1
|
Patel NM, Ripoll L, Peach CJ, Ma N, Blythe EE, Vaidehi N, Bunnett NW, von Zastrow M, Sivaramakrishnan S. Myosin VI drives arrestin-independent internalization and signaling of GPCRs. Nat Commun 2024; 15:10636. [PMID: 39638791 PMCID: PMC11621365 DOI: 10.1038/s41467-024-55053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
G protein-coupled receptor (GPCR) endocytosis is canonically associated with β-arrestins. Here, we delineate a β-arrestin-independent endocytic pathway driven by the cytoskeletal motor, myosin VI. Myosin VI engages GIPC, an adaptor protein that binds a PDZ sequence motif present at the C-terminus of several GPCRs. Using the D2 dopamine receptor (D2R) as a prototype, we find that myosin VI regulates receptor endocytosis, spatiotemporal localization, and signaling. We find that access to the D2R C-tail for myosin VI-driven internalization is controlled by an interaction between the C-tail and the third intracellular loop of the receptor. Agonist efficacy, co-factors, and GIPC expression modulate this interaction to tune agonist trafficking. Myosin VI is differentially regulated by distinct GPCR C-tails, suggesting a mechanism to shape spatiotemporal signaling profiles in different ligand and physiological contexts. Our biophysical and structural insights may advance orthogonal therapeutic strategies for targeting GPCRs through cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Nishaben M Patel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe J Peach
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- School of Life Sciences, Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK
| | - Ning Ma
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Emily E Blythe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Nepal B, Barnett J, Bearoff F, Kortagere S. Biased Signaling Agonists Promote Distinct Phosphorylation and Conformational States of the Dopamine D3 Receptor. Int J Mol Sci 2024; 25:10470. [PMID: 39408798 PMCID: PMC11476979 DOI: 10.3390/ijms251910470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Biased agonists of G-protein-coupled receptors (GPCRs) have emerged as promising selective modulators of signaling pathways by offering therapeutic advantages over unbiased agonists to minimize side effects. The dopamine D3 receptor (D3R), a pivotal GPCR in the central nervous system, has gained significant attention as a therapeutic target for neurological diseases, including Parkinson's disease (PD), addiction, psychosis, depression, and anxiety. We have recently designed and tested SK609, a G-protein biased D3R selective agonist, and demonstrated its efficacy in reducing motor impairment and improving cognitive effects in a rodent model of PD. The molecular mechanism by which SK609 recruits G-protein but not β-arrestin pathways is poorly understood. Utilizing all-atom molecular dynamics simulations, we investigated the distinct conformational dynamics imparted by SK609 and the reference unbiased agonist Pramipexole (PRX). Results from these studies show that the flexibility of transmembrane 3 is key to unbiased signaling, with a ~30° and ~17° shift in tilt angle in the D3R-Gi and D3R-βarrestin2 complexes, respectively. Additionally, untargeted phosphoproteomics analysis reveals unique phosphorylation sites by SK609 and PRX in D3R. These results suggest that SK609 induces conformational changes and unique phosphorylation patterns that promote interactions with G-proteins and are not conducive for β-arrestin2 recruitment and signaling.
Collapse
Affiliation(s)
| | | | | | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA; (B.N.); (J.B.); (F.B.)
| |
Collapse
|
3
|
Oka M, Yoshino R, Kitanaka N, Hall FS, Uhl GR, Kitanaka J. Role of glycogen synthase kinase-3β in dependence and abuse liability of alcohol. Alcohol Alcohol 2024; 59:agad086. [PMID: 38145944 DOI: 10.1093/alcalc/agad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Alcohol is a major abused drug worldwide that contributes substantially to health and social problems. These problems result from acute alcohol overuse as well as chronic use, leading to alcohol use disorder (AUD). A major goal of this field is to establish a treatment for alcohol abuse and dependence in patients with AUD. The central molecular mechanisms of acute alcohol actions have been extensively investigated in rodent models. AIMS One of the central mechanisms that may be involved is glycogen synthase kinase-3β (GSK-3β) activity, a key enzyme involved in glycogen metabolism but which has crucial roles in numerous cellular processes. Although the exact mechanisms leading from acute alcohol actions to these chronic changes in GSK-3β function are not yet clear, GSK-3β nonetheless constitutes a potential therapeutic target for AUD by reducing its function using GSK-3β inhibitors. This review is focused on the correlation between GSK-3β activity and the degree of alcohol consumption. METHODS Research articles regarding investigation of effect of GSK-3β on alcohol consumption in rodents were searched on PubMed, Embase, and Scopus databases using keywords "glycogen synthase kinase," "alcohol (or ethanol)," "intake (or consumption)," and evaluated by changes in ratios of pGSK-3βSer9/pGSK-3β. RESULTS In animal experiments, GSK-3β activity decreases in the brain under forced and voluntary alcohol consumption while GSK-3β activity increases under alcohol-seeking behavior. CONCLUSIONS Several pieces of evidence suggest that alterations in GSK-3β function are important mediators of chronic ethanol actions, including those related to alcohol dependence and the adverse effects of chronic ethanol exposure.
Collapse
Affiliation(s)
- Masahiro Oka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Rui Yoshino
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Nobue Kitanaka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Frederic and Mary Wolfe Center HEB 282D, Mail Stop 1015, 3000 Arlington Avenue,Toledo, OH 43614, United States
| | - George R Uhl
- Neurology Service, VA Maryland Healthcare System, 10 North Greene Street, Baltimore, MD 21201, United States
- Departments of Neurology and Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junichi Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
4
|
Wang S, Peng L, Kim KM. Biased Dopamine D 2 Receptors Exhibit Distinct Intracellular Trafficking Properties and ERK Activation in Different Subcellular Domains. Biomol Ther (Seoul) 2024; 32:56-64. [PMID: 37465849 PMCID: PMC10762269 DOI: 10.4062/biomolther.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D2 receptor (D2R) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (D2G and D2Arr, respectively). D2G mediated the inhibition of cAMP production and ERK activation in the cytoplasm. D2Arr, in contrast, mediated receptor endocytosis accompanied by arrestin ubiquitination and ERK activation in the nucleus as well as in the cytoplasm. D2Arr-mediated ERK activation occurred in a manner dependent on arrestin3 but not arrestin2, accompanied by the nuclear translocation of arrestin3 via importin1. D2R-mediated ERK activation, which occurred in both the cytosol and nucleus, was limited to the cytosol when cellular arrestin3 was depleted. This finding supports the results obtained with D2Arr and D2G. Taken together, these observations indicate that biased signal transduction pathways activate distinct downstream mechanisms and that the subcellular regions in which they occur could be different when the same effectors are involved. These findings broaden our understanding on the relation between biased receptors and the corresponding downstream signaling, which is critical for elucidating the functional roles of biased pathways.
