1
|
Nascimento CP, da Fonseca-Pereira P, Ferreira-Silva M, Rosado-Souza L, Linka N, Fernie AR, Araújo WL, Nunes-Nesi A. Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112310. [PMID: 39477093 DOI: 10.1016/j.plantsci.2024.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (ntra ntrb), two independent mutant lines of mitochondrial thioredoxin o1 (trxo1) and two thioredoxin h2 (trxh2) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.
Collapse
Affiliation(s)
- Carolina Pereira Nascimento
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Marcelle Ferreira-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil.
| |
Collapse
|
2
|
Auverlot J, Dard A, Sáez-Vásquez J, Reichheld JP. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4459-4475. [PMID: 38642408 DOI: 10.1093/jxb/erae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints.
Collapse
Affiliation(s)
- Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Centre for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
3
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
4
|
Fuchs H, Staszak AM, Vargas PA, Sahrawy M, Serrato AJ, Dyderski MK, Klupczyńska EA, Głodowicz P, Rolle K, Ratajczak E. Redox dynamics in seeds of Acer spp: unraveling adaptation strategies of different seed categories. FRONTIERS IN PLANT SCIENCE 2024; 15:1430695. [PMID: 39114470 PMCID: PMC11303208 DOI: 10.3389/fpls.2024.1430695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Background Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Aleksandra M. Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Białystok, Poland
| | - Paola A. Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio J. Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
5
|
Timm S, Klaas N, Niemann J, Jahnke K, Alseekh S, Zhang Y, Souza PVL, Hou LY, Cosse M, Selinski J, Geigenberger P, Daloso DM, Fernie AR, Hagemann M. Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase-dependent pathways towards changing environments. PLANT, CELL & ENVIRONMENT 2024; 47:2542-2560. [PMID: 38518065 DOI: 10.1111/pce.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nicole Klaas
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Janice Niemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Liu DD, Ding W, Cheng JT, Wei Q, Lin Y, Zhu TY, Tian J, Sun K, Zhang L, Lu P, Yang F, Liu C, Tang S, Yang B. Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids. Nat Commun 2024; 15:5221. [PMID: 38890329 PMCID: PMC11189575 DOI: 10.1038/s41467-024-49517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenlong Ding
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Tao Cheng
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiushi Wei
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yinuo Lin
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Tian-Yi Zhu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Tian
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Long Zhang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Chao Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Shibing Tang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Bing Yang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
7
|
Chandrasekaran U, Park S, Kim K, Byeon S, Han AR, Lee YS, Oh NH, Chung H, Choe H, Kim HS. Energy deprivation affects nitrogen assimilation and fatty acid biosynthesis leading to leaf chlorosis under waterlogging stress in the endangered Abies koreana. TREE PHYSIOLOGY 2024; 44:tpae055. [PMID: 38775218 DOI: 10.1093/treephys/tpae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Energy deprivation triggers various physiological, biochemical and molecular changes in plants under abiotic stress. We investigated the oxidative damages in the high altitude grown conifer Korean fir (Abies koreana) exposed to waterlogging stress. Our experimental results showed that waterlogging stress led to leaf chlorosis, 35 days after treatment. A significant decrease in leaf fresh weight, chlorophyll and sugar content supported this phenotypic change. Biochemical analysis showed a significant increase in leaf proline, lipid peroxidase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical content of waterlogged plants. To elucidate the molecular mechanisms, we conducted RNA-sequencing (RNA-seq) and de novo assembly. Using RNA-seq analysis approach and filtering (P < 0.05 and false discovery rate <0.001), we obtained 134 unigenes upregulated and 574 unigenes downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis placed the obtained differentially expressed unigenes in α-linoleic pathway, fatty acid degradation, glycosis, glycolipid metabolism and oligosaccharide biosynthesis process. Mapping of unigenes with Arabidopsis using basic local alignment search tool for nucleotides showed several critical genes in photosynthesis and carbon metabolism downregulated. Following this, we found the repression of multiple nitrogen (N) assimilation and nucleotide biosynthesis genes including purine metabolism. In addition, waterlogging stress reduced the levels of polyunsaturated fatty acids with a concomitant increase only in myristic acid. Together, our results indicate that the prolonged snowmelt may cause inability of A. koreana seedlings to lead the photosynthesis normally due to the lack of root intercellular oxygen and emphasizes a detrimental effect on the N metabolic pathway, compromising this endangered tree's ability to be fully functional under waterlogging stress.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghee Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ah Reum Han
- Division of Basic Research, National Institute of Ecology, 1210 Geumgang-ro, Seocheon-gun 33657, Republic of Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, 1210 Geumgang-ro, Seocheon-gun 33657, Republic of Korea
| | - Neung-Hwan Oh
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Environmental Planning Institute, Seoul National University, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Haegeun Chung
- Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyeyeong Choe
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University College of Agriculture and Life Sciences, 1 Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Gong J, Yang J, Lai Y, Pan T, She W. A High-Quality Assembly and Comparative Analysis of the Mitogenome of Actinidia macrosperma. Genes (Basel) 2024; 15:514. [PMID: 38674448 PMCID: PMC11049864 DOI: 10.3390/genes15040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The mitochondrial genome (mitogenome) of Actinidia macrosperma, a traditional medicinal plant within the Actinidia genus, remains relatively understudied. This study aimed to sequence the mitogenome of A. macrosperma, determining its assembly, informational content, and developmental expression. The results revealed that the mitogenome of A. macrosperma is circular, spanning 752,501 bp with a GC content of 46.16%. It comprises 63 unique genes, including 39 protein-coding genes (PCGs), 23 tRNA genes, and three rRNA genes. Moreover, the mitogenome was found to contain 63 SSRs, predominantly mono-nucleotides, as well as 25 tandem repeats and 650 pairs of dispersed repeats, each with lengths equal to or greater than 60, mainly comprising forward repeats and palindromic repeats. Moreover, 53 homologous fragments were identified between the mitogenome and chloroplast genome (cp-genome), with the longest segment measuring 4296 bp. This study represents the initial report on the mitogenome of the A. macrosperma, providing crucial genetic materials for phylogenetic research within the Actinidia genus and promoting the exploitation of species genetic resources.
