-off constructs carrying a reporter gene cassette mediated by a 2A peptide. Different concentrations (0.1, 10, 100, 500, and 1,000 μg/mL) and types (Tet or Dox) of antibiotics were used to evaluate their effects on the expression of the Tet-off constructs in the Drosophila S2 cells. One or both of the two concentrations, 100 and 250 μg/mL, of Tet or Dox were used to check the influence on the performances of a Drosophila suzukii wild-type strain and female-killing (FK) strains employing TESS. Specifically, the Tet-off construct for these FK strains contains a Drosophila suzukii nullo promoter to regulate the tetracycline transactivator gene and a sex-specifically spliced pro-apoptotic gene hid Ala4 to eliminate females. The results suggested that the in vitro expression of the Tet-off constructs was controlled by antibiotics in a dose-dependent manner. ELISA experiments were carried out identifying Tet at 34.8 ng/g in adult females that fed on food supplemented with Tet at 100 μg/mL. However, such method did not detect Tet in the eggs produced by antibiotic-treated flies. Additionally, feeding Tet to the parents showed negative impact on the fly development but not the survival in the next generation. Importantly, we demonstrated that under certain antibiotic treatments females could survive in the FK strains with different transgene activities. For the strain V229_M4f1 which showed moderate transgene activity, feeding Dox to fathers or mothers suppressed the female lethality in the next generation and feeding Tet or Dox to mothers generated long-lived female survivors. For the strain V229_M8f2 which showed weak transgene activity, feeding Tet to mothers delayed the female lethality for one generation. Therefore, for genetic control strategies employing the Tet-off system, the parental and transgenerational effects of antibiotics on the engineered lethality and insect fitness must be carefully evaluated for a safe and efficient control program.
Collapse
Affiliation(s)
- Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,*Correspondence: Ying Yan,
| | - Bashir Hosseini
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Annemarie Scheld
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Srilakshmi Pasham
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
8
|
Yamamoto A, Yadav AK, Scott MJ. Evaluation of Additional Drosophila suzukii Male-Only Strains Generated Through Remobilization of an FL19 Transgene. Front Bioeng Biotechnol 2022; 10:829620. [PMID: 35372301 PMCID: PMC8965018 DOI: 10.3389/fbioe.2022.829620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Drosophila suzukii (D. suzukii) (Matsumura, 1931; Diptera: Drosophilidae), also known as spotted wing Drosophila, is a worldwide pest of fruits with soft skins such as blueberries and cherries. Originally from Asia, D. suzukii is now present in the Americas and Europe and has become a significant economic pest. Growers largely rely on insecticides for the control of D. suzukii. Genetic strategies offer a species-specific environmentally friendly way for suppression of D. suzukii populations. We previously developed a transgenic strain of D. suzukii that produced only males on a diet that did not contain tetracycline. The strain carried a single copy of the FL19 construct on chromosome 3. Repeated releases of an excess of FL19 males led to suppression of D. suzukii populations in laboratory cage trials. Females died as a consequence of overexpression of the tetracycline transactivator (tTA) and tTA-activated expression of the head involution defective proapoptotic gene. The aim of this study was to generate additional male-only strains that carried two copies of the FL19 transgene through crossing the original line with a piggyBac jumpstarter strain. Males that carried either two chromosome 3 or a singleX-linked transgene were identified through stronger expression of the red fluorescent protein marker gene. The brighter fluorescence of the X-linked lines was likely due to dosage compensation of the red fluorescent protein gene. In total, four X-linked lines and eleven lines with two copies on chromosome 3 were obtained, of which five were further examined. All but one of the strains produced only males on a diet without tetracycline. When crossed with wild type virgin females, all of the five two copy autosomal strains examined produced only males. However, the single copy X-linked lines did not show dominant female lethality. Five of the autosomal lines were further evaluated for productivity (egg to adult) and male competition. Based on these results, the most promising lines have been selected for future population suppression experiments with strains from different geographical locations.
Collapse
|
9
|
Walker M, Chandrasegaran K, Vinauger C, Robert MA, Childs LM. Modeling the effects of Aedes aegypti's larval environment on adult body mass at emergence. PLoS Comput Biol 2021; 17:e1009102. [PMID: 34807904 PMCID: PMC8608295 DOI: 10.1371/journal.pcbi.1009102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquitoes vector harmful pathogens that infect millions of people every year, and developing approaches to effectively control mosquitoes is a topic of great interest. However, the success of many control measures is highly dependent upon ecological, physiological, and life history traits of mosquito species. The behavior of mosquitoes and their potential to vector pathogens can also be impacted by these traits. One trait of interest is mosquito body mass, which depends upon many factors associated with the environment in which juvenile mosquitoes develop. Our experiments examined the impact of larval density on the body mass of Aedes aegypti mosquitoes, which are important vectors of dengue, Zika, yellow fever, and other pathogens. To investigate the interactions between the larval environment and mosquito body mass, we built a discrete time mathematical model that incorporates body mass, larval density, and food availability and fit the model to our experimental data. We considered three categories of model complexity informed by data, and selected the best model within each category using Akaike’s Information Criterion. We found that the larval environment is an important determinant of the body mass of mosquitoes upon emergence. Furthermore, we found that larval density has greater impact on body mass of adults at emergence than on development time, and that inclusion of density dependence in the survival of female aquatic stages in models is important. We discuss the implications of our results for the control of Aedes mosquitoes and on their potential to spread disease. In this work we examined how the environment in which juvenile mosquitoes develop affects their adult body size as measured by adult body mass. Adult size has potential impacts on mosquito behavior and the ability of mosquitoes to transmit disease. We used a combination of experimental work and mathematical modeling to determine important factors affecting adult mosquito body size. In our model, we incorporated potentially interacting aspects of the mosquito life cycle and traits that affect mosquito growth as juveniles. These aspects include body mass, density of the population, and level of available resource. We compared different models to determine the one that best describes the data. As mass at emergence is linked to the success of adult mosquitoes to produce offspring and to their ability transmit pathogens, we discuss how important influences on development and survival of young mosquitoes affect mosquito control and disease spread.
Collapse
Affiliation(s)
- Melody Walker
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, United States of America
- Current address: Laboratory for Systems Medicine, University of Florida Health, Gainesville, Florida, United States of America
| | | | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael A. Robert
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Lauren M. Childs
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kotze AC, James PJ. Control of sheep flystrike: what's been tried in the past and where to from here. Aust Vet J 2021; 100:1-19. [PMID: 34761372 PMCID: PMC9299489 DOI: 10.1111/avj.13131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
Flystrike remains a serious financial and animal welfare issue for the sheep industry in Australia despite many years of research into control methods. The present paper provides an extensive review of past research on flystrike, and highlights areas that hold promise for providing long-term control options. We describe areas where the application of modern scientific advances may provide increased impetus to some novel, as well as some previously explored, control methods. We provide recommendations for research activities: insecticide resistance management, novel delivery methods for therapeutics, improved breeding indices for flystrike-related traits, mechanism of nematode-induced scouring in mature animals. We also identify areas where advances can be made in flystrike control through the greater adoption of well-recognised existing management approaches: optimal insecticide-use patterns, increased use of flystrike-related Australian Sheep Breeding Values, and management practices to prevent scouring in young sheep. We indicate that breeding efforts should be primarily focussed on the adoption and improvement of currently available breeding tools and towards the future integration of genomic selection methods. We describe factors that will impact on the ongoing availability of insecticides for flystrike control and on the feasibility of vaccination. We also describe areas where the blowfly genome may be useful in providing impetus to some flystrike control strategies, such as area-wide approaches that seek to directly suppress or eradicate sheep blowfly populations. However, we also highlight the fact that commercial and feasibility considerations will act to temper the potential for the genome to act as the basis for providing some control options.
