1
|
Choi J, Kang T, Park SJ, Shin S. A Chromosome-Scale and Annotated Reference Genome Assembly of Plecia longiforceps Duda, 1934 (Diptera: Bibionidae). Genome Biol Evol 2024; 16:evae205. [PMID: 39331700 PMCID: PMC11474240 DOI: 10.1093/gbe/evae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
Urbanization is a leading factor effecting global biodiversity, driving rapid evolutionary processes in the local biota. Species that adapt and proliferate in city environments can become pests, with human activities facilitating their dispersal and excessive outbreaks. Here we present the first genome data of Plecia longiforceps, a lovebug pest in Eastern Asia with intensive aggregations recently occurring in the Seoul Metropolitan Area of Korea. PacBio HiFi and ONT Pore-C sequencing data were used to construct a highly continuous assembly with a total size of 707 Mb and 8 major pseudochromosomes, its integrity supported by the N50 length of 98.1 Mb and 96.8% BUSCO completeness. Structural and functional annotation using transcriptome data and ab initio predictions revealed a high proportion (69.3%) of repeat sequences, and synteny analysis with Bibio marci showed high levels of genomic collinearity. The genome will serve as an essential resource for both population genomics and molecular research on lovebug dispersal and outbreaks, and also implement studies on the eco-evolutionary processes of insects in urbanizing habitats.
Collapse
Affiliation(s)
- Jonghwan Choi
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Korea
| | - Taemin Kang
- National Institute of Biological Resources, Incheon, Korea
| | - Sun-Jae Park
- National Institute of Biological Resources, Incheon, Korea
| | - Seunggwan Shin
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Velasco JA, Luna-Aranguré C, Calderón-Bustamante O, Mendoza-Ponce A, Estrada F, González-Salazar C. Drivers of urban biodiversity in Mexico and joint risks from future urban expansion, climate change, and urban heat island effect. PLoS One 2024; 19:e0308522. [PMID: 39365758 PMCID: PMC11451986 DOI: 10.1371/journal.pone.0308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 10/06/2024] Open
Abstract
Urbanization is a phenomenon where humans concentrate in high densities and consume more per capita energy than in rural areas, imposing high pressures on biodiversity and ecosystem services. Although Mexico is recognized as a megadiverse country and there is an understanding of ecological and evolutionary processes underlying this high diversity, only some efforts have been devoted to understanding how urban biodiversity has been shaped. Here, we compiled a set of socioeconomic and ecological variables to explore macroecological patterns in urban biodiversity across Mexican municipalities. Specifically, we tested the species-area relationships (SAR) between rural and urban areas across municipalities and evaluated the relative role of different socioeconomic and ecological variables driving urban species richness for terrestrial vertebrates. Finally, we explored the exposure of Mexican municipalities to future urban expansion, the urban heat island (UHI) effect, and climate change. Urban and rural settlements show differences in the shape of SAR models. We found that urban area, size of the network of urban protected areas, the number of ecoregions, and GDP explained the urban total species richness relatively well. Mexican cities in the northeast region may be at a higher risk than others. Based on our analyses, policymakers should identify priority urban conservation sites in cities with high species richness and low urbanization development. These actions would alleviate future urban biodiversity loss in these growing cities.