Collapse
Affiliation(s)
- Jiangmei Gong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Yang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China;
| | - Yan Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
10
|
Jiménez A, López-Martínez R, Martí MC, Cano-Yelo D, Sevilla F. The integration of TRX/GRX systems and phytohormonal signalling pathways in plant stress and development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108298. [PMID: 38176187 DOI: 10.1016/j.plaphy.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Plant acclimation to changing environmental conditions involves the interaction of different signalling molecules, including reactive oxygen species and hormones. Redox regulation exerted by thioredoxin (TRX) and glutaredoxin (GRX), two oxidoreductases, is emerging as a specific point of control mediating signal transduction pathways associated with plant growth and stress response. Phytohormones are messengers that coordinate plant cell activities to regulate growth, defence, and productivity, although their cross-talk with components of the redox system is less known. The present review focuses on our current knowledge of the interplay that occurs between TRX and GRX systems and phytohormonal signalling pathways in connection with the control of plant development and stress responses. Here, we consider the regulation that phytohormones exert on TRX and GRX systems, as well as the involvement of these redox proteins in the control of phytohormone-mediated signalling pathways.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Raquel López-Martínez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Desiré Cano-Yelo
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
11
|
Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O. Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr Biol 2024; 34:327-342.e4. [PMID: 38176418 DOI: 10.1016/j.cub.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Huy Cuong Tran
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Berivan Mansuroglu
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Pinar Önsell
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133 Milan, Italy
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden.
| |
Collapse
|
12
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
13
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
14
|
You H, Li S, Chen Y, Lin J, Wang Z, Dennis M, Li C, Yang D. Global proteome and lysine succinylation analyses provide insights into the secondary metabolism in Salvia miltiorrhiza. J Proteomics 2023; 288:104959. [PMID: 37478968 DOI: 10.1016/j.jprot.2023.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/10/2023] [Accepted: 07/01/2023] [Indexed: 07/23/2023]
Abstract
Danshen, belongs to the Lamiaceae family, and its scientific name is Salvia miltiorrhiza Bunge. It is a valuable medicinal plant to prevent and treat cardiovascular and cerebrovascular diseases. Lysine succinylation, a widespread modification found in various organisms, plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. Our findings reveal 566 lysine succinylation sites in 348 protein sequences. We observed 110 succinylated proteins related to secondary metabolism, totaling 210 modification sites. Our analysis identified 53 types of enzymes among the succinylated proteins, including phenylalanine ammonia-lyase (PAL) and aldehyde dehydrogenase (ALDH). PAL, a crucial enzyme involved in the biosynthesis of rosmarinic acid and flavonoids, displayed succinylation at two sites. ALDH, which participates in the phenylpropane metabolic pathway, was succinylated at 8 eight sites. These observations suggest that lysine succinylation may play a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on plant succinylation, specifically as a reference point. SIGNIFICANCE: Salvia miltiorrhiza Bunge is a valuable medicinal plant that prevents and treats cardiovascular and cerebrovascular diseases. Lysine succinylation plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. These observations suggest that lysine succinylation may act as a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on succinylation in plants, specifically as a reference point.
Collapse
Affiliation(s)
- Huaqian You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China; College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Yiwen Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Zixuan Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Mans Dennis
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
15
|
Li X, Li M, Li W, Zhou J, Han Q, Lu W, Luo Q, Zhu S, Xiong A, Tan G, Zheng Y. Comparative Analysis of the Complete Mitochondrial Genomes of Apium graveolens and Apium leptophyllum Provide Insights into Evolution and Phylogeny Relationships. Int J Mol Sci 2023; 24:14615. [PMID: 37834070 PMCID: PMC10572446 DOI: 10.3390/ijms241914615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Weilong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Qiuju Han
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Qin Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Shunhua Zhu
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing 611130, China;
| | - Guofei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| |
Collapse
|
16
|
Bodnar Y, Gellert M, Hossain FM, Lillig CH. Breakdown of Arabidopsis thaliana thioredoxins and glutaredoxins based on electrostatic similarity-Leads to common and unique interaction partners and functions. PLoS One 2023; 18:e0291272. [PMID: 37695767 PMCID: PMC10495010 DOI: 10.1371/journal.pone.0291272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The reversible reduction and oxidation of protein thiols was first described as mechanism to control light/dark-dependent metabolic regulation in photosynthetic organisms. Today, it is recognized as an essential mechanism of regulation and signal transduction in all kingdoms of life. Proteins of the thioredoxin (Trx) family, Trxs and glutaredoxins (Grxs) in particular, catalyze thiol-disulfide exchange reactions and are vital players in the operation of thiol switches. Various Trx and Grx isoforms are present in all compartments of the cell. These proteins have a rather broad but at the same time distinct substrate specificity. Understanding the molecular basis of their target specificity is central to the understanding of physiological and pathological redox signaling. Electrostatic complementarity of the redoxins with their target proteins has been proposed as a major reason. Here, we analyzed the electrostatic similarity of all Arabidopsis thaliana Trxs, Grxs, and proteins containing such domains. Clustering of the redoxins based on this comparison suggests overlapping and also distant target specificities and thus functions of the different sub-classes including all Trx isoforms as well as the three classes of Grxs, i.e. CxxC-, CGFS-, and CC-type Grxs. Our analysis also provides a rationale for the tuned substrate specificities of both the ferredoxin- and NADPH-dependent Trx reductases.