Collapse
Affiliation(s)
- A C Kotze
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - P J James
- QAAFI, University of Queensland, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
11
|
Li F, Yamamoto A, Belikoff EJ, Berger A, Griffith EH, Scott MJ. A conditional female lethal system for genetic suppression of the global fruit crop pest Drosophila suzukii. PEST MANAGEMENT SCIENCE 2021; 77:4915-4922. [PMID: 34169646 DOI: 10.1002/ps.6530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura, 1931, Diptera: Drosophilidae) is a global pest of soft-skinned fruits such as blueberries, cherries and raspberries. Also known as spotted-wing drosophila, D. suzukii is native to Asia but is now widely distributed in the Americas and Europe, and presents a serious challenge for growers. Genetic control strategies offer an environmentally friendly approach for the control of D. suzukii. RESULTS In this study, we developed transgenic strains of D. suzukii that carry dominant conditional female lethal transgenes. When raised in the absence of tetracycline, female D. suzukii die. We show that repeated releases of an excess of transgenic males can suppress D. suzukii populations in laboratory cage trials. CONCLUSION Our data suggest that the transgenic strain could provide an effective approach for control of this invasive pest of soft-skinned fruits.
Collapse
Affiliation(s)
- Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Amy Berger
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
13
|
Matinyan N, Karkhanis MS, Gonzalez Y, Jain A, Saltzman A, Malovannaya A, Sarrion-Perdigones A, Dierick HA, Venken KJT. Multiplexed drug-based selection and counterselection genetic manipulations in Drosophila. Cell Rep 2021; 36:109700. [PMID: 34525356 PMCID: PMC8480232 DOI: 10.1016/j.celrep.2021.109700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 01/27/2023] Open
Abstract
The power of Drosophila melanogaster as a model system relies on tractable germline genetic manipulations. Despite Drosophila's expansive genetics toolbox, such manipulations are still accomplished one change at a time and depend predominantly on phenotypic screening. We describe a drug-based genetic platform consisting of four selection and two counterselection markers, eliminating the need to screen for modified progeny. These markers work reliably individually or in combination to produce specific genetic outcomes. We demonstrate three example applications of multiplexed drug-based genetics by generating (1) transgenic animals, expressing both components of binary overexpression systems in a single transgenesis step; (2) dual selectable and counterselectable balancer chromosomes; and (3) selectable, fluorescently tagged P[acman] bacterial artificial chromosome (BAC) strains. We perform immunoprecipitation followed by proteomic analysis on one tagged BAC line, demonstrating our platform's applicability to biological discovery. Lastly, we provide a plasmid library resource to facilitate custom transgene design and technology transfer to other model systems.
Collapse
Affiliation(s)
- Nick Matinyan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mansi S Karkhanis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yezabel Gonzalez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Saltzman
- Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herman A Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute at The Robert and Janice McNair Foundation, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Dai SM, Huang CY, Chang C. Introduction of a cold sensitivity-conferring mutation into the RTA-Bddsx hybrid system of Bactrocera dorsalis for establishment of a thermally controllable homozygous line. PEST MANAGEMENT SCIENCE 2021; 77:3547-3553. [PMID: 33840145 DOI: 10.1002/ps.6408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND For efficient control of the economically important fruit pest Bactrocera dorsalis, a hybrid system combining ricin toxicity and sex-related alternative splicing of the doublesex gene has been developed. This system exhibits the expected female-specific lethal effect; however, the transgenic females do not survive, making it difficult to raise stable homozygous lines. Since modification of ricin toxin A chain (RTA) through a single-residue change (Gly212 > Arg212 ) leads to cold-sensitive posttranslational repression of its toxicity, we utilized this unique property to obtain RTA-Bddsx females that survive at low temperature for line maintenance. RESULTS In transient expression experiments using embryonic injection, two groups treated with RTAcs-derived DNA (LERQcs and RTAcs) exhibited temperature-dependent effects. The toxicity was higher at 29 °C than at 18 °C. The proportion of males was close to 50% at 18 °C in all the tested groups except LERQcs-treated flies, which exhibited a high proportion of males (over 70%) at 29 °C. The results indicate the cold-sensitive responses of RTA and further suggest a female-specific lethal effect. Subsequently, 14 putative RTAcs-Bddsx transgenic Ds-Red+ G1 males were identified, and female-specific lethal effects were observed in Ds-Red+ G2 and G3 lines under cultivation at 29 °C but not at 18 °C. The male ratio can be increased to up to 95% in G3 line 001, indicating that RTAcs functions well in B. dorsalis. CONCLUSION The improved RTAcs-Bddsx system with conditional toxicity represents a novel and promising step toward the practical control of B. dorsalis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu-Mei Dai
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Yen Huang
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheng Chang
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Schetelig MF, Schwirz J, Yan Y. A transgenic female killing system for the genetic control of Drosophila suzukii. Sci Rep 2021; 11:12938. [PMID: 34155227 PMCID: PMC8217240 DOI: 10.1038/s41598-021-91938-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
The spotted wing Drosophila (Drosophila suzukii) is an invasive pest of soft-skinned fruit crops. It is rapidly transmitted in Europe and North America, causing widespread agricultural losses. Genetic control strategies such as the sterile insect technique (SIT) have been proposed as environment-friendly and species-restricted approaches for this pest. However, females are inefficient agents in SIT programs. Here we report a conditional female-killing (FK) strategy based on the tetracycline-off system. We assembled sixteen genetic constructs for testing in vitro and in vivo. Twenty-four independent transgenic strains of D. suzukii were generated and tested for female-specific lethality. The strongest FK effect in the absence of tetracycline was achieved by the construct containing D. suzukii nullo promoter for early gene expression, D. suzukii pro-apoptotic gene hidAla4 for lethality, and the transformer gene intron from the Mediterranean fruit fly Ceratitis capitata for female-specific splicing. One strain carrying this construct eliminated 100% of the female offspring during embryogenesis and produced only males. However, homozygous females from these FK strains were not viable on a tetracycline-supplemented diet, possibly due to the basal expression of hidAla4. Potential improvements to the gene constructs and the use of such FK strains in an SIT program are discussed.
Collapse
Affiliation(s)
- Marc F Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany
| | - Ying Yan
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany.
| |
Collapse
|
16
|
Vella MR, Gould F, Lloyd AL. Mathematical modeling of genetic pest management through female-specific lethality: Is one locus better than two? Evol Appl 2021; 14:1612-1622. [PMID: 34178107 PMCID: PMC8210802 DOI: 10.1111/eva.13228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/03/2023] Open
Abstract
Many novel genetic approaches are under development to combat insect pests. One genetic strategy aims to suppress or locally eliminate a species through large, repeated releases of genetically engineered strains that render female offspring unviable under field conditions. Strains with this female-killing characteristic have been developed either with all of the molecular components in a single construct or with the components in two constructs inserted at independently assorting loci. Strains with two constructs are typically considered to be only of value as research tools and for producing solely male offspring in rearing factories which are subsequently sterilized by radiation before release. A concern with the two-construct strains is that once released, the two constructs would become separated and therefore non-functional. The only female-killing strains that have been released in the field without sterilization are single-construct strains. Here, we use a population genetics model with density dependence to evaluate the relative effectiveness of female-killing approaches based on single- and two-construct arrangements. We find that, in general, the single-construct arrangement results in slightly faster population suppression, but the two-construct arrangement can eventually cause stronger suppression and cause local elimination with a smaller release size. Based on our results, there is no a priori reason that males carrying two independently segregating constructs need to be sterilized prior to release. In some cases, a fertile release would be more efficient for population suppression.
