1
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Inoue S, Fujie K, Hamaguchi T, Ishimaru Y, Miyawaki K, Takahashi A, Nikawa T, Noji S, Watanabe T, Mito T. Lineage-specific duplication and functional diversification of DOPA-decarboxylase genes in the Gryllidae family, as revealed in Gryllus bimaculatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104246. [PMID: 39653316 DOI: 10.1016/j.ibmb.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The DOPA-decarboxylase (DDC) gene is crucial for dopamine synthesis and influences various biological functions in insects, including body coloration, behavior, learning, and sleep. However, its evolutionary impact remains largely unexplored. This study reports on the tandem duplication of two bona fide ddc genes (ddc1 and ddc2) in the Gryllidae cricket family. We herein investigated the function of ddc1 and ddc2 using Gryllus bimaculatus (Gb) as a model. Our results revealed that Gb'ddc1 was expressed systemically, with its expression being higher immediately after molting compared to the stage following melanin pigmentation. In homozygous knockout mutants of Gb'ddc1, generated via CRISPR/Cas9, reduced body color pigmentation and had translucent cuticles, decreased dopamine levels, and over-accumulated DOPA. These mutants died shortly after hatching, likely due to cuticle defects, underscoring the essential role of dopamine, produced by Gb'ddc1, in melanin synthesis. Conversely, Gb'ddc2 expression was confined to the ovary and was not up-regulated after molting. Homozygous knockout mutants of Gb'ddc2 exhibited no body color defects, whereas hatchability and embryonic development rates were significantly reduced. Interestingly, dopamine levels in the ovaries were significantly elevated in Gb'ddc2 mutants. This suggests that normal ovarian dopamine levels, modulated by Gb'ddc2, are vital for fertility maintenance. The function of Gb'ddc2 differs from that of typical ddc, indicating neofunctionalization through evolutionary duplication. Overall, Gb'ddc1 and Gb'ddc2 have distinct functions, and precise regulation of ovarian dopamine levels using these two ddc genes may have enhanced cricket fertility.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Kai Fujie
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan.
| |
Collapse
|
3
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Song J, Li W, Gao L, Yan Q, Zhang X, Liu M, Zhou S. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Commun Biol 2024; 7:1604. [PMID: 39623057 PMCID: PMC11612435 DOI: 10.1038/s42003-024-07285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Juvenile hormone (JH) represses insect metamorphosis and stimulates reproduction. JH titers are generally low in juveniles, drop to a nadir during metamorphosis, increase after eclosion and peak in vitellogenic phase. We found that Jhamt, a rate-limiting enzyme in JH biosynthesis, mirrors JH titer patterns in the migratory locust. Knocking down Jhamt reduced JH titers, led to precocious nymphal ecdysis, metamorphosis and impaired vitellogenesis. Jhamt is negatively regulated by miR-276 and positively by miR-182013-5p. miR-276 is abundant in late nymphal but low in adults, while miR-182013-5p shows the opposite pattern. In nymphs, miR-276 binds more to Jhamt, while in adults, miR-182013-5p dominates. Functionally, miR-276 reduced Jhamt and JH levels, shortening nymphal development and inhibiting Vg expression. Conversely, miR-182013-5p increased Jhamt and JH levels, prolonging nymphal development and enhancing Vg expression. Our findings identify miR-276 and miR-182013-5p as dual regulators in JH biosynthesis, acting as "brake" and "accelerator," respectively. This study provides new insights into JH titer fluctuations and miRNA regulation in insect metamorphosis and reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Wanwan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Lulu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingzhi Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
5
|
Anjum AA, Lin MJ, Jin L, Li GQ. A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2024; 33:650-661. [PMID: 38783592 DOI: 10.1111/imb.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of akirin transcripts in Henosepilachna vigintioctopunctata, a serious Coleopteran potato defoliator (hereafter Hvakirin), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting Hvakirin impaired larval development. The Hvakirin RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the Hvakirin depleted larvae. Two layers of cuticles, old and newly formed, were noted in the dsegfp-injected animals. In contrast, only a layer of cuticle was found in the dsakirin-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (Hvsmox, Hvmyo and Hvbabo), a 20-hydroxyecdysone (20E) receptor gene (HvEcR) and six 20E response genes (HvHR3, HvHR4, HvE75, HvBrC, HvE93 and Hvftz-f1) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (Hvjhamt), a JH receptor gene (HvMet) and two JH response genes (HvKr-h1 and HvHairy) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng-Jiao Lin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Zhou H, Shu R, Zhang C, Xiao Y, Jing D, Tang J, Cao Z, Chen X, Mei Y, Li F. Developmental correspondence of juvenile stages across the locust, harlequin ladybird, and diamondback moth. iScience 2024; 27:110898. [PMID: 39429783 PMCID: PMC11490715 DOI: 10.1016/j.isci.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
Insect metamorphosis is a captivating aspect of animal research. To address the controversy regarding the developmental correspondence between hemimetabolous and holometabolous insects, we utilized non-destructive micro-computed tomography (CT) imaging and RNA-seq to examine wing growth and transcriptome profiles across juvenile stages in the Locusta migratoria, Harmonia axyridis, and Plutella xylostella, with distinct metamorphic strategies. Micro-CT revealed that over 88% of wing volume increase in ladybirds and moths occurs during the prepupal-pupal transition, similar to locust nymphs. Developmental transcriptome clustering demonstrated that gene expression patterns more closely resembled those between ladybird/moth prepupae/pupae and locust nymphs, whereas holometabolous larvae exhibited distinct profiles. Notably, gene expression specificity increased across juvenile stages with more recent species divergence. Genes highly expressed around the prepupal/pupal stages accumulated higher evolutionary rates. These integrated findings unveil commonalities in juvenile stage development among the locust, ladybird, and moth, providing insights into the evolution of metamorphosis within neopteran insects.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Runguo Shu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chaowei Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yiqi Xiao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dong Jing
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jiejing Tang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Zixiong Cao
- Object Research Systems (ORS) Inc, 760 Saint-Paul St W, Montreal, Quebec H3C 1M4, Canada
| | - Xi Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yang Mei
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Li
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
7
|
Kayukawa T, Nagamine K, Inui T, Yokoi K, Kobayashi I, Nakao H, Ishikawa Y, Matsuo T. Dead ringer acts as a major regulator of juvenile hormone biosynthesis in insects. PNAS NEXUS 2024; 3:pgae435. [PMID: 39398620 PMCID: PMC11467689 DOI: 10.1093/pnasnexus/pgae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
In holometabolous insects, proper control of the production of juvenile hormone (JH), which maintains larval traits, is crucial for successful metamorphosis. JH is produced specifically in the corpora allata (CA) via the functioning of a set of JH biosynthetic enzymes (JHBEs). Expression of JHBE genes in the CA is coordinated except for JH acid methyltransferase (JHAMT), which functions in the last step of JH biosynthesis. Here, we sought to determine the mechanism that enables this coordinated expression, assuming the presence of a central regulator of JHBE genes. Comparison of transcriptomes in the CA during active and inactive stages revealed the presence of 3 transcription factors, whose expression patterns matched those of JHBE genes. We propose that one of these, Dead ringer (Dri), is the central up-regulator of CA-specific JHBE genes including JHAMT, based on the following findings: (ⅰ) Knockdown of Dri in the larvae caused precocious metamorphosis, which was rescued by the exogenous application of JH analog, and (ⅱ) knockdown of Dri decreased the expression of most CA-specific JHBE genes examined. Furthermore, RNAi-based reverse genetics indicated that Dri works most upstream in the control of CA-specific JHBE genes, and that shutdown of JHAMT, which occurs independent of other JHBE genes prior to the onset of metamorphosis, can be hypothetically explained by the presence of an unidentified repressor. Our study suggests that Dri, which has been known to regulate embryonic development in a wide range of animals, is conferred a new role in holometabolous insects, i.e. central regulation of CA-specific JHBE genes.