Collapse
Affiliation(s)
- Yana Bodnar
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Faruq Mohammed Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Zhang Y, Fernie AR. The Role of TCA Cycle Enzymes in Plants. Adv Biol (Weinh) 2023; 7:e2200238. [PMID: 37341441 DOI: 10.1002/adbi.202200238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/29/2023] [Indexed: 06/22/2023]
Abstract
As one of the iconic pathways in plant metabolism, the tricarboxylic acid (TCA) cycle is commonly thought to not only be responsible for the oxidization of respiratory substrate to drive ATP synthesis but also provide carbon skeletons to anabolic processes and contribute to carbon-nitrogen interaction and biotic stress responses. The functions of the TCA cycle enzymes are characterized by a saturation transgenesis approach, whereby the constituent expression of proteins is knocked out or reduced in order to investigate their function in vivo. The alteration of TCA cycle enzyme expression results in changed plant growth and photosynthesis under controlled conditions. Moreover, improvements in plant performance and postharvest properties are reported by overexpression of either endogenous forms or heterologous genes of a number of the enzymes. Given the importance of the TCA cycle in plant metabolism regulation, here, the function of each enzyme and its roles in different tissues are discussed. This article additionally highlights the recent finding that the plant TCA cycle, like that of mammals and microbes, dynamically assembles functional substrate channels or metabolons and discusses the implications of this finding to the current understanding of the metabolic regulation of the plant TCA cycle.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
18
|
Zhang T, Peng JT, Klair A, Dickinson AJ. Non-canonical and developmental roles of the TCA cycle in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102382. [PMID: 37210789 PMCID: PMC10524895 DOI: 10.1016/j.pbi.2023.102382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Over recent years, our understanding of the tricarboxylic acid cycle (TCAC) in living organisms has expanded beyond its canonical role in cellular energy production. In plants, TCAC metabolites and related enzymes have important roles in physiology, including vacuolar function, chelation of metals and nutrients, photorespiration, and redox regulation. Research in other organisms, including animals, has demonstrated unexpected functions of the TCAC metabolites in a number of biological processes, including signaling, epigenetic regulation, and cell differentiation. Here, we review the recent progress in discovery of non-canonical roles of the TCAC. We then discuss research on these metabolites in the context of plant development, with a focus on research related to tissue-specific functions of the TCAC. Additionally, we review research describing connections between TCAC metabolites and phytohormone signaling pathways. Overall, we discuss the opportunities and challenges in discovering new functions of TCAC metabolites in plants.
Collapse
Affiliation(s)
- Tao Zhang
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Jesus T Peng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Amman Klair
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexandra J Dickinson
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Lima VF, Freire FBS, Cândido-Sobrinho SA, Porto NP, Medeiros DB, Erban A, Kopka J, Schwarzländer M, Fernie AR, Daloso DM. Unveiling the dark side of guard cell metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107862. [PMID: 37413941 DOI: 10.1016/j.plaphy.2023.107862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Francisco Bruno S Freire
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
20
|
Sun L, Wang J, Cui Y, Cui R, Kang R, Zhang Y, Wang S, Zhao L, Wang D, Lu X, Fan Y, Han M, Chen C, Chen X, Guo L, Ye W. Changes in terpene biosynthesis and submergence tolerance in cotton. BMC PLANT BIOLOGY 2023; 23:330. [PMID: 37344795 DOI: 10.1186/s12870-023-04334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown. RESULTS The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress. CONCLUSIONS Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.
Collapse
Affiliation(s)
- Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, Jiangxi, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Ruiqing Kang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
21
|
Eprintsev AT, Fedorin DN, Igamberdiev AU. Light-Dependent Expression and Promoter Methylation of the Genes Encoding Succinate Dehydrogenase, Fumarase, and NAD-Malate Dehydrogenase in Maize ( Zea mays L.) Leaves. Int J Mol Sci 2023; 24:10211. [PMID: 37373359 DOI: 10.3390/ijms241210211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression upon irradiation by red light, which was abolished by far-red light. This was accompanied by an increase in promoter methylation of the gene Sdh1-2 encoding the flavoprotein subunit A, while methylation was low for Sdh2-3 encoding the iron-sulfur subunit B under all conditions. The expression of Sdh3-1 and Sdh4 encoding the anchoring subunits C and D was not affected by red light. The expression of Fum1 encoding the mitochondrial form of fumarase was regulated by red and far-red light via methylation of its promoter. Only one gene encoding the mitochondrial NAD-malate dehydrogenase gene (mMdh1) was regulated by red and far-red light, while the second gene (mMdh2) did not respond to irradiation, and neither gene was controlled by promoter methylation. It is concluded that the dicarboxylic branch of the tricarboxylic acid cycle is regulated by light via the phytochrome mechanism, and promoter methylation is involved with the flavoprotein subunit of succinate dehydrogenase and the mitochondrial fumarase.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
22
|
Souza PVL, Hou LY, Sun H, Poeker L, Lehman M, Bahadar H, Domingues-Junior AP, Dard A, Bariat L, Reichheld JP, Silveira JAG, Fernie AR, Timm S, Geigenberger P, Daloso DM. Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO 2. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267089 DOI: 10.1111/pce.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.
Collapse
Affiliation(s)
- Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Hu Sun
- University of Rostock, Rostock, Germany
| | - Louis Poeker
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Lehman
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Humaira Bahadar
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
23
|
Zhang X, Shan Y, Li J, Qin Q, Yu J, Deng H. Assembly of the Complete Mitochondrial Genome of Pereskia aculeata Revealed That Two Pairs of Repetitive Elements Mediated the Recombination of the Genome. Int J Mol Sci 2023; 24:ijms24098366. [PMID: 37176072 PMCID: PMC10179450 DOI: 10.3390/ijms24098366] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.
