1
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Fountain WA, Bopp TS, Bene M, Walston JD. Metabolic dysfunction and the development of physical frailty: an aging war of attrition. GeroScience 2024; 46:3711-3721. [PMID: 38400874 PMCID: PMC11226579 DOI: 10.1007/s11357-024-01101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
The World Health Organization recently declared 2021-2030 the decade of healthy aging. Such emphasis on healthy aging requires an understanding of the biologic challenges aging populations face. Physical frailty is a syndrome of vulnerability that puts a subset of older adults at high risk for adverse health outcomes including functional and cognitive decline, falls, hospitalization, and mortality. The physiology driving physical frailty is complex with age-related biological changes, dysregulated stress response systems, chronic inflammatory pathway activation, and altered energy metabolism all likely contributing. Indeed, a series of recent studies suggests circulating metabolomic distinctions can be made between frail and non-frail older adults. For example, marked restrictions on glycolytic and mitochondrial energy production have been independently observed in frail older adults and collectively appear to yield a reliance on the highly fatigable ATP-phosphocreatine (PCr) energy system. Further, there is evidence that age-associated impairments in the primary ATP generating systems (glycolysis, TCA cycle, electron transport) yield cumulative deficits and fail to adequately support the ATP-PCr system. This in turn may acutely contribute to several major components of the physical frailty phenotype including muscular fatigue, weakness, slow walking speed and, over time, result in low physical activity and accelerate reductions in lean body mass. This review describes specific age-associated metabolic declines and how they can collectively lead to metabolic inflexibility, ATP-PCr reliance, and the development of physical frailty. Further investigation remains necessary to understand the etiology of age-associated metabolic deficits and develop targeted preventive strategies that maintain robust metabolic health in older adults.
Collapse
Affiliation(s)
- William A Fountain
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Taylor S Bopp
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Michael Bene
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Bensalem J, Teong XT, Hattersley KJ, Hein LK, Fourrier C, Liu K, Hutchison AT, Heilbronn LK, Sargeant TJ. Basal autophagic flux measured in blood correlates positively with age in adults at increased risk of type 2 diabetes. GeroScience 2023; 45:3549-3560. [PMID: 37498479 PMCID: PMC10643809 DOI: 10.1007/s11357-023-00884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Preclinical data show that autophagy delays age-related disease. It has been postulated that age-related disease is-at least in part-caused by an age-related decline in autophagy. However, autophagic flux has never been measured in humans across a spectrum of aging in a physiologically relevant context. To address this critical gap in knowledge, the objective of this cross-sectional observational study was to measure basal autophagic flux in whole blood taken from people at elevated risk of developing type 2 diabetes and correlate it with chronological age. During this study, 119 people were recruited and five people were excluded during sample analysis such that 114 people were included in the final analysis. Basal autophagic flux measured in blood and correlations with parameters such as age, body weight, fat mass, AUSDRISK score, blood pressure, glycated hemoglobin HbA1c, blood glucose and insulin, blood lipids, high-sensitivity C-reactive protein, plasma protein carbonylation, and plasma β-hexosaminidase activity were analysed. Despite general consensus in the literature that autophagy decreases with age, we found that basal autophagic flux increased with age in this human cohort. This is the first study to report measurement of basal autophagic flux in a human cohort and its correlation with age. This increase in basal autophagy could represent a stress response to age-related damage. These data are significant not only for their novelty but also because they will inform future clinical studies and show that measurement of basal autophagic flux in a human cohort is feasible.
Collapse
Affiliation(s)
- Julien Bensalem
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xiao Tong Teong
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kathryn J Hattersley
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Leanne K Hein
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Célia Fourrier
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kai Liu
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amy T Hutchison
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J Sargeant
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Campbell MD, Djukovic D, Raftery D, Marcinek DJ. Age-related changes of skeletal muscle metabolic response to contraction are also sex-dependent. J Physiol 2023:10.1113/JP285124. [PMID: 37742081 PMCID: PMC10959763 DOI: 10.1113/jp285124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Collapse
Affiliation(s)
| | - Danijel Djukovic
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | - Daniel Raftery
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
5
|
Akingbesote ND, Leitner BP, Jovin DG, Desrouleaux R, Owusu D, Zhu W, Li Z, Pollak MN, Perry RJ. Gene and protein expression and metabolic flux analysis reveals metabolic scaling in liver ex vivo and in vivo. eLife 2023; 12:e78335. [PMID: 37219930 PMCID: PMC10205083 DOI: 10.7554/elife.78335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational modeling. The possibility that other metabolic processes scale with body size has not been comprehensively studied. To address this gap in knowledge, we employed a systems approach including transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expression in livers of five species spanning a 30,000-fold range in mass revealed differential expression according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and to detoxication of oxidative damage. To determine whether flux through key metabolic pathways is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level of gene and protein expression, enzyme activity, and substrate supply.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Daniel G Jovin
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Reina Desrouleaux
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Comparative Medicine, Yale UniversityNew HavenUnited States
| | - Dennis Owusu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Zongyu Li
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Oncology, McGill UniversityMontrealCanada
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| |
Collapse
|
6
|
Yen CL, Wu CY, Tsai CY, Lee CC, Li YJ, Peng WS, Liu JR, Liu YC, Jenq CC, Yang HY, See LC. Pioglitazone reduces cardiovascular events and dementia but increases bone fracture in elderly patients with type 2 diabetes mellitus: a national cohort study. Aging (Albany NY) 2023; 15:2721-2733. [PMID: 37036483 PMCID: PMC10120904 DOI: 10.18632/aging.204643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
The prevalence of type 2 diabetes (T2DM) in elderly people has expanded rapidly. Considering cognitive impairment and being prone to hypoglycemia of the elder, the pros and cons of oral hypoglycemic agents (OHA) should be reassessed in this population. Pioglitazone might be appropriate for elderly DM patients because of its insulin-sensitizing effect and low risk of hypoglycemia. By using Taiwan's National Health Insurance Research Database, 191,937 types 2 diabetes patients aged ≥65 years under treatment between 2005 and 2013 were identified and further divided into two groups according to whether they received pioglitazone (pioglitazone group) or other OHAs (non-pioglitazone group) in the 3 months preceding their first outpatient visit date after 65 years of age, with a diagnosis of T2DM. Propensity score stabilization weight (PSSW) was used to balance the baseline characteristics. In results, the pioglitazone group (n = 17,388) exhibited a lower rate (per person-years) of major advanced cardiovascular events MACCE (2.76% vs. 3.03%, hazard ratio [HR]: 0.91, 95% confidence interval [CI]: 0.87-0.95), new- diagnosis dementia (1.32% vs. 1.46%, HR: 0.91, 95% CI: 0.84-0.98) but a higher rate of new-diagnosis bone fractures (5.37% vs. 4.47%, HR: 1.24, 95% CI: 1.19-1.28) than the non-pioglitazone group (n = 174,549). In conclusion, using pioglitazone may reduce the risks of MACCE and dementia but increases the probability of bone fractures in the elderly DM population.
Collapse
Affiliation(s)
- Chieh-Li Yen
- Department of Nephrology, Kidney Research Institute, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chao-Yi Wu
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chung-Ying Tsai
- Department of Nephrology, Kidney Research Institute, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Kidney Research Institute, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Jung Li
- Department of Nephrology, Kidney Research Institute, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Sheng Peng
- Department of Public Health, College of Medicine, Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Jia-Rou Liu
- Department of Public Health, College of Medicine, Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yuan-Chang Liu
- Department of Medical Imaging and intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Chang-Chyi Jenq
- Department of Nephrology, Kidney Research Institute, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Kidney Research Institute, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lai-Chu See
- Department of Public Health, College of Medicine, Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
7
|
Pérez-Rodríguez M, Huertas JR, Villalba JM, Casuso RA. Mitochondrial adaptations to calorie restriction and bariatric surgery in human skeletal muscle: a systematic review with meta-analysis. Metabolism 2023; 138:155336. [PMID: 36302454 DOI: 10.1016/j.metabol.2022.155336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We performed a meta-analysis to determine the changes induced by calorie restriction (CR) and bariatric surgery on human skeletal muscle mitochondria. METHODS A systematic search of Medline and Web of Science was conducted. Controlled trials exploring CR (≥14 days) and mitochondrial function and/or content assessment were included. Moreover, studies analyzing weight loss following gastric surgery were included for comparison purposes. Human muscle data from 28 studies assessing CR (520 muscle samples) and from 10 studies assessing bariatric surgery (155 muscle samples) were analyzed in a random effect meta-analysis with three a priori chosen covariates. MAIN RESULTS We report a decrease (p < 0.05) (mean (95 % CI)) in maximal mitochondrial state 3 respiration in response to CR (-0.44 (-0.85, -0.03)) but not in response to surgery (-0.33 (-1.18, 0.52)). No changes in mitochondrial content were reported after CR (-0.05 (-0.12, 0.13)) or in response to surgery (0.23 (-0.05, 0.52)). Moreover, data from CR subjects showed a reduction in complex IV (CIV) activity (-0.29 (-0.56, -0.03)) but not in CIV content (-0.21 (-0.63, 0.22)). Similar results were obtained when the length of the protocol, the initial body mass index, and the estimated energy deficit were included in the model as covariates. CONCLUSION The observation of reduced maximal mitochondrial state 3, uncoupled respiration, and CIV activity without altering mitochondrial content suggests that, in human skeletal muscle, CR mainly modulates intrinsic mitochondrial function.