Collapse
Affiliation(s)
- Takumi Kayukawa
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Keisuke Nagamine
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Tomohiro Inui
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Kakeru Yokoi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Isao Kobayashi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Hajime Nakao
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
- Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Jia Q, Yang L, Wen J, Liu S, Wen D, Luo W, Wang W, Palli SR, Sheng L. Cyp6g2 is the major P450 epoxidase responsible for juvenile hormone biosynthesis in Drosophila melanogaster. BMC Biol 2024; 22:111. [PMID: 38741075 PMCID: PMC11092216 DOI: 10.1186/s12915-024-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiamin Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyuan, 558000, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, Beijing, 100084, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Li Sheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
9
|
Truman JW, Riddiford LM, Konopova B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. eLife 2024; 12:RP92643. [PMID: 38568859 PMCID: PMC10994664 DOI: 10.7554/elife.92643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Barbora Konopova
- Department of Zoology, Faculty of Science, University of South BohemiaCeske BudejoviceCzech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and BSI, Florida International UniversityMiamiUnited States
- Department of Parasitology, Faculty of Science, University of South BohemiaCeské BudejoviceCzech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| |
Collapse
|
10
|
Liu S, Gao Y, Shi R, Huang H, Xu Y, Chen Z. Transcriptomics Provide Insights into the Photoperiodic Regulation of Reproductive Diapause in the Green Lacewing, Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae). INSECTS 2024; 15:136. [PMID: 38392555 PMCID: PMC10889211 DOI: 10.3390/insects15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Chrysoperla nipponensis (Okamoto) displays typical adult reproductive diapause under short photoperiods; however, our understanding of the molecular mechanism underlying photoperiod-sensitive reproduction remains limited. In this study, we performed transcriptome profiling of four treatments (the diapause-sensitive stage and pre-diapause phase under long and short photoperiods) of C. nipponensis using RNA sequencing (RNA-seq). A total of 71,654 unigenes were obtained from the samples. Enrichment analysis showed that fatty acid metabolism-related pathways were altered under a short photoperiod. Moreover, β-oxidation-related gene expression was active during the diapause-sensitive period under a short photoperiod. The knockdown of juvenile hormone acid methyltransferase 1 (Jhamt1) prolonged the pre-oviposition period but did not affect the reproductive ability of female individuals in C. nipponensis. These findings provided us with a more comprehensive understanding of the molecular mechanisms of photoperiod-sensitive diapause and show that groundwork is crucial for bolstering the long-term storage and biocontrol potential of C. nipponensis.
Collapse
Affiliation(s)
- Shaoye Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yuqing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Rangjun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
11
|
Zhang Q, Chen J, Wang W, Lin J, Guo J. Genome-wide investigation of the TGF-β superfamily in scallops. BMC Genomics 2024; 25:24. [PMID: 38166626 PMCID: PMC10763453 DOI: 10.1186/s12864-023-09942-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Transforming growth factor β (TGF-β) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-β superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS Twelve members of the TGF-β superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-β superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-β members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-β superfamily. CONCLUSION Characteristics of the TGF-β superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Jingyu Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jiabao Guo
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
12
|
Shi R, Li X, Xu X, Chen Z, Zhu Y, Wang N. Genome-wide analysis of BMP/GDF family and DAP-seq of YY1 suggest their roles in Cynoglossus semilaevis sexual size dimorphism. Int J Biol Macromol 2023; 253:127201. [PMID: 37793513 DOI: 10.1016/j.ijbiomac.2023.127201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Sexual size dimorphism (SSD) characterized by different body size between females and males have been reported in various animals. Gonadectomy experiments have implied important regulatory roles of the gonad in SSD. Among multiple factors from the gonad, TGF-β superfamily (especially BMP/GDF family) attracted our interest due to its pleiotropy in growth and reproduction regulations. Thus, whether BMP/GDF family members serve as crucial regulators for SSD was studied in a typically female-biased SSD flatfish named Chinese tongue sole (Cynoglossus semilaevis). Firstly, a total of 26 BMP/GDF family members were identified. The PPI network analysis showed that they may interact with ACVR2a, ACVR2b, ACVR1, BMPR2, SMAD3, BMPR1a, and other proteins. Subsequently, DAP-seq was employed to reveal the binding sites for yin yang 1 (yy1), a transcription factor involved in gonad function and cell growth partly by regulating TGF-β superfamily. The results revealed that two yy1 homologues yy1a and yy1b in C. semilaevis could regulate Hippo signaling pathway, mTOR signaling pathway, and AMPK signaling pathway. Moreover, BMP/GDF family genes including bmp2, bmp4, bmp5, gdf6a, and gdf6b were important components of Hippo pathway. In future, the crosstalk among yy1a, yy1b, and TGF-β family would provide more insight into sexual size dimorphism in C. semilaevis.
Collapse
Affiliation(s)
- Rui Shi
- Function Laboratory for Marine Science and Food Production Process, Laoshan laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xihong Li
- Function Laboratory for Marine Science and Food Production Process, Laoshan laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiwen Xu
- Function Laboratory for Marine Science and Food Production Process, Laoshan laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhangfan Chen
- Function Laboratory for Marine Science and Food Production Process, Laoshan laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ying Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| | - Na Wang
- Function Laboratory for Marine Science and Food Production Process, Laoshan laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
13
|
Wang K, Liu W, Wang XP. Dpp-mediated TGF-β signaling regulates vitellogenesis through 20-hydroxyecdysone signaling in the cabbage beetle, Colaphellus bowringi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105706. [PMID: 38072559 DOI: 10.1016/j.pestbp.2023.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
The Dpp signaling, as one of the branches within the TGF-β superfamily, plays a crucial role in regulating various biological processes in insects. However, its impact on female reproduction through vitellogenesis remains unclear. In this study, the expression profiles implied that the Dpp signaling genes, including Dpp, Punt, Mad, and Medea, were up-regulated during reproductive development in the ovary of Colaphellus bowringi. Knockdown of these five Dpp signaling genes revealed significant effects of Dpp, Tkv, Mad, and Medea on ovarian development through vitellogenesis in the fat body. Our finding further indicated that Dpp signaling influences the expression of 20-hydroxyecdysone (20E) receptor and responsive genes in the fat body. Additionally, knockdown of 20E receptor EcR resulted in similar phenotypes as observed in the Dpp pathway genes knockdown, implying a regulatory role for Dpp signaling via EcR in vitellogenesis. Furthermore, knocking down Dpp, Tkv, and EcR in female adults led to a reduction in total dry weight and protein content, as well as the expression of mTOR, a factor linked to protein intake. These results suggest that the Dpp signaling pathway modulates vitellogenesis by impacting the AA/TOR-mediated 20E pathway in the fat body, providing novel insights into the network governing insect reproduction and offering potential targets for controlling female pest reproduction.
Collapse
Affiliation(s)
- Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Chafino S, Salvia R, Cruz J, Martín D, Franch-Marro X. TGFß/activin-dependent activation of Torso controls the timing of the metamorphic transition in the red flour beetle Tribolium castaneum. PLoS Genet 2023; 19:e1010897. [PMID: 38011268 PMCID: PMC10703416 DOI: 10.1371/journal.pgen.1010897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/07/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding the mechanisms governing body size attainment during animal development is of paramount importance in biology. In insects, a crucial phase in determining body size occurs at the larva-pupa transition, marking the end of the larval growth period. Central to this process is the attainment of the threshold size (TS), a critical developmental checkpoint that must be reached before the larva can undergo metamorphosis. However, the intricate molecular mechanisms by which the TS orchestrates this transition remain poor understood. In this study, we investigate the role of the interaction between the Torso and TGFß/activin signaling pathways in regulating metamorphic timing in the red flour beetle, Tribolium castaneum. Our results show that Torso signaling is required specifically during the last larval instar and that its activation is mediated not only by the prothoracicotropic hormone (Tc-Ptth) but also by Trunk (Tc-Trk), another ligand of the Tc-Torso receptor. Interestingly, we show that while Tc-Torso activation by Tc-Ptth determines the onset of metamorphosis, Tc-Trk promotes growth during the last larval stage. In addition, we found that the expression of Tc-torso correlates with the attainment of the TS and the decay of juvenile hormone (JH) levels, at the onset of the last larval instar. Notably, our data reveal that activation of TGFß/activin signaling pathway at the TS is responsible for repressing the JH synthesis and inducing Tc-torso expression, initiating metamorphosis. Altogether, these findings shed light on the pivotal involvement of the Ptth/Trunk/Torso and TGFß/activin signaling pathways as critical regulatory components orchestrating the TS-driven metamorphic initiation, offering valuable insights into the mechanisms underlying body size determination in insects.