Collapse
Affiliation(s)
- Michael R. Vella
- Biomathematics Graduate ProgramNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Fred Gould
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alun L. Lloyd
- Biomathematics Graduate ProgramNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of MathematicsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
17
|
Zhang Q, Zhou Y, Li Y, Ali B, Zhu Z. Functional characterization of Kid-Kis and MazF-MazE in Sf9 cells and Mythimna separata embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104814. [PMID: 33838714 DOI: 10.1016/j.pestbp.2021.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/10/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Toxin-antitoxin (TA) systems are comprised of a toxin and its antidote antitoxin and are widely present in bacterial and in eukaryotic systems. However, no work regarding TA systems has been reported in insects. We characterized the Kid-Kis and MazF-MazE TA systems in Spodoptera frugiperda cells and Mythimna separata embryos and observed that the Kid and MazF toxins were highly toxic. In Sf9 cells transfected with Kid plasmid and MazF alone, the apoptosis rate was 24.37% and 29.47%, respectively. Whereas the toxicity of their cognate antitoxins were limited. Both apoptosis and necrosis were induced by the two toxins. Both the Kis and MazE antitoxins partly neutralized toxicity in a dose-dependent manner, with MazE accomplishing almost full neutralization at a 1:4 toxin:antitoxin ratio, the cell survival rate was 81% and 97%, respectively. Our results indicate that MazF-MazE is a good candidate module for application in insects, such as in developing new sterile insect technique (SIT).
Collapse
Affiliation(s)
- Qiuyuan Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yicheng Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunfei Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bahar Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhihui Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Nguyen TNM, Choo A, Baxter SW. Lessons from Drosophila: Engineering Genetic Sexing Strains with Temperature-Sensitive Lethality for Sterile Insect Technique Applications. INSECTS 2021; 12:243. [PMID: 33805657 PMCID: PMC8001749 DOI: 10.3390/insects12030243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
A major obstacle of sterile insect technique (SIT) programs is the availability of robust sex-separation systems for conditional removal of females. Sterilized male-only releases improve SIT efficiency and cost-effectiveness for agricultural pests, whereas it is critical to remove female disease-vector pests prior to release as they maintain the capacity to transmit disease. Some of the most successful Genetic Sexing Strains (GSS) reared and released for SIT control were developed for Mediterranean fruit fly (Medfly), Ceratitis capitata, and carry a temperature sensitive lethal (tsl) mutation that eliminates female but not male embryos when heat treated. The Medfly tsl mutation was generated by random mutagenesis and the genetic mechanism causing this valuable heat sensitive phenotype remains unknown. Conditional temperature sensitive lethal mutations have also been developed using random mutagenesis in the insect model, Drosophila melanogaster, and were used for some of the founding genetic research published in the fields of neuro- and developmental biology. Here we review mutations in select D. melanogaster genes shibire, Notch, RNA polymerase II 215kDa, pale, transformer-2, Dsor1 and CK2α that cause temperature sensitive phenotypes. Precise introduction of orthologous point mutations in pest insect species with CRISPR/Cas9 genome editing technology holds potential to establish GSSs with embryonic lethality to improve and advance SIT pest control.
Collapse
Affiliation(s)
- Thu N. M. Nguyen
- Bio21 Institute, School of BioSciences, University of Melbourne, Melbourne, VIC 3052, Australia;
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Amanda Choo
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Simon W. Baxter
- Bio21 Institute, School of BioSciences, University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
19
|
Shults P, Cohnstaedt LW, Adelman ZN, Brelsfoard C. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasit Vectors 2021; 14:31. [PMID: 33413518 PMCID: PMC7788963 DOI: 10.1186/s13071-020-04524-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.
Collapse
Affiliation(s)
- Phillip Shults
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA.
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Zach N Adelman
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA
| | | |
Collapse
|
20
|
Ahmed HMM, Heese F, Wimmer EA. Improvement on the genetic engineering of an invasive agricultural pest insect, the cherry vinegar fly, Drosophila suzukii. BMC Genet 2020; 21:139. [PMID: 33339511 PMCID: PMC7747376 DOI: 10.1186/s12863-020-00940-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The invasive fly Drosophila suzukii has become an established fruit pest in Europe, the USA, and South America with no effective and safe pest management. Genetic engineering enables the development of transgene-based novel genetic control strategies against insect pests and disease vectors. This, however, requires the establishment of reliable germline transformation techniques. Previous studies have shown that D. suzukii is amenable to transgenesis using the transposon-based vectors piggyBac and Minos, site-specific recombination (lox/Cre), and CRISPR/Cas9 genome editing. Results We experienced differences in the usability of piggyBac-based germline transformation in different strains of D. suzukii: we obtained no transgenic lines in a US strain, a single rare transgenic line in an Italian strain, but observed a reliable transformation rate of 2.5 to 11% in a strain from the French Alps. This difference in efficiency was confirmed by comparative examination of these three strains. In addition, we used an attP landing site line to successfully established φC31-integrase-mediated plasmid integration at a rate of 10% and generated landing site lines with two attP sequences to effectively perform φC31-Recombinase Mediated Cassette Exchange (φC31-RMCE) with 11% efficiency. Moreover, we isolated and used the endogenous regulatory regions of Ds nanos to express φC31 integrase maternally to generate self-docking lines for φC31-RMCE. Besides, we isolated the promoter/enhancer of Ds serendipity α to drive the heterologous tetracycline-controlled transactivator (tTA) during early embryonic development and generated a testes-specific tTA driver line using the endogenous beta-2-tubulin (β2t) promoter/enhancer. Conclusion Our results provide evidence that the D. suzukii strain AM derived from the French Alps is more suitable for piggyBac germline transformation than other strains. We demonstrated the feasibility of using φC31-RMCE in the cherry vinegar fly and generated a set of lines that can be used for highly efficient integration of larger constructs. The φC31-based integration will facilitate modification and stabilization of previously generated transgenic lines that carry at least one attP site in the transgene construction. An early embryo-specific and a spermatogenesis-specific driver line were generated for future use of the binary expression system tet-off to engineer tissue- and stage-specific effector gene expression for genetic pest control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00940-5.
Collapse
Affiliation(s)
- Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Department of Crop Protection, Faculty of Agriculture-University of Khartoum, P.O. Box 32, 13314, Khartoum North, Khartoum, Sudan
| | - Fabienne Heese
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Yan Y, Scott MJ. Building a transgenic sexing strain for genetic control of the Australian sheep blow fly Lucilia cuprina using two lethal effectors. BMC Genet 2020; 21:141. [PMID: 33339506 PMCID: PMC8348823 DOI: 10.1186/s12863-020-00947-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The sterile insect technique (SIT) has been
successfully used in many pest management programs worldwide.
Some SIT programs release both sexes due to the lack of genetic
sexing strains or efficient sex separation methods but sterile
females are ineffective control agents. Transgenic sexing
strains (TSS) using the tetracycline-off control system have
been developed in a variety of insect pests, from which females
die by either of two commonly used lethal effectors:
overexpression of the transcription factor tetracycline transactivator (tTA)
or ectopic expression of a proapoptotic gene, such as head involution defective
(hid). The lethality from
tTA overexpression is thought to be due to “transcriptional
squelching”, while hid causes
lethality by induction of apoptosis. This study aims to create
and characterize a TSS of Lucilia
cuprina, which is a major pest of sheep, by
combining both lethal effectors in a single transgenic
strain. Results Here a stable TSS of L.
cuprina (DH6) that carries two lethal effectors
was successfully generated, by crossing FL3#2 which carries a
female-specific tTA overexpression cassette, with EF1#12 which
carries a tTA-regulated LshidAla2 cassette. Females with
one copy of the FL3#2 transgene are viable but up to 99.8% of
homozygous females die at the pupal stage when raised on diet
that lacks tetracycline. Additionally, the female lethality of
FL3#2 was partially repressed by supplying tetracycline to the
parental generation. With an additional LshidAla2 effector, the female
lethality of DH6 is 100% dominant and cannot be repressed by
maternal tetracycline. DH6 females die at the late-larval stage.
Several fitness parameters important for mass rearing such as
hatching rate, adult emergence and sex ratio were comparable to
those of the wild type strain. Conclusions Compared to the parental FL3#2 strain, the DH6
strain shows stronger female lethality and lethality occurs at
an earlier stage of development. The combination of two
tTA-dependent lethal effectors could improve strain stability
under mass rearing and could reduce the risk of resistance in
the field if fertile males are released. Our approach could be
easily adapted for other pest species for an efficient, safe and
sustainable genetic control program. Supplementary Information The online version contains supplementary material available
at 10.1186/s12863-020-00947-y.