Collapse
Affiliation(s)
- Miguel Pérez-Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | | | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | - Rafael A Casuso
- Department of Physiology, University of Granada, Spain; Department of Health Sciences, Universidad Loyola Andalucía, Spain.
| |
Collapse
|
8
|
Liu R, Ospanova S, Perry RJ. The impact of variance in carnitine palmitoyltransferase-1 expression on breast cancer prognosis is stratified by clinical and anthropometric factors. PLoS One 2023; 18:e0281252. [PMID: 36735704 PMCID: PMC9897541 DOI: 10.1371/journal.pone.0281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
CPT1A is a rate-limiting enzyme in fatty acid oxidation and is upregulated in high-risk breast cancer. Obesity and menopausal status' relationship with breast cancer prognosis is well established, but its connection with fatty acid metabolism is not. We utilized RNA sequencing data in the Xena Functional Genomics Explorer, to explore CPT1A's effect on breast cancer patients' survival probability. Using [18F]-fluorothymidine positron emission tomography-computed tomography images from The Cancer Imaging Archive, we segmented these analyses by obesity and menopausal status. In 1214 patients, higher CPT1A expression is associated with lower breast cancer survivability. We confirmed a previously observed protective relationship between obesity and breast cancer in pre-menopausal patients and supported this data using two-sided Pearson correlations. Taken together, these analyses using open-access databases bolster the potential role of CPT1A-dependent fatty acid metabolism as a pathogenic factor in breast cancer.
Collapse
Affiliation(s)
- Ryan Liu
- Department of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Cedar Park High School, Cedar Park, Texas, United States of America
| | - Shyryn Ospanova
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel J. Perry
- Department of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia. Int J Mol Sci 2022; 23:ijms232213823. [PMID: 36430301 PMCID: PMC9696247 DOI: 10.3390/ijms232213823] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of skeletal myocyte viability. The signaling pathways triggered by mTOR vary according to the type of endogenous and exogenous factors (e.g., redox balance, nutrient availability, physical activity) as well as organismal age. Here, we provide an overview of mTOR signaling in skeletal muscle, with a special focus on the role played by mTOR in the development of sarcopenia. Intervention strategies targeting mTOR in sarcopenia (e.g., supplementation of plant extracts, hormones, inorganic ions, calorie restriction, and exercise) have also been discussed.
Collapse
|
11
|
O’Reilly C, Lin L, Wang H, Fluckey J, Sun Y. Ablation of Ghrelin Receptor Mitigates the Metabolic Decline of Aging Skeletal Muscle. Genes (Basel) 2022; 13:genes13081368. [PMID: 36011279 PMCID: PMC9407208 DOI: 10.3390/genes13081368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The orexigenic hormone ghrelin has multifaceted roles in health and disease. We have reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), protects against metabolic dysfunction of adipose tissues in aging. Our further observation interestingly revealed that GHS-R deficiency phenocopies the effects of myokine irisin. In this study, we aim to determine whether GHS-R affects the metabolic functions of aging skeletal muscle and whether GHS-R regulates the muscular functions via irisin. We first studied the expression of metabolic signature genes in gastrocnemius muscle of young, middle-aged and old mice. Then, old GHS-R knockout (Ghsr−/−) mice and their wild type counterparts were used to assess the impact of GHS-R ablation on the metabolic characteristics of gastrocnemius and soleus muscle. There was an increase of GHS-R expression in skeletal muscle during aging, inversely correlated with the decline of metabolic functions. Remarkedly the muscle of old GHS-R knockout (Ghsr−/−) mice exhibited a youthful metabolic profile and better maintenance of oxidative type 2 muscle fibers. Furthermore, old Ghsr−/− mice showed improved treadmill performance, supporting better functionality. Also intriguing to note was the fact that old GHS-R-ablated mice showed increased expression of the irisin precursor FNDC5 in the muscle and elevated plasma irisin levels in circulation, which supports a potential interrelationship between GHS-R and irisin. Overall, our work suggests that GHS-R has deleterious effects on the metabolism of aging muscle, which may be at least partially mediated by myokine irisin.
Collapse
Affiliation(s)
- Colleen O’Reilly
- Department of Health and Kinesiology, Texas A & M University, College Station, TX 77843, USA;
| | - Ligen Lin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hongying Wang
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - James Fluckey
- Department of Health and Kinesiology, Texas A & M University, College Station, TX 77843, USA;
- Correspondence: (J.F.); (Y.S.)
| | - Yuxiang Sun
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- Correspondence: (J.F.); (Y.S.)
| |
Collapse
|
12
|
Tudurí E, Soriano S, Almagro L, Montanya E, Alonso-Magdalena P, Nadal Á, Quesada I. The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Res Rev 2022; 80:101674. [PMID: 35724861 DOI: 10.1016/j.arr.2022.101674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022]
Abstract
The prevalence of type 2 diabetes (T2D) and impaired glucose tolerance (IGT) increases with ageing. T2D generally results from progressive impairment of the pancreatic islets to adapt β-cell mass and function in the setting of insulin resistance and increased insulin demand. Several studies have shown an age-related decline in peripheral insulin sensitivity. However, a precise understanding of the pancreatic β-cell response in ageing is still lacking. In this review, we summarize the age-related alterations, adaptations and/or failures of β-cells at the molecular, morphological and functional levels in mouse and human. Age-associated alterations include processes such as β-cell proliferation, apoptosis and cell identity that can influence β-cell mass. Age-related changes also affect β-cell function at distinct steps including electrical activity, Ca2+ signaling and insulin secretion, among others. We will consider the potential impact of these alterations and those mediated by senescence pathways on β-cells and their implications in age-related T2D. Finally, given the great diversity of results in the field of β-cell ageing, we will discuss the sources of this heterogeneity. A better understanding of β-cell biology during ageing, particularly at older ages, will improve our insight into the contribution of β-cells to age-associated T2D and may boost new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Tudurí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Almagro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Eduard Montanya
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain, University of Barcelona, Barcelona, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
13
|
Balasubramanian P, Schaar AE, Gustafson GE, Smith AB, Howell PR, Greenman A, Baum S, Colman RJ, Lamming DW, Diffee GM, Anderson RM. Adiponectin receptor agonist AdipoRon improves skeletal muscle function in aged mice. eLife 2022; 11:e71282. [PMID: 35297761 PMCID: PMC8963882 DOI: 10.7554/elife.71282] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of skeletal muscle function with age, known as sarcopenia, significantly reduces independence and quality of life and can have significant metabolic consequences. Although exercise is effective in treating sarcopenia it is not always a viable option clinically, and currently, there are no pharmacological therapeutic interventions for sarcopenia. Here, we show that chronic treatment with pan-adiponectin receptor agonist AdipoRon improved muscle function in male mice by a mechanism linked to skeletal muscle metabolism and tissue remodeling. In aged mice, 6 weeks of AdipoRon treatment improved skeletal muscle functional measures in vivo and ex vivo. Improvements were linked to changes in fiber type, including an enrichment of oxidative fibers, and an increase in mitochondrial activity. In young mice, 6 weeks of AdipoRon treatment improved contractile force and activated the energy-sensing kinase AMPK and the mitochondrial regulator PGC-1a (peroxisome proliferator-activated receptor gamma coactivator one alpha). In cultured cells, the AdipoRon induced stimulation of AMPK and PGC-1a was associated with increased mitochondrial membrane potential, reorganization of mitochondrial architecture, increased respiration, and increased ATP production. Furthermore, the ability of AdipoRon to stimulate AMPK and PGC1a was conserved in nonhuman primate cultured cells. These data show that AdipoRon is an effective agent for the prevention of sarcopenia in mice and indicate that its effects translate to primates, suggesting it may also be a suitable therapeutic for sarcopenia in clinical application.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Anne E Schaar
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Grace E Gustafson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Alex B Smith
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Porsha R Howell
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Angela Greenman
- Department of Kinesiology, University of Wisconsin-MadisonMadisonUnited States
| | - Scott Baum
- Wisconsin National Primate Research Center, University of Wisconsin-MadisonMadisonUnited States
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-MadisonMadisonUnited States
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Dudley W Lamming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-MadisonMadisonUnited States
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
14
|
Leitner BP, Givechian KB, Ospanova S, Beisenbayeva A, Politi K, Perry RJ. Multimodal analysis suggests differential immuno-metabolic crosstalk in lung squamous cell carcinoma and adenocarcinoma. NPJ Precis Oncol 2022; 6:8. [PMID: 35087143 PMCID: PMC8795406 DOI: 10.1038/s41698-021-00248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Immunometabolism within the tumor microenvironment is an appealing target for precision therapy approaches in lung cancer. Interestingly, obesity confers an improved response to immune checkpoint inhibition in non-small cell lung cancer (NSCLC), suggesting intriguing relationships between systemic metabolism and the immunometabolic environment in lung tumors. We hypothesized that visceral fat and 18F-Fluorodeoxyglucose uptake influenced the tumor immunometabolic environment and that these bidirectional relationships differ in NSCLC subtypes, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). By integrating 18F-FDG PET/CT imaging, bulk and single-cell RNA-sequencing, and histology, we observed that LUSC had a greater dependence on glucose than LUAD. In LUAD tumors with high glucose uptake, glutaminase was downregulated, suggesting a tradeoff between glucose and glutamine metabolism, while in LUSC tumors with high glucose uptake, genes related to fatty acid and amino acid metabolism were also increased. We found that tumor-infiltrating T cells had the highest expression of glutaminase, ribosomal protein 37, and cystathionine gamma-lyase in NSCLC, highlighting the metabolic flexibility of this cell type. Further, we demonstrate that visceral adiposity, but not body mass index (BMI), was positively associated with tumor glucose uptake in LUAD and that patients with high BMI had favorable prognostic transcriptional profiles, while tumors of patients with high visceral fat had poor prognostic gene expression. We posit that metabolic adjunct therapy may be more successful in LUSC rather than LUAD due to LUAD's metabolic flexibility and that visceral adiposity, not BMI alone, should be considered when developing precision medicine approaches for the treatment of NSCLC.