Collapse
Affiliation(s)
- Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qiulin Qin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Hermawaty D, Cahn J, Lister R, Considine MJ. Systematic evaluation of chromatin immunoprecipitation sequencing to study histone occupancy in dormancy transitions of grapevine buds. TREE PHYSIOLOGY 2023; 43:675-689. [PMID: 36637421 PMCID: PMC10094961 DOI: 10.1093/treephys/tpac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 05/03/2023]
Abstract
The regulation of DNA accessibility by histone modification has emerged as a paradigm of developmental and environmental programming. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a versatile tool to investigate in vivo protein-DNA interaction and has enabled advances in mechanistic understanding of physiologies. The technique has been successfully demonstrated in several plant species and tissues; however, it has remained challenging in woody tissues, in particular complex structures such as perennating buds. Here we developed a ChIP method specifically for mature dormant buds of grapevine (Vitis vinifera cv. Cabernet Sauvignon). Each step of the protocol was systematically optimized, including crosslinking, chromatin extraction, sonication and antibody validation. Analysis of histone H3-enriched DNA was performed to evaluate the success of the protocol and identify occupancy of histone H3 along grapevine bud chromatin. To our best knowledge, this is the first ChIP experiment protocol optimized for the grapevine bud system.
Collapse
Affiliation(s)
- Dina Hermawaty
- The UWA Institute of Agriculture, The University of Western Australia, M082/35 Striling Hwy, Perth, WA 6009, Australia
| | - Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M310/35 Striling Hwy, Perth, WA 6009, Australia
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M310/35 Striling Hwy, Perth, WA 6009, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, M082/35 Striling Hwy, Perth, WA 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M310/35 Striling Hwy, Perth, WA 6009, Australia
- Horticulture and Irrigated Agriculture, Department of Primary Industries and Regional Development, 1 Nash St, Perth, 6000, Australia
| |
Collapse
|
25
|
Igamberdiev AU, Bykova NV. Mitochondria in photosynthetic cells: Coordinating redox control and energy balance. PLANT PHYSIOLOGY 2023; 191:2104-2119. [PMID: 36440979 PMCID: PMC10069911 DOI: 10.1093/plphys/kiac541] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 05/21/2023]
Abstract
In photosynthetic tissues in the light, the function of energy production is associated primarily with chloroplasts, while mitochondrial metabolism adjusts to balance ATP supply, regulate the reduction level of pyridine nucleotides, and optimize major metabolic fluxes. The tricarboxylic acid cycle in the light transforms into a noncyclic open structure (hemicycle) maintained primarily by the influx of malate and the export of citrate to the cytosol. The exchange of malate and citrate forms the basis of feeding redox energy from the chloroplast into the cytosolic pathways. This supports the level of NADPH in different compartments, contributes to the biosynthesis of amino acids, and drives secondary metabolism via a supply of substrates for 2-oxoglutarate-dependent dioxygenase and for cytochrome P450-catalyzed monooxygenase reactions. This results in the maintenance of redox and energy balance in photosynthetic plant cells and in the formation of numerous bioactive compounds specific to any particular plant species. The noncoupled mitochondrial respiration operates in coordination with the malate and citrate valves and supports intensive fluxes of respiration and photorespiration. The metabolic system of plants has features associated with the remarkable metabolic plasticity of mitochondria that permit the use of energy accumulated during photosynthesis in a way that all anabolic and catabolic pathways become optimized and coordinated.
Collapse
|
26
|
Zhang W, Huang H, Zhou Y, Zhu K, Wu Y, Xu Y, Wang W, Zhang H, Gu J, Xiong F, Wang Z, Liu L, Yang J. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. PLANT, CELL & ENVIRONMENT 2023; 46:1340-1362. [PMID: 36097648 DOI: 10.1111/pce.14436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanghang Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yujiao Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
Dellero Y, Filangi O, Bouchereau A. Evaluation of GC/MS-Based 13C-Positional Approaches for TMS Derivatives of Organic and Amino Acids and Application to Plant 13C-Labeled Experiments. Metabolites 2023; 13:metabo13040466. [PMID: 37110124 PMCID: PMC10142191 DOI: 10.3390/metabo13040466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Analysis of plant metabolite 13C-enrichments with gas-chromatography mass spectrometry (GC/MS) has gained interest recently. By combining multiple fragments of a trimethylsilyl (TMS) derivative, 13C-positional enrichments can be calculated. However, this new approach may suffer from analytical biases depending on the fragments selected for calculation leading to significant errors in the final results. The goal of this study was to provide a framework for the validation of 13C-positional approaches and their application to plants based on some key metabolites (glycine, serine, glutamate, proline, α-alanine and malate). For this purpose, we used tailor-made 13C-PT standards, harboring known carbon isotopologue distributions and 13C-positional enrichments, to evaluate the reliability of GC-MS measurements and positional calculations. Overall, we showed that some mass fragments of proline_2TMS, glutamate_3TMS, malate_3TMS and α-alanine_2TMS had important biases for 13C measurements resulting in significant errors in the computational estimation of 13C-positional enrichments. Nevertheless, we validated a GC/MS-based 13C-positional approach for the following atomic positions: (i) C1 and C2 of glycine_3TMS, (ii) C1, C2 and C3 of serine_3TMS, and (iii) C1 of malate_3TMS and glutamate_3TMS. We successfully applied this approach to plant 13C-labeled experiments for investigating key metabolic fluxes of plant primary metabolism (photorespiration, tricarboxylic acid cycle and phosphoenolpyruvate carboxylase activity).