Collapse
Affiliation(s)
- Julián A. Velasco
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Luna-Aranguré
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Calderón-Bustamante
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alma Mendoza-Ponce
- PINCC-Programa de Investigación en Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Estrada
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
- PINCC-Programa de Investigación en Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute for Environmental Studies, VU Amsterdam, Amsterdam, the Netherlands
| | - Constantino González-Salazar
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
- C3-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Stiegler J, Gallagher CA, Hering R, Müller T, Tucker M, Apollonio M, Arnold J, Barker NA, Barthel L, Bassano B, Beest FMV, Belant JL, Berger A, Beyer DE, Bidner LR, Blake S, Börner K, Brivio F, Brogi R, Buuveibaatar B, Cagnacci F, Dekker J, Dentinger J, Duľa M, Duquette JF, Eccard JA, Evans MN, Ferguson AW, Fichtel C, Ford AT, Fowler NL, Gehr B, Getz WM, Goheen JR, Goossens B, Grignolio S, Haugaard L, Hauptfleisch M, Heim M, Heurich M, Hewison MAJ, Isbell LA, Janssen R, Jarnemo A, Jeltsch F, Miloš J, Kaczensky P, Kamiński T, Kappeler P, Kasper K, Kautz TM, Kimmig S, Kjellander P, Kowalczyk R, Kramer-Schadt S, Kröschel M, Krop-Benesch A, Linderoth P, Lobas C, Lokeny P, Lührs ML, Matsushima SS, McDonough MM, Melzheimer J, Morellet N, Ngatia DK, Obermair L, Olson KA, Patanant KC, Payne JC, Petroelje TR, Pina M, Piqué J, Premier J, Pufelski J, Pyritz L, Ramanzin M, Roeleke M, Rolandsen CM, Saïd S, Sandfort R, Schmidt K, Schmidt NM, Scholz C, Schubert N, Selva N, Sergiel A, Serieys LEK, Silovský V, Slotow R, Sönnichsen L, Solberg EJ, Stelvig M, Street GM, Sunde P, Svoboda NJ, Thaker M, Tomowski M, Ullmann W, Vanak AT, Wachter B, Webb SL, Wilmers CC, Zieba F, Zwijacz-Kozica T, Blaum N. Mammals show faster recovery from capture and tagging in human-disturbed landscapes. Nat Commun 2024; 15:8079. [PMID: 39278967 PMCID: PMC11402999 DOI: 10.1038/s41467-024-52381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024] Open
Abstract
Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals.
Collapse
Affiliation(s)
- Jonas Stiegler
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany.
- Animal Ecology, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany.
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Robert Hering
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
- Ecology and Macroecology Laboratory, Institute for Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Thomas Müller
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt (Main), Germany
- Department of Biological Sciences, Goethe University, 60438, Frankfurt (Main), Germany
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - Marlee Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, GL Nijmegen, Netherlands
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Janosch Arnold
- Wildlife Research Unit, Agricultural Centre Baden-Wuerttemberg (LAZBW), 88326, Aulendorf, Germany
| | - Nancy A Barker
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Leon Barthel
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | | | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Anne Berger
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Dean E Beyer
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Laura R Bidner
- Department of Anthropology, University of California, Davis, CA, 95616, USA
- Mpala Research Centre, 555-10400, Nanyuki, Kenya
| | - Stephen Blake
- Department of Biology, St. Louis University, St. Louis, MO, USA
- WildCare Institute, Saint Louis Zoo, 1 Government Drive, Saint Louis, MO, 63110, USA
| | - Konstantin Börner
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Francesca Brivio
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Rudy Brogi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | | | - Francesca Cagnacci
- Research and Innovation Centre, Animal Ecology Unit, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
- NBFC, National Biodiversity Future Centre, Palermo, 90133, Italy
| | | | - Jane Dentinger
- Texas A&M Natural Resources Institute, and Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, 77843-2138, USA
| | - Martin Duľa
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University, 613 00, Brno, Czech Republic
| | - Jarred F Duquette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Jana A Eccard
- Animal Ecology, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Meaghan N Evans
- Danau Girang Field Centre, Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Adam W Ferguson
- Mpala Research Centre, 555-10400, Nanyuki, Kenya
- Department of Biological Sciences, Chicago State University, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Claudia Fichtel
- German Primate Center, Behavioral Ecology and Sociobiology Unit, 37077, Göttingen, Germany
| | - Adam T Ford
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada
| | - Nicholas L Fowler
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
| | - Wayne M Getz