Collapse
Affiliation(s)
- Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA. .,Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| | | | - Shyryn Ospanova
- Nazarbayev Intellectual School of Physics and Mathematics, Almaty, Kazakhstan
| | | | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.,Department of Internal Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA. .,Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Tudurí E, Soriano S, Almagro L, García-Heredia A, Rafacho A, Alonso-Magdalena P, Nadal Á, Quesada I. The effects of aging on male mouse pancreatic β-cell function involve multiple events in the regulation of secretion: influence of insulin sensitivity. J Gerontol A Biol Sci Med Sci 2021; 77:405-415. [PMID: 34562079 DOI: 10.1093/gerona/glab276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with a decline in peripheral insulin sensitivity and an increased risk of impaired glucose tolerance and type 2 diabetes. During conditions of reduced insulin sensitivity, pancreatic β-cells undergo adaptive responses to increase insulin secretion and maintain euglycemia. However, the existence and nature of β-cell adaptations and/or alterations during aging are still a matter of debate. In this study, we investigated the effects of aging on β-cell function from control (3-month-old) and aged (20-month-old) mice. Aged animals were further categorized in two groups: high insulin sensitive (aged-HIS) and low insulin sensitive (aged-LIS). Aged-LIS mice were hyperinsulinemic, glucose intolerant and displayed impaired glucose-stimulated insulin and C-peptide secretion, whereas aged-HIS animals showed characteristics in glucose homeostasis similar to controls. In isolated β-cells, we observed that glucose-induced inhibition of KATP channel activity was reduced with aging, particularly in the aged-LIS group. Glucose-induced islet NAD(P)H production was decreased in aged mice, suggesting impaired mitochondrial function. In contrast, voltage-gated Ca 2+ currents were higher in aged-LIS β-cells, and pancreatic islets of both aged groups displayed increased glucose-induced Ca 2+ signaling and augmented insulin secretion compared with controls. Morphological analysis of pancreas sections also revealed augmented β-cell mass with aging, especially in the aged-LIS group, as well as ultrastructural β-cell changes. Altogether, these findings indicate that aged mouse β-cells compensate for the aging-induced alterations in the stimulus-secretion coupling, particularly by adjusting their Ca 2+ influx to ensure insulin secretion. These results also suggest that decreased peripheral insulin sensitivity exacerbates the effects of aging on β-cells.
Collapse
Affiliation(s)
- Eva Tudurí
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Lucía Almagro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Anabel García-Heredia
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paloma Alonso-Magdalena
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Ángel Nadal
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Ivan Quesada
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| |
Collapse
|
16
|
Peng L, Fang X, Xu F, Liu S, Qian Y, Gong X, Zhao X, Ma Z, Xia T, Gu X. Amelioration of Hippocampal Insulin Resistance Reduces Tau Hyperphosphorylation and Cognitive Decline Induced by Isoflurane in Mice. Front Aging Neurosci 2021; 13:686506. [PMID: 34512303 PMCID: PMC8425557 DOI: 10.3389/fnagi.2021.686506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
General anesthetics can induce cognitive impairments and increase the risk of Alzheimer’s disease (AD). However, the underlying mechanisms are still unknown. Our previous studies shown that long-term isoflurane exposure induced peripheral and central insulin resistance (IR) in adult mice and aggravated IR in type 2 diabetes mellitus (T2DM) mice. Clinical and preclinical studies revealed an association between impaired insulin signaling and tau pathology in AD and other tauopathies. We investigated if alleviation of hippocampal IR by the antidiabetic agent metformin could reduce tau hyperphosphorylation and cognitive decline induced by isoflurane in mice. The effects of prolonged (6 h) isoflurane anesthesia on hippocampal IR, hippocampal tau hyperphosphorylation, and hippocampus-dependent cognitive function were evaluated in wild type (WT) adult mice and the high-fat diet plus streptozotocin (HFD/STZ) mouse model of T2DM. Here we shown that isoflurane and HFD/STZ dramatically and synergistically induced hippocampal IR and fear memory impairment. Metformin pretreatment strongly ameliorated hippocampal IR and cognitive dysfunction caused by isoflurane in WT mice, but was less effective in T2DM mice. Isoflurane also induced hippocampal tau hyperphosphorylation and metformin reversed this effect. In addition, isoflurane significantly increased blood glucose levels in both adult and T2DM mice, and metformin reversed this effect as well. Administration of 25% glucose to metformin-pretreated mice induced hyperglycemia, but surprisingly did not reverse the benefits of metformin on hippocampal insulin signaling and fear memory following isoflurane anesthesia. Our findings show hippocampal IR and tau hyperphosphorylation contribute to acute isoflurane-induced cognitive dysfunction. Brief metformin treatment can mitigate these effects through a mechanism independent of glycemic control. Future studies are needed to investigate whether long-term metformin treatment can also prevent T2DM-induced hippocampal IR and cognitive decline.
Collapse
Affiliation(s)
- Liangyu Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Fangxia Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xiangdan Gong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Zhao
- Medical School of Nanjing University, Nanjing, China.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Park JM, Josan S, Hurd RE, Graham J, Havel PJ, Bendahan D, Mayer D, Chung Y, Spielman DM, Jue T. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle. Pflugers Arch 2021; 473:1761-1773. [PMID: 34415396 DOI: 10.1007/s00424-021-02613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Sonal Josan
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Ralph E Hurd
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Applied Science Laboratory, GE Healthcare, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - James Graham
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - David Bendahan
- CNRS, Aix-Marseille University, CRMBM, 13385, Marseille, France
| | - Dirk Mayer
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Youngran Chung
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Shur NF, Creedon L, Skirrow S, Atherton PJ, MacDonald IA, Lund J, Greenhaff PL. Age-related changes in muscle architecture and metabolism in humans: The likely contribution of physical inactivity to age-related functional decline. Ageing Res Rev 2021; 68:101344. [PMID: 33872778 PMCID: PMC8140403 DOI: 10.1016/j.arr.2021.101344] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
In the United Kingdom (UK), it is projected that by 2035 people aged >65 years will make up 23 % of the population, with those aged >85 years accounting for 5% of the total population. Ageing is associated with progressive changes in muscle metabolism and a decline in functional capacity, leading to a loss of independence. Muscle metabolic changes associated with ageing have been linked to alterations in muscle architecture and declines in muscle mass and insulin sensitivity. However, the biological features often attributed to muscle ageing are also seen in controlled studies of physical inactivity (e.g. reduced step-count and bed-rest), and it is currently unclear how many of these ageing features are due to ageing per se or sedentarism. This is particularly relevant at a time of home confinements reducing physical activity levels during the Covid-19 pandemic. Current knowledge gaps include the relative contribution that physical inactivity plays in the development of many of the negative features associated with muscle decline in older age. Similarly, data demonstrating positive effects of government recommended physical activity guidelines on muscle health are largely non-existent. It is imperative therefore that research examining interactions between ageing, physical activity and muscle mass and metabolic health is prioritised so that it can inform on the "normal" muscle ageing process and on strategies for improving health span and well-being. This review will focus on important changes in muscle architecture and metabolism that accompany ageing and highlight the likely contribution of physical inactivity to these changes.