Collapse
Affiliation(s)
- Ying Yan
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA.,Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Winchesterstraße 2, 35394, Giessen, Germany
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA.
| |
Collapse
|
22
|
Using Moderate Transgene Expression to Improve the Genetic Sexing System of the Australian Sheep Blow Fly Lucilia cuprina. INSECTS 2020; 11:insects11110797. [PMID: 33202756 PMCID: PMC7697711 DOI: 10.3390/insects11110797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary Populations of pest insects can be suppressed through repeated mass releases of sterilized insects. This is particularly effective if only sterile males are released. We previously developed several genetically modified strains of the Australian sheep blowfly that produce only males when raised on diet that lacked tetracycline. A disadvantage of the some of the engineered strains was that females would lay few eggs unless fed a diet with a low dose of tetracycline. In this study we show that effective male-only strains can be made by combining driver/effector lines that have moderate transgene expression/activity. Furthermore, the strain does not require tetracycline in the adult diet for female fertility. This “moderate expression/activity” strategy could be more generally applied to other pests that can be genetically modified. Abstract The sterile insect technique (SIT) is a promising strategy to control the Australian sheep blow fly Lucilia cuprina, a major pest of sheep. We have previously developed a transgenic embryonic sexing system (TESS) for this pest to facilitate the potential SIT application. TESS carry two transgenes, a tetracycline transactivator (tTA) driver and a tTA-activated pro-apoptotic effector. TESS females die at the embryonic stage unless tetracycline is supplied in the diet. However, undesired female sterility was observed in some TESS strains without tetracycline due to expression of tTA in ovaries. Here we investigate if TESS that combine transgenes with relatively low/moderate expression/activity improves the fertility of TESS females. tTA driver lines were evaluated for tTA expression by quantitative real time PCR and/or by crossing with a tTA-activated RFPex effector line. Fertility and lethality tests showed that a TESS strain containing a driver line with moderate tTA expression and an effector line showing moderate pro-apoptotic activity could recover the fertility of parental females and eliminated all female offspring at the embryonic stage. Consequently, such a strain could be further evaluated for an SIT program for L. cuprina, and such a “moderate strategy” could be considered for the TESS development in other pest species.
Collapse
|
23
|
Das SR, Maselko M, Upadhyay A, Smanski MJ. Genetic engineering of sex chromosomes for batch cultivation of non-transgenic, sex-sorted males. PLoS Genet 2020; 16:e1009180. [PMID: 33137115 PMCID: PMC7660900 DOI: 10.1371/journal.pgen.1009180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 10/06/2020] [Indexed: 01/11/2023] Open
Abstract
The field performance of Sterile Insect Technique (SIT) is improved by sex-sorting and releasing only sterile males. This can be accomplished by resource-intensive separation of males from females by morphology. Alternatively, sex-ratio biasing genetic constructs can be used to selectively remove one sex without the need for manual or automated sorting, but the resulting genetically engineered (GE) control agents would be subject to additional governmental regulation. Here we describe and demonstrate a genetic method for the batch production of non-GE males. This method could be applied to generate the heterogametic sex (XY, or WZ) in any organism with chromosomal sex determination. We observed up to 100% sex-selection with batch cultures of more than 103 individuals. Using a stringent transgene detection assay, we demonstrate the potential of mass production of transgene free males.
Collapse
Affiliation(s)
- Siba R. Das
- Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, United States of America
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States of America
| | - Maciej Maselko
- Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, United States of America
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States of America
| | - Ambuj Upadhyay
- Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, United States of America
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States of America
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, Saint Paul, MN, United States of America
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States of America
- * E-mail:
| |
Collapse
|
24
|
Andere AA, Pimsler ML, Tarone AM, Picard CJ. The genomes of a monogenic fly: views of primitive sex chromosomes. Sci Rep 2020; 10:15728. [PMID: 32978490 PMCID: PMC7519133 DOI: 10.1038/s41598-020-72880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
The production of male and female offspring is often determined by the presence of specific sex chromosomes which control sex-specific expression, and sex chromosomes evolve through reduced recombination and specialized gene content. Here we present the genomes of Chrysomya rufifacies, a monogenic blow fly (females produce female or male offspring, exclusively) by separately sequencing and assembling each type of female and the male. The genomes (> 25X coverage) do not appear to have any sex-linked Muller F elements (typical for many Diptera) and exhibit little differentiation between groups supporting the morphological assessments of C. rufifacies homomorphic chromosomes. Males in this species are associated with a unimodal coverage distribution while females exhibit bimodal coverage distributions, suggesting a potential difference in genomic architecture. The presence of the individual-sex draft genomes herein provides new clues regarding the origination and evolution of the diverse sex-determining mechanisms observed within Diptera. Additional genomic analysis of sex chromosomes and sex-determining genes of other blow flies will allow a refined evolutionary understanding of how flies with a typical X/Y heterogametic amphogeny (male and female offspring in similar ratios) sex determination systems evolved into one with a dominant factor that results in single sex progeny in a chromosomally monomorphic system.
Collapse
Affiliation(s)
- Anne A. Andere
- Department of Biology, Indiana University- Purdue University Indianapolis, Indianapolis, IN USA
| | - Meaghan L. Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL USA
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX USA
| | - Christine J. Picard
- Department of Biology, Indiana University- Purdue University Indianapolis, Indianapolis, IN USA
| |
Collapse
|
25
|
Zhao Y, Schetelig MF, Handler AM. Genetic breakdown of a Tet-off conditional lethality system for insect population control. Nat Commun 2020; 11:3095. [PMID: 32555259 PMCID: PMC7303202 DOI: 10.1038/s41467-020-16807-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Genetically modified conditional lethal strains have been created to improve the control of insect pest populations damaging to human health and agriculture. However, understanding the potential for the genetic breakdown of lethality systems by rare spontaneous mutations, or selection for inherent suppressors, is critical since field release studies are in progress. This knowledge gap was addressed in a Drosophila tetracycline-suppressible embryonic lethality system by analyzing the frequency and structure of primary-site spontaneous mutations and second-site suppressors resulting in heritable survivors from 1.2 million zygotes. Here we report that F1 survivors due to primary-site deletions and indels occur at a 5.8 × 10−6 frequency, while survival due to second-site maternal-effect suppressors occur at a ~10−5 frequency. Survivors due to inherent lethal effector suppressors could result in a resistant field population, and we suggest that this risk may be mitigated by the use of dual redundant, albeit functionally unrelated, lethality systems. Insect population control using conditional lethal systems could break down due to spontaneous mutations that render the system ineffective. Here the authors analyse the structure and frequency of such mutations in Drosophila and suggest the use of dual lethality systems to mitigate their survival.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biology Resources, Guangxi University, 100 Daxuedong Road, 530005, Nanning, Guangxi, China.,Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus-Liebig University Gießen, Winchesterstr. 2, 35394, Gießen, Germany
| | - Alfred M Handler
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
26
|
Gregoriou ME, Mathiopoulos KD. Knocking down the sex peptide receptor by dsRNA feeding results in reduced oviposition rate in olive fruit flies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21665. [PMID: 32091155 DOI: 10.1002/arch.21665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Insect pests can cause crop damage in yield or quality, resulting in profit losses for farmers. The primary approach to control them is still the use of chemical pesticides resulting in significant hazards to the environment and human health. Biological control and the sterile insect technique are alternative strategies to improve agriculture protection. However, both strategies have significant limitations. A newly introduced approach that could be both effective and species-specific is the RNA interference mechanism. One key point for the success of this strategy is the delivery method of double-strand RNA (dsRNA) to the insects. A method of dsRNA delivery to insects with potential use in the field is the oral delivery, feeding the insects engineered microorganisms that produce dsRNA. Here, we present the first protocol for dsRNA feeding using modified bacteria, in the olive fruit fly, the most important insect pest of cultivated olives. We chose to target the sex peptide receptor gene. The sex peptide receptor interacts with the sex peptide, a peptide that is responsible for the postmating behavior in the model organism, Drosophila melanogaster. Feeding the female olive fruit fly with bacteria that produced dsRNA for the sex peptide receptor gene resulted in the development of female insects with significantly lower oviposition rates. Administration of dsRNA producing bacteria in insect diet against target genes that lead to genetic sexing or female-specific lethality could be added in the armory of control methods.
