1
|
Lee J, Mohammad N, Han K, Flagg-Dowie T, Magallon M, Brantly ML, Serban KA. Alpha-defensins increase NTHi binding but not engulfment by the macrophages enhancing airway inflammation in Alpha-1 antitrypsin deficiency. Front Immunol 2025; 16:1543729. [PMID: 40013145 PMCID: PMC11861504 DOI: 10.3389/fimmu.2025.1543729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Neutrophilic inflammation and a high level of free α-defensins are main features of chronic airway inflammation in alpha-1 antitrypsin-deficient (AATD) individuals. Despite the antimicrobial activities of α-defensins by direct bacterial killing and by modulation of immune responses, AATD individuals are paradoxically burdened by recurrent exacerbation triggered by bacterial infections, frequently with nontypeable Haemophilus influenzae (NTHi). Previous studies demonstrated that high, rather than low α-defensin level could modulate the local pro-inflammatory milieu of bronchial epithelial cells and macrophages promoting chronic inflammation and lower pathogen phagocytosis. IgG-mediated phagocytosis and NTHi adherence, engulfment and phagocytosis were measured in human alveolar macrophages and monocyte-derived macrophages (MDM) isolated from patients with AATD and from healthy individuals. A high concentration of free α-defensins induced NTHi adherence to MDMs but decreased IgG-mediated phagocytosis by MDMs. The decreased phagocytosis was associated with TLR4 activation, downstream signaling via NF-κB p65 and marked increased secretion of inflammatory cytokines, CXCL8, IL-1b, and TNFα by the α-defensin-treated and NTHi-infected MDMs. Exogenous AAT treatment and TLR4 inhibitor decreased TNFα expression in α-defensin-treated cells. Dampening the downstream effects of a high concentration of α-defensins may render AAT and TLR4 inhibitors as potential therapies to decrease NTHi colonization and increase its clearance by phagocytosis in AATD individuals.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Kyudong Han
- Department of Microbiology, College of Bio-convergence, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Tammy Flagg-Dowie
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Maria Magallon
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Karina A. Serban
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
2
|
Jantaruk P, Roytrakul S, Sistayanarain A, Kunthalert D. Potential role of the antimicrobial peptide Tachyplesin III in regulating nontypeable Haemophilus influenzae-induced inflammation in airway epithelial cells. Arch Microbiol 2024; 206:471. [PMID: 39560721 DOI: 10.1007/s00203-024-04196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
The respiratory bacterium nontypeable (non-encapsulated) Haemophilus influenzae (NTHi) is a key pathogen driving exacerbations in chronic obstructive pulmonary disease (COPD), and is associated with an excessive airway inflammation. Increasing issues with tolerance and unwanted side effects of existing pharmaceuticals present an urgent need for new, effective and minimally toxic therapeutic options. This study aimed to investigate the potential role of Tachyplesin III, an antimicrobial peptide derived from the hemolysates of Southeast Asian horseshoe crabs, in regulating NTHi-induced airway inflammation. The results revealed that Tachyplesin III effectively inhibited the production of IL-1β in NTHi-stimulated human lung epithelial cells (A549), without causing cytotoxic effects. Additionally, Tachyplesin III significantly reduced TNF-α, PGE2 and NO production in NTHi-stimulated A549 cells. Moreover, this peptide inhibited the nuclear translocation of the NF-κB p65 subunit in NTHi-stimulated lung epithelial cells. It also reduced transcriptional activation of NF-κB target genes, as shown by lower mRNA levels of IL-1β, TNF-α, COX-2 and iNOS, which correlated with corresponding decreases in their protein expression. Tachyplesin III peptide also inhibited pro-IL-1β and NLRP3 protein expression and prevented NTHi-induced caspase-1 cleavage and IL-1β maturation. Together, our findings demonstrate that Tachyplesin III effectively reduced NTHi-mediated inflammation via the NF-κB/NLRP3 inflammasome signaling pathway, highlighting its important anti-inflammatory activity. Complementing these findings, in silico analysis revealed key pharmacokinetic and toxicological attributes, establishing a foundational understanding of Tachyplesin III as a promising therapeutic agent for managing NTHi-associated inflammation.
Collapse
Affiliation(s)
- Pornpimon Jantaruk
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Anchalee Sistayanarain
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
3
|
Patra S, Kaur R. Aspartyl proteases target host actin nucleator complex protein to limit epithelial innate immunity. EMBO Rep 2024; 25:4846-4875. [PMID: 39349750 PMCID: PMC11549443 DOI: 10.1038/s44319-024-00270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 11/10/2024] Open
Abstract
Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing. CgYapsin-dependent Arpc1B degradation requires Arginine-142 in Arpc1B, and leads to reduced Arpc1B-p38 MAPK interaction and downregulated p38 signalling. Consistently, Arpc1B or p38 deletion promotes survival of the Cg aspartyl protease-deficient mutant in ECs. Importantly, kidneys of the protease-deficient mutant-infected mice display elevated immune cell infiltration and cytokine secretion, implicating CgYapsins in immune response suppression in vivo. Besides delineating Cg-EC interplay, our results uncover a novel target, Arpc1B, that pathogens attack to constrain the host signalling networks, and link Arpc1B mechanistically with p38 activation.
Collapse
Affiliation(s)
- Sandip Patra
- Laboratory of Fungal Pathogenesis, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad-121001, Haryana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, Telangana, India.
| |
Collapse
|
4
|
Kuo CL, Lin YC, Lo YK, Lu YZ, Babuharisankar AP, Lien HW, Chou HY, Lee AYL. The mitochondrial stress signaling tunes immunity from a view of systemic tumor microenvironment and ecosystem. iScience 2024; 27:110710. [PMID: 39262792 PMCID: PMC11388186 DOI: 10.1016/j.isci.2024.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Mitochondria play important roles in cell fate, calcium signaling, mitophagy, and the signaling through reactive oxygen species (ROS). Recently, mitochondria are considered as a signaling organelle in the cell and communicate with other organelles to constitute the mitochondrial information processing system (MIPS) that transduce input-to-output biological information. The success in immunotherapy, a concept of systemic therapy, has been proved to be dependent on paracrine interactions within the tumor microenvironment (TME) and distant organs including microbiota and immune components. We will adopt a broader view from the concept of TME to tumor micro- and macroenvironment (TM 2 E) or tumor-organ ecosystem (TOE). In this review, we will discuss the role of mitochondrial signaling by mitochondrial ROS, calcium flux, metabolites, mtDNA, vesicle transportation, and mitochondria-derived peptide in the TME and TOE, in particular immune regulation and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Zhi Lu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Department of Life Sciences, College of Health Sciences & Technology, National Central University, Zhongli, Taoyuan 32001, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Ying C, Li Y, Wu S, Gao L, Zhu Y, Qian Y, Wen X, Li H, Huang C, Hu B, Song Y, Zhou X. MKK3 K329 Mutation Attenuates Diabetes-Associated Cognitive Dysfunction by Blocking the MKK3-RAGE Interaction and Inhibiting Neuroinflammation. Aging Dis 2024; 16:AD.2024.0222. [PMID: 38421831 PMCID: PMC11745445 DOI: 10.14336/ad.2024.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
The receptor for advanced glycation end products (RAGE) contributes to diabetes-associated cognitive dysfunction (DACD) through the interaction of its C-terminal AAs 2-5 with mitogen-activated protein kinase kinase 3 (MKK3). However, the associated MKK3 binding site is unknown. Here, db/db mice were used as a model for type 2 diabetes. GST pull-down assays and AutoDock Vina simulations were conducted to identify the key RAGE binding site in MKK3. This binding site was mutated to investigate its effects on DACD and to elucidate the underlying mechanisms. The interaction of MKK3 and RAGE, the levels of inflammatory factors, and the activation of microglia and astrocytes were tested. Synaptic morphology and plasticity in hippocampal neurons were assessed via electrophysiological recordings and Golgi staining. Behavioral tests were used to assess cognitive function. In this study, MKK3 bound directly to RAGE via its lysine 329 (K329), leading to the activation of the nuclear factor-κB (NF-κB) signaling pathway, which in turn triggered neuroinflammation and synaptic dysfunction, and ultimately contributed to DACD. MKK3 mutation at K329 reversed synaptic dysfunction and cognitive deficits by downregulating the NF-κB signaling pathway and inhibiting neuroinflammation. These results confirm that neuroinflammation and synaptic dysfunction in the hippocampus rely on the direct binding of MKK3 and RAGE. We conclude that MKK3 K329 binding to C-terminal RAGE (ct-RAGE) is a key mechanism by which neuroinflammation and synaptic dysfunction are induced in the hippocampus. This study presents a novel mechanism for DACD and proposes a novel therapeutic avenue for neuroprotection in DACD.
Collapse
Affiliation(s)
- Changjiang Ying
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Yan Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Shidi Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Lin Gao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Yandong Zhu
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Ye Qian
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xiangru Wen
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hui Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Chengyu Huang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Bin Hu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| | - Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Jantaruk P, Roytrakul S, Sistayanarain A, Kunthalert D. The pomegranate-derived peptide Pug-4 alleviates nontypeable Haemophilus influenzae-induced inflammation by suppressing NF-kB signaling and NLRP3 inflammasome activation. PeerJ 2024; 12:e16938. [PMID: 38406294 PMCID: PMC10885808 DOI: 10.7717/peerj.16938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is the most common cause of exacerbation of chronic obstructive pulmonary disease (COPD), of which an excessive inflammatory response is a hallmark. With the limited success of current medicines there is an urgent need for the development of novel therapeutics that are both safe and effective. In this study, we explored the regulatory potential of pomegranate-derived peptides Pug-1, Pug-2, Pug-3, and Pug-4 on NTHi-induced inflammation. Our results clearly showed that to varying degrees the Pug peptides inhibited NTHi-induced production of IL-1β, a pivotal cytokine in COPD, and showed that these effects were not related to cytotoxicity. Pug-4 peptide exhibited the most potent inhibitory activity. This was demonstrated in all studied cell types including murine (RAW264.7) and human (differentiated THP-1) macrophages as well as human lung epithelial cells (A549). Substantial reduction by Pug-4 of TNF-α, NO and PGE2 in NTHi-infected A549 cells was also observed. In addition, Pug-4 strongly inhibited the expression of nuclear-NF-κB p65 protein and the NF-κB target genes (determined by IL-1β, TNF-α, iNOS and COX-2 mRNA expression) in NTHi-infected A549 cells. Pug-4 suppressed the expression of NLRP3 and pro-IL-1β proteins and inhibited NTHi-mediated cleavage of caspase-1 and mature IL-1β. These results demonstrated that Pug-4 inhibited NTHi-induced inflammation through the NF-κB signaling and NLRP3 inflammasome activation. Our findings herein highlight the significant anti-inflammatory activity of Pug-4, a newly identified peptide from pomegranate, against NTHi-induced inflammation. We therefore strongly suggest the potential of the Pug-4 peptide as an anti-inflammatory medicine candidate for treatment of NTHi-mediated inflammation.