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, 35650 Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 35650 Le Rheu, France
| | - Olivier Filangi
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, 35650 Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 35650 Le Rheu, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, 35650 Le Rheu, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 35650 Le Rheu, France
| |
Collapse
|
28
|
Song R, Yan B, Xie J, Zhou L, Xu R, Zhou JM, Ji XH, Yi ZL. Comparative proteome profiles of Polygonatum cyrtonema Hua rhizomes (Rhizoma Ploygonati) in response to different levels of cadmium stress. BMC PLANT BIOLOGY 2023; 23:149. [PMID: 36935490 PMCID: PMC10026435 DOI: 10.1186/s12870-023-04162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The Polygonatum cyrtonema Hua rhizomes (also known as Rhizoma Polygonati, RP) are consumed for their health benefits. The main source of the RP is wild P. cyrtonema populations in the Hunan province of China. However, the soil Cadmium (Cd) content in Huanan is increasing, thus increasing the risks of Cd accumulation in RP which may end up in the human food chain. To understand the mechanism of Cd accumulation and resistance in P. cyrtonema, we subjected P. cyrtonema plants to four levels of Cd stress [(D2) 1, (D3) 2, (D4) 4, and (D5) 8 mg/kg)] compared to (D1) 0.5 mg/kg. RESULTS The increase in soil Cd content up to 4 mg/kg resulted in a significant increase in tissue (root hair, rhizome, stem, and leaf) Cd content. The increase in Cd concentration variably affected the antioxidant enzyme activities. We could identify 14,171 and 12,115 protein groups and peptides, respectively. There were 193, 227, 260, and 163 differentially expressed proteins (DEPs) in D2, D3, D4, and D5, respectively, compared to D1. The number of downregulated DEPs increased with an increase in Cd content up to 4 mg/kg. These downregulated proteins belonged to sugar biosynthesis, amino acid biosynthesis-related pathways, and secondary metabolism-related pathways. Our results indicate that Cd stress increases ROS generation, against which, different ROS scavenging proteins are upregulated in P. cyrtonema. Moreover, Cd stress affected the expression of lipid transport and assembly, glycolysis/gluconeogenesis, sugar biosynthesis, and ATP generation. CONCLUSION These results suggest that an increase in soil Cd content may end up in Huangjing. Cadmium stress initiates expression changes in multiple pathways related to energy metabolism, sugar biosynthesis, and secondary metabolite biosynthesis. The proteins involved in these pathways are potential candidates for manipulation and development of Cd stress-tolerant genotypes.
Collapse
Affiliation(s)
- Rong Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Bei Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jin Xie
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Li Zhou
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Rui Xu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Jia Min Zhou
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Xiong Hui Ji
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Zi Li Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
29
|
Bruhns T, Timm S, Sokolova IM. Metabolomics-based assessment of nanoparticles (nZnO) toxicity in an infaunal marine annelid, the lugworm Arenicola marina (Annelida: Sedentaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160039. [PMID: 36356734 DOI: 10.1016/j.scitotenv.2022.160039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nanopollutants such as nZnO gain importance as contaminants of emerging concern due to their high production volume and potential toxicity. Coastal sediments serve as sinks for nanoparticles but the impacts and the toxicity mechanisms of nZnO in sediment-dwelling organisms are not well understood. We used metabolomics to assess the effects of nZnO-contaminated sediments on a benthic ecosystem engineer, an infaunal polychaete Arenicola marina. The worms were exposed to unpolluted (control) sediment or to the sediment spiked with 100 or 1000 μg Zn kg-1 of nZnO. Oxidative lesions (lipid peroxidation and protein carbonyls) were measured in the body wall as traditional biomarkers of nanopollutant toxicity. Metabolite profiles (including amino acids, tricarboxylic acid (TCA) cycle and urea cycle intermediates) were determined in the body wall and the coelomic fluid. Exposure to nZnO altered metabolism of the lugworms via suppression of the metabolism of gluconeogenic and aromatic amino acids, and altered the TCA cycle likely via suppression of fumarase activity. These metabolic changes may negatively affect carbohydrate metabolism and energy storage, and impair hormonal signaling in the worms. The total pool of free amino acids was depleted in nZnO exposures with potentially negative consequences for osmoregulation and protein synthesis. Exposure to nZnO led to accumulation of the lipid peroxidation products demonstrating high susceptibility of the cellular membranes to nZnO-induced oxidative stress. The nZnO-induced shifts in the metabolite profiles were more pronounced in the coelomic fluid than the body wall. This finding emphasizes the important metabolic role of the coelomic fluid as well as its suitability for assessing the toxic impacts of nZnO and other metabolic disruptors. The metabolic disruptions caused by environmentally relevant concentrations of nZnO can have negative effects on the organisms' fitness impairing growth and reproduction of the populations of marine bioturbators like the lugworms in nanoparticle-polluted sediments.
Collapse
Affiliation(s)
- Torben Bruhns
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
30
|
Zhou J, Song T, Zhou H, Zhang M, Li N, Xiang J, Zhang X. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1020584. [PMID: 36618641 PMCID: PMC9813791 DOI: 10.3389/fpls.2022.1020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Typical thioredoxin (TRX) plays an important role in maintaining redox balance in plants. However, the typical TRX genes in wheat still need to be comprehensively and deeply studied. In this research, a total of 48 typical TaTRX genes belonging to eight subtypes were identified via a genome-wide search in wheat, and the gene structures, protein conserved motifs, and protein 3D structures of the same subtype were very similar. Evolutionary analysis showed that there are two pairs of tandem duplication genes and 14 clusters of segmental duplication genes in typical TaTRX family members; TaTRX15, TaTRX36, and TaTRX42 had positive selection compared with the orthologs of their ancestral species; rice and maize have 11 and 13 orthologous typical TRXs with wheat, respectively. Gene Ontology (GO) analysis indicated that typical TaTRXs were involved in maintaining redox homeostasis in wheat cells. Estimation of ROS content, determination of antioxidant enzyme activity, and gene expression analysis in a line overexpressing one typical TaTRX confirmed that TRX plays an important role in maintaining redox balance in wheat. A predictive analysis of cis-acting elements in the promoter region showed that typical TaTRXs were extensively involved in various hormone metabolism and response processes to stress. The results predicted using public databases or verified using RT-qPCR show that typical TaTRXs were able to respond to biotic and abiotic stresses, and their expression in wheat was spatiotemporal. A total of 16 wheat proteins belonging to four different families interacting with typical TaTRXs were predicted. The above comprehensive analysis of typical TaTRX genes can enrich our understanding of this gene family in wheat and provide valuable insights for further gene function research.