Collapse
Affiliation(s)
- Sílvia Chafino
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Roser Salvia
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - David Martín
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Duan H, Shao X, Liu W, Xiang J, Pan N, Wang X, Du G, Li Y, Zhou J, Sui L. Spatio-temporal patterns of ovarian development and VgR gene silencing reduced fecundity in parthenogenetic Artemia. Open Biol 2023; 13:230172. [PMID: 37963545 PMCID: PMC10645507 DOI: 10.1098/rsob.230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
The halophilic zooplankton brine shrimp Artemia has been used as an experimental animal in multidisciplinary studies. However, the reproductive patterns and its regulatory mechanisms in Artemia remain unclear. In this study, the ovarian development process of parthenogenetic Artemia (A. parthenogenetica) was divided into five stages, and oogenesis or egg formation was identified in six phases. The oogenesis mode was assumed to be polytrophic. We also traced the dynamic translocation of candidate germline stem cells (cGSCs) using EdU labelling and elucidated several key cytological events in oogenesis through haematoxylin and eosin staining and fluorescence imaging. Distinguished from the ovary structure of insects and crustaceans, Artemia germarium originated from ovariole buds and are located at the base of the ovarioles. RNA-seq based on five stages of ovarian development identified 2657 upregulated genes related to reproduction by pair-to-pair comparison. Gbb, Dpp, piwi, vasa, nanos, VgA and VgR genes associated with cGSCs recognition and reproductive development were screened and verified using qPCR. Silencing of the VgR gene in A. parthenogenetica (Ap-VgR) at ovarian development Stage II led to a low level of gene expression (less than 10%) within 5 days, which resulted in variations in oogenesis-related gene expression and significantly inhibited vitellogenesis, impeded oocyte maturation, and eventually decreased the number of offspring. In conclusion, we have illustrated the patterns of ovarian development, outlined the key spatio-temporal features of oogenesis and identified the negative impacts of VgR gene knockdown on oogenesis using A. parthenogenetica as an experimental animal. The findings of this study also lay a foundation for the further study of reproductive biology of invertebrates.
Collapse
Affiliation(s)
- Hu Duan
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
- Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Xuanxuan Shao
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Wei Liu
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, People's Republic of China
| | - Namin Pan
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Xuehui Wang
- Tianjin Fisheries Research Institute, Tianjin 300221, People's Republic of China
| | - Guoru Du
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Ying Li
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Jiaping Zhou
- Research Center of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Liying Sui
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
- Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| |
Collapse
|
16
|
Inoue S, Watanabe T, Hamaguchi T, Ishimaru Y, Miyawaki K, Nikawa T, Takahashi A, Noji S, Mito T. Combinatorial expression of ebony and tan generates body color variation from nymph through adult stages in the cricket, Gryllus bimaculatus. PLoS One 2023; 18:e0285934. [PMID: 37200362 DOI: 10.1371/journal.pone.0285934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-β-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| |
Collapse
|
17
|
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E, Li S. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC Biol 2022; 20:278. [PMID: 36514097 PMCID: PMC9749228 DOI: 10.1186/s12915-022-01484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In insects, an interplay between the activities of distinct hormones, such as juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulates the progression through numerous life history hallmarks. As a crucial endocrine factor, JH is mainly synthesized in the corpora allata (CA) to regulate multiple physiological and developmental processes, including molting, metamorphosis, and reproduction. During the last century, significant progress has been achieved in elucidating the JH signal transduction pathway, while less progress has been made in dissecting the regulatory mechanism of JH biosynthesis. Previous work has shown that receptor tyrosine kinase (RTK) signaling regulates hormone biosynthesis in both insects and mammals. Here, we performed a systematic RNA interference (RNAi) screening to identify RTKs involved in regulating JH biosynthesis in the CA of adult Blattella germanica females. RESULTS We found that the epidermal growth factor receptor (Egfr) is required for promoting JH biosynthesis in the CA of adult females. The Egf ligands Vein and Spitz activate Egfr, followed by Ras/Raf/ERK signaling, and finally activation of the downstream transcription factor Pointed (Pnt). Importantly, Pnt induces the transcriptional expression of two key enzyme-encoding genes in the JH biosynthesis pathway: juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (CYP15A1). Dual-luciferase reporter assay shows that Pnt is able to activate a promoter region of Jhamt. In addition, electrophoretic mobility shift assay confirms that Pnt directly binds to the - 941~ - 886 nt region of the Jhamt promoter. CONCLUSIONS This study reveals the detailed molecular mechanism of Egfr signaling in promoting JH biosynthesis in the German cockroach, shedding light on the intricate regulation of JH biosynthesis during insect development.
Collapse
Affiliation(s)
- Zhaoxin Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Caisheng Zhou
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yumei Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wentao Ma
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yunlong Cheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxin Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Luo
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Erxia Du
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
18
|
Abstract
Diapause is a form of dormancy used widely by insects to survive adverse seasons. Previous studies have demonstrated that forkhead box O (FoxO) is activated during pupal diapause initiation in the moth Helicoverpa armigera. However, it is unclear how FoxO induces diapause. Here, we show that knockout of FoxO causes H. armigera diapause-destined pupae to channel into nondiapause, indicating that FoxO is a master regulator that induces insect diapause. FoxO activates the ubiquitin-proteasome system (UPS) by promoting ubiquitin c (Ubc) expression via directly binding to the Ubc promoter. Activated UPS decreases transforming growth factor beta (TGFβ) receptor signaling via ubiquitination to block developmental signaling to induce diapause. This study significantly advances the understanding of insect diapause by uncovering the detailed molecular mechanism of FoxO.
Collapse
|
19
|
Chen F, Zhang XQ, Wu JJ, Jin L, Li GQ. Requirement of Myoglianin for metamorphosis in the beetle Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2022; 31:671-685. [PMID: 35661293 DOI: 10.1111/imb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious defoliating beetle attacking Solanaceae and Cucurbitaceae plants in many Asian countries. In the present paper, we identified a putative myoglianin (myo) gene. Hvmyo was actively transcribed throughout development, from embryo to adult. RNA interference (RNAi)-aided knockdown of Hvmyo delayed larval development by more than 2 days, reduced larval body size, inhibited the growth of antennae, wings and legs and disturbed gut purge. Knockdown of Hvmyo impaired the larval-pupal transition. All the Hvmyo RNAi larvae arrested at the larval stage or formed misshapen pupae or adults. The deformed pupae and adults were partially wrapped with exuviae, bearing separated wings. Moreover, the expression levels of five ecdysteroidogenesis genes (Hvspo, Hvphm, Hvdib, Hvsad and Hvshd), a prothocicotropic hormone (PTTH)/Torso pathway gene (Hvtorso), two 20E receptor genes (HvEcR and HvUSP), and two 20E signalling genes (HvE93 and HvFTZ-F1) were as a result of HvMyo RNAi significantly lowered. Conversely, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH signalling gene HvKr-h1 was greatly enhanced. Although ingestion of 20E and Hal rescued the 20E signal, it could not alleviate larval performance and defective phenotypes. Our results suggest that Myo exerts four distinctive roles in ecdysteroidogenesis, JH production, organ growth and larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Development of a Quantitative UPLC-ESI/MS Method for the Simultaneous Determination of the Chitin and Protein Content in Insects. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In a context where the commercial and nutritional interest in insect chitin is always increasing, an accurate and precise method to quantify this biopolymer, especially in food/feed, is required. In addition, quantification of insect crude protein through nitrogen determination is normally overestimated due to the presence of chitin. In this work, for the first time, an RP-UPLC-ESI/MS method for the simultaneous quantification in insects of chitin, as glucosamine (GlcN), and protein, as total amino acids, is presented. The method is based on acid hydrolysis and derivatization of amino acids and GlcN with the AccQ Tag reagent. Method was optimized and validated in terms of linearity, LOD and LOQ, intraday and inter-day repeatability, and accuracy. A hydrolysed commercial chitin was selected as reference standard for calibration. The instrumental LOD and LOQ correspond respectively to a concentration of 0.00068 mM and 0.00204 mM. The intraday precision satisfied the Horwitz ratio. Data from inter-day precision showed the necessity to perform the analysis within 1 week utilizing standard calibration solutions freshly prepared. A matrix effect was observed, which suggested the necessity to use an internal calibration curve or to work in a particular concentration range of GlcN. The chitin and protein content in black soldier fly (Hermetia illucens) and lesser mealworm (Alphitobius diaperinus) were found in agreement with results obtained by independent methods. The optimized method was also tested on two different commercial food supplements, suggesting its applicability on a wide range of matrices. This newly developed method proved to be simple, more accurate, and faster if compared to methods which separately analyse chitin and protein content.