Collapse
Affiliation(s)
- Pornpimon Jantaruk
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sittiruk Roytrakul
- National Science and Technology Development Agency, Thailand Science Park, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Anchalee Sistayanarain
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Li J, Xu P, Chen S. Research progress on mitochondria regulating tumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:1-14. [PMID: 38229501 PMCID: PMC10945498 DOI: 10.3724/zdxbyxb-2023-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Tumor cells adapt their metabolism to meet the demands for energy and biosynthesis. Mitochondria, pivotal organelles in the metabolic reprogramming of tumor cells, contribute to tumorigenesis and cancer progression significantly through various dysfunctions in both tumor and immune cells. Alterations in mitochondrial dynamics and metabolic signaling pathways exert crucial regulatory influence on the activation, proliferation, and differentiation of immune cells. The tumor microenvironment orchestrates the activation and functionality of tumor-infiltrating immune cells by reprogramming mitochondrial metabolism and inducing shifts in mitochondrial dynamics, thereby facilitating the establishment of a tumor immunosuppressive microenvironment. Stress-induced leakage of mitochondrial DNA contributes multifaceted regulatory effects on anti-tumor immune responses and the immunosuppressive microenvironment by activating multiple natural immune signals, including cGAS-STING, TLR9, and NLRP3. Moreover, mitochondrial DNA-mediated immunogenic cell death emerges as a promising avenue for anti-tumor immunotherapy. Additionally, mitochondrial reactive oxygen species, a crucial factor in tumorigenesis, drives the formation of tumor immunosuppressive microenvironment by changing the composition of immune cells within the tumor microenvironment. This review focuses on the intrinsic relationship between mitochondrial biology and anti-tumor immune responses from multiple angles. We explore the core role of mitochondria in the dynamic interplay between the tumor and the host to facilitate the development of targeted mitochondrial strategies for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- College of Life and Environmental Science, Wenzhou University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou 325035, Zhejiang Province, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystem Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
8
|
Sunde RB, Thorsen J, Kim M, Schoos AMM, Stokholm J, Bønnelykke K, Bisgaard H, Chawes B. Bacterial colonisation of the airway in neonates and risk of asthma and allergy until age 18 years. Eur Respir J 2024; 63:2300471. [PMID: 38097209 DOI: 10.1183/13993003.00471-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND We previously showed an association between neonatal bacterial airway colonisation and increased risk of persistent wheeze/asthma until age 5 years. Here, we study the association with persistent wheeze/asthma and allergy-related traits until age 18 years. METHODS We investigated the association between airway colonisation with Streptococcus pneumoniae, Moraxella catarrhalis and/or Haemophilus influenzae in 1-month-old neonates from the COPSAC2000 mother-child cohort and the development of persistent wheeze/asthma and allergy-related traits longitudinally until age 18 years using generalised estimating equations. Replication was sought in the similarly designed COPSAC2010 cohort of 700 children. RESULTS Neonatal airway colonisation was present in 66 (21%) out of 319 children and was associated with a 4-fold increased risk of persistent wheeze/asthma (adjusted OR 4.01 (95% CI 1.76-9.12); p<0.001) until age 7 years, but not from age 7 to 18 years. Replication in the COPSAC2010 cohort showed similar results using 16S data. Colonisation was associated with an increased number of exacerbations (adjusted incidence rate ratio 3.20 (95% CI 1.38-7.44); p<0.01) until age 7 years, but not from age 7 to 18 years. Colonisation was associated with increased levels of blood eosinophils (adjusted geometric mean ratio 1.24 (95% CI 1.06-1.44); p<0.01) and tumour necrosis factor (TNF)-α (adjusted geometric mean ratio 1.09 (95% CI 1.02-1.16); p=0.01) until age 12 years. There were no associations with lung function, bronchial reactivity, fractional exhaled nitric oxide, allergic sensitisation, total IgE or atopic dermatitis up to age 18 years. CONCLUSIONS Neonatal airway colonisation was associated with early-onset persistent wheeze/asthma, exacerbations, elevated blood eosinophils and elevated TNF-α in blood, most prominent in early childhood, thereafter diminishing and no longer evident by age 18 years.
Collapse
Affiliation(s)
- Rikke Bjersand Sunde
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Jonathan Thorsen
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Min Kim
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Jakob Stokholm
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Klaus Bønnelykke
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Passed away 8 September 2022
| | - Bo Chawes
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Liao CH, Lai TY, Lin YY, Liao YC, Lai GM, Chu TH, Wu SY, Tsai WL, Whang-Peng J, Liu F, Chiou TJ, Yao CJ. Inhibition of Polyinosinic-Polycytidylic Acid-Induced Acute Pulmonary Inflammation and NF-κB Activation in Mice by a Banana Plant Extract. Int J Med Sci 2024; 21:107-122. [PMID: 38164360 PMCID: PMC10750330 DOI: 10.7150/ijms.88748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
NF-κB activation is pivotal for the excess inflammation causing the critical condition and mortality of respiratory viral infection patients. This study was aimed to evaluate the effect of a banana plant extract (BPE) on suppressing NF-κB activity and acute lung inflammatory responses in mice induced by a synthetic double-stranded RNA viral mimetic, polyinosinic-polycytidylic acid (poly (I:C)). The inflammatory responses were analyzed by immunohistochemistry and HE stains and ELISA. The NF-κB activities were detected by immunohistochemistry in vivo and immunofluorescence and Western blot in vitro. Results showed that BPE significantly decreased influx of immune cells (neutrophils, lymphocytes, and total WBC), markedly suppressed the elevation of pro-inflammatory cytokines and chemokines (IL-6, RANTES, IFN-γ, MCP-1, keratinocyte-derived chemokine, and IL-17), and restored the diminished anti-inflammatory IL-10 in the bronchoalveolar lavage fluid (BALF) of poly (I:C)-stimulated mice. Accordingly, HE staining revealed that BPE treatment alleviated poly (I:C)-induced inflammatory cell infiltration and histopathologic changes in mice lungs. Moreover, immunohistochemical analysis showed that BPE reduced the pulmonary IL-6, CD11b (macrophage marker), and nuclear NF-κB p65 staining intensities, whilst restored that of IL-10 in poly (I:C)-stimulated mice. In vitro, BPE antagonized poly(I:C)-induced elevation of IL-6, nitric oxide, reactive oxygen species, NF-κB p65 signaling, and transient activation of p38 MAPK in human lung epithelial-like A549 cells. Taken together, BPE ameliorated viral mimic poly(I:C)-induced acute pulmonary inflammation in mice, evidenced by reduced inflammatory cell infiltration and regulation of both pro- and anti-inflammatory cytokines. The mechanism of action might closely associate with NF-κB signaling inhibition.
Collapse
Affiliation(s)
- Chien-Huang Liao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tung-Yuan Lai
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Traditional Chinese Medicine Cancer Center, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Yu-Ying Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yi-Chun Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tien-Hua Chu
- Chimera Bioscience Inc., No. 18 Siyuan St., Zhongzheng Dist., Taipei 10087, Taiwan
| | - Szu-Yao Wu
- Chimera Bioscience Inc., No. 18 Siyuan St., Zhongzheng Dist., Taipei 10087, Taiwan
| | - Wei-Lun Tsai
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Frank Liu
- Department of Research and Development, Natural Well Technical Company, Guishan, Taoyuan 33377, Taiwan
| | - Tzeon-Jye Chiou
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chih-Jung Yao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Blaine‐Sauer S, Samuels TL, Khampang P, Yan K, McCormick ME, Chun RH, Harvey SA, Friedland DR, Johnston N, Kerschner JE. Establishment of novel immortalized middle ear cell lines as models for otitis media. Laryngoscope Investig Otolaryngol 2023; 8:1428-1435. [PMID: 37899851 PMCID: PMC10601576 DOI: 10.1002/lio2.1141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Otitis media (OM) is among the most frequently diagnosed pediatric diseases in the US. Despite the significant public health burden of OM and the contribution research in culture models has made to understanding its pathobiology, a singular immortalized human middle ear epithelial (MEE) cell line exists (HMEEC-1, adult-derived). We previously developed MEE cultures from pediatric patients with non-inflamed MEE (PCI), recurrent OM (ROM), or OM with effusion (OME) and demonstrated differences in their baseline inflammatory cytokine expression and response to stimulation with an OM-relevant pathogen lysate and cytokines. Herein, we sought to immortalize these cultures and assess retention of their phenotypes. Methods MEE cultures were immortalized via lentivirus encoding temperature-sensitive SV40 T antigen. Immortalized MEE lines and HMEEC-1 grown in monolayer were stimulated with non-typeable Haemophilus influenzae (NTHi) lysate. Gene expression (TNFA, IL1B, IL6, IL8, MUC5AC, and MUC5B) was assessed by qPCR. Results Similar to parental cultures, baseline cytokine expressions were higher in pediatric OM lines than in HMEEC-1 and PCI, and HMEEC-1 cells were less responsive to stimulation than pediatric lines. Conclusion Immortalized MEE lines retained the inflammatory expression and responsiveness of their tissues of origin and differences between non-OM versus OM and pediatric versus adult cultures, supporting their value as novel in vitro culture models for OM.