Collapse
Affiliation(s)
- N F Shur
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, The University of Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - L Creedon
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, UK; School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - S Skirrow
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, UK; School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - P J Atherton
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby DE22 3DT, UK
| | - I A MacDonald
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - J Lund
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; School of Medicine, University of Nottingham Medical School, Royal Derby Hospital, Derby DE22 3DT, UK
| | - P L Greenhaff
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, UK; Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, The University of Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
19
|
Strasser B, Pesta D, Rittweger J, Burtscher J, Burtscher M. Nutrition for Older Athletes: Focus on Sex-Differences. Nutrients 2021; 13:nu13051409. [PMID: 33922108 PMCID: PMC8143537 DOI: 10.3390/nu13051409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise and a healthy diet are major determinants of a healthy lifespan. Although aging is associated with declining endurance performance and muscle function, these components can favorably be modified by regular physical activity and especially by exercise training at all ages in both sexes. In addition, age-related changes in body composition and metabolism, which affect even highly trained masters athletes, can in part be compensated for by higher exercise metabolic efficiency in active individuals. Accordingly, masters athletes are often considered as a role model for healthy aging and their physical capacities are an impressive example of what is possible in aging individuals. In the present review, we first discuss physiological changes, performance and trainability of older athletes with a focus on sex differences. Second, we describe the most important hormonal alterations occurring during aging pertaining regulation of appetite, glucose homeostasis and energy expenditure and the modulatory role of exercise training. The third part highlights nutritional aspects that may support health and physical performance for older athletes. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low bone and muscle mass and a higher demand for specific nutrients (e.g., vitamin D and probiotics) that may reduce the infection burden in masters athletes. Fourth, we present important research findings on the association between exercise, nutrition and the microbiota, which represents a rapidly developing field in sports nutrition.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)1-798-40-98
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764 Neuherberg, Germany
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
20
|
Risk of sarcopenia among older persons with Type 2 diabetes mellitus with different status of albuminuria: A dose-responsive association. Arch Gerontol Geriatr 2021; 95:104338. [PMID: 33652335 DOI: 10.1016/j.archger.2021.104338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The association between type 2 diabetes mellitus (T2DM) and sarcopenia has been reported before, but little was known regarding associations between albuminuria status in the development of sarcopenia. This study aimed to explore the associations between albuminuria status and sarcopenia among older patients with T2DM. METHODS This cross-sectional study recruited T2DM patients aged 65 years and older from the DM shared care center in a regional hospital who were grossly absent from functional impairment. Demographic characteristics were collected and functional assessments were performed for all participants. Urinary albumin-to-creatinine ratio (UACR) was obtained by spot urine exams, whereas UACR ≥ 30 mg/g was defined as microalbuminuria, and UACR > 300 mg/g as macroalbuminuria. Appendicular lean mass (ASM) was measured by the dual X-ray absorptiometry, and the relative appendicular muscle mass (RASM) was calculated as the ASM divided by height square (kg/m2).The definition of sarcopenia was made according to the Asian Working Group for Sarcopenia and muscle quality was defined as handgrip strength (kg) divided by RASM. RESULTS Overall, 180 participants (mean age: 72.5±5.3 years, 53.3% males) were enrolled for study. Higher HbA1c levels and poorer renal function were significantly associated with more severe albuminuria status.Besides, sarcopenia and low handgrip strength also showed dose-responsive associations with albuminuria status, which was similar in muscle quality.The receiver operating characteristic curve determine that the UACR of 13.7 mg/g was the optimal cutoff for sarcopenia diagnosis, which was lower than the conventionally definition of microalbuminuria (<30 mg/g). CONCLUSIONS Albuminuria status was dose-responsively associated with sarcopenia among older persons with T2DM, and the risk started to escalate from minimal albuminuria (UACR 9.18 mg/g in men and 18.4 mg/g in women). Further intervention studies are needed to evaluate potential benefits of better diabetes control in preventing sarcopenia and its outcomes.
Collapse
|
21
|
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. VITAMINS AND HORMONES 2021; 115:535-570. [PMID: 33706961 DOI: 10.1016/bs.vh.2020.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging involves numerous changes in body composition that include a decrease in skeletal muscle mass. The gradual reduction in muscle mass is associated with a simultaneous decrease in muscle strength, which leads to reduced mobility, fragility and loss of independence. This process called sarcopenia is secondary to several factors such as sedentary lifestyle, inadequate nutrition, chronic inflammatory state and neurological alterations. However, the endocrine changes associated with aging seem to be of special importance in the development of sarcopenia. On one hand, advancing age is associated with a decreased secretion of the main hormones that stimulate skeletal muscle mass and function (growth hormone, insulin-like growth factor 1 (IGFI), testosterone and estradiol). On the other hand, the alteration of the IGF-I signaling along with decreased insulin sensitivity also have an important impact on myogenesis. Other hormones that decline with aging such as the adrenal-derived dehydroepiandrosterone, thyroid hormones and vitamin D seem to also be involved in sarcopenia. Adipokines released by adipose tissue show important changes during aging and can affect muscle physiology and metabolism. In addition, catabolic hormones such as cortisol and angiotensin II can accelerate aged-induced muscle atrophy, as they are involved in muscle wasting and their levels increase with age. The role played by all of these hormones and the possible use of some of them as therapeutic tools for treating sarcopenia will be discussed.
Collapse
Affiliation(s)
- T Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A I Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Pharmactive Biotech Products S.L. Parque Científico de Madrid. Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain
| | - A López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Endo Y, Nourmahnad A, Sinha I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front Physiol 2020; 11:874. [PMID: 32792984 PMCID: PMC7390896 DOI: 10.3389/fphys.2020.00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
23
|
Lai N, Fealy CE, Kummitha CM, Cabras S, Kirwan JP, Hoppel CL. Mitochondrial Utilization of Competing Fuels Is Altered in Insulin Resistant Skeletal Muscle of Non-obese Rats (Goto-Kakizaki). Front Physiol 2020; 11:677. [PMID: 32612543 PMCID: PMC7308651 DOI: 10.3389/fphys.2020.00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Aim Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPARδ content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial carbohydrate oxidization (i.e., pyruvate) in muscle fibers. Methods Bioenergetic function was characterized in oxidative soleus (S) and glycolytic white gastrocnemius (WG) muscles with measurement of respiration rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate dehydrogenase activity (SDH). Western blot was used to determine protein expression of PPARδ, PDK isoform 2 and 4. Results CS and SDH activity, key markers of mitochondrial content, were reduced by ∼10-30% in diabetic vs. control, and the effect was evident in both oxidative and glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo respiration rates in permeabilized muscle fibers determined in the presence of complex I, II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function in T2DM muscle. Respiration in the presence of pyruvate was higher compared to palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6% (S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration was significantly greater in GK than controls (p < 10-3). Conclusion With competing fuels, the presence of fatty acids diminishes mitochondria ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite reduced PPARδ content.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA, United States.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chinna M Kummitha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Silvia Cabras
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Charles L Hoppel
- Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Al Batran R, Gopal K, Capozzi ME, Chahade JJ, Saleme B, Tabatabaei-Dakhili SA, Greenwell AA, Niu J, Almutairi M, Byrne NJ, Masson G, Kim R, Eaton F, Mulvihill EE, Garneau L, Masters AR, Desta Z, Velázquez-Martínez CA, Aguer C, Crawford PA, Sutendra G, Campbell JE, Dyck JRB, Ussher JR. Pimozide Alleviates Hyperglycemia in Diet-Induced Obesity by Inhibiting Skeletal Muscle Ketone Oxidation. Cell Metab 2020; 31:909-919.e8. [PMID: 32275862 DOI: 10.1016/j.cmet.2020.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Perturbations in carbohydrate, lipid, and protein metabolism contribute to obesity-induced type 2 diabetes (T2D), though whether alterations in ketone body metabolism influence T2D pathology is unknown. We report here that activity of the rate-limiting enzyme for ketone body oxidation, succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1), is increased in muscles of obese mice. We also found that the diphenylbutylpiperidine pimozide, which is approved to suppress tics in individuals with Tourette syndrome, is a SCOT antagonist. Pimozide treatment reversed obesity-induced hyperglycemia in mice, which was phenocopied in mice with muscle-specific Oxct1/SCOT deficiency. These actions were dependent on pyruvate dehydrogenase (PDH/Pdha1) activity, the rate-limiting enzyme of glucose oxidation, as pimozide failed to alleviate hyperglycemia in obese mice with a muscle-specific Pdha1/PDH deficiency. This work defines a fundamental contribution of enhanced ketone body oxidation to the pathology of obesity-induced T2D, while suggesting pharmacological SCOT inhibition as a new class of anti-diabetes therapy.