Collapse
|
21
|
Li J, Yin L, Bi J, Stanley D, Feng Q, Song Q. The TGF-β Receptor Gene Saxophone Influences Larval-Pupal-Adult Development in Tribolium castaneum. Molecules 2022; 27:molecules27186017. [PMID: 36144752 PMCID: PMC9505606 DOI: 10.3390/molecules27186017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily encodes a large group of proteins, including TGF-β isoforms, bone morphogenetic proteins and activins that act through conserved cell-surface receptors and signaling co-receptors. TGF-β signaling in insects controls physiological events, including growth, development, diapause, caste determination and metamorphosis. In this study, we used the red flour beetle, Tribolium castaneum, as a model species to investigate the role of the type I TGF-β receptor, saxophone (Sax), in mediating development. Developmental and tissue-specific expression profiles indicated Sax is constitutively expressed during development with lower expression in 19- and 20-day (6th instar) larvae. RNAi knockdown of Sax in 19-day larvae prolonged developmental duration from larvae to pupae and significantly decreased pupation and adult eclosion in a dose-dependent manner. At 50 ng dsSax/larva, Sax knockdown led to an 84.4% pupation rate and 46.3% adult emergence rate. At 100 ng and 200 ng dsSax/larva, pupation was down to 75.6% and 50%, respectively, with 0% adult emergence following treatments with both doses. These phenotypes were similar to those following knockdowns of 20-hydroxyecdysone (20E) receptor genes, ecdysone receptor (EcR) or ultraspiracle protein (USP). Expression of 20E biosynthesis genes disembodied and spookier, 20E receptor genes EcR and USP, and 20E downstream genes BrC and E75, were suppressed after the Sax knockdown. Topical application of 20E on larvae treated with dsSax partially rescued the dsSax-driven defects. We can infer that the TGF-β receptor gene Sax influences larval-pupal-adult development via 20E signaling in T. castaneum.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Letong Yin
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jingxiu Bi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Institution of Quality Standard and Testing Technology for Agro-Product, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - David Stanley
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO 65203, USA
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
22
|
Gao X, Zhang J, Wu P, Shu R, Zhang H, Qin Q, Meng Q. Conceptual framework for the insect metamorphosis from larvae to pupae by transcriptomic profiling, a case study of Helicoverpa armigera (Lepidoptera: Noctuidae). BMC Genomics 2022; 23:591. [PMID: 35963998 PMCID: PMC9375380 DOI: 10.1186/s12864-022-08807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect metamorphosis from larvae to pupae is one of the most important stages of insect life history. Relatively comprehensive information related to gene transcription profiles during lepidopteran metamorphosis is required to understand the molecular mechanism underlying this important stage. We conducted transcriptional profiling of the brain and fat body of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) during its transition from last instar larva into pupa to explore the physiological processes associated with different phases of metamorphosis. RESULTS During metamorphosis, the differences in gene expression patterns and the number of differentially expressed genes in the fat body were found to be greater than those in the brain. Each stage had a specific gene expression pattern, which contributed to different physiological changes. A decrease in juvenile hormone levels at the feeding stage is associated with increased expression levels of two genes (juvenile hormone esterase, juvenile hormone epoxide hydrolase). The expression levels of neuropeptides were highly expressed at the feeding stage and the initiation of the wandering stage and less expressed at the prepupal stage and the initiation of the pupal stage. The transcription levels of many hormone (or neuropeptide) receptors were specifically increased at the initiation of the wandering stage in comparison with other stages. The expression levels of many autophagy-related genes in the fat body were found to be gradually upregulated during metamorphosis. The activation of apoptosis was probably related to enhanced expression of many key genes (Apaf1, IAP-binding motif 1 like, cathepsins, caspases). Active proliferation might be associated with enhanced expression levels in several factors (JNK pathway: jun-D; TGF-β pathway: decapentaplegic, glass bottom boat; insulin pathway: insulin-like peptides from the fat body; Wnt pathway: wntless, TCF/Pangolin). CONCLUSIONS This study revealed several vital physiological processes and molecular events of metamorphosis and provided valuable information for illustrating the process of insect metamorphosis from larvae to pupae.
Collapse
Affiliation(s)
- Xinxin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruihao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Mukai A, Mano G, Des Marteaux L, Shinada T, Goto SG. Juvenile hormone as a causal factor for maternal regulation of diapause in a wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103758. [PMID: 35276333 DOI: 10.1016/j.ibmb.2022.103758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Most temperate multivoltine insects enter diapause, a hormonally controlled developmental suspension, in response to seasonal photoperiodic and/or thermal cues. Some insect species exhibit maternal regulation of diapause in which developmental trajectories of the offspring are determined by mothers in response to environmental cues that the mother received. Although maternally regulated diapause is common among insects, the maternal endocrinological mechanisms are largely veiled. To approach this issue, we used the jewel wasp Nasonia vitripennis, which produces non-diapause-destined offspring under long days and diapause-destined offspring under short days or low temperatures. Comparative transcriptomics of these wasps revealed possible involvement of the juvenile hormone (JH) biosynthetic cascade in maternal diapause regulation. The expression of juvenile hormone acid O-methyltransferase (jhamt) was typically downregulated in short-day wasps, and this was reflected by a reduction in haemolymph JH concentrations. RNAi targeted at jhamt reduced haemolymph JH concentration and induced wasps to produce diapause-destined offspring even under long days. In addition, topical application of JH suppressed the production of diapause-destined offspring under short days or low temperatures. These results indicate that diapause in N. vitripennis is determined by maternal jhamt expression and haemolymph JH concentration in response to day length. We therefore report a novel role for JH in insect seasonality.
Collapse
Affiliation(s)
- Ayumu Mukai
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka, 572-8508, Japan; Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Genyu Mano
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Lauren Des Marteaux
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 Essex County Rd 20, Harrow, Ontario, N0R 1G0, Canada
| | - Tetsuro Shinada
- Department of Material Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
| |
Collapse
|
24
|
Du JL, Chen F, Wu JJ, Jin L, Li GQ. Smad on X is vital for larval-pupal transition in a herbivorous ladybird beetle. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104387. [PMID: 35367434 DOI: 10.1016/j.jinsphys.2022.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Insect development is regulated by a combination of juvenile hormone (JH) and 20-hydroxyecdysone (20E). Production of both JH and 20E is regulated by transforming growth factor-β (TGFβ) signaling. TGFβ can be classified into two branches, the Activin and Bone Morphogenetic Protein (BMP) pathways. In Drosophila melanogaster, BMP signaling is critical for JH synthesis, whereas Activin signal is required to generate the large pulse of 20E necessary for entering metamorphosis. However, to which extent the roles of these signals are conserved remains unknown. Here we studied the role of an Activin component Smad on X (Smox) in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata. RNA interference (RNAi)-aided knockdown of Hvsmox inhibited larval growth, and impaired larval development. All Hvmyo RNAi larvae arrested at the fourth-instar larval stage. Moreover, knockdown of Hvsmox delayed gut and Malpighian tubules remodeling. Furthermore, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH response gene HvKr-h1 was greatly enhanced. Conversely, the expression levels of an ecdysteroidogenesis gene (Hvspo), a 20E receptor gene (HvEcR) and six 20E response genes (HvBrC, HvE74, HvE75, HvE93, HvHR3 and HvHR4) were significantly lowered. Knockdown of HvMet partially restored the negative phenotypes in the Hvsmox RNAi beetles. Our results suggest that Smox exerts regulative roles in JH production, ecdysteroidogenesis and organ remodeling, thus contributing to modulate the larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jun-Li Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/ State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Mito T, Ishimaru Y, Watanabe T, Nakamura T, Ylla G, Noji S, Extavour CG. Cricket: The third domesticated insect. Curr Top Dev Biol 2022; 147:291-306. [PMID: 35337452 DOI: 10.1016/bs.ctdb.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.