Collapse
Affiliation(s)
- Simon Blaine‐Sauer
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Tina L. Samuels
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Pawjai Khampang
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Ke Yan
- Department of Pediatrics Quantitative Health SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Michael E. McCormick
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
| | - Robert H. Chun
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
| | - Steven A. Harvey
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
- Froedtert HospitalMilwaukeeWisconsinUSA
| | - David R. Friedland
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
- Froedtert HospitalMilwaukeeWisconsinUSA
| | - Nikki Johnston
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Joseph E. Kerschner
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWisconsinUSA
- Children's WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
11
|
Arezina R, Chen T, Wang D. Conventional, Complementary and Alternative Medicines: Mechanistic Insights into Therapeutic Landscape of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:447-457. [PMID: 37038544 PMCID: PMC10082417 DOI: 10.2147/copd.s393540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
COPD (chronic obstructive pulmonary disease) is a major public health concern associated with significant morbidity and mortality worldwide. Current therapeutic guidelines for this disease recommend starting with an inhaled bronchodilator, stepping up to combination therapy as necessary, and/or adding inhaled corticosteroids as symptoms and airflow obstruction progress. However, no drug therapy exists to stop disease progression. The mechanistic definition underlying COPD pathogenesis remains poorly understood, it is generally accepted that oxidative stress and the altered immune response of low-grade airway inflammation are major factors contributing to COPD development. There are several potential therapeutic targets that are currently under investigation, including immune regulatory pathways in inflammation and lung-associated steroid resistance induced by oxidative stress signaling cascades. Patients with COPD have increased levels of inflammatory mediators, including lipid and peptide mediators, as well as a network of cytokines and chemokines that maintain inflammatory immune response and recruit circulating cells into the lungs. Many of these pro-inflammatory mediators are regulated by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs), such as p38 MAPK. Increased oxidative stress is a key driving mechanism in perpetuating inflammation and lung injury. Furthermore, many proteases that degrade elastin fibres are secreted by airway resident infiltrating immune cells in COPD patients. In this perspective, we discuss novel aspects of signaling pathway activation in the context of inflammation and oxidative stress, and the broad view of potential effective pharmacotherapies that target the underlying mechanistic disease process in COPD.
Collapse
Affiliation(s)
- Radivoj Arezina
- Department of Medical, Stridon Clinical Research, Richmond Upon Thames, London, UK
| | - Tao Chen
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Duolao Wang
- Affiliated Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
- Correspondence: Duolao Wang, Email
| |
Collapse
|
12
|
Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN, Lee AYL. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J Biomed Sci 2022; 29:74. [PMID: 36154922 PMCID: PMC9511749 DOI: 10.1186/s12929-022-00859-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022] Open
Abstract
The major concept of "oxidative stress" is an excess elevated level of reactive oxygen species (ROS) which are generated from vigorous metabolism and consumption of oxygen. The precise harmonization of oxidative stresses between mitochondria and other organelles in the cell is absolutely vital to cell survival. Under oxidative stress, ROS produced from mitochondria and are the major mediator for tumorigenesis in different aspects, such as proliferation, migration/invasion, angiogenesis, inflammation, and immunoescape to allow cancer cells to adapt to the rigorous environment. Accordingly, the dynamic balance of oxidative stresses not only orchestrate complex cell signaling events in cancer cells but also affect other components in the tumor microenvironment (TME). Immune cells, such as M2 macrophages, dendritic cells, and T cells are the major components of the immunosuppressive TME from the ROS-induced inflammation. Based on this notion, numerous strategies to mitigate oxidative stresses in tumors have been tested for cancer prevention or therapies; however, these manipulations are devised from different sources and mechanisms without established effectiveness. Herein, we integrate current progress regarding the impact of mitochondrial ROS in the TME, not only in cancer cells but also in immune cells, and discuss the combination of emerging ROS-modulating strategies with immunotherapies to achieve antitumor effects.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Ananth Ponneri Babuharisankar
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Vidhya Tangeda
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - An Ning Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan. .,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan. .,Department of Life Sciences, College of Health Sciences and Technology, National Central University, Zhongli, Taoyuan, 32001, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
Yang Y, Huang Y, Zeng Z. Advances in cGAS-STING Signaling Pathway and Diseases. Front Cell Dev Biol 2022; 10:800393. [PMID: 35186921 PMCID: PMC8851069 DOI: 10.3389/fcell.2022.800393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogens can produce conserved pathogen-associated molecular patterns (PAMPs) after invading the body, which can be specifically recognized by host pattern recognition receptors (PRRs). In recent years, it has been found that cytoplasmic DNA receptors recognize exogenous DNA inducing activation of interferon 1 (IFN1), which is a rapid advance in various research areas. The cyclic GMP–AMP synthase (cGAS) stimulator of interferon gene (STING) signaling pathway is a critical natural immune pathway in cells. Early studies revealed that it plays a crucial regulatory role in pathogen infection and tumor, and it is associated with various human autoimmune diseases. Recently studies have found that activation of cGAS-STING signaling pathway is related to different organ injuries. The present review elaborates on the regulation of the cGAS-STING signaling pathway and its role in various diseases, aiming to provide a theoretical basis for immunotherapy targeting this pathway.
Collapse
|
14
|
Fu J, Zhang Q, Wu Z, Hong C, Zhu C. Transcriptomic Analysis Reveals a Sex-Dimorphic Influence of GAT-2 on Murine Liver Function. Front Nutr 2021; 8:751388. [PMID: 34604287 PMCID: PMC8481587 DOI: 10.3389/fnut.2021.751388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022] Open
Abstract
Accumulating evidence shows that the γ-amino butyric acid (GABA)ergic system affects the functions of different organs, and liver is one of the most sex-dimorphic organs in animals. However, whether and how the GABAergic system influences liver function in a sex-specific manner at the intrinsic molecular level remains elusive. In this study, firstly, we find that the levels of GABA are significantly increased in the livers of female mice with GABA transporter (GAT)-2 deficiency (KO) whereas it only slightly increased in male GAT-2 KO mice. Apart from the amino acid profiles, the expressions of toll-like receptors (TLRs) also differ in the livers of female and male KO mice. Moreover, RNA-seq results show 2,227 differentially expressed genes (DEGs) in which 1,030 are upregulated whereas 1,197 that are downregulated in the livers of female KO mice. Notably, oxidative phosphorylation, non-alcoholic fatty liver disease, Huntington's disease, and peroxisome proliferator-activated receptor (PPAR) signaling pathways are highly enriched by GAT-2 deficiency, indicating that these pathways probably meditate the effects of GAT-2 on female liver functions, on the other hand, only 1,233 DEGs, including 474 are upregulated and 759 are downregulated in the livers of male KO mice. Interestingly, retinol metabolism, PPAR signaling pathway, and tuberculosis pathways are substantially enriched by GAT-2 deficiency, suggesting that these pathways may be responsible for the effects of GAT-2 on male liver functions. Collectively, our results reveal the sex-dimorphic effects of GAT-2 in guiding liver functions, and we propose that targeting the GABAergic system (e.g., GATs) in a sex-specific manner could provide previously unidentified therapeutic opportunities for liver diseases.
Collapse
Affiliation(s)
- Jian Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zebiao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Changming Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Congrui Zhu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
15
|
Role of pirfenidone in TGF-β pathways and other inflammatory pathways in acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection: a theoretical perspective. Pharmacol Rep 2021; 73:712-727. [PMID: 33880743 PMCID: PMC8057922 DOI: 10.1007/s43440-021-00255-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pulmonary injury or multiple-organ injury by various pathological pathways. Transforming growth factor-beta (TGF-β) is a key factor that is released during SARS-CoV-2 infection. TGF-β, by internalization of the epithelial sodium channel (ENaC), suppresses the anti-oxidant system, downregulates the cystic fibrosis transmembrane conductance regulator (CFTR), and activates the plasminogen activator inhibitor 1 (PAI-1) and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kB). These changes cause inflammation and lung injury along with coagulopathy. Moreover, reactive oxygen species play a significant role in lung injury, which levels up during SARS-CoV-2 infection. Drug Suggestion Pirfenidone is an anti-fibrotic drug with an anti-oxidant activity that can prevent lung injury during SARS-CoV-2 infection by blocking the maturation process of transforming growth factor-beta (TGF-β) and enhancing the protective role of peroxisome proliferator-activated receptors (PPARs). Pirfenidone is a safe drug for patients with hypertension or diabetes and its side effect tolerated well. Conclusion The drug as a theoretical perspective may be an effective and safe choice for suppressing the inflammatory response during COVID-19. The recommendation would be a combination of pirfenidone and N-acetylcysteine to achieve maximum benefit during SARS-CoV-2 treatment.
Collapse
|
16
|
Abdel-Razek O, Liu T, Chen X, Wang Q, Vanga G, Wang G. Role of Surfactant Protein D in Experimental Otitis Media. J Innate Immun 2021; 13:197-210. [PMID: 33556949 DOI: 10.1159/000513605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice.