Collapse
Affiliation(s)
- Jianfei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Nan Li
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Jishan Xiang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
31
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
32
|
Wang Y, Sun X. Reevaluation of lock solutions for Central venous catheters in hemodialysis: a narrative review. Ren Fail 2022; 44:1501-1518. [PMID: 36047812 PMCID: PMC9448397 DOI: 10.1080/0886022x.2022.2118068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND A significant proportion of incident and prevalent hemodialysis patients have central venous catheters for vascular access. No consensus is available on the prevention of catheter dysfunction or catheter-related bloodstream infections in patients undergoing hemodialysis by means of catheter lock solutions. METHOD We reviewed the effects of single and combined anticoagulants with antibacterial catheter lock solutions or other antimicrobials for the prevention of thrombosis or infections in hemodialysis patients. Relative risks with 95% confidence intervals for trials of the same type of catheter locking solution were pooled. SOURCES OF INFORMATION We included original research articles in English from PubMed, EMBASE, SpringerLink, Elsevier and Ovid using the search terms 'hemodialysis,' 'central venous catheter,' 'locking solution,' 'UFH,' 'low molecular weight heparin,' 'EDTA,' 'citrate,' 'rt-PA,' 'urokinase,' 'gentamicin,' 'vancomycin', 'taurolidine,' 'sodium bicarbonate,' 'hypertonic saline' and 'ethanol' and 'catheter'. FINDINGS Low-dose heparin lock solution (< 5000 U/ml) can efficiently achieve anticoagulation and will not increase the risk of bleeding. Low-concentration citrate (< 5%) combined with rt-PA can effectively prevent catheter infection and dysfunction. Catheter-related infections may be minimized by choosing the appropriate antibiotic and dose. LIMITATIONS There is a lack of follow-up validation data for LMWH, EDTA, taurolidine, sodium bicarbonate, ethanol, and other lock solutions. IMPLICATIONS Since catheterization is common in hemodialysis units, studies on long-term treatment and preventative strategies for catheter dysfunction and catheter-related infection are warranted.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
33
|
Eprintsev AT, Fedorin DN, Igamberdiev AU. Light Dependent Changes in Adenylate Methylation of the Promoter of the Mitochondrial Citrate Synthase Gene in Maize ( Zea mays L.) Leaves. Int J Mol Sci 2022; 23:13495. [PMID: 36362281 PMCID: PMC9653993 DOI: 10.3390/ijms232113495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 09/29/2023] Open
Abstract
Limited methyl-specific restriction of genomic DNA by endonuclease MAL1 revealed the changes in its methyl status caused by adenine modification in maize (Zea mays L.) leaves under different light conditions (dark, light, irradiation by red and far-red light). Incubation in the light and irradiation by red light exhibited an activating effect on DNA adenine methylase activity, which was reflected in an increase in the number of methylated adenines in GATC sites. Far-red light and darkness exhibited an opposite effect. The use of nitrite conversion of DNA followed by methyladenine-dependent restriction by MboI nuclease revealed a phytochrome B-dependent mechanism of regulation of the methyl status of adenine in the GATC sites in the promoter of the gene encoding the mitochondrial isoform of citrate synthase. Irradiation of plants with red light caused changes in the adenine methyl status of the analyzed amplicon, as evidenced by the presence of restriction products of 290, 254, and 121 nucleotides. Adenine methylation occurred at all three GATC sites in the analyzed DNA sequence. It is concluded that adenylate methylation is controlled by phytochrome B via the transcription factor PIF4 and represents an important mechanism for the tricarboxylic acid cycle regulation by light.
Collapse
Affiliation(s)
- Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
34
|
Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain. Neurobiol Dis 2022; 175:105921. [DOI: 10.1016/j.nbd.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
35
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
36
|
Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 2022; 23:663-679. [PMID: 35760900 DOI: 10.1038/s41580-022-00499-2] [Citation(s) in RCA: 539] [Impact Index Per Article: 269.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.
Collapse
|
37
|
Kavi Kishor PB, Suravajhala P, Rathnagiri P, Sreenivasulu N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:867531. [PMID: 35795343 PMCID: PMC9252438 DOI: 10.3389/fpls.2022.867531] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 05/24/2023]
Abstract
Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithine-δ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD+/NADH, NADP+/NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kerala, India
| | - P. Rathnagiri
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
38
|
Savino RJ, Kempisty B, Mozdziak P. The Potential of a Protein Model Synthesized Absent of Methionine. Molecules 2022; 27:3679. [PMID: 35744804 PMCID: PMC9230714 DOI: 10.3390/molecules27123679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Methionine is an amino acid long thought to be essential, but only in the case of protein synthesis initiation. In more recent years, methionine has been found to play an important role in antioxidant defense, stability, and modulation of cell and protein activity. Though these findings have expanded the previously held sentiment of methionine having a singular purpose within cells and proteins, the essential nature of methionine can still be challenged. Many of the features that give methionine its newfound functions are shared by the other sulfur-containing amino acid: cysteine. While the antioxidant, stabilizing, and cell/protein modulatory functions of cysteine have already been well established, recent findings have shown a similar hydrophobicity to methionine which suggests cysteine may be able to replace methionine in all functions outside of protein synthesis initiation with little effect on cell and protein function. Furthermore, a number of novel mechanisms for alternative initiation of protein synthesis have been identified that suggest a potential to bypass the traditional methionine-dependent initiation during times of stress. In this review, these findings are discussed with a number of examples that demonstrate a potential model for synthesizing a protein in the absence of methionine.
Collapse
Affiliation(s)
- Ronald J. Savino
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| | - Bartosz Kempisty
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Histology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Paul Mozdziak
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| |
Collapse
|
39
|
Chocron ES, Mdaki K, Jiang N, Cropper J, Pickering AM. Mitochondrial TrxR2 regulates metabolism and protects from metabolic disease through enhanced TCA and ETC function. Commun Biol 2022; 5:467. [PMID: 35577894 PMCID: PMC9110405 DOI: 10.1038/s42003-022-03405-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/23/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial dysfunction is a key driver of diabetes and other metabolic diseases. Mitochondrial redox state is highly impactful to metabolic function but the mechanism driving this is unclear. We generated a transgenic mouse which overexpressed the redox enzyme Thioredoxin Reductase 2 (TrxR2), the rate limiting enzyme in the mitochondrial thioredoxin system. We found augmentation of TrxR2 to enhance metabolism in mice under a normal diet and to increase resistance to high-fat diet induced metabolic dysfunction by both increasing glucose tolerance and decreasing fat deposition. We show this to be caused by increased mitochondrial function which is driven at least in part by enhancements to the tricarboxylic acid cycle and electron transport chain function. Our findings demonstrate a role for TrxR2 and mitochondrial thioredoxin as metabolic regulators and show a critical role for redox enzymes in controlling functionality of key mitochondrial metabolic systems.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Radiation Oncology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kennedy Mdaki
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nisi Jiang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jodie Cropper
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA.