Collapse
Affiliation(s)
- Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Lulu Peng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Liu H, Acharya S, Sudan SK, Hu L, Wu C, Cao Y, Li H, Zhang X. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D 2 receptor. FEBS J 2023; 290:5204-5233. [PMID: 37531324 DOI: 10.1111/febs.16921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or β-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus β-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, β-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and β-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and β-Arr2 played a main role in β-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, β-Arr2, and importinβ1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
7
|
Gutiérrez-Casares JR, Segú-Vergés C, Sabate Chueca J, Pozo-Rubio T, Coma M, Montoto C, Quintero J. In silico evaluation of the role of lisdexamfetamine on attention-deficit/hyperactivity disorder common psychiatric comorbidities: mechanistic insights on binge eating disorder and depression. Front Neurosci 2023; 17:1118253. [PMID: 37457000 PMCID: PMC10347683 DOI: 10.3389/fnins.2023.1118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric condition well recognized in the pediatric population that can persist into adulthood. The vast majority of patients with ADHD present psychiatric comorbidities that have been suggested to share, to some extent, the pathophysiological mechanism of ADHD. Lisdexamfetamine (LDX) is a stimulant prodrug approved for treating ADHD and, in the US, also for binge eating disorder (BED). Herein, we evaluated, through a systems biology-based in silico method, the efficacy of a virtual model of LDX (vLDX) as ADHD treatment to improve five common ADHD psychiatric comorbidities in adults and children, and we explored the molecular mechanisms behind LDX's predicted efficacy. After the molecular characterization of vLDX and the comorbidities (anxiety, BED, bipolar disorder, depression, and tics disorder), we created a protein-protein interaction human network to which we applied artificial neural networks (ANN) algorithms. We also generated virtual populations of adults and children-adolescents totaling 2,600 individuals and obtained the predicted protein activity from Therapeutic Performance Mapping System models. The latter showed that ADHD molecular description shared 53% of its protein effectors with at least one studied psychiatric comorbidity. According to the ANN analysis, proteins targeted by vLDX are predicted to have a high probability of being related to BED and depression. In BED, vLDX was modeled to act upon neurotransmission and neuroplasticity regulators, and, in depression, vLDX regulated the hypothalamic-pituitary-adrenal axis, neuroinflammation, oxidative stress, and glutamatergic excitotoxicity. In conclusion, our modeling results, despite their limitations and although requiring in vitro or in vivo validation, could supplement the design of preclinical and potentially clinical studies that investigate treatment for patients with ADHD with psychiatric comorbidities, especially from a molecular point of view.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Carmen Montoto
- Department of Medical, Takeda Farmacéutica España, Madrid, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Departamento de Medicina Legal, Patología y Psiquiatría, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Liu H, Ma H, Zeng X, Wu C, Acharya S, Sudan SK, Zhang X. Ubiquitination of GRK2 Is Required for the β-Arrestin-Biased Signaling Pathway of Dopamine D2 Receptors to Activate ERK Kinases. Int J Mol Sci 2023; 24:10031. [PMID: 37373182 DOI: 10.3390/ijms241210031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and β-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with which to treat dopamine (DA)-related disorders such as Parkinson's disease and schizophrenia. Extensive studies have focused on the regulation of D2R-mediated extracellular-signal-regulated kinase (ERK) 1/2 signaling; however, the manner in which ERKs are activated upon the stimulation of a specific signaling pathway of D2R remains unclear. The present study conducted a variety of experimental techniques, including loss-of-function experiments, site-directed mutagenesis, and the determination of protein interactions, in order to investigate the mechanisms underlying β-arrestin-biased signaling-pathway-mediated ERK activation. We found that the stimulation of the D2R β-arrestin signaling pathway caused Mdm2, an E3 ubiquitin ligase, to move from the nucleus to the cytoplasm and interact with tyrosine phosphorylated G-protein-coupled receptor kinase 2 (GRK2), which was facilitated by Src, a non-receptor tyrosine kinase. This interaction led to the ubiquitination of GRK2, which then moved to the plasma membrane and interacted with activated D2R, followed by the phosphorylation of D2R as well as the mediation of ERK activation. In conclusion, Mdm2-mediated GRK2 ubiquitination, which is selectively triggered by the stimulation of the D2R β-arrestin signaling pathway, is necessary for GRK2 membrane translocation and its interaction with D2R, which in turn mediates downstream ERK signaling. This study is primarily novel and provides essential information with which to better understand the detailed mechanisms of D2R-dependent signaling.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Gutiérrez-Casares JR, Quintero J, Segú-Vergés C, Rodríguez Monterde P, Pozo-Rubio T, Coma M, Montoto C. In silico clinical trial evaluating lisdexamfetamine's and methylphenidate's mechanism of action computational models in an attention-deficit/hyperactivity disorder virtual patients' population. Front Psychiatry 2023; 14:939650. [PMID: 37333910 PMCID: PMC10273406 DOI: 10.3389/fpsyt.2023.939650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an impairing psychiatric condition with the stimulants, lisdexamfetamine (LDX), and methylphenidate (MPH), as the first lines pharmacological treatment. Methods Herein, we applied a novel in silico method to evaluate virtual LDX (vLDX) and vMPH as treatments for ADHD applying quantitative systems pharmacology (QSP) models. The objectives were to evaluate the model's output, considering the model characteristics and the information used to build them, to compare both virtual drugs' efficacy mechanisms, and to assess how demographic (age, body mass index, and sex) and clinical characteristics may affect vLDX's and vMPH's relative efficacies. Results and Discussion We molecularly characterized the drugs and pathologies based on a bibliographic search, and generated virtual populations of adults and children-adolescents totaling 2,600 individuals. For each virtual patient and virtual drug, we created physiologically based pharmacokinetic and QSP models applying the systems biology-based Therapeutic Performance Mapping System technology. The resulting models' predicted protein activity indicated that both virtual drugs modulated ADHD through similar mechanisms, albeit with some differences. vMPH induced several general synaptic, neurotransmitter, and nerve impulse-related processes, whereas vLDX seemed to modulate neural processes more specific to ADHD, such as GABAergic inhibitory synapses and regulation of the reward system. While both drugs' models were linked to an effect over neuroinflammation and altered neural viability, vLDX had a significant impact on neurotransmitter imbalance and vMPH on circadian system deregulation. Among demographic characteristics, age and body mass index affected the efficacy of both virtual treatments, although the effect was more marked for vLDX. Regarding comorbidities, only depression negatively impacted both virtual drugs' efficacy mechanisms and, while that of vLDX were more affected by the co-treatment of tic disorders, the efficacy mechanisms of vMPH were disturbed by wide-spectrum psychiatric drugs. Our in silico results suggested that both drugs could have similar efficacy mechanisms as ADHD treatment in adult and pediatric populations and allowed raising hypotheses for their differential impact in specific patient groups, although these results require prospective validation for clinical translatability.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
10
|
Kim KM. Unveiling the Differences in Signaling and Regulatory Mechanisms between Dopamine D2 and D3 Receptors and Their Impact on Behavioral Sensitization. Int J Mol Sci 2023; 24:ijms24076742. [PMID: 37047716 PMCID: PMC10095578 DOI: 10.3390/ijms24076742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Dopamine receptors are classified into five subtypes, with D2R and D3R playing a crucial role in regulating mood, motivation, reward, and movement. Whereas D2R are distributed widely across the brain, including regions responsible for motor functions, D3R are primarily found in specific areas related to cognitive and emotional functions, such as the nucleus accumbens, limbic system, and prefrontal cortex. Despite their high sequence homology and similar signaling pathways, D2R and D3R have distinct regulatory properties involving desensitization, endocytosis, posttranslational modification, and interactions with other cellular components. In vivo, D3R is closely associated with behavioral sensitization, which leads to increased dopaminergic responses. Behavioral sensitization is believed to result from D3R desensitization, which removes the inhibitory effect of D3R on related behaviors. Whereas D2R maintains continuous signal transduction through agonist-induced receptor phosphorylation, arrestin recruitment, and endocytosis, which recycle and resensitize desensitized receptors, D3R rarely undergoes agonist-induced endocytosis and instead is desensitized after repeated agonist exposure. In addition, D3R undergoes more extensive posttranslational modifications, such as glycosylation and palmitoylation, which are needed for its desensitization. Overall, a series of biochemical settings more closely related to D3R could be linked to D3R-mediated behavioral sensitization.