Collapse
Affiliation(s)
- Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Kostas D Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
27
|
Asad M, Munir F, Xu X, Li M, Jiang Y, Chu L, Yang G. Functional characterization of the cis-regulatory region for the vitellogenin gene in Plutella xylostella. INSECT MOLECULAR BIOLOGY 2020; 29:137-147. [PMID: 31850544 DOI: 10.1111/imb.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The vitellogenin gene promoter (VgP) is an essential cis-regulatory element that plays a significant role in transcription of the vitellogenin (Vg) gene, leading to the production of yolk protein in insects, including lepidopterans. However, the function of VgP is still not clear in Plutella xylostella. Here, we cloned a 5.1 kb DNA fragment of the cis-regulatory region adjacent to the 5' end of the Vg gene of P. xylostella (PxVg). We identified two promoter sites in that 5' upstream sequence of PxVg and performed in vitro analysis of two promoter sequences (PxVgP1, 4.9 kb, and PxVgP2, 2.9 kb) in the embryonic cell line of P. xylostella. PxVgP2 exhibited higher enhanced green fluorescent protein (EGFP) expression, so PxVgP2 was used for in vivo analysis. Strong EGFP fluorescence was observed in adult females and the fat body of females, with low expression in embryos. Our results suggest that PxVgP is an important stage-, tissue- and sex-specific endogenous cis-regulatory element in P. xylostella.
Collapse
Affiliation(s)
- M Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - F Munir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - X Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - M Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Y Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - L Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - G Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
28
|
Tsoumani KT, Meccariello A, Mathiopoulos KD, Papathanos PA. Developing CRISPR-based sex-ratio distorters for the genetic control of fruit fly pests: A how to manual. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21652. [PMID: 31845410 DOI: 10.1002/arch.21652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Agricultural pest control using genetic-based methods provides a species-specific and environmentally harmless way for population suppression of fruit flies. One way to improve the efficiency of such methods is through self-limiting, female-eliminating approaches that can alter an insect populations' sex ratio toward males. In this microreview, we summarize recent advances in synthetic sex ratio distorters based on X-chromosome shredding that can induce male-biased progeny. We outline the basic principles to guide the efficient design of an X-shredding system in an XY heterogametic fruit fly species of interest using CRISPR/Cas gene editing, newly developed computational tools, and insect genetic engineering. We also discuss technical aspects and challenges associated with the efficient transferability of this technology in fruit fly pest populations, toward the potential use of this new class of genetic control approaches for pest management purposes.
Collapse
Affiliation(s)
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kostas D Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Philippos Aris Papathanos
- Department of Entomology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
29
|
Genetic Variation and Potential for Resistance Development to the tTA Overexpression Lethal System in Insects. G3 (BETHESDA, MD.) 2020; 10:1271-1281. [PMID: 32019873 PMCID: PMC7144068 DOI: 10.1534/g3.120.400990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Release of insect pests carrying the dominant lethal tetracycline transactivator (tTA) overexpression system has been proposed as a means for population suppression. High levels of the tTA transcription factor are thought to be toxic due to either transcriptional squelching or interference with protein ubiquitination. Here we utilized the Drosophila melanogaster Genetic Reference Panel (DGRP) to examine the influence of genetic variation on the efficacy of a female-specific tTA overexpression system. The level of female lethality between DGRP lines varied from 11 to 97% with a broad sense heritability of 0.89. A genome-wide association analysis identified 192 allelic variants associated with high or low lethality (P < 10-5), although none were significant when corrected for multiple testing. 151 of the variants fell within 108 genes that were associated with several biological processes including transcription and protein ubiquitination. In four lines with high female lethality, tTA RNA levels were similar or higher than in the parental tTA overexpression strain. In two lines with low lethality, tTA levels were about two fold lower than in the parental strain. However, in two other lines with low lethality, tTA levels were similar or approximately 30% lower. RNAseq analysis identified genes that were up or downregulated in the four low female lethal lines compared to the four high lethal lines. For example, genes associated with RNA processing and rRNA maturation were significantly upregulated in low lethal lines. Our data suggest that standing genetic variation in an insect population could provide multiple mechanisms for resistance to the tTA overexpression system.
Collapse
|
30
|
Paulo DF, Williamson ME, Arp AP, Li F, Sagel A, Skoda SR, Sanchez-Gallego J, Vasquez M, Quintero G, Pérez de León AA, Belikoff EJ, Azeredo-Espin AML, McMillan WO, Concha C, Scott MJ. Specific Gene Disruption in the Major Livestock Pests Cochliomyia hominivorax and Lucilia cuprina Using CRISPR/Cas9. G3 (BETHESDA, MD.) 2019; 9:3045-3055. [PMID: 31340950 PMCID: PMC6723136 DOI: 10.1534/g3.119.400544] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Cochliomyia hominivorax and Lucilia cuprina are major pests of livestock. Their larvae infest warm-blooded vertebrates and feed on host's tissues, resulting in severe industry losses. As they are serious pests, considerable effort has been made to develop genomic resources and functional tools aiming to improve their management and control. Here, we report a significant addition to the pool of genome manipulation tools through the establishment of efficient CRISPR/Cas9 protocols for the generation of directed and inheritable modifications in the genome of these flies. Site-directed mutations were introduced in the C hominivorax and L cuprina yellow genes (ChY and LcY) producing lightly pigmented adults. High rates of somatic mosaicism were induced when embryos were injected with Cas9 ribonucleoprotein complexes (RNPs) pre-assembled with guide RNAs (sgRNAs) at high concentrations. Adult flies carrying disrupted yellow alleles lacked normal pigmentation (brown body phenotype) and efficiently transmitted the mutated alleles to the subsequent generation, allowing the rapid creation of homozygous strains for reverse genetics of candidate loci. We next used our established CRISPR protocol to disrupt the C hominivorax transformer gene (Chtra). Surviving females carrying mutations in the Chtra locus developed mosaic phenotypes of transformed ovipositors with characteristics of male genitalia while exhibiting abnormal reproductive tissues. The CRISPR protocol described here is a significant improvement on the existing toolkit of molecular methods in calliphorids. Our results also suggest that Cas9-based systems targeting Chtra and Lctra could be an effective means for controlling natural populations of these important pests.
Collapse
Affiliation(s)
- Daniel F Paulo
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Megan E Williamson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Alex P Arp
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and
| | - Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Agustin Sagel
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Steven R Skoda
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Joel Sanchez-Gallego
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Mario Vasquez
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Gladys Quintero
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Adalberto A Pérez de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Ana M L Azeredo-Espin
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
| | - W Owen McMillan
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Carolina Concha
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| |
Collapse
|
31
|
Somerville J, Zhou L, Raymond B. Aseptic Rearing and Infection with Gut Bacteria Improve the Fitness of Transgenic Diamondback Moth, Plutella xylostella. INSECTS 2019; 10:insects10040089. [PMID: 30925791 PMCID: PMC6523322 DOI: 10.3390/insects10040089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Mass insect rearing can have a range of applications, for example in biological control of pests. The competitive fitness of released insects is extremely important in a number of applications. Here, we investigated how to improve the fitness of a transgenic diamondback moth, which has shown variation in mating ability when reared in different insectaries. Specifically we tested whether infection with a gut bacteria, Enterobacter cloacae, and aseptic rearing of larvae could improve insect growth and male performance. All larvae were readily infected with E. cloacae. Under aseptic rearing, pupal weights were reduced and there was a marginal reduction in larval survival. However, aseptic rearing substantially improved the fitness of transgenic males. In addition, under aseptic rearing, inoculation with E. cloacae increased pupal weights and male fitness, increasing the proportion of transgenic progeny from 20% to 30% relative to uninfected insects. Aseptic conditions may improve the fitness of transgenic males by excluding microbial contaminants, while symbiont inoculation could further improve fitness by providing additional protection against infection, or by normalizing insect physiology. The simple innovation of incorporating antibiotic into diet, and inoculating insects with symbiotic bacteria that are resistant to that antibiotic, could provide a readily transferable tool for other insect rearing systems.