Collapse
Affiliation(s)
- Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
26
|
Toyota K, Watanabe H, Hirano M, Abe R, Miyakawa H, Song Y, Sato T, Miyagawa S, Tollefsen KE, Yamamoto H, Tatarazako N, Iguchi T. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): Review and adverse outcome pathway development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106058. [PMID: 34965494 DOI: 10.1016/j.aquatox.2021.106058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/21/2023]
Abstract
Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual identity. This critical review summarizes the current knowledge of the JH-mediated effects in the freshwater cladoceran crustaceans such as Daphnia species on JHA-triggered endocrine disruptive outputs to establish a systematic understanding of JHA effects. Based on the current knowledge, adverse outcome pathways (AOPs) addressing the JHA-mediated ED effects in cladoceran leading to male offspring production and subsequent population decline were developed. The weight of evidence (WoE) of AOPs was assessed according to established guidelines. The review and AOP development aim to present the current scientific understanding of the JH pathway and provide a robust reference for the development of tiered testing strategies and new risk assessment approaches for JHAs in future ecotoxicological research and regulatory processes.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata 952-2135, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Ryoko Abe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Ås, Norway
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
27
|
Kang K, Cai Y, Yue L, Zhang W. Effects of Different Nutritional Conditions on the Growth and Reproduction of Nilaparvata lugens (Stål). Front Physiol 2022; 12:794721. [PMID: 35058803 PMCID: PMC8764137 DOI: 10.3389/fphys.2021.794721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Growth and reproduction are the two most basic life processes of organisms and the distribution of energy in these processes is a core issue of the life history of organisms. Nilaparvata lugens (Stål), the brown planthopper (BPH), is a single-feeding rice pest. In the present study, this species was used as a model for testing the effects of nutritional conditions on various growth and reproduction indicators. First, the third-instar nymphs were fed with three different concentrations (100, 50, and 25%) of artificial diet until the second day of adulthood. The results showed that as the nutrient concentration decreased, the body development and oviposition of BPH were hindered. The total lipid content in the fat bodies was also significantly reduced. RT-PCR analysis showed compared to the 100% concentration group, the expression levels of vitellogenin (Vg) genes in the fifth-instar nymphs, adults, and in different tissues (ovary, fat body, and other tissues) were significantly decreased in the 50 and 25% treatment groups. Western blot analysis showed that Vg protein expression was highest in the 100% group, followed by the 50% group, with no expression in the 25% group. These results indicate that growth and reproduction in the BPH are regulated by, or correlated with, nutrient concentration. This study is of great significance as it reveals the adaptive strategies of the BPH to nutritional deficiencies and it also provides valuable information for the comprehensive control of this pest.
Collapse
Affiliation(s)
- Kui Kang
- Key Laboratory of Regional Characteristic for Conservation and Utilization of Zoology Resource in Chishui River Basin, College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Youjun Cai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Yue
- Key Laboratory of Regional Characteristic for Conservation and Utilization of Zoology Resource in Chishui River Basin, College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
29
|
Xu L, Meng XL, Bangash SH, Zhang F, Zeng DQ, Tang WW. Effects of itol A on the larval growth and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2022; 78:134-142. [PMID: 34453868 DOI: 10.1002/ps.6614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Itol A, extracted from Itoa orientalis Hemsl. (Flacourtiaceae), possesses bioactivity on Spodoptera litura (Lepidoptera: Noctuidae) and Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Our previous study showed that the effects on Spodoptera frugiperda, a destructive pest found worldwide, were similar to those of fenoxycarb (FC), a juvenile hormone analog. Thus, we speculate that itol A could have growth-regulating effects. The current work explored juvenile hormone (JH) levels and mRNA levels of crucial JH signaling pathway enzyme genes in S. frugiperda larvae treated with itol A and FC. RESULTS Itol A caused severe growth obstacles in S. frugiperda, extended the larval duration and reduced the mean worm weight and body length rates. Three and 7 days after exposure to a sublethal concentration of itol A (500 mg L-1 ), the JH level of the larvae significantly decreased by 36.59% and 22.70%, respectively. qPCR inferred that the mRNA expression levels of crucial JH metabolism enzymes (SfJHE and SfJHEH) significantly increased by 6.58-fold and 2.12-fold, respectively, relative to the control group 3 days after treatment. CONCLUSIONS Itol A adversely affects the development of S. frugiperda. We propose that this effect was caused by decreasing JH levels and disrupting the JH signaling pathway via mediating its synthetic and metabolic crucial enzymes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Xu
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Xiao-Long Meng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Saqib Hussain Bangash
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Fan Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Dong-Qiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Wen-Wei Tang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
30
|
Wang J, He Y, Peng X, Wang Z, Song Q. Characterization of cadmium-responsive transcription factors in wolf spider Pardosa pseudoannulata. CHEMOSPHERE 2021; 268:129239. [PMID: 33373899 DOI: 10.1016/j.chemosphere.2020.129239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Transcription factors (TFs) act on the regulation of gene expression, which is prevalent in all organisms, and their characterization may provide important clues for understanding the regulatory mechanism of gene expression. In this research, inhibited growth (delayed developmental time and decreased body weight) and increased activities of antioxidant enzymes (peroxidase, superoxide dismutase, and catalase) were recorded in Pardosa pseudoannulata in response to cadmium burden. Expression profiles of TFs were analyzed based on the transcriptome profiling of P. pseudoannulata, and 1711 TFs genes were differentially expressed with 995 up-regulated and 716 down-regulated. Most of the differentially expressed TFs belonged to zf-C2H2, ZBTB, Homeobox, and bHLH families. Interestingly, hub genes smads, TCF7L2, EGR1, and GATA5 were identified to be the candidate Cd-responsive TFs related to growth of spider. The expression level of Sod2 (superoxide dismutase) was regulated by the up-regulated TF foxo3, implying its important role in the antioxidant defense of spider. Moreover, sequence analysis demonstrated that smads and foxo3 were conserved among spiders and insects. This study revealed for the first time the role of TFs in molecular response of P. pseudoannulata to Cd stress, providing the basis for the protection of tarantula under Cd stress.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Yuan He
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Xianjin Peng
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
31
|
Pechmann M, Kenny NJ, Pott L, Heger P, Chen YT, Buchta T, Özüak O, Lynch J, Roth S. Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. eLife 2021; 10:e68287. [PMID: 33783353 PMCID: PMC8051952 DOI: 10.7554/elife.68287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarises BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: (1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or (2) a Drosophila-like system arose early in insect evolution and was extensively altered in multiple independent lineages.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | | | - Laura Pott
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Peter Heger
- Regional Computing Centre (RRZK), University of CologneKölnGermany
| | - Yen-Ta Chen
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Thomas Buchta
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Orhan Özüak
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Jeremy Lynch
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Siegfried Roth
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| |
Collapse
|
32
|
Fu S, Duan Y, Wang S, Ren Y, Bu W. Comparative Transcriptomic Analysis of Riptortus pedestris (Hemiptera: Alydidae) to Characterize Wing Formation across All Developmental Stages. INSECTS 2021; 12:insects12030226. [PMID: 33807991 PMCID: PMC7999114 DOI: 10.3390/insects12030226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Riptortus pedestris is a widely distributed pest insect in East Asia that causes considerable economic losses. In this study, we applied the Illumina HiSeq6000 platform to construct and sequence the transcriptome libraries of R. pedestris during all life stages. First, a total of 60,058 unigenes were assembled from raw data, and then annotated and classified with various databases. Furthermore, different numbers of differentially expressed genes were calculated by pairwise comparisons of all life stages, and some of these DEGs were associated with various functions by GO and KEGG analysis. Additionally, a total number of 35,158 SSRs and 715,604 SNPs were identified from all the transcriptome libraries. Finally, we analyzed ten wing formation-related signaling pathways, and detected the molecular and expression characterization of five wing development-related genes by qRT-PCR for all developmental stages of R. pedestris. Collectively, all these data may pave the avenue for exploring the developmental processes of hemimetabolous insects and pest management. Abstract Riptortus pedestris (Hemiptera: Alydidae) is a major agricultural pest in East Asia that causes considerable economic losses to the soybean crop each year. However, the molecular mechanisms governing the growth and development of R. pedestris have not been fully elucidated. In this study, the Illumina HiSeq6000 platform was employed to perform de novo transcriptome assembly and determine the gene expression profiles of this species across all developmental stages, including eggs, first-, second-, third-, fourth-, and fifth-instar nymphs, and adults. In this study, a total of 60,058 unigenes were assembled from numerous raw reads, exhibiting an N50 length of 2126 bp and an average length of 1199 bp, and the unigenes were annotated and classified with various databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Furthermore, various numbers of differentially expressed genes (DEGs) were calculated through pairwise comparisons of all life stages, and some of these DEGs were associated with immunity, metabolism, and development by GO and KEGG enrichment. In addition, 35,158 simple sequence repeats (SSRs) and 715,604 potential single nucleotide polymorphisms (SNPs) were identified from the seven transcriptome libraries of R. pedestris. Finally, we identified and summarized ten wing formation-related signaling pathways, and the molecular properties and expression levels of five wing development-related genes were analyzed using quantitative real-time PCR for all developmental stages of R. pedestris. Taken together, the results of this study may establish a foundation for future research investigating developmental processes and wing formation in hemimetabolous insects and may provide valuable data for pest control efforts attempting to reduce the economic damage caused by this pest.