Collapse
Affiliation(s)
- Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
11
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
12
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
13
|
Love CR, Gautam S, Lama C, Le NH, Dauwalder B. The Drosophila dopamine 2-like receptor D2R (Dop2R) is required in the blood brain barrier for male courtship. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12836. [PMID: 36636829 PMCID: PMC9994173 DOI: 10.1111/gbb.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The blood brain barrier (BBB) has the essential function to protect the brain from potentially hazardous molecules while also enabling controlled selective uptake. How these processes and signaling inside BBB cells control neuronal function is an intense area of interest. Signaling in the adult Drosophila BBB is required for normal male courtship behavior and relies on male-specific molecules in the BBB. Here we show that the dopamine receptor D2R is expressed in the BBB and is required in mature males for normal mating behavior. Conditional adult male knockdown of D2R in BBB cells causes courtship defects. The courtship defects observed in genetic D2R mutants can be rescued by expression of normal D2R specifically in the BBB of adult males. Drosophila BBB cells are glial cells. Our findings thus identify a specific glial function for the DR2 receptor and dopamine signaling in the regulation of a complex behavior.
Collapse
Affiliation(s)
- Cameron R Love
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Sumit Gautam
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Nhu Hoa Le
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
15
|
Ives A, Dunn HA, Afsari HS, Seckler HDS, Foroutan MJ, Chavez E, Melani RD, Fellers RT, LeDuc RD, Thomas PM, Martemyanov KA, Kelleher NL, Vafabakhsh R. Middle-Down Mass Spectrometry Reveals Activity-Modifying Phosphorylation Barcode in a Class C G Protein-Coupled Receptor. J Am Chem Soc 2022; 144:23104-23114. [PMID: 36475650 PMCID: PMC9785046 DOI: 10.1021/jacs.2c10697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.
Collapse
Affiliation(s)
- Ashley
N. Ives
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Henry A. Dunn
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States,Department
of Pharmacology and Therapeutics, University
of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada,Division
of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen
Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Hamid Samareh Afsari
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Max J. Foroutan
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Erica Chavez
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D. Melani
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T. Fellers
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. LeDuc
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kirill A. Martemyanov
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States,Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Reza Vafabakhsh
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,
| |
Collapse
|
16
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol Ther 2022; 11:1489-1517. [PMID: 35951288 DOI: 10.1007/s40120-022-00392-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder characterised by persistent inattention, hyperactivity and impulsivity. Moreover, ADHD is commonly associated with other comorbid diseases (depression, anxiety, bipolar disorder, etc.). The ADHD symptomatology interferes with subject function and development. The treatment of ADHD requires a multidisciplinary approach based on a combination of non-pharmacological and pharmacological treatments with the aim of ameliorating the symptomatology; among first-line pharmacological treatments are stimulants [such as methylphenidate (MPH) and lisdexamfetamine dimesylate (LDX)]. In this review we explored recent ADHD- and stimulants-related literature, with the aim of compiling available descriptions of molecular pathways altered in ADHD, and molecular mechanisms of current first-line stimulants MPH and LDX. While conducting the narrative review, we applied structured search strategies covering PubMed/MEDLINE database and performed handsearching of reference lists on the results of those searches. The aetiology and pathophysiology of ADHD are incompletely understood; both genetic and environmental factors have been associated with the disorder and its grade of burden, and also the relationship between the molecular mechanisms of pharmacological treatments and their clinical implications. The lack of comprehensive understanding of the underlying molecular pathology makes both the diagnosis and treatment difficult. Few published studies evaluating molecular data on the mechanism of action (MoA) of MPH and LDX on ADHD are available and most of them are based on animal models. Further studies are necessary to improve the knowledge of ADHD pathophysiology and how the MoAs of MPH and LDX differentially modulate ADHD pathophysiology and control ADHD symptomatology.
Collapse
Affiliation(s)
- Javier Quintero
- Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - José R Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain.
| | - Cecilio Álamo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
19
|
Recurrent high-impact mutations at cognate structural positions in class A G protein-coupled receptors expressed in tumors. Proc Natl Acad Sci U S A 2021; 118:2113373118. [PMID: 34916293 PMCID: PMC8713800 DOI: 10.1073/pnas.2113373118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
GPCRs and GPCR pathways are increasingly being implicated in human malignancies, placing them among the most promising cancer drug candidates. Our results reveal enrichment of highly impactful, recurrent GPCR mutations within cancers. We found that cognate mutations in selected class A GPCRs have deleterious effects on signaling function. The results also suggest that olfactory receptors, often considered inconsequential, display a nonrandom mutation pattern in tumors in which they are expressed. These findings support the idea that protein paralogs can act in parallel as members of an onco-group. G protein-coupled receptors (GPCRs) are the largest family of human proteins. They have a common structure and, signaling through a much smaller set of G proteins, arrestins, and effectors, activate downstream pathways that often modulate hallmark mechanisms of cancer. Because there are many more GPCRs than effectors, mutations in different receptors could perturb signaling similarly so as to favor a tumor. We hypothesized that somatic mutations in tumor samples may not be enriched within a single gene but rather that cognate mutations with similar effects on GPCR function are distributed across many receptors. To test this possibility, we systematically aggregated somatic cancer mutations across class A GPCRs and found a nonrandom distribution of positions with variant amino acid residues. Individual cancer types were enriched for highly impactful, recurrent mutations at selected cognate positions of known functional motifs. We also discovered that no single receptor drives this pattern, but rather multiple receptors contain amino acid substitutions at a few cognate positions. Phenotypic characterization suggests these mutations induce perturbation of G protein activation and/or β-arrestin recruitment. These data suggest that recurrent impactful oncogenic mutations perturb different GPCRs to subvert signaling and promote tumor growth or survival. The possibility that multiple different GPCRs could moonlight as drivers or enablers of a given cancer through mutations located at cognate positions across GPCR paralogs opens a window into cancer mechanisms and potential approaches to therapeutics.
Collapse
|
20
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and greater coronavirus family. Bioinformatics 2021; 37:4033-4040. [PMID: 34043002 PMCID: PMC8243408 DOI: 10.1093/bioinformatics/btab406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. RESULTS Combining coronavirus family sequence information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent. AVAILABILITY AND IMPLEMENTATION The results of this work are made interactively available at http://cov.lichtargelab.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Selective Manipulation of G-Protein γ 7 Subunit in Mice Provides New Insights into Striatal Control of Motor Behavior. J Neurosci 2021; 41:9065-9081. [PMID: 34544837 DOI: 10.1523/jneurosci.1211-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 01/15/2023] Open
Abstract
Stimulatory coupling of dopamine D1 (D1R) and adenosine A2A receptors (A2AR) to adenylyl cyclase within the striatum is mediated through a specific Gαolfβ2γ7 heterotrimer to ultimately modulate motor behaviors. To dissect the individual roles of the Gαolfβ2γ7 heterotrimer in different populations of medium spiny neurons (MSNs), we produced and characterized conditional mouse models, in which the Gng7 gene was deleted in either the D1R- or A2AR/D2R-expressing MSNs. We show that conditional loss of γ7 disrupts the cell type-specific assembly of the Gαolfβ2γ7 heterotrimer, thereby identifying its circumscribed roles acting downstream of either the D1Rs or A2ARs in coordinating motor behaviors, including in vivo responses to psychostimulants. We reveal that Gαolfβ2γ7/cAMP signal in D1R-MSNs does not impact spontaneous and amphetamine-induced locomotor behaviors in male and female mice, while its loss in A2AR/D2R-MSNs results in a hyperlocomotor phenotype and enhanced locomotor response to amphetamine. Additionally, Gαolfβ2γ7/cAMP signal in either D1R- or A2AR/D2R-expressing MSNs is not required for the activation of PKA signaling by amphetamine. Finally, we show that Gαolfβ2γ7 signaling acting downstream of D1Rs is selectively implicated in the acute locomotor-enhancing effects of morphine. Collectively, these results support the general notion that receptors use specific Gαβγ proteins to direct the fidelity of downstream signaling pathways and to elicit a diverse repertoire of cellular functions. Specifically, these findings highlight the critical role for the γ7 protein in determining the cellular level, and hence, the function of the Gαolfβ2γ7 heterotrimer in several disease states associated with dysfunctional striatal signaling.SIGNIFICANCE STATEMENT Dysfunction or imbalance of cAMP signaling in the striatum has been linked to several neurologic and neuropsychiatric disorders, including Parkinson's disease, dystonia, schizophrenia, and drug addiction. By genetically targeting the γ7 subunit in distinct striatal neuronal subpopulations in mice, we demonstrate that the formation and function of the Gαolfβ2γ7 heterotrimer, which represents the rate-limiting step for cAMP production in the striatum, is selectively disrupted. Furthermore, we reveal cell type-specific roles for Gαolfβ2γ7-mediated cAMP production in the control of spontaneous locomotion as well as behavioral and molecular responses to psychostimulants. Our findings identify the γ7 protein as a novel therapeutic target for disease states associated with dysfunctional striatal cAMP signaling.