Collapse
Affiliation(s)
- Osama Abdel-Razek
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Tianyi Liu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Xinghua Chen
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Qiushi Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Gautam Vanga
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, USA, .,Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA,
| |
Collapse
|
17
|
Birru RL, Bein K, Wells H, Bondarchuk N, Barchowsky A, Di YP, Leikauf GD. Phloretin, an Apple Polyphenol, Inhibits Pathogen-Induced Mucin Overproduction. Mol Nutr Food Res 2021; 65:e2000658. [PMID: 33216464 PMCID: PMC8163070 DOI: 10.1002/mnfr.202000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/03/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Bacterial infection induces mucus overproduction, contributing to acute exacerbations and lung function decline in chronic respiratory diseases. A diet enriched in apples may provide protection from pulmonary disease development and progression. This study examined whether phloretin, an apple polyphenol, inhibits mucus synthesis and secretion induced by the predominant bacteria associated with chronic respiratory diseases. METHODS AND RESULTS The expression of mucus constituent mucin 5AC (MUC5AC) in FVB/NJ mice and NCI-H292 epithelial cells is analyzed. Nontypeable Haemophilus influenzae (NTHi)-infected mice developed increased MUC5AC mRNA, which a diet containing phloretin inhibited. In NCI-H292 cells, NTHi, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa increased MUC5AC mRNA, which phloretin inhibited. Phloretin also diminished NTHi-induced MUC5AC protein secretion. NTHi-induced increased MUC5AC required toll-like receptor 4 (TLR4) and NADH oxidase 4 (NOX4) signaling and subsequent activation of the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) pathway. Phloretin inhibited NTHi-induced TLR4/NOX4 and EGFR/MAPK signaling, thereby preventing increased MUC5AC mRNA. EGFR activation can also result from increased EGFR ligand synthesis and subsequent ligand activation by matrix metalloproteinases (MMPs). In NCI-H292 cells, NTHi increased EGFR ligand and MMP1 and MMP13 mRNA, which phloretin inhibited. CONCLUSIONS In summary, phloretin is a promising therapeutic candidate for preventing bacterial-induced mucus overproduction.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Natalya Bondarchuk
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
18
|
Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020; 17:192. [PMID: 33298111 PMCID: PMC7726878 DOI: 10.1186/s12985-020-01463-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Wenjin Zheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Qing Xu
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Yiyuan Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Mogen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Weijie Zhai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | | | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
19
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
20
|
Paudel KR, Dharwal V, Patel VK, Galvao I, Wadhwa R, Malyla V, Shen SS, Budden KF, Hansbro NG, Vaughan A, Yang IA, Kohonen-Corish MRJ, Bebawy M, Dua K, Hansbro PM. Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Front Med (Lausanne) 2020; 7:554. [PMID: 33043031 PMCID: PMC7530186 DOI: 10.3389/fmed.2020.00554] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung fibrosis, and lung cancer, pose a huge socio-economic burden on society and are one of the leading causes of death worldwide. In the past, culture-dependent techniques could not detect bacteria in the lungs, therefore the lungs were considered a sterile environment. However, the development of culture-independent techniques, particularly 16S rRNA sequencing, allowed for the detection of commensal microbes in the lung and with further investigation, their roles in disease have since emerged. In healthy individuals, the predominant commensal microbes are of phylum Firmicutes and Bacteroidetes, including those of the genera Veillonella and Prevotella. In contrast, pathogenic microbes (Haemophilus, Streptococcus, Klebsiella, Pseudomonas) are often associated with lung diseases. There is growing evidence that microbial metabolites, structural components, and toxins from pathogenic and opportunistic bacteria have the capacity to stimulate both innate and adaptive immune responses, and therefore can contribute to the pathogenesis of lung diseases. Here we review the multiple mechanisms that are altered by pathogenic microbiomes in asthma, COPD, lung cancer, and lung fibrosis. Furthermore, we focus on the recent exciting advancements in therapies that can be used to restore altered microbiomes in the lungs.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vyoma K Patel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Sj Sijie Shen
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Annalicia Vaughan
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Ian A Yang
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Maija R J Kohonen-Corish
- Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
21
|
Ren D, Quan N, Fedorova J, Zhang J, He Z, Li J. Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion. Redox Biol 2020; 34:101556. [PMID: 32447260 PMCID: PMC7248240 DOI: 10.1016/j.redox.2020.101556] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Ischemia heart disease is the leading cause of death world-widely and has increased prevalence and exacerbated myocardial infarction with aging. Sestrin2, a stress-inducible protein, declines with aging in the heart and the rescue of Sestrin2 in the aged mouse heart improves the resistance to ischemic insults caused by ischemia and reperfusion. Here, through a combination of transcriptomic, physiological, histological, and biochemical strategies, we found that Sestrin2 deficiency shows an aged-like phenotype in the heart with excessive oxidative stress, provoked immune response, and defected myocardium structure under physiological condition. While challenged with ischemia and reperfusion stress, the transcriptomic alterations in Sestrin2 knockout mouse heart resembled aged wild type mouse heart. It suggests that Sestrin2 is an age-related gene in the heart against ischemia reperfusion stress. Sestrin2 plays a crucial role in modulating inflammatory response through maintaining the intracellular redox homeostasis in the heart under ischemia reperfusion stress condition. Together, the results indicate that Sestrin2 is a potential target for treatment of age-related ischemic heart disease. Sestrin2 regulates cardiac redox homeostasis under ischemic stress. Alterations in substrate metabolism with aging cause impaired inflammatory response. Sestrin2 is a potential target for treatment of ischemic heart disease. Sestrin2 modulates cardiac inflammatory response during ischemia and reperfusion.
Collapse
Affiliation(s)
- Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Nanhu Quan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jingwen Zhang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Zhibin He
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
22
|
Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol 2020; 13:413-422. [PMID: 32112046 PMCID: PMC8323778 DOI: 10.1038/s41385-020-0270-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 02/04/2023]
Abstract
The impact of the human microbiome on health and disease is of utmost importance and has been studied intensively in recent years. Microbes promote immune system development and are essential to the production and absorption of nutrients for the host but are also implicated in disease pathogenesis. Particularly, bacterial biofilms have long been recognized as contributors to chronic infections and diseases in humans. However, our understanding of how the host responds to the presence of biofilms, specifically the immune response to biofilms, and how this contributes to disease pathogenesis is limited. This review aims to highlight what is known about biofilm formation and in vivo models available for the biofilm study. We critique the contribution of biofilms to human diseases, focusing on the lung diseases, cystic fibrosis and chronic obstructive pulmonary disease, and the gut diseases, inflammatory bowel disease and colorectal cancer.
Collapse
|
23
|
Kuo CL, Chou HY, Chiu YC, Cheng AN, Fan CC, Chang YN, Chen CH, Jiang SS, Chen NJ, Lee AYL. Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett 2020; 474:138-150. [PMID: 31987921 DOI: 10.1016/j.canlet.2020.01.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial Lon is a chaperone protein whose upregulation increases the production of mitochondrial reactive oxygen species (ROS). However, there is a lack of information in detail on how mitochondrial Lon regulates cancer metastasis through ROS production in the tumor microenvironment (TME). Our results show that elevated Lon promotes epithelial-mesenchymal transition (EMT) via ROS-dependent p38 and NF-κB-signaling. We further identified pyrroline-5-carboxylate reductase 1 (PYCR1) as a client of chaperone Lon, which induces mitochondrial ROS and EMT by Lon. Mitochondrial Lon induces ROS-dependent production of inflammatory cytokines, such as TGF-β, IL-6, IL-13, and VEGF-A, which consequently activates EMT, angiogenesis, and M2 macrophage polarization. In addition, Lon expression is induced upon the activation and M2 polarization of macrophages, which further promotes M2 macrophages to enhance the immunosuppressive microenvironment and metastatic behaviors in the TME. This raises the possibility that manipulation of the mitochondrial redox balance in the TME may serve as a therapeutic strategy to improve T cell function in cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Chieh Chiu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - An Ning Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Chen Fan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan; Superintendent Office, Mackay Memorial Hospital, Taipei, 10449, Taiwan
| | - Yu-Ning Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chung-Hsing Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Taiwan Bioinformatics Core, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Nien-Jung Chen
- The Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
24
|
Bose M, Mukherjee P. Microbe-MUC1 Crosstalk in Cancer-Associated Infections. Trends Mol Med 2020; 26:324-336. [PMID: 31753595 DOI: 10.1016/j.molmed.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Infection-associated cancers account for ∼20% of all malignancies. Understanding the molecular mechanisms underlying infection-associated malignancies may help in developing diagnostic biomarkers and preventative vaccines against malignancy. During infection, invading microbes interact with host mucins lining the glandular epithelial cells and trigger inflammation. MUC1 is a transmembrane mucin glycoprotein that is present on the surface of almost all epithelial cells, and is known to interact with invading microbes. This interaction can trigger pro- or anti-inflammatory responses depending on the microbe and the cell type. In this review we summarize the mechanisms of microbe and MUC1 interactions, and highlight how MUC1 plays contrasting roles in different cells. We also share perspectives on future research that may support clinical advances in infection-associated cancers.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
25
|
He J, Huang Z, He M, Liao J, Zhang Q, Wang S, Xie L, Ouyang L, Koeffler HP, Yin D, Liu A. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer 2020; 19:17. [PMID: 31992303 PMCID: PMC6986105 DOI: 10.1186/s12943-019-1120-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background Recent evidences have shown that circular RNAs (circRNAs) are frequently dysregulated and play paramount roles in various cancers. circRNAs are abundant in central nervous system (CNS); however, few studies describe the clinical significance and role of circRNAs in gliomas, which is the most common and aggressive primary malignant tumor in the CNS. Methods A bioinformatics analysis was performed to profile and screen the dyregulated circRNAs during early neural development. Quantitative real-time PCR was used to detect the expression of circ-MAPK4 and target miRNAs. Glioma cells were transfected with circ-MAPK4 siRNAs, then cell proliferation, apoptosis, transwell assays, as well as tumorigenesis and TUNEL assays, were performed to examine effect of circ-MAPK4 in vitro and vivo. Biotinylated-circ-MAPK4 probe based pull-down assay was conducted to confirm the relationship between circ-MAPK4 and miR-125-3p. Results In this study, we identified a circRNA, circ-MAPK4 (has_circ_0047688), which was downregulated during early neural differentiation. In gliomas, circ-MAPK4 acted as an oncogene, was inversely upregulated and linked to clinical pathological stage of gliomas (P < 0.05). Next, we verified that circ-MAPK4 promoted the survival and inhibited the apoptosis of glioma cells in vitro and in vivo. Furthermore, we proved that circ-MAPK4 was involved in regulating p38/MAPK pathway, which affected glioma proliferation and apoptosis. Finally, miR-125a-3p, a miRNA exhibited tumor-suppressive function through impairing p38/MAPK pathway, which was increased by inhibiting circ-MAPK4 and could be pulled down by circ-MAPK4. Inhibition of miR-125a-3p could partly rescue the increased phosphorylation levels of p38/MAPK and the elevated amount of apoptosis inducing by knockdown of circ-MAPK4. Conclusions Our findings suggest that circ-MAPK4 is a critical player in glioma cell survival and apoptosis via p38/MAPK signaling pathway through modulation of miR-125a-3p, which can serve as a new therapeutic target for treatment of gliomas.