Collapse
Affiliation(s)
- Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Jingjing Niu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Nikole J Byrne
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Grant Masson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada
| | - Andrea R Masters
- Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | - Céline Aguer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada; School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Jason R B Dyck
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Abdulateef DS, Salih JM. Detection of C-Peptide in Scalp Hair of Healthy Adults. Diabetes Metab Syndr Obes 2020; 13:227-236. [PMID: 32099429 PMCID: PMC7006852 DOI: 10.2147/dmso.s240785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The C-peptide level from blood and urine samples represents endogenous insulin secretion and has clinical implications for individuals with and without diabetes. However, the study results are inconsistent and the available methods can only measure short-term C-peptide levels, which can be substantially affected by concurrent glycaemia. In this study, we evaluated whether C-peptide can be detected from hair? Hair C-peptide if detected could potentially represent long-term, insulin secretion. And to know whether there is any correlation between hair C-peptide with certain biochemical and demographic parameters. METHODS In a prospective observational study on 120 normal healthy individuals, hair samples were taken from the scalp and C-peptide was extracted. The hair C-peptide levels were measured in pg/mg of hair using electrochemiluminescence immunoassay (ECLISA) after methanol extraction and were compared among different age and body-type groups. Serum C-peptide, fasting plasma glucose (FPG) and HbA1c were assessed and their levels were correlated with anthropometric parameters. RESULTS A detectable range of C-peptide was found in the hair samples of all the subjects with a median of 63.59 pg/mg hair and it was positively correlated with FPG but no significant correlation was found between hair C-peptide and serum C-peptide levels. The hair C-peptide level, along with FPG and HbA1c, was significantly different according to age. CONCLUSION These results conclude that C-peptide can be detected from and measured in the scalp hair of humans and it is positively correlated with FPG, and it is significantly different according to age. This technique, if validated, may verify its usefulness in future studies of both healthy and diseased subjects.
Collapse
Affiliation(s)
- Darya S Abdulateef
- Physiology Department, College of Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Jamal M Salih
- Physiology Department, College of Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
- Diabetes Physician, Diabetes and Endocrine Centre, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
26
|
|
27
|
Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr 2020; 12:14. [PMID: 32082422 PMCID: PMC7014712 DOI: 10.1186/s13098-020-0523-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
As age increases, the risk of developing type 2 diabetes increases, which is associated with senile skeletal muscle dysfunction. During skeletal muscle aging, mitochondrial dysfunction, intramyocellular lipid accumulation, increased inflammation, oxidative stress, modified activity of insulin sensitivity regulatory enzymes, endoplasmic reticulum stress, decreased autophagy, sarcopenia and over-activated renin-angiotensin system may occur. These changes can impair skeletal muscle insulin sensitivity and increase the risk of insulin resistance and type 2 diabetes during skeletal muscle aging. This review of the mechanism of the increased risk of insulin resistance during skeletal muscle aging will provide a more comprehensive explanation for the increased incidence of type 2 diabetes in elderly individuals, and will also provide a more comprehensive perspective for the prevention and treatment of type 2 diabetes in elderly populations.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| |
Collapse
|
28
|
de Oliveira GV, Volino-Souza M, Leitão R, Pinheiro V, Alvares TS. Is flow-mediated dilatation associated with near-infrared spectroscopy-derived magnitude of muscle O 2 desaturation in healthy young and individuals at risk for cardiovascular disease? Microvasc Res 2019; 129:103967. [PMID: 31837305 DOI: 10.1016/j.mvr.2019.103967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
Vascular occlusion test (VOT)-induced reactive hyperemia in brachial artery is crucial to flow-mediated dilation (FMD). Emerging studies have suggested that reactive hyperemia depends on the magnitude of the O2 desaturation (ischemia) in downstream microvessels. Although near-infrared spectroscopy-derived tissue O2 saturation index (TSI) has been used to assess the magnitude of ischemia, the association between FMD and the magnitude of O2 desaturation has not been addressed. Therefore, the aim of the present study was to evaluate whether FMD correlates with the magnitude of muscle O2 desaturation in healthy young individuals and older adults at risk for cardiovascular disease (CVD). Twenty healthy young individuals and 20 others at risk for CVD participated in the study. The magnitude of ischemic stimulus was determined by calculating the area under curve of TSI signal over 5 min of cuff occlusion period. Oxygen resaturation rate was calculated as the upslope of the TSI signal over 10 s following cuff deflation. There was no significant correlation between FMD and the magnitude of ischemic stimulus in both groups assessed (young: R = 0.327; P = 0.159 and older: R = -0.184; P = 0.436). However, a significant correlation between the magnitude of O2 desaturation and O2 resaturation rate in young (R = 0.555; P = 0.011) and older individuals at risk for CVD (R = 0.539; P = 0.014). In conclusion, FMD response did not correlate with the magnitude of muscle O2 desaturation, although it seems to be partially associated with O2 resaturation rate.
Collapse
Affiliation(s)
- Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé Campus, Rio de Janeiro, Brazil; Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé Campus, Rio de Janeiro, Brazil; Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Renata Leitão
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé Campus, Rio de Janeiro, Brazil
| | - Vivian Pinheiro
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé Campus, Rio de Janeiro, Brazil
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Federal University of Rio de Janeiro, Macaé Campus, Rio de Janeiro, Brazil; Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, RJ, Brazil; Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Consitt LA, Dudley C, Saxena G. Impact of Endurance and Resistance Training on Skeletal Muscle Glucose Metabolism in Older Adults. Nutrients 2019; 11:nu11112636. [PMID: 31684154 PMCID: PMC6893763 DOI: 10.3390/nu11112636] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with insulin resistance and the development of type 2 diabetes. While this process is multifaceted, age-related changes to skeletal muscle are expected to contribute to impaired glucose metabolism. Some of these changes include sarcopenia, impaired insulin signaling, and imbalances in glucose utilization. Endurance and resistance exercise training have been endorsed as interventions to improve glucose tolerance and whole-body insulin sensitivity in the elderly. While both types of exercise generally increase insulin sensitivity in older adults, the metabolic pathways through which this occurs can differ and can be dependent on preexisting conditions including obesity and type 2 diabetes. In this review, we will first highlight age-related changes to skeletal muscle which can contribute to insulin resistance, followed by a comparison of endurance and resistance training adaptations to insulin-stimulated glucose metabolism in older adults.
Collapse
Affiliation(s)
- Leslie A Consitt
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA.
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, USA.
- Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Courtney Dudley
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Gunjan Saxena
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
30
|
Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019; 127:26-36. [PMID: 31128290 PMCID: PMC6708726 DOI: 10.1016/j.bone.2019.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a highly plastic tissue that remarkably adapts to diverse stimuli including exercise, injury, disuse, and, as discussed here, aging. Humans achieve peak skeletal muscle mass and strength in mid-life and then experience a progressive decline of up to 50% by the ninth decade. The loss of muscle mass and function with aging is a phenomenon termed sarcopenia. It is evidenced by the loss and atrophy of muscle fibers and the concomitant accretion of fat and fibrous tissue. Sarcopenia has been recognized as a key driver of limitations in physical function and mobility, but is perhaps less appreciated for its role in age-related metabolic dysfunction and loss of organismal resilience. Similar to other tissues, muscle is prone to multiple forms of age-related molecular and cellular damage, including disrupted protein turnover, impaired regenerative capacity, cellular senescence, and mitochondrial dysfunction. The objective of this review is to highlight the clinical consequences of skeletal muscle aging, and provide insights into potential biological mechanisms. In light of population aging, strategies to improve muscle health in older adults promise to have a profound public health impact.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Xu Zhang
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States of America
| | - Ian Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States of America
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
31
|
Valenzuela PL, Castillo-García A, Morales JS, Izquierdo M, Serra-Rexach JA, Santos-Lozano A, Lucia A. Physical Exercise in the Oldest Old. Compr Physiol 2019; 9:1281-1304. [PMID: 31688965 DOI: 10.1002/cphy.c190002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Societies are progressively aging, with the oldest old (i.e., those aged >80-85 years) being the most rapidly expanding population segment. However, advanced aging comes at a price, as it is associated with an increased incidence of the so-called age-related conditions, including a greater risk for loss of functional independence. How to combat sarcopenia, frailty, and overall intrinsic capacity decline in the elderly is a major challenge for modern medicine, and exercise appears to be a potential solution. In this article, we first summarize the physiological mechanisms underlying the age-related deterioration in intrinsic capacity, particularly regarding those phenotypes related to functional decline. The main methods available for the physical assessment of the oldest old are then described, and finally the multisystem benefits that exercise (or "exercise mimetics" in those situations in which volitional exercise is not feasible) can provide to this population segment are reviewed. In summary, lifetime physical exercise can help to attenuate the loss of many of the properties affected by aging, especially when the latter is accompanied by an inactive lifestyle and benefits can also be obtained in frail individuals who start exercising at an advanced age. Multicomponent programs combining mainly aerobic and resistance training should be included in the oldest old, particularly during disuse situations such as hospitalization. However, evidence is still needed to support the effectiveness of passive physical strategies including neuromuscular electrical stimulation or vibration for the prevention of disuse-induced negative adaptations in those oldest old people who are unable to do physical exercise. © 2019 American Physiological Society. Compr Physiol 9:1281-1304, 2019.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | | | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mikel Izquierdo
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Health Sciences, Public University of Navarra, Navarrabiomed, Idisna, Pamplona, Spain
| | - José A Serra-Rexach
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatric, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain and Research Institute Hospital 12 de Octubre (ì+12'), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
32
|
Giacovazzo G, Fabbrizio P, Apolloni S, Coccurello R, Volonté C. Stimulation of P2X7 Enhances Whole Body Energy Metabolism in Mice. Front Cell Neurosci 2019; 13:390. [PMID: 31496939 PMCID: PMC6712077 DOI: 10.3389/fncel.2019.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/07/2019] [Indexed: 12/26/2022] Open
Abstract
The P2X7 receptor, a member of the ionotropic purinergic P2X family of extracellular ATP-gated receptors, exerts strong trophic effects when tonically activated in cells, in addition to cytotoxic effects after a sustained activation. Because of its widespread distribution, P2X7 regulates several cell- and tissue-specific physiological functions, and is involved in a number of disease conditions. A novel role has recently emerged for P2X7 in the regulation of glucose and energy metabolism. In previous work, we have demonstrated that genetic depletion, and to a lesser extent also pharmacological inhibition of P2X7, elicits a significant decrease of the whole body energy expenditure and an increase of the respiratory exchange ratio. In the present work, we have investigated the effects of P2X7 stimulation in vivo on the whole body energy metabolism. Adult mice were daily injected with the specific P2X7 agonist 2′(3′)-O-(4-Benzoylbenzoyl)adenosine 5′-triphosphate for 1 week and subjected to indirect calorimetric analysis for 48 h. We report that 2′(3′)-O-(4-Benzoylbenzoyl)adenosine 5′-triphosphate increases metabolic rate and O2 consumption, concomitantly decreasing respiratory rate and upregulating NADPH oxidase 2 in gastrocnemius and tibialis anterior muscles. Our results indicate a major impact on energy homeostasis and muscle metabolism by activation of P2X7.
Collapse
Affiliation(s)
| | - Paola Fabbrizio
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Savina Apolloni
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Roberto Coccurello
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy.,Institute for Complex System (ISC), CNR, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, Fondazione Santa Lucia IRCCS, Rome, Italy.,Institute for Systems Analysis and Computer Science, CNR, Rome, Italy
| |
Collapse
|
33
|
Jacob KJ, Chevalier S, Lamarche M, Morais JA. Leucine Supplementation Does Not Alter Insulin Sensitivity in Prefrail and Frail Older Women following a Resistance Training Protocol. J Nutr 2019; 149:959-967. [PMID: 31149709 DOI: 10.1093/jn/nxz038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Frailty is a clinical condition associated with loss of muscle mass and strength (sarcopenia). Although sarcopenia has multifactorial causes, it might be partly attributed to a blunted response to anabolic stimuli. Leucine acutely increases muscle protein synthesis, and resistance training (RT) is the strongest stimuli to counteract sarcopenia and was recently shown to improve insulin sensitivity (IS) in frail older women. Discrepancies exist regarding whether chronic supplementation of leucine in conjunction with RT can improve muscle mass and IS. OBJECTIVE The aim of this double-blinded placebo-controlled study was to determine the effects of leucine supplementation and RT on IS in prefrail and frail older women. METHODS Using the Fried criteria, 19 nondiabetic prefrail (1-2 criteria) and frail (≥3 criteria) older women (77.5 ± 1.3 y; body mass index (kg/m2): 25.1 ± 0.9) underwent a 3-mo intervention of RT 3 times/wk with protein-optimized diet of 1.2 g·kg-1·d-1 and 7.5 g·d-1 of l-leucine supplementation compared with placebo l-alanine. Pre-/postintervention primary outcomes were fasting plasma glucose, serum insulin, and 4-h responses to a standard meal of complete liquid formula. Secondary outcomes of resting energy expenditure using indirect calorimetry and body composition using dual-energy X-ray absorptiometry were obtained. Paired t tests analyzed pooled data, and 2-factor repeated-measures ANOVA determined supplementation, training, and interaction effects. RESULTS No significant time, group, or interaction effects were observed for postprandial areas under the curve of serum insulin or plasma glucose or for resting energy expenditure in l-leucine compared with l-alanine. Total lean body mass increased and percentage body fat decreased significantly for both groups postintervention (0.76 ± 0.13 and -0.92 ± 0.33 kg, respectively; time effect: P < 0.01). CONCLUSIONS IS was not affected by RT and leucine supplementation in nondiabetic prefrail and frail older women. Therefore, leucine supplementation does not appear to influence IS under these conditions. This trial was registered at clinicaltrials.gov as NCT01922167.
Collapse
Affiliation(s)
- Kathryn J Jacob
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Stéphanie Chevalier
- Research Institute of the McGill University Health Centre, Montreal, Canada.,Division of Geriatric Medicine, McGill University, MUHC-Montreal General Hospital, Montreal, Canada.,School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Marie Lamarche
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - José A Morais
- Research Institute of the McGill University Health Centre, Montreal, Canada.,Division of Geriatric Medicine, McGill University, MUHC-Montreal General Hospital, Montreal, Canada.,School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|
34
|
Monaco CMF, Gingrich MA, Hawke TJ. Considering Type 1 Diabetes as a Form of Accelerated Muscle Aging. Exerc Sport Sci Rev 2019; 47:98-107. [PMID: 30653028 DOI: 10.1249/jes.0000000000000184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent evidence reveals impairments to skeletal muscle health in adolescent/young adults with type 1 diabetes (T1D). Interestingly, the observed changes in T1D are not unlike aged muscle, particularly, the alterations to mitochondria. Thus, we put forth the novel hypothesis that T1D may be considered a condition of accelerated muscle aging and that, similar to aging, mitochondrial dysfunction is a primary contributor to this complication.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
35
|
Conte M, Armani A, Conte G, Serra A, Franceschi C, Mele M, Sandri M, Salvioli S. Muscle-specific Perilipin2 down-regulation affects lipid metabolism and induces myofiber hypertrophy. J Cachexia Sarcopenia Muscle 2019; 10:95-110. [PMID: 30288961 PMCID: PMC6438344 DOI: 10.1002/jcsm.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/06/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Perilipin2 (Plin2) belongs to a family of five highly conserved proteins, known for their role in lipid storage. Recent data indicate that Plin2 has an important function in cell metabolism and is involved in several human pathologies, including liver steatosis and Type II diabetes. An association between Plin2 and lower muscle mass and strength has been found in elderly and inactive people, but its function in skeletal muscle is still unclear. Here, we addressed the role of Plin2 in adult muscle by gain and loss of function experiments. METHODS By mean of in vivo Plin2 down-regulation (shPlin2) and overexpression (overPlin2) in murine tibialis anterior muscle, we analysed the effects of Plin2 genetic manipulations on myofiber size and lipid composition. An analysis of skeletal muscle lipid composition was also performed in vastus lateralis samples from young and old patients undergoing hip surgery. RESULTS We found that Plin2 down-regulation was sufficient to induce a 30% increase of myofiber cross-sectional area, independently of mTOR pathway. Alterations of lipid content and modulation of genes involved in lipid synthesis occurred in hypertrophic muscles. In particular, we showed a decrease of triglycerides, ceramides, and phosphatidylcoline:phosphatidylethanolamine ratio, a condition known to impact negatively on muscle function. Plin2 overexpression did not change fibre size; however, lipid composition was strongly affected in a way that is similar to that observed in human samples from old patients. CONCLUSIONS Altogether these data indicate that Plin2 is a critical mediator for the control of muscle mass, likely, but maybe not exclusively, through its critical role in the regulation of intracellular lipid content and composition.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Armani
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.,Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | | | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.,Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Shi M, Ellingsen Ø, Bathen TF, Høydal MA, Koch LG, Britton SL, Wisløff U, Stølen TO, Esmaeili M. Skeletal muscle metabolism in rats with low and high intrinsic aerobic capacity: Effect of aging and exercise training. PLoS One 2018; 13:e0208703. [PMID: 30533031 PMCID: PMC6289443 DOI: 10.1371/journal.pone.0208703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Exercise training increases aerobic capacity and is beneficial for health, whereas low aerobic exercise capacity is a strong independent predictor of cardiovascular disease and premature death. The purpose of the present study was to determine the metabolic profiles in a rat model of inborn low versus high capacity runners (LCR/HCR) and to determine the effect of inborn aerobic capacity, aging, and exercise training on skeletal muscle metabolic profile. Methods LCR/HCR rats were randomized to high intensity low volume interval treadmill training twice a week or sedentary control for 3 or 11 months before they were sacrificed, at 9 and 18 months of age, respectively. Magnetic resonance spectra were acquired from soleus muscle extracts, and partial least square discriminative analysis was used to determine the differences in metabolic profile. Results Sedentary HCR rats had 54% and 30% higher VO2max compared to sedentary LCR rats at 9 months and 18 months, respectively. In HCR, exercise increased running speed significantly, and VO2max was higher at age of 9 months, compared to sedentary counterparts. In LCR, changes were small and did not reach the level of significance. The metabolic profile was significantly different in the LCR sedentary group compared to the HCR sedentary group at the age of 9 and 18 months, with higher glutamine and glutamate levels (9 months) and lower lactate level (18 months) in HCR. Irrespective of fitness level, aging was associated with increased soleus muscle concentrations of glycerophosphocholine and glucose. Interval training did not influence metabolic profiles in LCR or HCR rats at any age. Conclusion Differences in inborn aerobic capacity gave the most marked contrasts in metabolic profile, there were also some changes with ageing. Low volume high intensity interval training twice a week had no detectable effect on metabolic profile.