Collapse
|
22
|
Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D 2 receptor regulation and signaling. Sci Rep 2021; 11:8288. [PMID: 33859231 PMCID: PMC8050214 DOI: 10.1038/s41598-021-87417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of Parkinson’s disease and schizophrenia. The D2R is regulated through its interaction with and phosphorylation by G protein receptor kinases (GRKs) and interaction with arrestins. More recently, D2R arrestin-mediated signaling has been shown to have distinct physiological functions to those of G protein signalling. Relatively little is known regarding the patterns of D2R phosphorylation that might control these processes. We aimed to generate antibodies specific for intracellular D2R phosphorylation sites to facilitate the investigation of these mechanisms. We synthesised double phosphorylated peptides corresponding to regions within intracellular loop 3 of the hD2R and used them to raise phosphosite-specific antibodies to capture a broad screen of GRK-mediated phosphorylation. We identify an antibody specific to a GRK2/3 phosphorylation site in intracellular loop 3 of the D2R. We compared measurements of D2R phosphorylation with other measurements of D2R signalling to profile selected D2R agonists including previously described biased agonists. These studies demonstrate the utility of novel phosphosite-specific antibodies to investigate D2R regulation and signalling.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Hanka Mark
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK. .,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
23
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and the greater coronavirus family. RESEARCH SQUARE 2021:rs.3.rs-95030. [PMID: 33106800 PMCID: PMC7587783 DOI: 10.21203/rs.3.rs-95030/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M. Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C. Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- MAbSilico, Nouzilly, Centre, France, EU
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and the greater coronavirus family. RESEARCH SQUARE 2021:rs.3.rs-95030. [PMID: 36575762 PMCID: PMC9793837 DOI: 10.21203/rs.3.rs-95030/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M. Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C. Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Correspondence: (D.C.M), (O.L.)
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,MAbSilico, Nouzilly, Centre, France, EU
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA,Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Correspondence: (D.C.M), (O.L.)
| |
Collapse
|
25
|
Porter‐Stransky KA, Petko AK, Karne SL, Liles LC, Urs NM, Caron MG, Paladini CA, Weinshenker D. Loss of β-arrestin2 in D2 cells alters neuronal excitability in the nucleus accumbens and behavioral responses to psychostimulants and opioids. Addict Biol 2020; 25:e12823. [PMID: 31441201 DOI: 10.1111/adb.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/14/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023]
Abstract
Psychostimulants and opioids increase dopamine (DA) neurotransmission, activating D1 and D2 G protein-coupled receptors. β-arrestin2 (βarr2) desensitizes and internalizes these receptors and initiates G protein-independent signaling. Previous work revealed that mice with a global or cell-specific knockout of βarr2 have altered responses to certain drugs; however, the effects of βarr2 on the excitability of medium spiny neurons (MSNs), and its role in mediating the rewarding effects of drugs of abuse are unknown. D1-Cre and D2-Cre transgenic mice were crossed with floxed βarr2 mice to eliminate βarr2 specifically in cells containing either D1 (D1βarr2-KO ) or D2 (D2βarr2-KO ) receptors. We used slice electrophysiology to characterize the role of βarr2 in modulating D1 and D2 nucleus accumbens MSN intrinsic excitability in response to DA and tested the locomotor-activating and rewarding effects of cocaine and morphine in these mice. Eliminating βarr2 attenuated the ability of DA to inhibit D2-MSNs and altered the DA-induced maximum firing rate in D1-MSNs. While D1βarr2-KO mice had mostly normal drug responses, D2βarr2-KO mice showed dose-dependent reductions in acute locomotor responses to cocaine and morphine, attenuated locomotor sensitization to cocaine, and blunted cocaine reward measured with conditioned place preference. Both D2βarr2-KO and D1βarr2-KO mice displayed an enhanced conditioned place preference for the highest dose of morphine. These results indicate that D1- and D2-derived βarr2 functionally contribute to DA-induced changes in MSN intrinsic excitability and behavioral responses to psychostimulants and opioids dose-dependently.
Collapse
Affiliation(s)
- Kirsten A. Porter‐Stransky
- Department of Biomedical Sciences Western Michigan University Homer Stryker M.D. School of Medicine Kalamazoo MI USA
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| | - Alyssa K. Petko
- University of Texas at San Antonio Neuroscience Institute, Department ofBiology University of Texas at San Antonio San Antonio TX USA
| | - Saumya L. Karne
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| | - L. Cameron Liles
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| | - Nikhil M. Urs
- Duke University Medical Center Department of Cell Biology Durham NC USA
- Department of Pharmacology and Therapeutics University of Florida College of Medicine Gainesville FL USA
| | - Marc G. Caron
- Duke University Medical Center Department of Cell Biology Durham NC USA
| | - Carlos A. Paladini
- University of Texas at San Antonio Neuroscience Institute, Department ofBiology University of Texas at San Antonio San Antonio TX USA
| | - David Weinshenker
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| |
Collapse
|
26
|
Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol Psychiatry 2020; 25:2086-2100. [PMID: 30120413 PMCID: PMC6378141 DOI: 10.1038/s41380-018-0212-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023]
Abstract
The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics.
Collapse
|
27
|
Nagi K, Kaur S, Bai Y, Shenoy SK. In-frame fusion of SUMO1 enhances βarrestin2's association with activated GPCRs as well as with nuclear pore complexes. Cell Signal 2020; 75:109759. [PMID: 32860951 DOI: 10.1016/j.cellsig.2020.109759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023]
Abstract
Small ubiquitin like modifier (SUMO) conjugation or SUMOylation of βarrestin2 promotes its association with the clathrin adaptor protein AP2 and facilitates rapid β2 adrenergic receptor (β2AR) internalization. However, disruption of the consensus SUMOylation site in βarrestin2, did not prevent βarrestin2's association with activated β2ARs, dopamine D2 receptors (D2Rs), angiotensin type 1a receptors (AT1aRs) and V2 vasopressin receptors (V2Rs). To address the role of SUMOylation in the trafficking of βarrestin and GPCR complexes, we generated and characterized a yellow fluorescent protein (YFP) tagged βarrestin2-SUMO1 chimeric protein, which is resistant to de-SUMOylation. In HEK-293 cells, YFP-SUMO1 predominantly localized in the nucleus, whereas YFP-βarrestin2 is cytoplasmic. YFP-βarrestin2-SUMO1 in addition to being cytoplasmic, is localized at the nuclear membrane. Nonetheless, βarrestin2-SUMO1 associated robustly with agonist-activated β2ARs as evaluated by co-immunoprecipitation, confocal microscopy and bioluminescence resonance energy transfer (BRET). βarrestin2-SUMO1 associated strongly with the D2R, which forms transient complexes with βarrestin2. But, βarrestin2-SUMO1 and βarrestin2 showed equivalent binding with the V2R, which forms stable complexes with βarrestin2. βarrestin2 expression level directly correlated with the steady state levels of the unmodified form of RanGAP1, which upon SUMOylation associates with nuclear membrane. On the other hand, βarrestin2-SUMO1 not only localized at the nuclear membrane, but also formed a macromolecular complex with RanGAP1. Taken together, our data suggest that SUMOylation of βarrestin2 promotes its protein interactions at both cell and nuclear membranes. Furthermore, βarrestin2-SUMO1 presents as a useful tool to characterize βarrestin2 recruitment to GPCRs, which form transient and unstable complex with βarrestin2.