Collapse
Affiliation(s)
- Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Zuoyu Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Mingliang He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengwen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Lin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Leping Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| | - Anmin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| |
Collapse
|
26
|
Hübner K, Karwelat D, Pietsch E, Beinborn I, Winterberg S, Bedenbender K, Benedikter BJ, Schmeck B, Vollmeister E. NF-κB-mediated inhibition of microRNA-149-5p regulates Chitinase-3-like 1 expression in human airway epithelial cells. Cell Signal 2019; 67:109498. [PMID: 31837465 DOI: 10.1016/j.cellsig.2019.109498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Lower respiratory tract infections are among the most common causes of death worldwide. Main pathogens leading to these severe infections are viruses and gram-positive bacteria that activate toll-like receptor (TLR)-mediated immune responses via pathogen-associated molecular patterns. One protective factor induced during infection is Chitinase-3-like 1 (CHI3L1), which exerts various functions, e.g. in host cell proliferation and bacterial counteraction, and has been proposed as a biomarker in several acute and chronic inflammatory conditions. MicroRNAs (miR) have become important regulators of inflammation and infection and are considered therapeutic targets in recent years. However, it is not known whether microRNAs play a role in the regulation of CHI3L1 expression in TLR-mediated respiratory epithelial cell inflammation. In this study, we analysed the pre- and post-transcriptional regulation of CHI3L1 by TLRs in bronchial epithelial cells. Therefore, we stimulated BEAS-2B cells with the bacterial TLR2-ligand lipoteichoic acid or the viral dsRNA analogue poly(I:C). We observed an increase in the expression of CHI3L1, which was dependent on TNF-α-mediated NF-κB activation in TLR2- and TLR3-activated cells. Moreover, TLR2 and - 3 stimulation caused downregulation of the microRNA miR-149-5p, an effect that could be suppressed by inhibiting NF-κB translocation into the nucleus. Luciferase reporter assays identified a direct interaction of miR-149-5p with the CHI3L1 3´untranslated region. This interaction was confirmed by inhibition and overexpression of miR-149-5p in BEAS-2B cells, which altered the expression levels of CHI3L1 mRNA. In summary, miR-149-5p directly regulates CHI3L1 in context of TLR-mediated airway epithelial cell inflammation and may be a potential therapeutic target in inflammation and other diseases.
Collapse
Affiliation(s)
- Kathleen Hübner
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Diana Karwelat
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Emma Pietsch
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Sarah Winterberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany; Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ Maastricht, the Netherlands
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany; Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany.
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany.
| |
Collapse
|
27
|
Padhi A, Pattnaik K, Biswas M, Jagadeb M, Behera A, Sonawane A. Mycobacterium tuberculosisLprE Suppresses TLR2-Dependent Cathelicidin and Autophagy Expression to Enhance Bacterial Survival in Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 203:2665-2678. [DOI: 10.4049/jimmunol.1801301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/15/2019] [Indexed: 12/20/2022]
|
28
|
Bertelsen A, Elborn JS, Schock BC. Infection with Prevotella nigrescens induces TLR2 signalling and low levels of p65 mediated inflammation in Cystic Fibrosis bronchial epithelial cells. J Cyst Fibros 2019; 19:211-218. [PMID: 31607634 DOI: 10.1016/j.jcf.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Prevotella spp. are frequently identified in Cystic Fibrosis sputum. This study examined whether infection with Prevotella nigrescens, a frequently identified member of this species, contributes to inflammation in CF bronchial epithelial cells through activation of TLR- and NF-κB signalling pathways. CFBE41o- cells were infected with either P.nigrescens or Pseudomonas aeruginosa and incubated under anaerobic conditions for 4h. P.nigrescens activated TLR2 signalling but not TLR4 signalling while P.aeruginosa activated TLR4 signalling with a lesser effect on TLR2. P.aeruginosa induced significant IκBα phosphorylation 10min post infection with a return to control levels by 30min post infection. A significant induction in nuclear p65 DNA binding was observed at 2h post infection. In contrast, infection with P.nigrescens induced phosphorylation of IκBα 120min post infection, with significant induction in nuclear p65 DNA binding at 4h post infection only. Cytokine gene and protein responses were lower for P.nigrescens compared to P.aeruginosa. This study demonstrates the ability of a clinical P.nigrescens isolate to provoke a delayed NF-κB(p65) driven response through induction in TLR2 signalling and activation of sustained levels of IKKα.
Collapse
Affiliation(s)
- A Bertelsen
- Department of Veterinary Medicine, The University of Cambridge, Madingley Road, Cambridge, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - J S Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - B C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
29
|
Wigand M, Hoffmann TK, Ryan AF, Wollenberg B, Leichtle A. [The role of innate immunity in otitis media]. HNO 2019; 66:464-471. [PMID: 29589044 DOI: 10.1007/s00106-018-0501-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Otitis media (OM) belongs to the most common pediatric diseases and causes more medical contacts, surgical interventions, and drug prescriptions than any other infectious disease. Recent findings have identified a critical role of innate immunity in recovery from OM. The middle ear mucosa identifies invading pathogens by sensing pathogen-associated molecule patterns (PAMPs) via pattern recognition receptors such as the Toll-like receptors (TLRs). They generate immediate antimicrobial responses and cytokine release, leading to an inflammatory reaction as seen in acute or chronic OM. Cross-talk between TLRs can enhance or suppress the healing process in the middle ear. In order to prevent over-activation on the one hand and insufficient immune response on the other, the signaling network between different TLRs must be integrated and controlled by positive and negative feedback loops. This guarantees a proper immune response in the middle ear after infection. In this review, we focus on the involvement of the innate immune system and TLRs in OM, as well on their relevance for new vaccination strategies and immunotherapies.
Collapse
Affiliation(s)
- M Wigand
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf und Halschirurgie, Universitätsklinik Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - T K Hoffmann
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf und Halschirurgie, Universitätsklinik Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - A F Ryan
- Dept. of Otolaryngology, University of California San Diego, (UCSD), San Diego, USA
| | - B Wollenberg
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Universitätsklinikum Schleswig Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - A Leichtle
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf und Halschirurgie, Universitätsklinik Ulm, Frauensteige 12, 89075, Ulm, Deutschland.
| |
Collapse
|
30
|
Miyata J, Fukunaga K, Kawashima Y, Watanabe T, Saitoh A, Hirosaki T, Araki Y, Kikawada T, Betsuyaku T, Ohara O, Arita M. Dysregulated fatty acid metabolism in nasal polyp-derived eosinophils from patients with chronic rhinosinusitis. Allergy 2019; 74:1113-1124. [PMID: 30667533 DOI: 10.1111/all.13726] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Eosinophils are multifunctional granulocytes capable of releasing various cytokines, chemokines, and lipid mediators. We previously reported dysregulated fatty acid metabolism in peripheral blood-derived eosinophils from patients with severe asthma. However, functional characteristics of eosinophils present in allergic inflammatory tissues remain largely uncharacterized. METHODS We established a method for isolating CD69hi CCR3low CXCR4- siglec-8int eosinophils from nasal polyps of patients with eosinophilic rhinosinusitis (NP-EOS). Multi-omics analysis including lipidomics, proteomics, and transcriptomics was performed to analyze NP-EOS as compared to peripheral blood-derived eosinophils from healthy subjects (PB-EOS). RESULTS Lipidomic analysis revealed impaired synthesis of prostaglandins and 15-lipoxygenase (15-LOX)-derived mediators, and selective upregulation of leukotriene D4 production. Furthermore, proteomics and transcriptomics revealed changes in the expression of specific enzymes (GGT5, DPEP2, and 15-LOX) responsible for dysregulated lipid metabolism. Ingenuity pathway analysis indicated the importance of type 2 cytokines and pattern recognition receptor pathways. Stimulation of PB-EOS with eosinophil activators IL-5, GM-CSF, and agonists of TLR2 and NOD2 mimicked the observed changes in lipid metabolism. CONCLUSION Inflammatory tissue-derived eosinophils possess a specific phenotype with dysregulated fatty acid metabolism that may be targeted therapeutically to control eosinophilic inflammatory diseases.