Collapse
Affiliation(s)
- Mingshu Shi
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, St.Lucia, Queensland, Australia
| | - Tomas O Stølen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
37
|
Lettieri-Barbato D, Cannata SM, Casagrande V, Ciriolo MR, Aquilano K. Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle. PLoS One 2018; 13:e0195912. [PMID: 29742122 PMCID: PMC5942780 DOI: 10.1371/journal.pone.0195912] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/02/2018] [Indexed: 01/07/2023] Open
Abstract
A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging.
Collapse
Affiliation(s)
| | | | | | - Maria Rosa Ciriolo
- University of Rome Tor Vergata, Dept. Biology, Rome, Italy
- IRCCS San Raffaele La Pisana, Rome, Italy
| | - Katia Aquilano
- University of Rome Tor Vergata, Dept. Biology, Rome, Italy
- * E-mail: (KA); (DL)
| |
Collapse
|
38
|
Tetri LH, Diffee GM, Barton GP, Braun RK, Yoder HE, Haraldsdottir K, Eldridge MW, Goss KN. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia. Front Physiol 2018; 9:326. [PMID: 29651255 PMCID: PMC5884929 DOI: 10.3389/fphys.2018.00326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/15/2018] [Indexed: 01/17/2023] Open
Abstract
Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.
Collapse
Affiliation(s)
- Laura H Tetri
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin, Madison, WI, United States
| | - Gregory P Barton
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Rudolf K Braun
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Hannah E Yoder
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Kristin Haraldsdottir
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin, Madison, WI, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin, Madison, WI, United States
| | - Kara N Goss
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States.,Department of Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
39
|
|
40
|
Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice. Proc Natl Acad Sci U S A 2017; 114:E11285-E11292. [PMID: 29237750 PMCID: PMC5748223 DOI: 10.1073/pnas.1716990115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance in liver and skeletal muscle are major factors in the pathogenesis of type 2 diabetes; however, the molecular mechanism or mechanisms responsible for this phenomenon have not been established. Recently, an association of a single-nucleotide polymorphism in the human N-acetyltransferase 2 (Nat2) gene with insulin resistance in humans was found. Here, we show that the murine ortholog Nat1 knockout (KO) mice manifested whole-body insulin resistance associated with marked increases in liver and muscle lipid content. Nat1 KO mice also displayed reduced whole-body energy expenditure and reduced mitochondrial activity. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced liver and muscle insulin resistance. A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle triglyceride (TAG) and diacylglycerol (DAG) content, which was associated with increased PKCε activation in liver and increased PKCθ activation in skeletal muscle. Nat1 KO mice also displayed reduced whole-body energy expenditure and reduced mitochondrial oxygen consumption in white adipose tissue, brown adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid deposition, insulin resistance, and type 2 diabetes.
Collapse
|
41
|
Drake JC, Yan Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. J Physiol 2017; 595:6391-6399. [PMID: 28795394 PMCID: PMC5638883 DOI: 10.1113/jp274337] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/05/2017] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is important for overall functionality and health. Ageing is associated with an accumulation of damage to mitochondrial DNA and proteins. In particular, damage to mitochondrial proteins in skeletal muscle, which is a loss of mitochondrial proteostasis, contributes to tissue dysfunction and negatively impacts systemic health. Therefore, understanding the mechanisms underlying the regulation of mitochondrial proteostasis and how those mechanisms change with age is important for the development of interventions to promote healthy ageing. Herein, we examine how impairment in the selective degradation of damaged/dysfunctional mitochondria through mitophagy may play a central role in the loss of mitochondrial proteostasis in skeletal muscle ageing, as well as its broader implications for systemic health. Further, we explore how stimulating mitophagy through exercise may promote healthy ageing.
Collapse
Affiliation(s)
- Joshua C. Drake
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
| | - Zhen Yan
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia School of MedicineCharlottesvilleVA22908USA
| |
Collapse
|
42
|
In rats gestational iron deficiency does not change body fat or hepatic mitochondria in the aged offspring. J Dev Orig Health Dis 2017; 9:232-240. [PMID: 28870272 DOI: 10.1017/s2040174417000721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction and resulting changes in adiposity have been observed in the offspring of animals fed a high fat (HF) diet. As iron is an important component of the mitochondria, we have studied the offspring of female rats fed complete (Con) or iron-deficient (FeD) rations for the duration of gestation to test for similar effects. The FeD offspring were ~12% smaller at weaning and remained so because of a persistent reduction in lean tissue mass. The offspring were fed a complete (stock) diet until 52 weeks of age after which some animals from each litter were fed a HF diet for a further 12 weeks. The HF diet increased body fat when compared with animals fed the stock diet, however, prenatal iron deficiency did not change the ratio of fat:lean in either the stock or HF diet groups. The HF diet caused triglyceride to accumulate in the liver, however, there was no effect of prenatal iron deficiency. The activity of the mitochondrial electron transport complexes was similar in all groups including those challenged with a HF diet. HF feeding increased the number of copies of mitochondrial DNA and the prevalence of the D-loop mutation, however, neither parameter was affected by prenatal iron deficiency. This study shows that the effects of prenatal iron deficiency differ from other models in that there is no persistent effect on hepatic mitochondria in aged animals exposed to an increased metabolic load.
Collapse
|
43
|
Lee HY, Lee JS, Alves T, Ladiges W, Rabinovitch PS, Jurczak MJ, Choi CS, Shulman GI, Samuel VT. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 2017; 66:2072-2081. [PMID: 28476930 PMCID: PMC5521865 DOI: 10.2337/db16-1334] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/30/2017] [Indexed: 01/06/2023]
Abstract
We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling.
Collapse
Affiliation(s)
- Hui-Young Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Jae Sung Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Tiago Alves
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | | - Michael J Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Cheol Soo Choi
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Veterans Affairs Medical Center, West Haven, CT
| |
Collapse
|
44
|
Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 2017; 8:660-672. [PMID: 28508547 PMCID: PMC5566650 DOI: 10.1002/jcsm.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.