Collapse
|
33
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
34
|
Liang S, Luo J, Alariqi M, Xu Z, Wang A, Zafar MN, Ren J, Wang F, Liu X, Xin Y, Xu H, Guo W, Wang Y, Ma W, Chen L, Lindsey K, Zhang X, Jin S. Silencing of a LIM gene in cotton exhibits enhanced resistance against Apolygus lucorum. J Cell Physiol 2021; 236:5921-5936. [PMID: 33481281 DOI: 10.1002/jcp.30281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/06/2020] [Accepted: 12/26/2020] [Indexed: 01/18/2023]
Abstract
Plant bugs (Miridae species) have become major agricultural pests that cause increasing and severe economic damage. Plant-mediated RNA interference (RNAi) is emerging as an eco-friendly, efficient, and reliable strategy for pest management. In this study, we isolated and characterized a lethal gene of Apolygus lucorum and named it Apolygus lucorum LIM (AlLIM), which produced A. lucorum mortality rates ranging from 38% to 81%. Downregulation of the AlLIM gene expression in A. lucorum by injection of a double-stranded RNA (dsRNA) led to muscle structural disorganization that resulted in metamorphosis deficiency and increased mortality. Then we constructed a plant expression vector that enabled transgenic cotton to highly and stably express dsRNA of AlLIM (dsAlLIM) by Agrobacterium-mediated genetic transformation. In the field bioassay, dsAlLIM transgenic cotton was protected from A. lucorum damage with high efficiency, with almost no detectable yield loss. Therefore, our study successfully provides a promising genetically modified strategy to overpower A. lucorum attack.
Collapse
Affiliation(s)
- Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.,Academy of Industry innovation and Development, Huanghuai University, Zhumadian, Henan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Muhammad Naeem Zafar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jun Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuefei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanfeng Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haonan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Rangel J, Shepherd TF, Gonzalez AN, Hillhouse A, Konganti K, Ing NH. Transcriptomic analysis of the honey bee (Apis mellifera) queen spermathecae reveals genes that may be involved in sperm storage after mating. PLoS One 2021; 16:e0244648. [PMID: 33417615 PMCID: PMC7793254 DOI: 10.1371/journal.pone.0244648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Honey bee (Apis mellifera) queens have a remarkable organ, the spermatheca, which successfully stores sperm for years after a virgin queen mates. This study uniquely characterized and quantified the transcriptomes of the spermathecae from mated and virgin honey bee queens via RNA sequencing to identify differences in mRNA levels based on a queen's mating status. The transcriptome of drone semen was analyzed for comparison. Samples from three individual bees were independently analyzed for mated queen spermathecae and virgin queen spermathecae, and three pools of semen from ten drones each were collected from three separate colonies. In total, the expression of 11,233 genes was identified in mated queen spermathecae, 10,521 in virgin queen spermathecae, and 10,407 in drone semen. Using a cutoff log2 fold-change value of 2.0, we identified 212 differentially expressed genes between mated and virgin spermathecal queen tissues: 129 (1.4% of total) were up-regulated and 83 (0.9% of total) were down-regulated in mated queen spermathecae. Three genes in mated queen spermathecae, three genes in virgin queen spermathecae and four genes in drone semen that were more highly expressed in those tissues from the RNA sequencing data were further validated by real time quantitative PCR. Among others, expression of Kielin/chordin-like and Trehalase mRNAs was highest in the spermathecae of mated queens compared to virgin queen spermathecae and drone semen. Expression of the mRNA encoding Alpha glucosidase 2 was higher in the spermathecae of virgin queens. Finally, expression of Facilitated trehalose transporter 1 mRNA was greatest in drone semen. This is the first characterization of gene expression in the spermathecae of honey bee queens revealing the alterations in mRNA levels within them after mating. Future studies will extend to other reproductive tissues with the purpose of relating levels of specific mRNAs to the functional competence of honey bee queens and the colonies they head.
Collapse
Affiliation(s)
- Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Tonya F. Shepherd
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Alejandra N. Gonzalez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Andrew Hillhouse
- Texas A&M Institute of Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
| | - Kranti Konganti
- Texas A&M Institute of Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
| | - Nancy H. Ing
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
36
|
Bai Y, Lv YN, Zeng M, Jia PY, Lu HN, Zhu YB, Li S, Cui YY, Luan YX. Selection of Reference Genes for Normalization of Gene Expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes (Basel) 2020; 12:genes12010021. [PMID: 33375665 PMCID: PMC7823838 DOI: 10.3390/genes12010021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Zygentoma occupies a key evolutionary position for understanding the evolution of insect metamorphosis but has received little attention in terms of genetic analysis. To develop functional genomic studies in this insect, we evaluated five candidate internal reference genes for quantitative RT-PCR (qPCR) studies from Thermobia domestica, a representative species of Zygentoma, including Actin 5C (Actin5C), Elongation factor-1 alpha (EF1A), Ribosome protein S26 (RPS26), Ribosome protein L32 (RPL32), and Superoxide dismutase 2 (SOD2), at different developmental stages, in various body parts, and under dsRNA microinjection and starvation stresses, using four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) and a comparative algorithm (RefFinder). Specific suitable reference genes were recommended across specific experimental conditions, and the combination of RPS26 and RPL32 was appropriate for all tested samples. Employing our selected reference gene combination, we investigated the gene expression pattern of Myoglianin (Myo), a crucial gene-regulating insect metamorphosis, in ametabolous T. domestica, and demonstrated the efficiency of RNA interference (RNAi) in firebrat nymphs. This study provides a basis for reliable quantitative studies of genes and greatly benefits evolutionary and functional genomics studies in Zygentoma.
Collapse
|
37
|
He LL, Shin SH, Wang Z, Yuan I, Weschler R, Chiou A, Koyama T, Nijhout HF, Suzuki Y. Mechanism of threshold size assessment: Metamorphosis is triggered by the TGF-beta/Activin ligand Myoglianin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103452. [PMID: 32822817 DOI: 10.1016/j.ibmb.2020.103452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Although the mechanisms that control growth are now well understood, the mechanism by which animals assess their body size remains one of the great puzzles in biology. The final larval instar of holometabolous insects, after which growth stops and metamorphosis begins, is specified by a threshold size. We investigated the mechanism of threshold size assessment in the tobacco hornworm, Manduca sexta. The threshold size was found to change depending on the amount of exposure to poor nutrient conditions whereas hypoxia treatment consistently led to a lower threshold size. Under these various conditions, the mass of the muscles plus integuments was correlated with the threshold size. Furthermore, the expression of myoglianin (myo) increased at the threshold size in both M. sexta and Tribolium castaneum. Knockdown of myo in T. castaneum led to larvae that underwent supernumerary larval molts and stayed in the larval stage permanently even after passing the threshold size. We propose that increasing levels of Myo produced by the growing tissues allow larvae to assess their body size and trigger metamorphosis at the threshold size.