Collapse
Affiliation(s)
- Jun Miyata
- Laboratory for Metabolomics RIKEN Center for Integrative Medical Sciences Kanagawa Japan
- Graduate School of Medical Life Science Yokohama City University Kanagawa Japan
- Division of Pulmonary Medicine Department of Medicine Keio University School of Medicine Tokyo Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine Department of Medicine Keio University School of Medicine Tokyo Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics RIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics RIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Akina Saitoh
- Tsukuba Research Institute Ono Pharmaceutical Co., Ltd. Tsukuba Japan
| | - Tomomi Hirosaki
- Minase Research Institute Ono Pharmaceutical Co., Ltd. Osaka Japan
| | | | | | - Tomoko Betsuyaku
- Division of Pulmonary Medicine Department of Medicine Keio University School of Medicine Tokyo Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics RIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Makoto Arita
- Laboratory for Metabolomics RIKEN Center for Integrative Medical Sciences Kanagawa Japan
- Graduate School of Medical Life Science Yokohama City University Kanagawa Japan
- Division of Physiological Chemistry and Metabolism Faculty of Pharmacy Keio University Tokyo Japan
| |
Collapse
|
31
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
32
|
Huang PCJ, Low PY, Wang I, Hsu STD, Angata T. Soluble Siglec-14 glycan-recognition protein is generated by alternative splicing and suppresses myeloid inflammatory responses. J Biol Chem 2018; 293:19645-19658. [PMID: 30377253 DOI: 10.1074/jbc.ra118.005676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Human sialic acid-binding immunoglobulin-like lectin 14 (Siglec-14) is a glycan-recognition protein that is expressed on myeloid cells, recognizes bacterial pathogens, and elicits pro-inflammatory responses. Although Siglec-14 is a transmembrane protein, a soluble form of Siglec-14 is also present in human blood. However, the mechanism that generates soluble Siglec-14 and what role this protein form may play remain unknown. Here, investigating the generation and function of soluble Siglec-14, we found that soluble Siglec-14 is derived from an alternatively spliced mRNA that retains intron 5, containing a termination codon and thus preventing the translation of exon 6, which encodes Siglec-14's transmembrane domain. We also note that the translated segment in intron 5 encodes a unique C-terminal 7-amino acid extension, which allowed the specific antibody-mediated detection of this isoform in human blood. Moreover, soluble Siglec-14 dose-dependently suppressed pro-inflammatory responses of myeloid cells that expressed membrane-bound Siglec-14, likely by interfering with the interaction between membrane-bound Siglec-14 and Toll-like receptor 2 on the cell surface. We also found that intron 5 contains a G-rich segment that assumes an RNA tertiary structure called a G-quadruplex, which may regulate the efficiency of intron 5 splicing. Taken together, we propose that soluble Siglec-14 suppresses pro-inflammatory responses triggered by membrane-bound Siglec-14.
Collapse
Affiliation(s)
- Po-Chun Jimmy Huang
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115 and.,the Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Penk-Yeir Low
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115 and
| | - Iren Wang
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115 and
| | - Shang-Te Danny Hsu
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115 and.,the Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Takashi Angata
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115 and .,the Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
33
|
Zhang Y, Luo Y, Wang Y, Liu H, Yang Y, Wang Q. Effect of deubiquitinase USP8 on hypoxia/reoxygenation‑induced inflammation by deubiquitination of TAK1 in renal tubular epithelial cells. Int J Mol Med 2018; 42:3467-3476. [PMID: 30221684 DOI: 10.3892/ijmm.2018.3881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/04/2018] [Indexed: 11/06/2022] Open
Abstract
Intermittent hypoxia/reoxygenation (IHR), characterized by repeated episodes of hypoxia interspersed with periods of reoxygenation, has been found to induce pro‑inflammatory cytokine production and is increasingly recognized as a major pathophysiological factor in various disease processes with distinct cell and molecular responses. The present study is the first, to the best of our knowledge, to investigate the effects of ubiquitin‑specific peptidase 8 (USP8) on IHR‑induced inflammation in renal tubular epithelial cells and examine the underlying mechanism. Following transfection of plasmids, HK‑2 and TCMK‑1 cells were incubated for eight cycles of IHR treatment including 3 h of hypoxic incubation followed by 3 h of normoxic culture. It was demonstrated that the expression of USP8 was decreased in IHR conditions but not in normoxic or continuous hypoxic conditions. In addition, IHR‑induced inflammation was suppressed in USP8‑overexpressinh renal tubular epithelial cells, and the silencing of USP8 markedly aggravated inflammation. Furthermore, it was found that the overexpression of USP8 inhibited the IHR‑induced activation of nuclear factor‑κB and it was demonstrated that USP8 interacted with transforming growth factor‑β‑activated kinase‑1 (TAK1) and deubiquitinated the K63‑linked ubiquitination of TAK1. Taken together, the results demonstrated the role of USP8 in IHR‑induced inflammation and suggested USP8 as a potential and specific therapeutic target for IHR‑related diseases.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yingquan Luo
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hong Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
34
|
Lu C, Zhang X, Ma C, Xu W, Gan L, Cui J, Yin Y, Wang H. Nontypeable Haemophilus influenzae DNA stimulates type I interferon expression via STING signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:665-673. [PMID: 29421524 DOI: 10.1016/j.bbamcr.2018.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/12/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHI) is one of the leading causes of acute exacerbations of COPD (AECOPD). Although the immunoregulation function of NTHI outer member protein and endotoxin were confirmed, the role of NTHI DNA in activating immune responses remains to be elucidated. In this study, we found expression of IFN-β and IFN stimulated gene CXCL10 in host cells was forcefully elevated after treating with NTHI and NTHI DNA. Interestingly, we tested increased level of STING in NTHI infected mice lung. Meanwhile, STING expression in lung of mimic COPD murine model was higher than healthy mice after NTHI infection. Importantly, knockout of STING or overexpression of STING, TBK1 and IRF3 respectively impaired or enhanced IFN-β and CXCL10 expression during treating with NTHI and NTHI DNA. NTHI and NTHI DNA-induced I-IFN response appeared to be mediated by cGAS. Collectively, we suggested that NTHI DNA as a PAMP triggered I-IFN response, which was STING/TBK1/IRF3 dependent. SUMMARY NTHI is the leading cause of acute exacerbations of COPD (AECOPD). Since AECOPD is an immune event, it is meaningful to elucidate the mechanism under NTHI induced immune response. It has been revealed that lipooligosaccharides and protein of NTHI could induce host immune response, but the function of NTHI nuclide acid during infection is unclear. In this research, we demonstrate NTHI DNA is a trigger for I-IFN expression, and the STING/TBK1/IRF3 pathway plays an integral role in sensing NTHI DNA to induce I-IFN expression. Moreover, by long-term intrabronchial infection of LPS, we constructed a mimic COPD murine model, in which the STING expression in lung tissues were higher than healthy mice after NTHI infection, which led us to surmise that NTHI cause AECOPD by inducing I-IFN production via STING signal pathway.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Chenyu Ma
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China; Department of Laboratory Diagnosis, The Central Hospital of Xianyang, 712000, Shaanxi, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Jin Cui
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; The Center for Clinical Molecular Medical Detection, The first Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
35
|
Otitis Media and Nasopharyngeal Colonization in ccl3-/- Mice. Infect Immun 2017; 85:IAI.00148-17. [PMID: 28847849 DOI: 10.1128/iai.00148-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022] Open
Abstract
We previously found CC chemokine ligand 3 (CCL3) to be a potent effector of inflammation during otitis media (OM): exogenous CCL3 rescues the OM phenotype of tumor necrosis factor-deficient mice and the function of macrophages deficient in several innate immune molecules. To further delineate the role of CCL3 in OM, we evaluated middle ear (ME) responses of ccl3-/-mice to nontypeable Haemophilus influenzae (NTHi). CCL chemokine gene expression was evaluated in wild-type (WT) mice during the complete course of acute OM. OM was induced in ccl3-/- and WT mice, and infection and inflammation were monitored for 21 days. Phagocytosis and killing of NTHi by macrophages were evaluated by an in vitro assay. The nasopharyngeal bacterial load was assessed in naive animals of both strains. Many CCL genes showed increased expression levels during acute OM, with CCL3 being the most upregulated, at levels 600-fold higher than the baseline. ccl3-/- deletion compromised ME bacterial clearance and prolonged mucosal hyperplasia. ME recruitment of leukocytes was delayed but persisted far longer than in WT mice. These events were linked to a decrease in the macrophage capacity for NTHi phagocytosis and increased nasopharyngeal bacterial loads in ccl3-/- mice. The generalized impairment in inflammatory cell recruitment was associated with compensatory changes in the expression profiles of CCL2, CCL7, and CCL12. CCL3 plays a significant role in the clearance of infection and resolution of inflammation and contributes to mucosal host defense of the nasopharyngeal niche, a reservoir for ME and upper respiratory infections. Therapies based on CCL3 could prove useful in treating or preventing persistent disease.
Collapse
|
36
|
Curcumin Inhibits NTHi-Induced MUC5AC Mucin Overproduction in Otitis Media via Upregulation of MAPK Phosphatase MKP-1. Int J Inflam 2017; 2017:4525309. [PMID: 28487811 PMCID: PMC5405397 DOI: 10.1155/2017/4525309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022] Open
Abstract
Otitis media (OM), characterized by the presence of mucus overproduction and excess inflammation in the middle ear, is the most common childhood infection. Nontypeable Haemophilus influenzae (NTHi) pathogen is responsible for approximately one-third of episodes of bacteria-caused OM. Current treatments for bacterial OM rely on the systemic use of antibiotics, which often leads to the emergence of multidrug resistant bacterial strains. Therefore there is an urgent need for developing alternative therapies strategies for controlling mucus overproduction in OM. MUC5AC mucin has been shown to play a critical role in the pathogenesis of OM. Here we show that curcumin derived from Curcuma longa plant is a potent inhibitor of NTHi-induced MUC5AC mucin expression in middle ear epithelial cells. Curcumin inhibited MUC5AC expression by suppressing activation of p38 MAPK by upregulating MAPK phosphatase MKP-1. Thus, our study identified curcumin as a potential therapeutic for inhibiting mucin overproduction in OM by upregulating MKP-1, a known negative regulator of inflammation.