Collapse
Affiliation(s)
- Karim Nagi
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA; College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Suneet Kaur
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudha K Shenoy
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Slosky LM, Bai Y, Toth K, Ray C, Rochelle LK, Badea A, Chandrasekhar R, Pogorelov VM, Abraham DM, Atluri N, Peddibhotla S, Hedrick MP, Hershberger P, Maloney P, Yuan H, Li Z, Wetsel WC, Pinkerton AB, Barak LS, Caron MG. β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors. Cell 2020; 181:1364-1379.e14. [PMID: 32470395 PMCID: PMC7466280 DOI: 10.1016/j.cell.2020.04.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/21/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages β-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a β-arrestin-biased agonist but also extends profound β-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and β-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Krisztian Toth
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Caroline Ray
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Alexandra Badea
- Departments of Radiology and Neurology, Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | | | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Dennis M Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University, Durham, NC 27710, USA
| | - Namratha Atluri
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Linebarger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Berland C, Montalban E, Perrin E, Di Miceli M, Nakamura Y, Martinat M, Sullivan M, Davis XS, Shenasa MA, Martin C, Tolu S, Marti F, Caille S, Castel J, Perez S, Salinas CG, Morel C, Hecksher-Sørensen J, Cador M, Fioramonti X, Tschöp MH, Layé S, Venance L, Faure P, Hnasko TS, Small DM, Gangarossa G, Luquet SH. Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metab 2020; 31:773-790.e11. [PMID: 32142669 PMCID: PMC7250662 DOI: 10.1016/j.cmet.2020.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Energy-dense food alters dopaminergic (DA) transmission in the mesocorticolimbic (MCL) system and can promote reward dysfunctions, compulsive feeding, and weight gain. Yet the mechanisms by which nutrients influence the MCL circuitry remain elusive. Here, we show that nutritional triglycerides (TGs), a conserved post-prandial metabolic signature among mammals, can be metabolized within the MCL system and modulate DA-associated behaviors by gating the activity of dopamine receptor subtype 2 (DRD2)-expressing neurons through a mechanism that involves the action of the lipoprotein lipase (LPL). Further, we show that in humans, post-prandial TG excursions modulate brain responses to food cues in individuals carrying a genetic risk for reduced DRD2 signaling. Collectively, these findings unveil a novel mechanism by which dietary TGs directly alter signaling in the reward circuit to regulate behavior, thereby providing a new mechanistic basis by which energy-rich diets may lead to (mal)adaptations in DA signaling that underlie reward deficit and compulsive behavior.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France; Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Neuherberg, Germany
| | | | - Elodie Perrin
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | - Mathieu Di Miceli
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Yuko Nakamura
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maud Martinat
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Mary Sullivan
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Xue S Davis
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Claire Martin
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Stefania Tolu
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Fabio Marti
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Stephanie Caille
- Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR5287, 33076 Bordeaux, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | | | - Chloé Morel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Jacob Hecksher-Sørensen
- Global Research, Novo Nordisk A/S, Måløv, Denmark; Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | - Martine Cador
- Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR5287, 33076 Bordeaux, France
| | - Xavier Fioramonti
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Matthias H Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Neuherberg, Germany; Division of Metabolic Diseases, TUM, Munich, Germany; Institute for Advanced Study, TUM, Munich, Germany
| | - Sophie Layé
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | - Philippe Faure
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Research Service VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Dana M Small
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Serge H Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France; The Modern Diet and Physiology Research Center, New Haven, CT, USA.
| |
Collapse
|
30
|
Sanchez-Soto M, Verma RK, Willette BKA, Gonye EC, Moore AM, Moritz AE, Boateng CA, Yano H, Free RB, Shi L, Sibley DR. A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sci Signal 2020; 13:13/617/eaaw5885. [PMID: 32019899 DOI: 10.1126/scisignal.aaw5885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired β-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with β-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired β-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the β2-adrenergic receptor (β2R) to build β2R-WT and β2R-Y1995.38A models in complex with the full β2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in β2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in β2R-Y1995.38A, which is predicted to affect its interactions with β-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.
Collapse
Affiliation(s)
- Marta Sanchez-Soto
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - Blair K A Willette
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Elizabeth C Gonye
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Annah M Moore
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Comfort A Boateng
- Basic Pharmaceutical Sciences, High Point University, One University Parkway, High Point, NC 27268, USA
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - R Benjamin Free
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA.
| | - David R Sibley
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Gong M, Wen S, Nguyen T, Wang C, Jin J, Zhou L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab Syndr Obes 2020; 13:943-962. [PMID: 32280253 PMCID: PMC7125338 DOI: 10.2147/dmso.s232377] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity and hyperuricemia mutually influence metabolic syndrome. This study discusses the metabolic relationships between obesity and hyperuricemia in terms of pathophysiology, complications, and treatments. METHODS We searched for preclinical or clinical studies on the pathophysiology, complications, and therapy of obesity and hyperuricemia on the PubMed database. RESULTS In this systemic review, we summarized our searching results on topics of pathophysiology, complications and therapeutic strategy. In pathophysiology, we firstly introduce genetic variations for obesity, hyperuricemia and their relationships by genetic studies. Secondly, we talk about the epigenetic influences on obesity and hyperuricemia. Thirdly, we describe the central metabolic regulation and the role of hyperuricemia. Then, we refer to the character of adipose tissue inflammation and oxidative stress in the obesity and hyperuricemia. In the last part of this topic, we reviewed the critical links of gut microbiota in the obesity and hyperuricemia. In the following part, we review the pathophysiology of major complications in obesity and hyperuricemia including insulin resistance and type 2 diabetes mellitus, chronic kidney disease, cardiovascular diseases, and cancers. Finally, we recapitulate the therapeutic strategies especially the novel pharmaceutic interventions for obesity and hyperuricemia, which concurrently show the mutual metabolic influences between two diseases. CONCLUSION The data reviewed here delineate the metabolic relationships between obesity and hyperuricemia, and provide a comprehensive overview of the therapeutic targets for the management of metabolic syndromes.