Collapse
Affiliation(s)
- Lorrie L He
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Sara H Shin
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Zhou Wang
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Isabelle Yuan
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Ruthie Weschler
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Allison Chiou
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Takashi Koyama
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal; Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Yuichiro Suzuki
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
38
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
39
|
Liu SH, Xia YD, Zhang Q, Li W, Li RY, Liu Y, Chen EH, Dou W, Stelinski LL, Wang JJ. Potential targets for controlling Bactrocera dorsalis using cuticle- and hormone-related genes revealed by a developmental transcriptome analysis. PEST MANAGEMENT SCIENCE 2020; 76:2127-2143. [PMID: 31951094 DOI: 10.1002/ps.5751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important agricultural pest and has developed resistance to many insecticides. To investigate vital genes participating in metamorphosis for development of additional control strategies, a comprehensive transcriptome analysis covering ten developmental stages of B. dorsalis was performed. RESULTS There were 2132, 952, 1062, 2301 and 1333 differentially expressed genes identified during hatching, 1st-instar larval molting, 2nd-instar larval molting, pupariation and emergence, respectively. Further expression analyses indicated that genes in hormone- (20-hydroxyecdysone and juvenile hormone) and cuticle- (chitin and cuticle protein) related pathways were essential for metamorphosis in B. dorsalis. Among chitinase (Cht) genes, BdCht-5, -8 and -10 were differentially expressed during larval-larval, larval-pupal and pupal-adult moltings. However, BdCht7 was differentially expressed during egg-larval and larval-larval moltings. Knockdown of BdCht7 at the 1st-instar larval stage disrupted normal development of larvae and was lethal to B. dorsalis. Among cuticle protein (CP) genes, 15 genes (BdCPLCG-1, BdCPLCP-2, BdCPAP1-B2, BdRR1-21, BdRR1-31, BdRR2-15, BdRR2-26, BdRR2-30, BdRR2-32, BdTweedle-9, BdTweedle-24, BdRR2-10, BdCPAP3-C1, BdRR1-34 and BdRR1-41) were differentially expressed during four of five types of moltings. Among hormone-relative genes, BdJHBP-4, -9 and -13 were differentially expressed during all five types of moltings, whereas BdJHBP-5, -12 and BdHR4 were differentially expressed during four of five types of moltings. CONCLUSION This study reveals critical genes involved in development and metamorphosis of B. dorsaslis, and BdCht7 is dispensable for larval survival. It also provides comprehensive transcriptome information for finding more molecular targets to control this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying-Dan Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Run-Yan Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Bing XL, Lu YJ, Xia CB, Xia X, Hong XY. Transcriptome of Tetranychus urticae embryos reveals insights into Wolbachia-induced cytoplasmic incompatibility. INSECT MOLECULAR BIOLOGY 2020; 29:193-204. [PMID: 31596027 DOI: 10.1111/imb.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The endosymbiont Wolbachia is known for manipulating host reproduction in selfish ways. However, the molecular mechanisms have not yet been investigated in embryos. Here, we found that Wolbachia had no effect on the number of deposited eggs in Tetranychus urticae Koch (Acari: Tetranychidae) but caused two types of reproductive manipulation: killing uninfected female embryos via cytoplasmic incompatibility (CI) and increasing the hatching ratio of infected female embryos. RNA sequencing analyses showed that 145 genes were differentially expressed between Wolbachia-infected (WI) and Wolbachia-uninfected (WU) embryos. Wolbachia infection down-regulated messenger RNA (mRNA) expression of glutathione S-transferase that could buffer oxidative stress. In addition, 1613 and 294 genes were identified as CI-specific up-/down-regulated genes. Compared to WU and WI embryos, embryos of CI cross strongly expressed genes involved in transcription, translation, tissue morphogenesis, DNA damage and mRNA surveillance. In contrast, most of the genes associated with energy production and metabolism were down-regulated in the CI embryos compared to the WU and WI embryos, which provides some clues as to the cause of death of CI embryos. These results identify several genes that could be candidates for explaining Wolbachia-induced CI. Our data form a basis to help elucidate the molecular consequences of CI in embryos.
Collapse
Affiliation(s)
- X-L Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Y-J Lu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - C-B Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Photoperiod and temperature separately regulate nymphal development through JH and insulin/TOR signaling pathways in an insect. Proc Natl Acad Sci U S A 2020; 117:5525-5531. [PMID: 32098850 DOI: 10.1073/pnas.1922747117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects living in the temperate zone enter a physiological state of arrested or slowed development to overcome an adverse season, such as winter. Developmental arrest, called diapause, occurs at a species-specific developmental stage, and embryonic and pupal diapauses have been extensively studied in mostly holometabolous insects. Some other insects overwinter in the nymphal stage with slow growth for which the mechanism is poorly understood. Here, we show that this nymphal period of slow growth is regulated by temperature and photoperiod through separate pathways in the cricket Modicogryllus siamensis The former regulates the growth rate, at least in part, through the insulin / target of rapamycin (TOR) signaling pathway. Lower temperature down-regulates the expression of insulin -like peptide (Ms'Ilp) and Target of rapamycin (Ms'Tor) genes to slow down the growth rate without affecting the number of molts. The latter regulates the number of molts independent of temperature. Short days increase the number of molts through activation of the juvenile hormone (JH) pathway and down-regulation of myoglianin (Ms'myo), a member of the TGFβ family, which induces adult metamorphosis. In contrast, long days regulate Ms'myo expression to increase during the fifth to sixth instar to initiate adult metamorphosis. When Ms'myo expression is suppressed, juvenile hormone O-methyl transferase (Ms'jhamt) was up-regulated and increased molts to prolong the nymphal period even under long-day conditions. The present findings suggested that the photoperiod regulated Ms'myo, and the JH signaling pathway and the temperature-controlled insulin/TOR pathway cooperated to regulate nymphal development for overwintering to achieve seasonal adaptation of the life cycle in M. siamensis.
Collapse
|
42
|
Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190225. [PMID: 31438810 DOI: 10.1098/rstb.2019.0225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Juvenile hormones and the genetic interaction between the transcription factors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb'Kr-h1, Gb'Br and the adult-specifier transcription factor Gb'E93 from the sixth to final (eighth) nymphal instar. Gb'Kr-h1 and Gb'Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb'Kr-h1 or Gb'Br knockdown in the sixth instar. The depletion of Gb'Kr-h1 or Gb'Br upregulates Gb'E93 in the sixth instar. By contrast, Gb'E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb'E93 also represses Gb'Kr-h1 and Gb'Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sayuri Tomonari
- Division of Chemical and Physical Analyses, Center for Technical Support, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| |
Collapse
|
43
|
Li G, Sun QZ, Liu XY, Zhang J, Dou W, Niu JZ, Wang JJ. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:361-372. [PMID: 31254229 DOI: 10.1007/s10493-019-00396-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
44
|
Sathapondecha P, Chotigeat W. Induction of vitellogenesis by glass bottom boat in the female banana shrimp, Fenneropenaeus merguiensis de Man. Gen Comp Endocrinol 2019; 270:48-59. [PMID: 30315758 DOI: 10.1016/j.ygcen.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
In shrimp aquaculture, eyestalk ablation is the only technique that is widely used to accelerate ovarian development. Alternative methods for producing improved ovarian development in broodstock are currently being investigated. Several factors involved in the regulation of ovarian development in shrimp have been investigated. Among these factors, growth factors in the transforming growth factor beta (TGF-β) superfamily have been implicated as playing potential roles in the regulation of gonad development. In this work, a member of the TGF-β superfamily known as glass bottom boat (GBB), an ortholog of bone morphogenetic protein (BMP), was investigated to uncover its role in ovarian development in the banana shrimp Fenneropenaeus merguiensis. Full-length cDNA of FmGBB was obtained from transcriptome data. Phylogenetic analysis indicated that the sequence of FmGBB from banana shrimp was similar to those of other arthropods and vertebrate BMP 5/6/7, but was different from those of decapentaplegic proteins and vertebrate BMP 2/4. The FmGBB transcript was found to be widely expressed in shrimp tissues, and its expression in the ovary was dramatically increased in early and late vitellogenic stages during ovarian development and decreased in the mature stage, suggesting its role in vitellogenesis. To study the effects of FmGBB, a soluble recombinant mature FmGBB peptide (His-TF-rgbb) containing both monomers and homodimers was successfully expressed in Escherichia coli. The His-TF-rgbb peptide triggered oocyte proliferation in both cultured ovarian explants and in previtellogenic shrimp upon injection. Interestingly, the injection of His-TF-rgbb into previtellogenic female shrimp stimulated an increase in Vg expression in their ovaries while suppressing production of 20-hydroxyecdysone. Our results suggest the potential role of FmGBB in oocyte proliferation and vitellogenesis; this novel finding can be utilized to stimulate ovarian development in cultured shrimp.