Collapse
|
37
|
Gaultier GN, Colledanchise KN, Alhazmi A, Ulanova M. The Immunostimulatory Capacity of Nontypeable Haemophilus influenzae Lipooligosaccharide. Pathog Immun 2017; 2:34-49. [PMID: 30993246 PMCID: PMC6423806 DOI: 10.20411/pai.v2i1.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background We have recently found that lipooligosaccharide (LOS) isolated from encapsulated strains of Haemophilus influenzae (H. influenzae) has strong adjuvant, but diminished pro-inflammatory ability as compared to Escherichia coli lipopolysaccharide (LPS). In this study, we aimed to determine the immunostimulatory capacity of nontypeable/ non-encapsulated H. influenzae (NTHi) LOS by comparing the effect of killed bacteria with LOS isolated from the same strain. Methods Following stimulation of human monocytic THP-1 cells with killed NTHi strain 375, or with the corresponding amount of LOS, we studied the protein and gene expression of immunostimulatory and antigen-presenting molecules, cytokines, and innate immune receptors. Results Stimulation with LOS resulted in lower expression of adhesion (CD54, CD58) as well as costimulatory molecules (CD40, CD86), but in higher expression of antigen-presenting molecules (HLA-DR and HLA-ABC) compared to killed NTHi, whereas killed bacteria induced higher release of both TNF-α and IL-10. The results indicate that while LOS of NTHi has decreased capacity to induce pro-inflammatory responses compared to E. coli LPS or killed NTHi, this LOS has the potential to facilitate antigen presentation. Conclusions Considering the important role of NTHi as a respiratory pathogen, and its currently increasing significance in the etiology of invasive infections, LOS deserves further attention as a vaccine antigen, which also has potent adjuvant properties.
Collapse
Affiliation(s)
| | | | - Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Marina Ulanova
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada.,Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| |
Collapse
|
38
|
Amatngalim GD, Schrumpf JA, Henic A, Dronkers E, Verhoosel RM, Ordonez SR, Haagsman HP, Fuentes ME, Sridhar S, Aarbiou J, Janssen RAJ, Lekkerkerker AN, Hiemstra PS. Antibacterial Defense of Human Airway Epithelial Cells from Chronic Obstructive Pulmonary Disease Patients Induced by Acute Exposure to Nontypeable Haemophilus influenzae: Modulation by Cigarette Smoke. J Innate Immun 2017; 9:359-374. [PMID: 28171878 DOI: 10.1159/000455193] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial proteins and peptides (AMPs) are a central component of the antibacterial activity of airway epithelial cells. It has been proposed that a decrease in antibacterial lung defense contributes to an increased susceptibility to microbial infection in smokers and patients with chronic obstructive pulmonary disease (COPD). However, whether reduced AMP expression in the epithelium contributes to this lower defense is largely unknown. We investigated the bacterial killing activity and expression of AMPs by air-liquid interface-cultured primary bronchial epithelial cells from COPD patients and non-COPD (ex-)smokers that were stimulated with nontypeable Haemophilus influenzae (NTHi). In addition, the effect of cigarette smoke on AMP expression and the activation of signaling pathways was determined. COPD cell cultures displayed reduced antibacterial activity, whereas smoke exposure suppressed the NTHi-induced expression of AMPs and further increased IL-8 expression in COPD and non-COPD cultures. Moreover, smoke exposure impaired NTHi-induced activation of NF-κB, but not MAP-kinase signaling. Our findings demonstrate that the antibacterial activity of cultured airway epithelial cells induced by acute bacterial exposure was reduced in COPD and suppressed by cigarette smoke, whereas inflammatory responses persisted. These findings help to explain the imbalance between protective antibacterial and destructive inflammatory innate immune responses in COPD.
Collapse
Affiliation(s)
- Gimano D Amatngalim
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bluestone CD, Hebda PA, Alper CM, Sando I, Buchman CA, Stangerup SE, Felding JU, Swarts JD, Ghadiali SN, Takahashi H. 2. Eustachian Tube, Middle Ear, and Mastoid Anatomy; Physiology, Pathophysiology, and Pathogenesis. Ann Otol Rhinol Laryngol 2016; 194:16-30. [PMID: 15700932 DOI: 10.1177/00034894051140s105] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Charles D Bluestone
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Andrews CS, Matsuyama S, Lee BC, Li JD. Resveratrol suppresses NTHi-induced inflammation via up-regulation of the negative regulator MyD88 short. Sci Rep 2016; 6:34445. [PMID: 27677845 PMCID: PMC5039644 DOI: 10.1038/srep34445] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Upper respiratory tract inflammatory diseases such as asthma and chronic obstructive pulmonary diseases (COPD) affect more than one-half billion people globally and are characterized by chronic inflammation that is often exacerbated by respiratory pathogens such as nontypeable Haemophilus influenzae (NTHi). The increasing numbers of antibiotic-resistant bacterial strains and the limited success of currently available pharmaceuticals used to manage the symptoms of these diseases present an urgent need for the development of novel anti-inflammatory therapeutic agents. Resveratrol has long been thought as an interesting therapeutic agent for various diseases including inflammatory diseases. However, the molecular mechanisms underlying its anti-inflammatory properties remain largely unknown. Here we show for the first time that resveratrol decreases expression of pro-inflammatory mediators in airway epithelial cells and in the lung of mice by enhancing NTHi-induced MyD88 short, a negative regulator of inflammation, via inhibition of ERK1/2 activation. Furthermore, resveratrol inhibits NTHi-induced ERK1/2 phosphorylation by increasing MKP-1 expression via a cAMP-PKA-dependent signaling pathway. Finally, we show that resveratrol has anti-inflammatory effects post NTHi infection, thereby demonstrating its therapeutic potential. Together these data reveal a novel mechanism by which resveratrol alleviates NTHi-induced inflammation in airway disease by up-regulating the negative regulator of inflammation MyD88s.
Collapse
Affiliation(s)
- Carla S Andrews
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Shingo Matsuyama
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Byung-Cheol Lee
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
41
|
Cho CG, Pak K, Webster N, Kurabi A, Ryan AF. Both canonical and non-canonical NF-κB activation contribute to the proliferative response of the middle ear mucosa during bacterial infection. Innate Immun 2016; 22:626-634. [PMID: 27655045 DOI: 10.1177/1753425916668581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major aspect of pathology in otitis media (OM), the most common childhood bacterial disease, is hyperplasia of the middle ear mucosa. Activation of innate immune receptors during OM leads to the activation of NF-κB, a pleiotropic transcription factor involved both in inflammation and tissue growth. To explore the role of NF-κB in mucosal hyperplasia during OM, we evaluated the expression of genes involved in two modes of NF-κB activation during a complete episode of acute, bacterial OM in mice. We also determined the effects of inhibitors of each pathway on infection-stimulated mucosal growth in vitro. A majority of the genes that mediate both the canonical and the non-canonical pathways of NF-κB activation were regulated during OM, many with kinetics related to the time course of mucosal hyperplasia. Inhibition of either pathway reduced the growth of cultured mucosal explants in a dose-dependent manner. However, inhibition of the canonical pathway produced a greater effect, suggesting that this mode of NF-κB activation dominates mucosal hyperplasia during OM.
Collapse
Affiliation(s)
- Chang Gun Cho
- 1 Department of Otolaryngology - Head and Neck Surgery, Dongguk University Ilsan Hospital, Korea.,2 Department of Surgery/Otolaryngology, University of California, San Diego (UCSD) School of Medicine and Veterans Administration (VA) Medical Center, USA
| | - Kwang Pak
- 2 Department of Surgery/Otolaryngology, University of California, San Diego (UCSD) School of Medicine and Veterans Administration (VA) Medical Center, USA
| | - Nicholas Webster
- 3 Department of Medicine/Endocrinology, UCSD School of Medicine and VA Medical Center, USA
| | - Arwa Kurabi
- 2 Department of Surgery/Otolaryngology, University of California, San Diego (UCSD) School of Medicine and Veterans Administration (VA) Medical Center, USA
| | - Allen F Ryan
- 2 Department of Surgery/Otolaryngology, University of California, San Diego (UCSD) School of Medicine and Veterans Administration (VA) Medical Center, USA
| |
Collapse
|
42
|
Oho M, Nakano R, Nakayama R, Sakurai W, Miyamoto A, Masuhiro Y, Hanazawa S. TIPE2 (Tumor Necrosis Factor α-induced Protein 8-like 2) Is a Novel Negative Regulator of TAK1 Signal. J Biol Chem 2016; 291:22650-22660. [PMID: 27601471 DOI: 10.1074/jbc.m116.733451] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
TIPE2 (TNF-α-induced protein 8-like 2) is a novel death effector domain protein and is a negative regulator of the innate and adaptive immune response. Although it has been demonstrated that caspase-8 contributes to the negative regulation of TIPE2, the negative regulatory mechanism is not entirely understood. Here, we demonstrate that TIPE2 interacts with TGF-β-activated kinase 1 (TAK1), a crucial regulatory molecule of inflammatory and immune signals, and consequently acts as a powerful negative regulator of TAK1. The interaction between endogenous TIPE2 and TAK1 was observed in RAW264.7 macrophage-like cells and mouse primary cells derived from spleen and thymus. The TIPE2 amino acid 101-140 region interacted with TAK1 by binding to the amino acid 200-291 region of the internal kinase domain of TAK1. TIPE2 interfered with the formation of the TAK1-TAB1-TAB2 complex and subsequently inhibited activation of TAK1 and its downstream molecules. Importantly, silencing TIPE2 through RNA interference attenuated the inhibitory action of TIPE2 on LPS- and TNF-α-stimulated TAK1 activity. Exogenous TIPE2 101-140, the region that interacts with TAK1, also inhibited LPS- and TNF-α-stimulated NF-κB reporter activity. Interestingly, cell-permeable TIPE2 protein maintained its binding ability with TAK1 and exhibited the same inhibitory action of native TIPE2 on TLR4 signaling in vitro Thus, cell-permeable TIPE2 protein is a potential candidate for intracellular protein therapy for TAK1-related diseases. The present study demonstrates that TIPE2 acts as a novel negative regulator of inflammatory and immune responses through TAK1 signaling.