Collapse
Affiliation(s)
- Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai201399, ChinaTel +8613611927616 Email
| |
Collapse
|
32
|
Terrón-Díaz ME, Wright SJ, Agosto MA, Lichtarge O, Wensel TG. Residues and residue pairs of evolutionary importance differentially direct signaling bias of D2 dopamine receptors. J Biol Chem 2019; 294:19279-19291. [PMID: 31676688 PMCID: PMC6916503 DOI: 10.1074/jbc.ra119.008068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/16/2019] [Indexed: 01/11/2023] Open
Abstract
The D2 dopamine receptor and the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A) are closely-related G-protein-coupled receptors (GPCRs) from the class A bioamine subfamily. Despite structural similarity, they respond to distinct ligands through distinct downstream pathways, whose dysregulation is linked to depression, bipolar disorder, addiction, and psychosis. They are important drug targets, and it is important to understand how their bias toward G-protein versus β-arrestin signaling pathways is regulated. Previously, evolution-based computational approaches, difference Evolutionary Trace and Evolutionary Trace-Mutual information (ET-Mip), revealed residues and residue pairs that, when switched in the D2 receptor to the corresponding residues from 5-HT2A, altered ligand potency and G-protein activation efficiency. We have tested these residue swaps for their ability to trigger recruitment of β-arrestin2 in response to dopamine or serotonin. The results reveal that the selected residues modulate agonist potency, maximal efficacy, and constitutive activity of β-arrestin2 recruitment. Whereas dopamine potency for most variants was similar to that for WT and lower than for G-protein activation, potency in β-arrestin2 recruitment for N124H3.42 was more than 5-fold higher. T205M5.54 displayed high constitutive activity, enhanced dopamine potency, and enhanced efficacy in β-arrestin2 recruitment relative to WT, and L379F6.41 was virtually inactive. These striking differences from WT activity were largely reversed by a compensating mutation (T205M5.54/L379F6.41) at residues previously identified by ET-Mip as functionally coupled. The observation that the signs and relative magnitudes of the effects of mutations in several cases are at odds with their effects on G-protein activation suggests that they also modulate signaling bias.
Collapse
Affiliation(s)
- María E Terrón-Díaz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030
| | - Sara J Wright
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
| | - Melina A Agosto
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, Texas 77030
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Theodore G Wensel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
33
|
De Vries L, Finana F, Cathala C, Ronsin B, Cussac D. Innovative Bioluminescence Resonance Energy Transfer Assay Reveals Differential Agonist-Induced D2 Receptor Intracellular Trafficking and Arrestin-3 Recruitment. Mol Pharmacol 2019; 96:308-319. [PMID: 31266815 DOI: 10.1124/mol.119.115998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/19/2019] [Indexed: 01/14/2023] Open
Abstract
The dopamine D2 receptor (D2R) mediates ligand-biased signaling with potential therapeutic implications. However, internalization, choice of endocytic routes, and degradation of the D2R in lysosomes may also participate in agonist-directed trafficking. We developed bioluminescence resonance energy transfer (BRET) assays that measure relative distances between Renilla luciferase8-tagged D2R and green fluorescent protein 2 (GFP2)-tagged K-Ras (plasma membrane marker), and between luciferase8-tagged D2R and GFP2-Rab5 (early), GFP2-Rab4 (recycling), or GFP2-Rab7 (late) endosomal markers. The BRET signal between D2R-Luc and GFP2-K-Ras was robustly diminished after receptor internalization induced by dopamine, with subsequent BRET signals increasing when luciferase8-tagged D2R approached GFP2-Rab proteins in endosomal compartments. All BRET signals were blocked by the selective D2R antagonist haloperidol and were decreased by low temperature and high sucrose blocks, two parameters interfering with internalization. Some antipsychotic drugs, such as aripiprazole, are less efficacious in internalizing D2R than most of the antiparkinsonian agents. However, antipsychotics were nearly as efficacious as antiparkinsonians in directing the D2R toward early and recycling endosomes. The Rab7 marker for the late endosome/lysosome route was also capable of discriminating between D2R compounds. We could show that some drugs engaged the D2R either to interact preferentially with arrestin-3 or to internalize. Our study revealed that D2R trafficking in cells was differentially regulated by antipsychotic and antiparkinsonian drugs. Taken together, the BRET assays reported here could further help decipher D2R ligand-induced arrestin-3 recruitment and trafficking, with potentially more selective therapeutic profiles and fewer undesired side effects.
Collapse
Affiliation(s)
- Luc De Vries
- Central Nervous System Innovation Unit, CEPC Campans - Belair de Campans, Castres, France (L.D.V., F.F., C.C., D.C.) and CNRS, UMR5547, Centre de Biologie du Développement, Université de Toulouse III-Paul Sabatier, Toulouse, France (B.R.)
| | - Frédéric Finana
- Central Nervous System Innovation Unit, CEPC Campans - Belair de Campans, Castres, France (L.D.V., F.F., C.C., D.C.) and CNRS, UMR5547, Centre de Biologie du Développement, Université de Toulouse III-Paul Sabatier, Toulouse, France (B.R.)
| | - Claudie Cathala
- Central Nervous System Innovation Unit, CEPC Campans - Belair de Campans, Castres, France (L.D.V., F.F., C.C., D.C.) and CNRS, UMR5547, Centre de Biologie du Développement, Université de Toulouse III-Paul Sabatier, Toulouse, France (B.R.)
| | - Brice Ronsin
- Central Nervous System Innovation Unit, CEPC Campans - Belair de Campans, Castres, France (L.D.V., F.F., C.C., D.C.) and CNRS, UMR5547, Centre de Biologie du Développement, Université de Toulouse III-Paul Sabatier, Toulouse, France (B.R.)
| | - Didier Cussac
- Central Nervous System Innovation Unit, CEPC Campans - Belair de Campans, Castres, France (L.D.V., F.F., C.C., D.C.) and CNRS, UMR5547, Centre de Biologie du Développement, Université de Toulouse III-Paul Sabatier, Toulouse, France (B.R.)
| |
Collapse
|
34
|
Komatsu H, Fukuchi M, Habata Y. Potential Utility of Biased GPCR Signaling for Treatment of Psychiatric Disorders. Int J Mol Sci 2019; 20:E3207. [PMID: 31261897 PMCID: PMC6651563 DOI: 10.3390/ijms20133207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tremendous advances have been made recently in the identification of genes and signaling pathways associated with the risks for psychiatric disorders such as schizophrenia and bipolar disorder. However, there has been a marked reduction in the pipeline for the development of new psychiatric drugs worldwide, mainly due to the complex causes that underlie these disorders. G-protein coupled receptors (GPCRs) are the most common targets of antipsychotics such as quetiapine and aripiprazole, and play pivotal roles in controlling brain function by regulating multiple downstream signaling pathways. Progress in our understanding of GPCR signaling has opened new possibilities for selective drug development. A key finding has been provided by the concept of biased ligands, which modulate some, but not all, of a given receptor's downstream signaling pathways. Application of this concept raises the possibility that the biased ligands can provide therapeutically desirable outcomes with fewer side effects. Instead, this application will require a detailed understanding of the mode of action of antipsychotics that drive distinct pharmacologies. We review our current understanding of the mechanistic bases for multiple signaling modes by antipsychotics and the potential of the biased modulators to treat mental disorders.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Medical Affairs, Kyowa Pharmaceutical Industry Co., Ltd. (A Lupin Group Company), Osaka 530-0005, Japan.
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya City 464-8602, Japan.