Collapse
Affiliation(s)
- Jasmine Somerville
- Centre for Ecology and Conservation, Penryn campus, College of Life and Environmental Science, University of Exeter, TR10 9FE, UK.
| | - Liqin Zhou
- Centre for Ecology and Conservation, Penryn campus, College of Life and Environmental Science, University of Exeter, TR10 9FE, UK.
| | - Ben Raymond
- Centre for Ecology and Conservation, Penryn campus, College of Life and Environmental Science, University of Exeter, TR10 9FE, UK.
| |
Collapse
|
32
|
Krzywinska E, Krzywinski J. Effects of stable ectopic expression of the primary sex determination gene Yob in the mosquito Anopheles gambiae. Parasit Vectors 2018; 11:648. [PMID: 30583747 PMCID: PMC6304757 DOI: 10.1186/s13071-018-3211-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mosquito-borne diseases, such as malaria, are controlled primarily by suppressing mosquito vector populations using insecticides. The current control programmes are seriously threatened by the emergence and rapid spread of resistance to approved insecticides. Genetic approaches proposed to complement the existing control efforts may be a more sustainable solution to mosquito control. All such approaches would rely on releases of modified male mosquitoes, because released females would contribute to biting and pathogen transmission. However, no sufficiently large-scale methods for sex separation in mosquitoes exist. RESULTS Here we exploited the female embryo-killing property of the sex determining gene Yob from the African malaria mosquito, Anopheles gambiae, to evaluate the feasibility of creating transgenic An. gambiae sexing strains with a male-only phenotype. We generated An. gambiae lines with Yob expression, in both sexes, controlled by the vas2 promoter. Penetrance of the female-lethal phenotype was highly dependent on the location of the transgenic construct within the genome. A strong male bias was observed in one of the lines. All the females that survived to adulthood in that line possessed masculinized head appendages and terminal abdominal segments. They did not feed on blood, lacked host-seeking behavior, and thus were effectively sterile. Males, however, were not affected by Yob overexpression. CONCLUSIONS Our study demonstrates that ectopic expression of Yob results in a recovery of viable, fertile males, and in death, or otherwise strongly deleterious effects, in females. This result shows potential for generation of transgenic sexing strains of Anopheles gambiae with a conditional male-only phenotype.
Collapse
|
33
|
Yang Y, Wang YH, Chen XE, Tian D, Xu X, Li K, Huang YP, He L. CRISPR/Cas9-mediated Tyrosine hydroxylase knockout resulting in larval lethality in Agrotis ipsilon. INSECT SCIENCE 2018; 25:1017-1024. [PMID: 30328670 DOI: 10.1111/1744-7917.12647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Tyrosine hydroxylase (TH) is involved in insect melanin and the catecholamine biosynthesis pathway. TH as an enzyme catalyzing the conversion of tyrosine to 3,4-dihydroxyphenylalanine is the first step reaction in the pathway. Although TH has been proven to affect the pigmentation of the epidermis and development in many insects, there is no report about physiological function of the TH gene in Agrotis ipsilon. Here we cloned the TH gene from A. ipsilon. Semi-quantitative real-time polymerase chain reaction (PCR) analysis showed that AiTH was expressed at all development stages. Moreover, its high expression levels in the head and epidermis suggest that it is mainly related to pigment deposition and insect development. Then, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system to target the AiTH gene: deletion events were detected at the target sites. Compared with the control group, a few mutants with the phenomenon of narrowing in the egg shell and embryos can develop but cannot hatch; the other hatched embryos were seriously dehydrated after hatching and died within the first day. Quantitative real-time PCR analysis revealed that TH was down-regulated in AiTH mutants. Here, our work demonstrated that AiTH plays an important role in growth and development of newly hatched larvae; meanwhile, it would be a promising target to explore a control strategy for A. ipsilon.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Science, East China Normal University, Shanghai, China
| | - Yao-Hui Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi-En Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Di Tian
- School of Life Science, East China Normal University, Shanghai, China
| | - Xia Xu
- School of Life Science, East China Normal University, Shanghai, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Yong-Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Zhang Z, Niu B, Ji D, Li M, Li K, James AA, Tan A, Huang Y. Silkworm genetic sexing through W chromosome-linked, targeted gene integration. Proc Natl Acad Sci U S A 2018; 115:8752-8756. [PMID: 30104361 PMCID: PMC6126770 DOI: 10.1073/pnas.1810945115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex separation methods are critical for genetic sexing systems in commercial insect production and sterile insect techniques. Integration of selectable marker genes into a sex chromosome is particularly useful in insects with a heterogametic sex determination system. Here, we describe targeted gene integration of fluorescent marker expression cassettes into a randomly amplified polymorphic DNA (RAPD) marker region in the W chromosome of the lepidopteran model insect Bombyx mori using transcriptional activator-like effector nuclease (TALEN)-mediated genome editing. This silkworm strain shows ubiquitous female-specific red or green fluorescence from the embryonic to adult stages. Furthermore, we developed a binary, female-specific, embryonic lethality system combining the TALEN and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. This system includes one strain with TALEN-mediated, W-specific Cas9 expression driven by the silkworm germ cell-specific nanos (nos) promoter and another strain with U6-derived single-guide RNA (sgRNA) expression targeting transformer 2 (tra2), an essential gene for silkworm embryonic development. Filial 1 (F1) hybrids exhibit complete female-specific lethality during embryonic stages. Our study provides a promising approach for B. mori genetic sexing and sheds light on developing sterile insect techniques in other insect species, especially in lepidopteran pests with WZ/ZZ sex chromosome systems.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, China
| | - Kai Li
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-3900;
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
35
|
Abstract
Aedes mosquito-transmitted diseases, such as dengue, Zika and chikungunya, are becoming major global health emergencies while old threats, such as yellow fever, are re-emerging. Traditional control methods, which have focused on reducing mosquito populations through the application of insecticides or preventing breeding through removal of larval habitat, are largely ineffective, as evidenced by the increasing global disease burden. Here, we review novel mosquito population reduction and population modification approaches with a focus on control methods based on the release of mosquitoes, including the release of Wolbachia-infected mosquitoes and strategies to genetically modify the vector, that are currently under development and have the potential to contribute to a reversal of the current alarming disease trends.
Collapse
Affiliation(s)
- Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
36
|
Alphey N, Bonsall MB. Genetics-based methods for agricultural insect pest management. AGRICULTURAL AND FOREST ENTOMOLOGY 2018; 20:131-140. [PMID: 29937693 PMCID: PMC5993313 DOI: 10.1111/afe.12241] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 06/01/2023]
Abstract
The sterile insect technique is an area-wide pest control method that reduces agricultural pest populations by releasing mass-reared sterile insects, which then compete for mates with wild insects. Contemporary genetics-based technologies use insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation.Engineered strains of agricultural pest species, including moths such as the diamondback moth Plutella xylostella and fruit flies such as the Mediterranean fruit fly Ceratitis capitata, have been developed with lethality that only operates on females.Transgenic crops expressing insecticidal toxins are widely used; the economic benefits of these crops would be lost if toxin resistance spread through the pest population. The primary resistance management method is a high-dose/refuge strategy, requiring toxin-free crops as refuges near the insecticidal crops, as well as toxin doses sufficiently high to kill wild-type insects and insects heterozygous for a resistance allele.Mass-release of toxin-sensitive engineered males (carrying female-lethal genes), as well as suppressing populations, could substantially delay or reverse the spread of resistance. These transgenic insect technologies could form an effective resistance management strategy.We outline some policy considerations for taking genetic insect control systems through to field implementation.