Collapse
Affiliation(s)
- Michitaka Oho
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| | - Risa Nakano
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| | - Ryutarou Nakayama
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| | - Wataru Sakurai
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| | - Azusa Miyamoto
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| | - Yoshikazu Masuhiro
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| | - Shigemasa Hanazawa
- From the Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa City, Kanagawa 252-0880, Japan
| |
Collapse
|
43
|
Samuels TL, Yan J, Khampang P, MacKinnon A, Hong W, Johnston N, Kerschner JE. Association of microRNA 146 with middle ear hyperplasia in pediatric otitis media. Int J Pediatr Otorhinolaryngol 2016; 88:104-8. [PMID: 27497395 PMCID: PMC4978186 DOI: 10.1016/j.ijporl.2016.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Toll-like receptor signaling activated by bacterial otitis media pathogens in the middle ear has been shown to play a key role in OM susceptibility, pathogenesis and recovery. Recent studies implicate microRNA 146 (miR-146) in regulation of inflammation via negative feedback of toll-like receptor signaling (TLR) in a wide variety of tissues, however its involvement in otitis media is unknown. METHODS Human middle ear epithelial cells were stimulated with proinflammatory cytokines, interleukin 1 beta or tumor necrosis factor alpha, for two to twenty-four hours. Middle ear biopsies were collected from children with otitis media with effusion (n = 20), recurrent otitis media (n = 9), and control subjects undergoing cochlear implantation (n = 10). miR-146a, miR-146b expression was assayed by quantitative PCR (qPCR). Expression of miR-146 targets involved in TLR signaling, IRAK1 and TRAF6, was assayed by qPCR in middle ear biopsies. Middle ear biopsies were cryosectioned and epithelial thickness measured by a certified pathologist. RESULTS Proinflammatory cytokines induced expression of miR-146 in middle ear epithelial cells in vitro. Middle ear miR-146a and miR-146b expression was elevated in otitis media patients relative to control subjects and correlated with middle ear epithelial thickness. A trend towards inverse correlation was observed between miR-146 and TRAF6 expression in the clinical population. CONCLUSIONS This report is the first to assess miRNA expression in a clinical population with OM. Findings herein suggest miR-146 may play a role in OM.
Collapse
Affiliation(s)
- Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - Justin Yan
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | | | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph E. Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
44
|
Konduru AS, Lee BC, Li JD. Curcumin suppresses NTHi-induced CXCL5 expression via inhibition of positive IKKβ pathway and up-regulation of negative MKP-1 pathway. Sci Rep 2016; 6:31695. [PMID: 27538525 PMCID: PMC4990917 DOI: 10.1038/srep31695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022] Open
Abstract
Otitis media (OM) is the most common childhood bacterial infection, and leading cause of conductive hearing loss. Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen for OM. OM characterized by the presence of overactive inflammatory responses is due to the aberrant production of inflammatory mediators including C-X-C motif chemokine ligand 5 (CXCL5). The molecular mechanism underlying induction of CXCL5 by NTHi is unknown. Here we show that NTHi up-regulates CXCL5 expression by activating IKKβ-IκBα and p38 MAPK pathways via NF-κB nuclear translocation-dependent and -independent mechanism in middle ear epithelial cells. Current therapies for OM are ineffective due to the emergence of antibiotic-resistant NTHi strains and risk of side effects with prolonged use of immunosuppressant drugs. In this study, we show that curcumin, derived from Curcuma longa plant, long known for its medicinal properties, inhibited NTHi-induced CXCL5 expression in vitro and in vivo. Curcumin suppressed CXCL5 expression by direct inhibition of IKKβ phosphorylation, and inhibition of p38 MAPK via induction of negative regulator MKP-1. Thus, identification of curcumin as a potential therapeutic for treating OM is of particular translational significance due to the attractiveness of targeting overactive inflammation without significant adverse effects.
Collapse
Affiliation(s)
- Anuhya S. Konduru
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Byung-Cheol Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
45
|
Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression. Sci Rep 2016; 6:29389. [PMID: 27388124 PMCID: PMC4937415 DOI: 10.1038/srep29389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
APE1 is an essential DNA repair protein that also possesses the ability to regulate transcription. It has a unique cysteine residue C65, which maintains the reduce state of several transcriptional activators such as NF-κB. How APE1 is being recruited to execute the various biological functions remains unknown. Herein, we show that APE1 interacts with a novel partner PRDX1, a peroxidase that can also prevent oxidative damage to proteins by serving as a chaperone. PRDX1 knockdown did not interfere with APE1 expression level or its DNA repair activities. However, PRDX1 knockdown greatly facilitates APE1 detection within the nucleus by indirect immunofluorescence analysis, even though APE1 level was unchanged. The loss of APE1 interaction with PRDX1 promotes APE1 redox function to activate binding of the transcription factor NF-κB onto the promoter of a target gene, the proinflammatory chemokine IL-8 involved in cancer invasion and metastasis, resulting in its upregulation. Depletion of APE1 blocked the upregulation of IL-8 in the PRDX1 knockdown cells. Our findings suggest that the interaction of PRDX1 with APE1 represents a novel anti-inflammatory function of PRDX1, whereby the association safeguards APE1 from reducing transcription factors and activating superfluous gene expression, which otherwise could trigger cancer invasion and metastasis.
Collapse
|
46
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
47
|
Bellinghausen C, Gulraiz F, Heinzmann ACA, Dentener MA, Savelkoul PHM, Wouters EF, Rohde GG, Stassen FR. Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respir Res 2016; 17:68. [PMID: 27259950 PMCID: PMC4891894 DOI: 10.1186/s12931-016-0382-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background Colonization of the airways with potential pathogenic bacteria is observed in a number of chronic respiratory diseases, such as COPD or cystic fibrosis. Infections with respiratory viruses are known triggers of exacerbations of these diseases. We here investigated if pre-exposure to bacteria alters the response of lung epithelial cells to subsequent viral infection. Methods Bronchial epithelial cells (BEAS-2B cells and primary bronchial epithelial cells) were exposed to heat-inactivated Haemophilus influenzae, Pseudomonas aeruginosa or Streptococcus pneumoniae and subsequently infected with respiratory syncytial virus (RSV), type 2 human adenovirus or influenza B. Levels of pro-inflammatory cytokines, viral replication and expression of pattern recognition receptors were determined in culture supernatants and/or cell lysates. Results Exposure of BEAS-2B cells to H. influenzae before and during RSV-infection synergistically increased the release of IL-6 (increase above calculated additive effect at 72 h: 56 % ± 3 %, mean ± SEM) and IL-8 (53 % ± 12 %). This effect was sustained even when bacteria were washed away before viral infection and was neither associated with enhanced viral replication, nor linked to increased expression of key pattern recognition receptors. P. aeruginosa enhanced the release of inflammatory cytokines to a similar extent, yet only if bacteria were also present during viral infection. S. pneumoniae did not enhance RSV-induced cytokine release. Surprisingly, adenovirus infection significantly reduced IL-6 release in cells exposed to either of the three tested bacterial strains by on average more than 50 %. Infection with influenza B on the other hand did not affect cytokine production in BEAS-2B cells exposed to the different bacterial strains. Conclusion Pre-exposure of epithelial cells to bacteria alters the response to subsequent viral infection depending on the types of pathogen involved. These findings highlight the complexity of microbiome interactions in the airways, possibly contributing to the susceptibility to exacerbations and the natural course of airway diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0382-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fahad Gulraiz
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Cell Biology and Immunology, University of North Texas Health Science Center (UNT Health Science Center), Fort Worth, TX, USA
| | - Alexandra C A Heinzmann
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Mieke A Dentener
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gernot G Rohde
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frank R Stassen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands. .,, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands.
| |
Collapse
|
48
|
Zhao L, Xia J, Li T, Zhou H, Ouyang W, Hong Z, Ke Y, Qian J, Xu F. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization. J Infect Dis 2016; 214:625-33. [PMID: 27330052 DOI: 10.1093/infdis/jiw205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.
Collapse
Affiliation(s)
| | - Jingyan Xia
- Department of Oncology Radiation, Second Affiliated Hospital
| | | | - Hui Zhou
- Department of Infectious Diseases Experimental Medical Class 1102, Chu Kochen Honor College, Zhejiang University
| | | | - Zhuping Hong
- Department of Infectious Diseases College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology Program in Molecular Cell Biology, Zhejiang University School of Medicine
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences
| | - Feng Xu
- Department of Infectious Diseases
| |
Collapse
|
49
|
Abstract
Otitis media (OM) is a common disease in young children, accounting for more office visits and surgeries than any other pediatric condition. It is associated with an estimated cost of five billion dollars annually in the USA. Moreover, chronic and recurrent middle ear (ME) disease leads to hearing loss during critical periods of language acquisition and learning leading to delays in reaching developmental milestones and risking permanent damage to the ME and inner ear in severe cases. Therefore, research to understand the disease pathogenesis and identify new therapeutics is important. Although OM is a multifactorial disease, targeting the molecular mechanisms that drive inflammation and OM resolution is critical. In this review, we discuss the current evidence suggesting that innate immune receptors and effectors play key roles in OM by mediating both the ME inflammatory responses and recovery.
Collapse
|
50
|
Venuprasad K, Theivanthiran B, Cantarel B. Intra-tracheal Administration of Haemophilus influenzae in Mouse Models to Study Airway Inflammation. J Vis Exp 2016:e53964. [PMID: 26967704 DOI: 10.3791/53964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Here, we describe a detailed procedure to efficiently and directly deliver Haemophilus influenzae into the lower respiratory tracts of mice. We demonstrate the procedure for preparing H. influenzae inoculum, intra-tracheal instillation of H. influenzae into the lung, collection of broncho-alveolar lavage fluid (BALF), analysis of immune cells in the BALF, and RNA isolation for differential gene expression analysis. This procedure can be used to study the lung inflammatory response to any bacteria, virus or fungi. Direct tracheal instillation is mostly preferred over intranasal or aerosol inhalation procedures because it more efficiently delivers the bacterial inoculum into the lower respiratory tract with less ambiguity.
Collapse
Affiliation(s)
- K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute;
| | | | - Brandi Cantarel
- Baylor Institute for Immunology Research, Baylor Research Institute
| |
Collapse
|