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma 370-0033, Japan
| | - Yugo Habata
- Department of Food & Nutrition, Yamanashi Gakuin Junior College, Kofu 400-8575, Japan
| |
Collapse
|
35
|
Ciprés-Flores FJ, Segura-Uribe JJ, Orozco-Suárez S, Guerra-Araiza C, Guevara-Salazar JA, Castillo-García EL, Soriano-Ursúa MA, Farfán-García ED. Beta-blockers and salbutamol limited emotional memory disturbance and damage induced by orchiectomy in the rat hippocampus. Life Sci 2019; 224:128-137. [PMID: 30905783 DOI: 10.1016/j.lfs.2019.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the therapeutic potential of ligands of beta-adrenoceptors in cognitive disorders. Testosterone and adrenergic pathways are involved in hippocampal and emotional memory. Moreover, is strongly suggested that androgen diminishing in aging is involved in cognitive deficit, as well as beta-adrenoceptors, particularly beta2-adrenoceptor, participate in the adrenergic modulation of memory. In this regard, some animal models of memory disruption have shown improved performance after beta-drug administration. MATERIAL AND METHODS In this work, we evaluated the effects of agonists (isoproterenol and salbutamol) and antagonists (propranolol and carvedilol) on beta-adrenoceptors in orchiectomized rats, as well as their effects in the performance on avoidance task and damage in hippocampal neurons by immunohistochemistry assays. KEY FINDINGS Surprisingly, we found that both antagonists and salbutamol (but not isoproterenol) modulate the effects of hormone deprivation, improving memory and decreasing neuronal death and amyloid-beta related changes in some regions (particularly CA1-3 and dentate gyrus) of rat hippocampus. SIGNIFICANCE Two β-antagonists and one β2-agonist modulated the effects of hormone deprivation on memory and damage in brain. The mechanisms of signaling of these drugs for beneficial effects remain unclear, even if used β-ARs ligands share a weak activity on β-arrestin/ERK-pathway activation which can be involved in these effects as we proposed in this manuscript. Our observations could be useful for understanding effects suggested of adrenergic drugs to modulate emotional memory. But also, our results could be related to other pathologies involving neuronal death and Aβ accumulation.
Collapse
Affiliation(s)
- Fabiola J Ciprés-Flores
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Julia J Segura-Uribe
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juan A Guevara-Salazar
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Emily L Castillo-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| |
Collapse
|
36
|
Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019; 125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Dopamine D2 receptors (D2Rs) mediate many of the actions of dopamine in the striatum, ranging from movement to the effortful pursuit of reward. Yet despite significant advances in linking D2Rs to striatal functions with pharmacological and genetic strategies in animals, how dopamine orchestrates its myriad actions on different cell populations -each expressing D2Rs- remains unclear. Furthermore, brain imaging and genetic studies in humans have consistently associated striatal D2R alterations with various neurological and neuropsychiatric disorders, but how and which D2Rs are involved in each case is poorly understood. Therefore, a critical first step is to engage in a refined and systematic investigation of the impact of D2R function on specific striatal cells, circuits, and behaviors. Here, I will review recent efforts, primarily in animal models, aimed at unlocking the complex and heterogeneous roles of D2Rs in striatum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
37
|
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 2019; 39:31-59. [PMID: 30446950 DOI: 10.1007/s10571-018-0632-3] [Citation(s) in RCA: 517] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.
Collapse
Affiliation(s)
- Marianne O Klein
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Daniella S Battagello
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Ariel R Cardoso
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - David N Hauser
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil.
- Center for Neuroscience and Behavior, Institute of Psychology, USP, São Paulo, Brazil.
| | - Ricardo G Correa
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
38
|
GPCR structure and function relationship: identification of a biased apelin receptor mutant. Biochem J 2018; 475:3813-3826. [PMID: 30409826 DOI: 10.1042/bcj20180740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Biased ligands of G protein-coupled receptors (GPCRs) may have improved therapeutic benefits and safety profiles. However, the molecular mechanism of GPCR biased signaling remains largely unknown. Using apelin receptor (APJ) as a model, we systematically investigated the potential effects of amino acid residues around the orthosteric binding site on biased signaling. We discovered that a single residue mutation I109A (I1093.32) in the transmembrane domain 3 (TM3) located in the deep ligand-binding pocket was sufficient to convert a balanced APJ into a G protein signaling biased receptor. APJ I109A mutant receptor retained full capabilities in ligand binding and G protein activation, but was defective in GRK recruitment, β-arrestin recruitment, and downstream receptor-mediated ERK activation. Based on molecular dynamics simulations, we proposed a molecular mechanism for biased signaling of I109A mutant receptor. We postulate that due to the extra space created by I109A mutation, the phenyl group of the last residue (Phe-13) of apelin rotates down and initiates a cascade of conformational changes in TM3. Phe-13 formed a new cluster of hydrophobic interactions with the sidechains of residues in TM3, including F1103.33 and M1133.36, which stabilizes the mutant receptor in a conformation favoring biased signaling. Interruption of these stabilizing interactions by double mutation F110A/I109A or M113A/I109A largely restored the β-arrestin-mediated signaling. Taken together, we describe herein the discovery of a biased APJ mutant receptor and provide detailed molecular insights into APJ signaling selectivity, facilitating the discovery of novel therapeutics targeting APJ.
Collapse
|
39
|
Namkung Y, LeGouill C, Kumar S, Cao Y, Teixeira LB, Lukasheva V, Giubilaro J, Simões SC, Longpré JM, Devost D, Hébert TE, Piñeyro G, Leduc R, Costa-Neto CM, Bouvier M, Laporte SA. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci Signal 2018; 11:11/559/eaat1631. [PMID: 30514808 DOI: 10.1126/scisignal.aat1631] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are important therapeutic targets that exhibit functional selectivity (biased signaling), in which different ligands or receptor variants elicit distinct downstream signaling. Understanding all the signaling events and biases that contribute to both the beneficial and adverse effects of GPCR stimulation by given ligands is important for drug discovery. Here, we report the design, validation, and use of pathway-selective bioluminescence resonance energy transfer (BRET) biosensors that monitor the engagement and activation of signaling effectors downstream of G proteins, including protein kinase C (PKC), phospholipase C (PLC), p63RhoGEF, and Rho. Combined with G protein and β-arrestin BRET biosensors, our sensors enabled real-time monitoring of GPCR signaling at different levels in downstream pathways in both native and engineered cells. Profiling of the responses to 14 angiotensin II (AngII) type 1 receptor (AT1R) ligands enabled the clustering of compounds into different subfamilies of biased ligands and showed that, in addition to the previously reported functional selectivity between Gαq and β-arrestin, there are also biases among G protein subtypes. We also demonstrated that biases observed at the receptor and G protein levels propagated to downstream signaling pathways and that these biases could occur through the engagement of different G proteins to activate a common effector. We also used these tools to determine how naturally occurring AT1R variants affected signaling bias. This suite of BRET biosensors provides a useful resource for fingerprinting biased ligands and mutant receptors and for dissecting functional selectivity at various levels of GPCR signaling.