Collapse
Affiliation(s)
- Nina Alphey
- Mathematical Ecology Research Group, Department of Zoology, South Parks RoadOxford OX1 3PSU.K.
- Department of Life SciencesImperial College London, Silwood Park Campus, Buckhurst RoadAscot SL5 7PYU.K.
- The Pirbright Institute, Ash RoadPirbirght GU24 0NFU.K.
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, South Parks RoadOxford OX1 3PSU.K.
- Department of Life SciencesImperial College London, Silwood Park Campus, Buckhurst RoadAscot SL5 7PYU.K.
- St Peter's College, New Inn Hall StreetOxford OX1 2DLU.K.
| |
Collapse
|
37
|
Abstract
The rapid spread of mosquito resistance to currently available insecticides, and the current lack of an efficacious malaria vaccine are among many challenges that affect large-scale efforts for malaria control. As goals of malaria elimination and eradication are put forth, new vector-control paradigms and tools and/or further optimization of current vector-control products are required to meet public health demands. Vector control remains the most effective measure to prevent malaria transmission and present gains against malaria mortality and morbidity may be maintained as long as vector-intervention strategies are sustained and adapted to underlying vector-related transmission dynamics. The following provides a brief overview of vector-control strategies and tools either in use or under development and evaluation that are intended to exploit key entomological parameters toward driving down transmission.
Collapse
Affiliation(s)
- Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - John Greico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Frank H Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
38
|
Abstract
Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter. Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a ‘species-like’ barrier to reproduction between two otherwise compatible populations.
Collapse
|
39
|
Edgington MP, Alphey LS. Conditions for success of engineered underdominance gene drive systems. J Theor Biol 2017; 430:128-140. [PMID: 28728996 PMCID: PMC5562440 DOI: 10.1016/j.jtbi.2017.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 12/02/2022]
Abstract
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens.
Collapse
Affiliation(s)
| | - Luke S Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
40
|
Anstead CA, Perry T, Richards S, Korhonen PK, Young ND, Bowles VM, Batterham P, Gasser RB. The Battle Against Flystrike - Past Research and New Prospects Through Genomics. ADVANCES IN PARASITOLOGY 2017; 98:227-281. [PMID: 28942770 DOI: 10.1016/bs.apar.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flystrike, or cutaneous myiasis, is caused by blow fly larvae of the genus Lucilia. This disease is a major problem in countries with large sheep populations. In Australia, Lucilia cuprina (Wiedemann, 1830) is the principal fly involved in flystrike. While much research has been conducted on L. cuprina, including physical, chemical, immunological, genetic and biological investigations, the molecular biology of this fly is still poorly understood. The recent sequencing, assembly and annotation of the draft genome and analyses of selected transcriptomes of L. cuprina have given a first global glimpse of its molecular biology and insights into host-fly interactions, insecticide resistance genes and intervention targets. The present article introduces L. cuprina, flystrike and associated issues, details past control efforts and research foci, reviews salient aspects of the L. cuprina genome project and discusses how the new genomic and transcriptomic resources for this fly might accelerate fundamental molecular research of L. cuprina towards developing new methods for the treatment and control of flystrike.
Collapse
Affiliation(s)
| | - Trent Perry
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
41
|
Harvey-Samuel T, Ant T, Alphey L. Towards the genetic control of invasive species. Biol Invasions 2017; 19:1683-1703. [PMID: 28620268 PMCID: PMC5446844 DOI: 10.1007/s10530-017-1384-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/11/2017] [Indexed: 11/13/2022]
Abstract
Invasive species remain one of the greatest threats to global biodiversity. Their control would be enhanced through the development of more effective and sustainable pest management strategies. Recently, a novel form of genetic pest management (GPM) has been developed in which the mating behaviour of insect pests is exploited to introduce genetically engineered DNA sequences into wild conspecific populations. These 'transgenes' work in one or more ways to reduce the damage caused by a particular pest, for example reducing its density, or its ability to vector disease. Although currently being developed for use against economically important insect pests, these technologies would be highly appropriate for application against invasive species that threaten biodiversity. Importantly, these technologies have begun to advance in scope beyond insects to vertebrates, which include some of the world's worst invasives. Here we review the current state of this rapidly progressing field and, using an established set of eradication criteria, discuss the characteristics which make GPM technologies suitable for application against invasive pests.
Collapse
|
42
|
Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome Editing of Wnt-1, a Gene Associated with Segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth, Dendrolimus punctatus. Front Physiol 2017; 7:666. [PMID: 28111552 PMCID: PMC5216022 DOI: 10.3389/fphys.2016.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023] Open
Abstract
The pine caterpillar moth, Dendrolimus punctatus, is a devastating forest pest. Genetic manipulation of this insect pest is limited due to the lack of genomic and functional genomic toolsets. Recently, CRISPR/Cas9 technology has been demonstrated to be a promising approach to modify the genome. To investigate gene functions during the embryogenesis, we introduced CRISPR/Cas9 system in D. punctatus to precisely and effectively manipulate gene expressions inmutant embryos. Compared to controls, knocking out of DpWnt-1, a gene well known for its role in the early body planning, led to high embryonic mortality. Among these mutants, 32.9% of the embryos and larvae showed an abnormal development. DpWnt-1 mutants predominantly exhibited abnormal posterior segments. In addition, multiple phenotypes were observed, including the loss of limbs and the head deformation, suggesting that DpWnt-1 signaling pathway is necessary for anterior segmentation and appendage development. Overall, our results demonstrate that CRISPR/Cas9 system is feasible and efficient in inducing mutations at a specific locus in D. punctatus. This study not only lays the foundation for characterizing gene functions in a non-model species, but also facilitates the future development of pest control alternatives for a major defoliator.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| | - Qun Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky Lexington, KY, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| |
Collapse
|
43
|
Resistance to genetic insect control: Modelling the effects of space. J Theor Biol 2016; 413:72-85. [PMID: 27816677 PMCID: PMC5177727 DOI: 10.1016/j.jtbi.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 12/26/2022]
Abstract
Genetic insect control, such as self-limiting RIDL2 (Release of Insects Carrying a Dominant Lethal) technology, is a development of the sterile insect technique which is proposed to suppress wild populations of a number of major agricultural and public health insect pests. This is achieved by mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic construct, which causes death in progeny when inherited. The released genetically engineered ('GE') insects compete for mates with wild individuals, resulting in population suppression. A previous study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-dependent population genetic and population dynamic approach. This found that proliferation of resistance is possible but can be diluted by the introgression of susceptible alleles from the released homozygous-susceptible GE males. We develop this approach within a spatial context by modelling the spread of a lethal construct and resistance trait, and the effect on population control, in a two deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an increased or decreased evolution of resistance in both the target and non-target demes, depending on the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles for the target deme through dispersal. This can in turn have a major impact on the effectiveness of insect population control.