- Department of Environmental Science Policy & Management, 130 Mulford Hall, University of California at Berkeley, Berkeley, CA, 94720-3112, USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Jacob R Goheen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Benoit Goossens
- Danau Girang Field Centre, Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Stefano Grignolio
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, I-44121, Ferrara, Italy
| | - Lars Haugaard
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Morgan Hauptfleisch
- Biodiversity Research Centre, Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Morten Heim
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
- Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- Institute of Forestry and Wildlife Management, Inland Norway University of Applied Science, NO-2480, Koppang, Norway
| | | | - Lynne A Isbell
- Department of Anthropology, University of California, Davis, CA, 95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA, 95616, USA
| | | | - Anders Jarnemo
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Jezek Miloš
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
| | - Petra Kaczensky
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, A-1160, Vienna, Austria
| | - Tomasz Kamiński
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Peter Kappeler
- German Primate Center, Behavioral Ecology and Sociobiology Unit, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, Germany
| | - Katharina Kasper
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Todd M Kautz
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Sophia Kimmig
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91, Riddarhyttan, Sweden
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Institute of Ecology, Chair of Planning-Related Animal Ecology, Technische Universität Berlin, Potsdam, Germany
| | - Max Kröschel
- Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | | | - Peter Linderoth
- Wildlife Research Unit, Agricultural Centre Baden-Wuerttemberg (LAZBW), 88326, Aulendorf, Germany
| | - Christoph Lobas
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Peter Lokeny
- Department of Biological Sciences, Chicago State University, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Mia-Lana Lührs
- German Primate Center, Behavioral Ecology and Sociobiology Unit, 37077, Göttingen, Germany
- Büro Renala, Gülper Hauptstr. 4, 14715, Havelaue, Germany
| | - Stephanie S Matsushima
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, 95060, USA
| | - Molly M McDonough
- Department of Biological Sciences, Chicago State University, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Jörg Melzheimer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | | | - Leopold Obermair
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
- Hunting Association of Lower Austria, Wickenburggasse 3, 1080, Vienna, Austria
| | - Kirk A Olson
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
| | - Kidan C Patanant
- Technische Universität München, Arcisstraße 21, 80333, München, Germany
| | - John C Payne
- Wildlife Conservation Society, Mongolia Program, Ulaanbaatar, Mongolia
| | - Tyler R Petroelje
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Manuel Pina
- Tragsatec, C. de Julián Camarillo, 6B, San Blas-Canillejas, 28037, Madrid, Spain
| | - Josep Piqué
- Tragsatec, C. de Julián Camarillo, 6B, San Blas-Canillejas, 28037, Madrid, Spain
| | - Joseph Premier
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
- Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Jan Pufelski
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Lennart Pyritz
- German Primate Center, Behavioral Ecology and Sociobiology Unit, 37077, Göttingen, Germany
| | - Maurizio Ramanzin
- Dipertimento di agronomia, animali, alimenti, risorse naturali e ambiente, Università degli Studi di Padova, 35020, Legnaro PD, Italy
| | - Manuel Roeleke
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
| | - Sonia Saïd
- Office Français de la Biodiversité, Montfort, 01330, Birieux, France
| | - Robin Sandfort
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Niels M Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Carolin Scholz
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Nadine Schubert
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Nuria Selva
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120, Kraków, Poland
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva, Spain
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Agnieszka Sergiel
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120, Kraków, Poland
| | | | - Václav Silovský
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
| | - Rob Slotow
- Amarula Elephant Research Programme, School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
- Department of Genetics, Evolution and Environment, University College, London, WC1E 6BT, UK
| | - Leif Sönnichsen
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Erling J Solberg
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
| | | | - Garrett M Street
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS, USA