Collapse
Affiliation(s)
- Susann Lehmann
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Joseph J Bass
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Thomas F Barratt
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Mohammed Z Ali
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| |
Collapse
|
45
|
Foer D, Zhu M, Cardone RL, Simpson C, Sullivan R, Nemiroff S, Lee G, Kibbey RG, Petersen KF, Insogna KL. Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis. Osteoporos Int 2017; 28:2011-2017. [PMID: 28283687 PMCID: PMC6693506 DOI: 10.1007/s00198-017-3977-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
UNLABELLED LRP5 loss-of-function mutations have been shown to cause profound osteoporosis and have been associated with impaired insulin sensitivity and dysregulated lipid metabolism. We hypothesized that gain-of-function mutations in LRP5 would also affect these parameters. We therefore studied individuals with LRP5 gain-of-function mutations exhibiting high bone mass (HBM) phenotypes and found that while there was no detected change in insulin sensitivity, there was a significant reduction in serum LDL. INTRODUCTION Wnt signaling through LRP5 represents a newly appreciated metabolic pathway, which potentially represents a target for drug discovery in type 2 diabetes and hyperlipidemia. Studies in animal models suggest a physiologic link between LRP5 and glucose and lipid homeostasis; however, whether it plays a similar role in humans is unclear. As current literature links loss-of-function LRP5 to impaired glucose and lipid metabolism, we hypothesized that individuals with an HBM-causing mutation in LRP5 would exhibit improved glucose and lipid homeostasis. Since studies in animal models have suggested that Wnt signaling augments insulin secretion, we also examined the effect of Wnt signaling on glucose-stimulated insulin secretion on human pancreatic islets. METHODS This was a matched case-control study. We used several methods to assess glucose and lipid metabolism in 11 individuals with HBM-causing mutations in LRP5. Affected study participants were recruited from previously identified kindreds with HBM-causing LRP5 mutations and included 9 males and 2 females. Two subjects that were being treated with insulin for type 2 diabetes were excluded from our analysis, as this would have obscured our ability to determine the impact of gain-of-function LRP5 mutations on glucose metabolism. The mean age of the evaluated study subjects was 55 ± 7 with a mean BMI of 27.2 ± 2.0. Control subjects were matched and recruited from the general community at an equivalent ratio, with 18 males and 4 females (mean age 56 ± 4; mean BMI 27.2 ± 1.0). Study testing was conducted at an academic medical center. RESULTS There were no statistically significant differences between affected and matched control populations for HbA1c (p = 0.06), eAG (p = 0.06), insulin (p = 0.82), HOMA-B (p = 0.34), or HOMA-IR (p = 0.66). The mean Insulin Sensitivity Index (ISI) was also similar between control and affected individuals. Total cholesterol (p = 0.43), triglycerides (TG) (p = 0.56), and HDL (p = 0.32) were not different between the same two groups. In a small subset of studied subjects, intramyocellular and hepatic lipid content were similar in the affected individuals and controls when quantified by proton magnetic resonance spectroscopy (MRS). However, the mean value for serum LDL was significantly lower (p = 0.04) in affected individuals. In primary human islets, there were no differences between control and Wnt treatment groups for insulin secretion measured as area under the curve (AUC) for first phase (p = 0.17) or second phase (p = 0.33) insulin secretion. CONCLUSIONS Although our sample size was small, our data do not support the hypothesis that HBM-causing LRP5 mutations, associated with increased Wnt signaling, improve glucose metabolism in humans. However, it does appear that LRP5 variants may affect LDL metabolism, a major risk factor for coronary artery disease. The molecular mechanisms underpinning this effect warrant further study.
Collapse
Affiliation(s)
- D Foer
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - M Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - R L Cardone
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - C Simpson
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - R Sullivan
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - S Nemiroff
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - G Lee
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
| | - R G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - K F Petersen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA
- Novo-Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - K L Insogna
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, PO Box 208020, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
46
|
Schelp AO, Mendes-Chiloff CL, Paduan VC, Corrente JE, Vieira A, Marchette JCN, de Souza JT, Luvizuto GJ, Nogueira CR, Bazan R. Amnestic dementia impairment in Parkinson's disease: The role of body composition, ageing and insulin resistance. Clin Nutr ESPEN 2017; 20:47-51. [PMID: 29072169 DOI: 10.1016/j.clnesp.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The risk of cognitive impairment associated with Parkinson's disease (PD) is related to ageing. The role of body compartmentalization and associated metabolic dysfunctions, as a risk factor for dementia in PD is still not clear. OBJECTIVE To investigate body mass distribution, insulin resistance, and other parameters in patients without dementia, and those with dementia classified as compromised delayed memory. SUBJECTS AND METHODS We recorded body composition, basal levels of insulin resistance, and other data from 135 patients, who were followed for at least two years. The patients completed a Brief Cognitive Battery test. Patients with delayed recall memory impairment were assessed using the Mattis dementia rating scale. RESULTS There was a correlation between age and the patient's scores. Age was negatively correlated with scores on all of the screening battery subtests (p ≤ 0.001), while formal education was positively correlated with the test scores. Insulin resistance was higher in non-demented patients compared to patients with impaired memory (p = 0.0027). There was no association between body composition and cognitive dysfunction in patients with PD. CONCLUSIONS The results of this study indicate an apparent decrease in insulin resistance associated with cognitive impairment in PD. We found no correlations between body composition and memory dysfunction associated with PD.
Collapse
Affiliation(s)
- Arthur Oscar Schelp
- Department of Neurology, Psychology and Psychiatry - Univ Estadual Paulista (UNESP), Brazil; Neurology Fellowship, Dept. of Neurology, Psychology, and Psychiatry - Univ Estadual Paulista (UNESP), Brazil.
| | | | | | - José Eduardo Corrente
- Bioscience Institute, Statistical Department - Univ Estadual Paulista (UNESP), Brazil; Neurology Fellowship, Dept. of Neurology, Psychology, and Psychiatry - Univ Estadual Paulista (UNESP), Brazil.
| | - Aline Vieira
- Department of Internal Medicine - Univ Estadual Paulista (UNESP), Brazil.
| | | | | | - Gustavo José Luvizuto
- Rehabilitation Service, Clinical Hospital of Botucatu Medical School, Brazil; Neurology Fellowship, Dept. of Neurology, Psychology, and Psychiatry - Univ Estadual Paulista (UNESP), Brazil.
| | - Célia Regina Nogueira
- Department of Internal Medicine - Univ Estadual Paulista (UNESP), Brazil; Neurology Fellowship, Dept. of Neurology, Psychology, and Psychiatry - Univ Estadual Paulista (UNESP), Brazil.
| | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry - Univ Estadual Paulista (UNESP), Brazil.
| |
Collapse
|
47
|
Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, Petersen AC, Anderson MJ, Murphy RM. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. J Physiol 2017; 595:3345-3359. [PMID: 28251664 DOI: 10.1113/jp273950] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. ABSTRACT Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole muscle and Mfn2 content decreased in type II fibres. Increases in citrate synthase activity (55%) and mitochondrial respiratory chain subunits COXIV (37%) and NDUFA9 (48%) and mitochondrial respiratory chain complexes (∼70-100%) were observed in homogenates and/or single fibres. These findings reveal (i) a similar amount of mitochondria in muscle from young and healthy older adults and (ii) a robust increase of mitochondrial content following 12 weeks of HIT exercise in older adults.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Mitchell J Anderson
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle 2017; 8:190-201. [PMID: 27897400 PMCID: PMC5377414 DOI: 10.1002/jcsm.12144] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
49
|
Müller MJ, Geisler C. From the past to future: from energy expenditure to energy intake to energy expenditure. Eur J Clin Nutr 2017; 71:358-364. [PMID: 27901032 PMCID: PMC5518173 DOI: 10.1038/ejcn.2016.231] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022]
Abstract
Although most recent research on energy balance focusses on energy intake (EI) there is still need to think about both sides of the energy balance. Current research on energy expenditure (EE) relates to metabolic adaptation to negative energy balance, mitochondrial metabolism associated with aging, obesity and type 2 diabetes mellitus, the role of EE in hunger and appetite control, non-shivering thermogenesis and brown adipose tissue activity, cellular bioenergetics as a target of obesity treatment and the evolutionary and ecological determinants of EE in humans and other primates. As far as regulation of energy balance is concerned there is recent evidence that EE rather than body weight is under tight control. Biologically, EE is maintained within a narrow physiological range. An EE-set point has been proposed as the width between the upper and lower boundaries of the individual EE range. Regulation of EE may fail in very obese patients with an EI above their upper boundary and after drastic weight loss when patients may go far below their lower EE boundary and thus are loosing control. In population studies, fat-free mass (FFM) and its composition (that is, the proportion of high to low metabolic rate organs) are major determinants of EE. It is tempting to speculate that tight biologic control of EE is related to brain energy need, which is preserved at the cost of peripheral metabolism. There is a moderate heritability of EE, which is independent of the heritability of FFM. In future, metabolic phenotyping should focus on the EE-FFM relationship rather than on EE-values alone.
Collapse
Affiliation(s)
- M J Müller
- Institut für Humanernährung und Lebensmittelkunde, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - C Geisler
- Institut für Humanernährung und Lebensmittelkunde, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
50
|
Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci U S A 2017; 114:1189-1194. [PMID: 28096339 DOI: 10.1073/pnas.1620506114] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.
Collapse
|