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
40
|
Zhang H, Zong R, He H, Huang T. Effects of hydrogen peroxide on Scenedesmus obliquus: Cell growth, antioxidant enzyme activity and intracellular protein fingerprinting. CHEMOSPHERE 2022; 287:132185. [PMID: 34500328 DOI: 10.1016/j.chemosphere.2021.132185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is an environmental-friendly algicide and it is widely used to control algal blooms in aquatic ecosystems. However, the response of algal cell metabolic characteristics and intracellular protein profile under H2O2 stress is still not well understood. In the present study, the green alga Scenedesmus obliquus was exposed to different concentrations of H2O2 (0, 2, 6, 8 and 10 mg L-1) to evaluate the changes in algal morphological, physiological, and proteomic features to H2O2 exposure. The results showed that 8 mg L-1 of H2O2 could effectively inhibit the cell growth and photosynthetic activity of S. obliquus including chlorophyll-a content and chlorophyll fluorescence parameters. The increased activities of superoxide dismutase (SOD) and catalase (CAT) observed in this study indicate that cells exposure to H2O2 caused oxidative stress. The metabolic activity of S. obliquus was significantly decreased by H2O2 treatment. In terms of proteomic analysis, 251 differentially expressed proteins (DEPs) were successfully identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed significant protein enrichment in the metabolic pathways, photosynthesis, ascorbic acid, and alginate metabolism and phenylpropane biosynthesis of S. obliquus. The analysis of protein-protein interaction system shows that the pathways of photosynthesis and metabolic pathways of S. obliquus were essential to resist oxidative stress. Taking together, these results shed new lights on exploring the cell physiological metabolism and intracellular protein mechanisms of H2O2 inhibition on algal blooms.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rongrong Zong
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiyan He
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
41
|
Liu Y, Qu J, Shi Z, Zhang P, Ren M. Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum. BMC Genomics 2021; 22:821. [PMID: 34773990 PMCID: PMC8590752 DOI: 10.1186/s12864-021-08109-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background The tricarboxylic acid (TCA) cycle is crucial for energy supply in animal, plant, and microbial cells. It is not only the main pathway of carbohydrate catabolism but also the final pathway of lipid and protein catabolism. Some TCA genes have been found to play important roles in the growth and development of tomato and potato, but no comprehensive study of TCA cycle genes in Solanaceae crops has been reported. Results In this study, we analyzed TCA cycle genes in four important Solanaceae vegetable crops (potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum)) based on comparative genomics. The four Solanaceae crops had a total of 180 TCA cycle genes: 43 in potato, 44 in tomato, 40 in eggplant, and 53 in pepper. Phylogenetic analysis, collinearity analysis, and tissue expression patterns revealed the conservation of and differences in TCA cycle genes between the four Solanaceae crops and found that there were unique subgroup members in Solanaceae crops that were independent of Arabidopsis genes. The expression analysis of potato TCA cycle genes showed that (1) they were widely expressed in various tissues, and some transcripts like Soltu.DM.01G003320.1(SCoAL) and Soltu.DM.04G021520.1 (SDH) mainly accumulate in vegetative organs, and some transcripts such as Soltu.DM.12G005620.3 (SDH) and Soltu.DM.02G007400.4 (MDH) are preferentially expressed in reproductive organs; (2) several transcripts can be significantly induced by hormones, such as Soltu.DM.08G023870.2 (IDH) and Soltu.DM.06G029290.1 (SDH) under ABA treatment, and Soltu.DM.07G021850.2 (CSY) and Soltu.DM.09G026740.1 (MDH) under BAP treatment, and Soltu.DM.02G000940.1 (IDH) and Soltu.DM.01G031350.4 (MDH) under GA treatment; (3) Soltu.DM.11G024650.1 (SDH) can be upregulated by the three disease resistance inducers including Phytophthora infestans, acibenzolar-S-methyl (BTH), and DL-β-amino-n-butyric acid (BABA); and (4) the levels of Soltu.DM.01G045790.1 (MDH), Soltu.DM.01G028520.3 (CSY), and Soltu.DM.12G028700.1 (CSY) can be activated by both NaCl and mannitol. The subcellular localization results of three potato citrate synthases showed that Soltu.DM.01G028520.3 was localized in mitochondria, while Soltu.DM.12G028700.1 and Soltu.DM.07G021850.1 were localized in the cytoplasm. Conclusions This study provides a scientific foundation for the comprehensive understanding and functional studies of TCA cycle genes in Solanaceae crops and reveals their potential roles in potato growth, development, and stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08109-9.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 610213, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural, Sciences of Zhengzhou University, 450000, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingtao Qu
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Ziwen Shi
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Peng Zhang
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 610213, Chengdu, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural, Sciences of Zhengzhou University, 450000, Zhengzhou, China. .,Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| |
Collapse
|
42
|
Lima VF, Erban A, Daubermann AG, Freire FBS, Porto NP, Cândido-Sobrinho SA, Medeiros DB, Schwarzländer M, Fernie AR, Dos Anjos L, Kopka J, Daloso DM. Establishment of a GC-MS-based 13 C-positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1213-1233. [PMID: 34486764 DOI: 10.1111/tpj.15484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - André G Daubermann
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Francisco Bruno S Freire
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Nicole P Porto
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, Münster, D-48143, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Leticia Dos Anjos
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Danilo M Daloso
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| |
Collapse
|
43
|
Chibani K, Pucker B, Dietz KJ, Cavanagh A. Genome-wide analysis and transcriptional regulation of the typical and atypical thioredoxins in Arabidopsis thaliana. FEBS Lett 2021; 595:2715-2730. [PMID: 34561866 DOI: 10.1002/1873-3468.14197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Thioredoxins (TRXs), a large subclass of ubiquitous oxidoreductases, are involved in thiol redox regulation. Here, we performed a comprehensive analysis of TRXs in the Arabidopsis thaliana genome, revealing 41 genes encoding 18 typical and 23 atypical TRXs, and 6 genes encoding thioredoxin reductases (TRs). The high number of atypical TRXs indicates special functions in plants that mostly await elucidation. We identified an atypical class of thioredoxins called TRX-c in the genomes of photosynthetic eukaryotes. Localized to the chloroplast, TRX-c displays atypical CPLC, CHLC and CNLC motifs in the active sites. In silico analysis of the transcriptional regulations of TRXs revealed high expression of TRX-c in leaves and strong regulation under cold, osmotic, salinity and metal ion stresses.