Collapse
|
44
|
Alphey L. SIT 2.0: 21(st) Century genetic technology for the screwworm sterile-insect program. BMC Biol 2016; 14:80. [PMID: 27643991 PMCID: PMC5029077 DOI: 10.1186/s12915-016-0310-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 11/25/2022] Open
Abstract
Release of sterile insects, the Sterile Insect Technique (SIT), can be an extremely effective and precise method of pest control. A study in BMC Biology from the New World screwworm SIT program and others shows that modern genetic methods can provide major improvements even to this well-established and highly successful SIT program. See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0296-8
Collapse
Affiliation(s)
- Luke Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
45
|
Anstead CA, Batterham P, Korhonen PK, Young ND, Hall RS, Bowles VM, Richards S, Scott MJ, Gasser RB. A blow to the fly — Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnol Adv 2016; 34:605-620. [DOI: 10.1016/j.biotechadv.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/08/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023]
|
46
|
Wolff JN, Tompkins DM, Gemmell NJ, Dowling DK. Mitonuclear interactions, mtDNA-mediated thermal plasticity, and implications for the Trojan Female Technique for pest control. Sci Rep 2016; 6:30016. [PMID: 27443488 PMCID: PMC4956753 DOI: 10.1038/srep30016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
Pest species pose major challenges to global economies, ecosystems, and health. Unfortunately, most conventional approaches to pest control remain costly, and temporary in effect. As such, a heritable variant of the Sterile Insect Technique (SIT) was proposed, based on the introduction of mitochondrial DNA mutations into pest populations, which impair male fertility but have no effects on females. Evidence for this "Trojan Female Technique" (TFT) was recently provided, in the form of a mutation in the mitochondrial cytochrome b gene (mt:Cyt-b) of Drosophila melanogaster which reduces male fertility across diverse nuclear backgrounds. However, recent studies have shown that the magnitude of mitochondrial genetic effects on the phenotype can vary greatly across environments, with mtDNA polymorphisms commonly entwined in genotype-by-environment (G × E) interactions. Here we test whether the male-sterilizing effects previously associated with the mt:Cyt-b mutation are consistent across three thermal and three nuclear genomic contexts. The effects of this mutation were indeed moderated by the nuclear background and thermal environment, but crucially the fertility of males carrying the mutation was invariably reduced relative to controls. This mutation thus constitutes a promising candidate for the further development of the TFT.
Collapse
Affiliation(s)
- Jonci N. Wolff
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | | | - Neil J. Gemmell
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| |
Collapse
|
47
|
Huang CY, Dai SM, Chang C. Introduction of the RTA-Bddsx gene induces female-specific lethal effects in transformed Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2016; 72:1160-1167. [PMID: 26269247 DOI: 10.1002/ps.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), can reduce fruit production and quality and is considered to be a major insect pest in many Asian countries. A system combining the toxicity of ricin and the alternative RNA splicing properties of doublesex (RTA-Bddsx) has been proposed that results in differential sexual processing in vitro. A transgenic approach was used in this study to confirm the existence of female-specific lethal effects in vivo. RESULTS The piggyBac-based vector PB-Acp-CF21-26, which carries the actin 5C promoter and RTA-Bddsx, was used to establish transgenic lines. Five surviving male flies (F1) demonstrated the presence of selection marker Ds-Red((+)) throughout their entire bodies following single-pair mating with wild-type females, indicating germline transmission. A high percentage of males (59.6-100%) were observed in transformed F3 offspring, and this skewed sex ratio indicated that the female-lethal effects of the RTA-Bddsx system were heritable and functioned well in B. dorsalis. Some transformed female flies were observed, and these unexpected results were attributed to the loss of the intact transgene after genomic PCR analyses. CONCLUSION This transgenic study provides direct evidence for the female-specific lethal effects of RTA-Bddsx in B. dorsalis and offers a novel and promising approach for the control of B. dorsalis in the future. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chun-Yen Huang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| | - Cheng Chang
- Biotechnology Centre, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
48
|
Chang C, Huang CY, Dai SM, Atlihan R, Chi H. Genetically Engineered Ricin Suppresses Bactrocera dorsalis (Diptera: Tephritidae) based on Demographic Analysis of Group-Reared Life Table. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:987-992. [PMID: 27122495 DOI: 10.1093/jee/tow091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), reduces the quantity and quality of many host fruits through the process of oviposition and larval feeding, and this insect has been considered a major insect pest in several Asian countries for decades. Using an earlier-developed, female-specific system that combines the toxicity of the ricin A chain (RTA) and the alternative RNA splicing property of doublesex ( Bddsx ), we show that transgenic male flies harboring the RTA-Bddsx transgene unevenly repress the pest population through inheritable effects. In age-stage, two-sex life-table analyses, high larval mortality and a delay in pupation were observed after introducing the transgene. The high male to female ratio in DsRed + flies demonstrates the lethal effect of ricin on females. The fitness of both the DsRed + - and DsRed - -transformed females was reduced as shown in the decrease of the net reproductive rate ( R0 ), intrinsic rate ( r ), and finite rate (λ) values compared with the wild-type populations. The integrity of the RTA-Bddsx transgene remained in more than 80% of DsRed + males after ten generations, supporting the stable inheritance of the transgene. All of the data from this study support the proposed RTA-Bddsx SIT approach, which provides a species-specific and environmentally friendly method of suppressing, rather than eradiating, B. dorsalis.
Collapse
|
49
|
Handler AM. Enhancing the stability and ecological safety of mass-reared transgenic strains for field release by redundant conditional lethality systems. INSECT SCIENCE 2016; 23:225-234. [PMID: 26097098 DOI: 10.1111/1744-7917.12245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
The genetic manipulation of agriculturally important insects now allows the development of genetic sexing and male sterility systems for more highly efficient biologically-based population control programs, most notably the Sterile Insect Technique (SIT), for both plant and animal insect pests. Tetracycline-suppressible (Tet-off) conditional lethal systems may function together so that transgenic strains will be viable and fertile on a tetracycline-containing diet, but female-lethal and male sterile in tetracycline-free conditions. This would allow their most efficacious use in a unified system for sterile male-only production for SIT. A critical consideration for the field release of such transgenic insect strains, however, is a determination of the frequency and genetic basis of lethality revertant survival. This will provide knowledge essential to evaluating the genetic stability of the lethality system, its environmental safety, and provide the basis for modifications ensuring optimal efficacy. For Tet-off lethal survival determinations, development of large-scale screening protocols should also allow the testing of these modifications, and test the ability of other conditional lethal systems to fully suppress propagation of rare Tet-off survivors. If a dominant temperature sensitive (DTS) pupal lethality system proves efficient for secondary lethality in Drosophila, it may provide the safeguard needed to support the release of sexing/sterility strains, and potentially, the release of unisex lethality strains as a form of genetic male sterility. Should the DTS Prosβ2(1) mutation prove effective for redundant lethality, its high level of structural and functional conservation should allow host-specific cognates to be created for a wide range of insect species.
Collapse
Affiliation(s)
- Alfred M Handler
- USDA, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| |
Collapse
|
50
|
Tan D, Tong XL, Hu H, Wu SY, Li CL, Xiong G, Xiang ZH, Dai FY, Lu C. Morphological characterization and molecular mapping of an irradiation-induced Speckled mutant in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:93-104. [PMID: 26661290 DOI: 10.1111/imb.12205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Speckled (Spc), an X-ray-induced lethal mutant of Bombyx mori, exhibits a mosaic dark-brown-spotted larval epidermis in both sexes and egg-laying problems only in females. Here, we report the morphological characterization and molecular mapping of the Spc mutant. Morphological investigations revealed that the epidermal ultrastructure of the small, dark-brown spots was more dense than that of the white regions in both Spc/+ mutants and wild type, and that the lethality of the Spc/Spc mutants occurred during early embryogenesis. Furthermore, the ovarioles and ovipositor were disconnected in approximately 85.5% of Spc/+ females, a further 2.5% had a connection between the ovarioles and ovipositor that was too narrow to lay eggs. The remaining females showed a normal connection similar to that of the wild type. We successfully narrowed down the location of the Spc mutation to a region on chromosome 4 that was ∼1041 kb long. Gene-prediction analysis identified 25 candidate genes in this region. Chromosome structure analysis indicated that a ∼305 kb deletion was included in the mapping region. Temporal and spatial reverse transcription PCR (RT-PCR) analysis showed that several genes in the mapped region are associated with the Spc mutant. Although the genes responsible for the Spc mutation were not definitively identified, our results further the current understanding of the complex mechanism underlying the multiple morphological defects in Spc mutants.
Collapse
Affiliation(s)
- D Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - X-L Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - H Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - S-Y Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - C-L Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - G Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Z-H Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - F-Y Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|