Collapse
Affiliation(s)
- Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC H4A 3J1, Canada
| | - Christian LeGouill
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sahil Kumar
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC H4A 3J1, Canada
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Larissa B Teixeira
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Viktoriya Lukasheva
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jenna Giubilaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sarah C Simões
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Jean-Michel Longpré
- Institut de Pharmacologie de Sherbrooke and Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Graciela Piñeyro
- Centre de Recherche de l'Hôpital Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Richard Leduc
- Institut de Pharmacologie de Sherbrooke and Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC H4A 3J1, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
40
|
Montgomery D, Campbell A, Sullivan HJ, Wu C. Molecular dynamics simulation of biased agonists at the dopamine D2 receptor suggests the mechanism of receptor functional selectivity. J Biomol Struct Dyn 2018; 37:3206-3225. [PMID: 30124143 DOI: 10.1080/07391102.2018.1513378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson's disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein-ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Montgomery
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Alexandra Campbell
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Holli-Joi Sullivan
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Chun Wu
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| |
Collapse
|
41
|
Choi M, Staus DP, Wingler LM, Ahn S, Pani B, Capel WD, Lefkowitz RJ. G protein-coupled receptor kinases (GRKs) orchestrate biased agonism at the β 2-adrenergic receptor. Sci Signal 2018; 11:11/544/eaar7084. [PMID: 30131371 DOI: 10.1126/scisignal.aar7084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biased agonists of G protein-coupled receptors (GPCRs), which selectively activate either G protein- or β-arrestin-mediated signaling pathways, are of major therapeutic interest because they have the potential to show improved efficacy and specificity as drugs. Efforts to understand the mechanistic basis of this phenomenon have focused on the hypothesis that G proteins and β-arrestins preferentially couple to distinct GPCR conformations. However, because GPCR kinase (GRK)-dependent receptor phosphorylation is a critical prerequisite for the recruitment of β-arrestins to most GPCRs, GRKs themselves may play an important role in establishing biased signaling. We showed that an alanine mutant of the highly conserved residue tyrosine 219 (Y219A) in transmembrane domain five of the β2-adrenergic receptor (β2AR) was incapable of β-arrestin recruitment, receptor internalization, and β-arrestin-mediated activation of extracellular signal-regulated kinase (ERK), whereas it retained the ability to signal through G protein. We found that the impaired β-arrestin recruitment in cells was due to reduced GRK-mediated phosphorylation of the β2AR Y219A C terminus, which was recapitulated in vitro with purified components. Furthermore, in vitro ligation of a synthetically phosphorylated peptide onto the C terminus of β2AR Y219A rescued both the initial recruitment of β-arrestin and its engagement with the intracellular core of the receptor. These data suggest that the Y219A mutation generates a G protein-biased state primarily by conformational selection against GRK coupling, rather than against β-arrestin. Together, these findings highlight the importance of GRKs in modulating the biased agonism of GPCRs.
Collapse
Affiliation(s)
- Minjung Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura M Wingler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - William D Capel
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
42
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
43
|
Eichel K, Jullié D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO, von Zastrow M. Catalytic activation of β-arrestin by GPCRs. Nature 2018; 557:381-386. [PMID: 29720660 PMCID: PMC6058965 DOI: 10.1038/s41586-018-0079-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
β-arrestins are critical regulator and transducer proteins for G-protein-coupled receptors (GPCRs). β-arrestin is widely believed to be activated by forming a stable and stoichiometric GPCR-β-arrestin scaffold complex, which requires and is driven by the phosphorylated tail of the GPCR. Here we demonstrate a distinct and additional mechanism of β-arrestin activation that does not require stable GPCR-β-arrestin scaffolding or the GPCR tail. Instead, it occurs through transient engagement of the GPCR core, which destabilizes a conserved inter-domain charge network in β-arrestin. This promotes capture of β-arrestin at the plasma membrane and its accumulation in clathrin-coated endocytic structures (CCSs) after dissociation from the GPCR, requiring a series of interactions with membrane phosphoinositides and CCS-lattice proteins. β-arrestin clustering in CCSs in the absence of the upstream activating GPCR is associated with a β-arrestin-dependent component of the cellular ERK (extracellular signal-regulated kinase) response. These results delineate a discrete mechanism of cellular β-arrestin function that is activated catalytically by GPCRs.
Collapse
Affiliation(s)
- Kelsie Eichel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Damien Jullié
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Benjamin Barsi-Rhyne
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Naomi R Latorraca
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ron O Dror
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
44
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
45
|
Engineered D2R Variants Reveal the Balanced and Biased Contributions of G-Protein and β-Arrestin to Dopamine-Dependent Functions. Neuropsychopharmacology 2018; 43:1164-1173. [PMID: 29068002 PMCID: PMC5854808 DOI: 10.1038/npp.2017.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
Abstract
The dopamine D2 receptor (D2R), like many G-protein-coupled receptors, signals through G-protein- and β-arrestin-dependent pathways. Preferential activation of one of these pathways is termed functional selectivity or biased signaling and is a promising therapeutic strategy. Though biased signaling through D2Rs has been demonstrated, acquiring the mechanistic details of biased D2R/G-protein and D2R/β-arrestin signaling in vivo has been challenging because of the lack of techniques that specifically target these interactions in discrete cell populations. To address this question, we employed a cell type-specific viral expression approach to restore D2R variants that preferentially engage either G-protein or β-arrestin signaling in 'indirect pathway' medium spiny neurons (iMSNs), because of their central role in dopamine circuitry. We found that the effect of haloperidol antagonism on D2R metabolic signaling events is largely mediated by acute blockade of D2R/G-protein signaling. We show that a D2R-driven behavior, nestlet shredding, is similarly driven by D2R/G-protein signaling. On the other hand, D2R-driven locomotion and rearing require coordinated D2R/G-protein and D2R/β-arrestin signaling. The acute locomotor response to amphetamine and cocaine similarly depend on both G-protein and β-arrestin D2R signaling. Surprisingly, another psychotropic drug, phencyclidine, displayed a selective D2R/β-arrestin potentiation of locomotion. These findings highlight how D2R mostly relies upon balanced G-protein and β-arrestin signaling in iMSNs. However, the response to haloperidol and phencyclidine indicates that normal D2R signaling homeostasis can be dramatically altered, indicating that targeting a specific D2R signal transduction pathway could allow for more precise modulation of dopamine circuit function.
Collapse
|
46
|
Pack TF, Orlen MI, Ray C, Peterson SM, Caron MG. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation. J Biol Chem 2018; 293:6161-6171. [PMID: 29487132 DOI: 10.1074/jbc.ra117.001300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling.
Collapse
Affiliation(s)
- Thomas F Pack
- From the Departments of Pharmacology and Cancer Biology.,Cell Biology
| | | | | | | | - Marc G Caron
- Cell Biology, .,Neurobiology, and.,Medicine, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
47
|
Solís O, Moratalla R. Dopamine receptors: homomeric and heteromeric complexes in l-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1187-1194. [DOI: 10.1007/s00702-018-1852-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
48
|
Huang B, Li Y, Cheng D, He G, Liu X, Ma L. β-Arrestin–biased β-adrenergic signaling promotes extinction learning of cocaine reward memory. Sci Signal 2018; 11:11/512/eaam5402. [PMID: 29317519 DOI: 10.1126/scisignal.aam5402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bing Huang
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Youxing Li
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Deqin Cheng
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guanhong He
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 2018; 25:4-12. [PMID: 29323277 PMCID: PMC6535338 DOI: 10.1038/s41594-017-0011-7] [Citation(s) in RCA: 574] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptors (GPCRs) relay numerous extracellular signals by triggering intracellular signaling through coupling with G proteins and arrestins. Recent breakthroughs in the structural determination of GPCRs and GPCR-transducer complexes represent important steps toward deciphering GPCR signal transduction at a molecular level. A full understanding of the molecular basis of GPCR-mediated signaling requires elucidation of the dynamics of receptors and their transducer complexes as well as their energy landscapes and conformational transition rates. Here, we summarize current insights into the structural plasticity of GPCR-G-protein and GPCR-arrestin complexes that underlies the regulation of the receptor's intracellular signaling profile.
Collapse
Affiliation(s)
- Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
50
|
Donthamsetti PC, Winter N, Schönberger M, Levitz J, Stanley C, Javitch JA, Isacoff EY, Trauner D. Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist. J Am Chem Soc 2017; 139:18522-18535. [PMID: 29166564 PMCID: PMC5942546 DOI: 10.1021/jacs.7b07659] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.
Collapse
Affiliation(s)
- Prashant C. Donthamsetti
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Nils Winter
- Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraβe 5-13, Munich 81377, Germany
| | - Matthias Schönberger
- Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraβe 5-13, Munich 81377, Germany
| | - Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cherise Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jonathan A. Javitch
- Departments of Psychiatry and Pharmacology, Columbia University, New York, New York 10027, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
- Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraβe 5-13, Munich 81377, Germany
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|