Collapse
Affiliation(s)
- Kamel Chibani
- School of Life Sciences, University of Essex, Colchester, UK
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Boas Pucker
- Department of Sciences, University of Cambridge, UK
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Amanda Cavanagh
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
44
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
45
|
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as an eukaryotic redox valve. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6856-6866. [PMID: 34331757 DOI: 10.1093/jxb/erab361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| |
Collapse
|
46
|
Née G, Châtel-Innocenti G, Meimoun P, Leymarie J, Montrichard F, Satour P, Bailly C, Issakidis-Bourguet E. A New Role for Plastid Thioredoxins in Seed Physiology in Relation to Hormone Regulation. Int J Mol Sci 2021; 22:10395. [PMID: 34638735 PMCID: PMC8508614 DOI: 10.3390/ijms221910395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.
Collapse
Affiliation(s)
- Guillaume Née
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| | - Gilles Châtel-Innocenti
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| | - Patrice Meimoun
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Juliette Leymarie
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Françoise Montrichard
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, F-49071 Beaucouzé, France; (F.M.); (P.S.)
| | - Pascale Satour
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, F-49071 Beaucouzé, France; (F.M.); (P.S.)
| | - Christophe Bailly
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Emmanuelle Issakidis-Bourguet
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| |
Collapse
|
47
|
Giese J, Eirich J, Post F, Schwarzländer M, Finkemeier I. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling. Methods Mol Biol 2021; 2363:215-234. [PMID: 34545496 DOI: 10.1007/978-1-0716-1653-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria are central hubs of redox biochemistry in the cell. An important role of mitochondrial carbon metabolism is to oxidize respiratory substrates and to pass the electrons down the mitochondrial electron transport chain to reduce oxygen and to drive oxidative phosphorylation. During respiration, reactive oxygen species are produced as a side reaction, some of which in turn oxidize cysteine thiols in proteins. Hence, the redox status of cysteine-containing mitochondrial proteins has to be controlled by the mitochondrial glutathione and thioredoxin systems, which draw electrons from metabolically derived NADPH. The redox status of mitochondrial cysteines can undergo fast transitions depending on the metabolic status of the cell, as for instance at early seed germination. Here, we describe a state-of-the-art method to quantify redox state of protein cysteines in isolated Arabidopsis seedling mitochondria of controlled metabolic and respiratory state by MS2-based redox proteomics using the isobaric thiol labeling reagent Iodoacetyl Tandem Mass Tag™ (iodoTMT). The procedure is also applicable to isolated mitochondria of other plant and nonplant systems.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Frederik Post
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
48
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
49
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
50
|
Karunanithi S, Liu R, Hou Y, Gonzalez G, Oldford N, Roe AJ, Idipilly N, Gupta K, Amara CS, Putluri S, Lee GK, Valentin-Goyco J, Stetson L, Moreton SA, Putluri V, Kavuri SM, Saunthararajah Y, de Lima M, Tochtrop GP, Putluri N, Wald DN. Thioredoxin reductase is a major regulator of metabolism in leukemia cells. Oncogene 2021; 40:5236-5246. [PMID: 34239044 PMCID: PMC8380733 DOI: 10.1038/s41388-021-01924-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Despite the fact that AML is the most common acute leukemia in adults, patient outcomes are poor necessitating the development of novel therapies. We identified that inhibition of Thioredoxin Reductase (TrxR) is a promising strategy for AML and report a highly potent and specific inhibitor of TrxR, S-250. Both pharmacologic and genetic inhibition of TrxR impairs the growth of human AML in mouse models. We found that TrxR inhibition leads to a rapid and marked impairment of metabolism in leukemic cells subsequently leading to cell death. TrxR was found to be a major and direct regulator of metabolism in AML cells through impacts on both glycolysis and the TCA cycle. Studies revealed that TrxR directly regulates GAPDH leading to a disruption of glycolysis and an increase in flux through the pentose phosphate pathway (PPP). The combined inhibition of TrxR and the PPP led to enhanced leukemia growth inhibition. Overall, TrxR abrogation, particularly with S-250, was identified as a promising strategy to disrupt AML metabolism.
Collapse
Affiliation(s)
- Sheelarani Karunanithi
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- CuronBiotech Inc, Cleveland, OH, USA
| | - Ruifu Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Giancarlo Gonzalez
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Natasha Oldford
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Anne Jessica Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- CuronBiotech Inc, Cleveland, OH, USA
| | - Nethrie Idipilly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- CuronBiotech Inc, Cleveland, OH, USA
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chandra Sekhar Amara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Satwikreddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Grace Kyueun Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Juan Valentin-Goyco
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Vasanta Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marcos de Lima
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
- CuronBiotech Inc, Cleveland, OH, USA.
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|