Collapse
Affiliation(s)
- Ponsit Sathapondecha
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
45
|
Roy A, Palli SR. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics 2018; 19:934. [PMID: 30547764 PMCID: PMC6295036 DOI: 10.1186/s12864-018-5323-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic modifications including DNA methylation and post-translational modifications of histones are known to regulate gene expression. Antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate transcriptional reprogramming during insect development as shown in Drosophila melanogaster and other insects. Juvenile hormones (JH) play vital roles in the regulation of growth, development, metamorphosis, reproduction and other physiological processes. However, our current understanding of epigenetic regulation of JH action is still limited. Hence, we studied the role of CREB binding protein (CBP, contains HAT domain) and Trichostatin A (TSA, HDAC inhibitor) on JH action. RESULTS Exposure of Tribolium castaneum cells (TcA cells) to JH or TSA caused an increase in expression of Kr-h1 (a known JH-response gene) and 31 or 698 other genes respectively. Knockdown of the gene coding for CBP caused a decrease in the expression of 456 genes including Kr-h1. Interestingly, the expression of several genes coding for transcription factors, nuclear receptors, P450 and fatty acid synthase family members that are known to mediate JH action were affected by CBP knockdown or TSA treatment. CONCLUSIONS These data suggest that acetylation and deacetylation mediated by HATs and HDACs play an important role in JH action.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
- Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21 Suchdol, Czech Republic
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
46
|
Kamsoi O, Belles X. Myoglianin triggers the premetamorphosis stage in hemimetabolan insects. FASEB J 2018; 33:3659-3669. [DOI: 10.1096/fj.201801511r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Orathai Kamsoi
- Institute of Evolutionary BiologySpanish National Research Council (CSIC)Universitat Pompeu Fabra Barcelona Spain
| | - Xavier Belles
- Institute of Evolutionary BiologySpanish National Research Council (CSIC)Universitat Pompeu Fabra Barcelona Spain
| |
Collapse
|
47
|
Setiawan L, Pan X, Woods AL, O'Connor MB, Hariharan IK. The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Sci Alliance 2018; 1:e201800216. [PMID: 30515478 PMCID: PMC6243201 DOI: 10.26508/lsa.201800216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Increased local trapping of morphogens within tissues as they grow would reduce circulating levels and can therefore provide a systemic readout of the status of their growth and maturation. Developmental transitions are often triggered by a neuroendocrine axis and can be contingent upon multiple organs achieving sufficient growth and maturation. How the neurodendocrine axis senses the size and maturity of peripheral organs is not known. In Drosophila larvae, metamorphosis is triggered by a sharp increase in the level of the steroid hormone ecdysone, secreted by the prothoracic gland (PG). Here, we show that the BMP2/4 ortholog Dpp can function as a systemic signal to regulate developmental timing. Dpp from peripheral tissues, mostly imaginal discs, can reach the PG and inhibit ecdysone biosynthesis. As the discs grow, reduced Dpp signaling in the PG is observed, consistent with the possibility that Dpp functions in a checkpoint mechanism that prevents metamorphosis when growth is insufficient. Indeed, upon starvation early in the third larval instar, reducing Dpp signaling in the PG abrogates the critical-weight checkpoint which normally prevents pupariation under these conditions. We suggest that increased local trapping of morphogen within tissues as they grow would reduce circulating levels and hence provide a systemic readout of their growth status.
Collapse
Affiliation(s)
- Linda Setiawan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xueyang Pan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Alexis L Woods
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
48
|
Dominguez CV, Maestro JL. Expression of juvenile hormone acid O-methyltransferase and juvenile hormone synthesis in Blattella germanica. INSECT SCIENCE 2018; 25:787-796. [PMID: 28374493 DOI: 10.1111/1744-7917.12467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid synthetized by the insect corpora allata (CA), plays critical roles in metamorphosis and reproduction. Penultimate or last step of JH synthesis is catalyzed by juvenile hormone acid O-methyltransferase (JHAMT). Here we report the cloning and expression analysis of the JHAMT orthologue in the cockroach, Blattella germanica (L.) (BgJHAMT). BgJHAMT is mainly expressed in CA, with only expression traces in ovary. Three different isoforms, differing in the 3'-UTR sequence, were identified. Isoform A shows between 35 and 65 times higher expression than B and C in CA from penultimate nymphal instar and adult females. RNAi-triggered knock down of BgJHAMT produces a dramatic reduction of JH synthesis, concomitant with a decrease of fat body vitellogenin expression and basal follicle length. BgJHAMT mRNA levels in CA of females along the gonadotrophic cycle parallel, with a slight advancement, JH synthesis profile. BgJHAMT mRNA levels were reduced in starved females and in females in which we reduced nutritional signaling by knocking down insulin receptor and target of rapamycin (TOR). Results show that conditions that modify JH synthesis in adult B. germanica females show parallel changes of BgJHAMT mRNA levels and that the JH-specific branch of the JH synthesis pathway is regulated in the same way as the mevalonate branch. Furthermore, we demonstrate that nutrition and its signaling through the insulin receptor and TOR pathways are essential for activating BgJHAMT expression, which suggests that this enzyme can be a checkpoint for the regulation of JH production in relation to nutritional status.
Collapse
Affiliation(s)
- Claudia V Dominguez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose L Maestro
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
49
|
Hahn T, Roth A, Febel E, Fijalkowska M, Schmitt E, Arsiwalla T, Zibek S. New methods for high-accuracy insect chitin measurement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5069-5073. [PMID: 29604075 DOI: 10.1002/jsfa.9044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND There is a growing interest in the use of insects in poultry, swine and aquaculture feed, as well as pet food applications. All insects produce chitin-based exoskeletons. With regard to chitin content, a precise determination in agricultural applications is crucial because it has favorable functional properties, although it is also difficult to digest for some species of livestock. Three measurement methods were compared to determine the most reliable method of chitin content determination in different insects and selected Hermetia illucens products: acid detergent fiber (ADF) provides the fiber content and the acid detergent lignin (ADL) additionally considers the catecholic compounds. Acetyl group measurement relates the acetate content to the chitin content. RESULTS Comparing different insect species, the highest chitin value via ADF measurement was determined for the Tenebrio molitor larvae (155 g kg-1 ). Chitin values higher than 200 g kg-1 revealed that H. illucens residues are a much better valuable source of chitin. For the larval exoskeletons, a chitin content for all measurement methods of more than 350 g kg-1 was determined. In general, the ADF measurement is approximately 5% higher than the ADF-ADL and acetyl measurements. ADF-ADL and acetyl group determinations are approximately equivalent measurement methods. CONCLUSION According to statistical analysis, ADF-ADL represents a compromise between accuracy and equipment demand and is a suitable method for determining the chitin content of both insects and their residues. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas Hahn
- Molecular Biotechnology, Fraunhofer Institute of Biotechnology and Interfacial Engineering, Stuttgart, Germany
| | - Aileen Roth
- Molecular Biotechnology, Fraunhofer Institute of Biotechnology and Interfacial Engineering, Stuttgart, Germany
| | - Eva Febel
- Molecular Biotechnology, Fraunhofer Institute of Biotechnology and Interfacial Engineering, Stuttgart, Germany
| | | | | | | | - Susanne Zibek
- Molecular Biotechnology, Fraunhofer Institute of Biotechnology and Interfacial Engineering, Stuttgart, Germany
| |
Collapse
|
50
|
Ishimaru Y, Bando T, Ohuchi H, Noji S, Mito T. Bone morphogenetic protein signaling in distal patterning and intercalation during leg regeneration of the cricket, Gryllus bimaculatus. Dev Growth Differ 2018; 60:377-386. [PMID: 30043459 DOI: 10.1111/dgd.12560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
The cricket, Gryllus bimaculatus, is a classic model of leg regeneration following amputation. We previously demonstrated that Gryllus decapentaplegic (Gb'dpp) is expressed during leg regeneration, although it remains unclear whether it is essential for this process. In this study, double-stranded RNA targeting the Smad mathers-against-dpp homolog, Gb'mad, was used to examine the role of bone morphogenetic protein (BMP) signaling in the leg regeneration process of Gryllus bimaculatus. RNA interference (RNAi)-mediated knockdown of Gb'mad led to a loss of tarsus regeneration at the most distal region of regenerating leg segments. Moreover, we confirmed that the phenotype obtained by knockdown of Dpp type I receptor, Thick veins (Gb'tkv), closely resembled that observed for Gb'mad RNAi crickets, thereby suggesting that the BMP signaling pathway is indispensable for the initial stages of tarsus formation. Interestingly, knockdown of Gb'mad and Gb'tkv resulted in significant elongation of regenerating tibia along the proximodistal axis compared with normal legs. Moreover, our findings indicate that during the regeneration of tibia, the BMP signaling pathway interacts with Dachsous/Fat (Gb'Ds/Gb'Ft) signaling and dachshund (Gb'dac) to re-establish positional information and regulate determination of leg size. Based on these observations, we discuss possible roles for Gb'mad in the distal patterning and intercalation processes during leg regeneration in Gryllus bimaculatus.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, Okayama, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, Okayama, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| |
Collapse
|