| | - Peter Sunde
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Nathan J Svoboda
- Alaska Department of Fish and Game, Wildlife Division, 11255 W. 8th Street, AK, USA
| | - Maria Thaker
- Center for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Maxi Tomowski
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
- Evolutionary Biology / Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wiebke Ullmann
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Abi T Vanak
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
- Wellcome Trust/DBT India Alliance, Clinical and Public Health Program, Bengaluru, India
| | - Bettina Wachter
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Stephen L Webb
- Texas A&M Natural Resources Institute, and Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, 77843-2138, USA
| | - Christopher C Wilmers
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, 95060, USA
| | | | | | - Niels Blaum
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| |
Collapse
|
4
|
Seixas L, Barão KR, Lopes R, Serafim D, Demetrio GR. Is urbanization a driver of aboveground biomass allocation in a widespread tropical shrub, Turnera subulata (Turneroideae - Passifloraceae)? JOURNAL OF PLANT RESEARCH 2024; 137:879-892. [PMID: 39014142 DOI: 10.1007/s10265-024-01560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Plant biomass allocation is mainly affected by the environment where each individual grows. In this sense, through the rapid global expansion of impermeable areas, urbanization has strong, albeit poorly understood, consequences on the biomass allocation of plants found in this environment. Nevertheless, the comprehension of biomass allocation processes in urban shrubs remains unclear, because most studies of urban ecology focus on tree species. This is an important gap of knowledge because a great part of urban vegetation is composed of shrubs and their association with trees have positive impacts in urban ecosystem services. In this study, we explored the ecological and potential selective pressure effects of an urbanization gradient on the biomass allocation patterns of aboveground organs of Turnera subulata, a widely distributed tropical shrub. We have demonstrated that, for certain reproductive organs, biomass allocation decreases in locations with higher urbanization. Unlike expected, the biomass of vegetative organs was not affected by urbanization, and we did not observe any effect of urbanization intensity on the variance in biomass allocation to vegetative and reproductive organs. We did not record urbanization-mediated trade-offs in biomass allocation for reproductive and vegetative organs. Instead, the biomass of these structures showed a positive relationship. Our data suggest that urbanization does not result in radical changes in biomass allocation of T. subulata, and neither in the variation of these traits. They indicate that the ability of T. subulata to thrive in urban environments may be associated with life history and morphological mechanisms. Our findings contribute to the understanding of shrub plant responses to urbanization and highlight urbanization as a potential factor in resource allocation differences for different structures and functions in plants living in these environments.
Collapse
Affiliation(s)
- L Seixas
- Graduate Program in Ecology (PPG-Ecology), State University of Campinas, Campinas, SP, Brazil
- Plant Ecology Laboratory, Penedo Educational Unit, Federal University of Alagoas, Penedo, AL, Brazil
| | - K R Barão
- Graduate Program of Biological Diversity and Conservation in the Tropics (PPG DIBICT), Federal University of Alagoas, Maceió, AL, Brazil
- Laboratory of Systematics and Diversity of Arthropods, Penedo Educational Unit, Federal University of Alagoas, Penedo, AL, Brazil
| | - Rvr Lopes
- Plant Ecology Laboratory, Penedo Educational Unit, Federal University of Alagoas, Penedo, AL, Brazil
- Graduate Program of Biological Diversity and Conservation in the Tropics (PPG DIBICT), Federal University of Alagoas, Maceió, AL, Brazil
| | - D Serafim
- Plant Ecology Laboratory, Penedo Educational Unit, Federal University of Alagoas, Penedo, AL, Brazil
- Graduate Program of Biological Diversity and Conservation in the Tropics (PPG DIBICT), Federal University of Alagoas, Maceió, AL, Brazil
| | - Guilherme Ramos Demetrio
- Plant Ecology Laboratory, Penedo Educational Unit, Federal University of Alagoas, Penedo, AL, Brazil.
- Graduate Program of Biological Diversity and Conservation in the Tropics (PPG DIBICT), Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
5
|
Bujan J, Bertelsmeier C, Ješovnik A. Insects in temperate urban parks face stronger selection pressure from the cold than the heat. Ecol Evol 2024; 14:e11335. [PMID: 39165538 PMCID: PMC11333530 DOI: 10.1002/ece3.11335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 08/22/2024] Open
Abstract
Urban areas experience higher temperatures compared to rural areas and as such, are increasingly considered places of acclimatization and adaptation to warming. Small ectotherms, such as insects, whose body temperature rises with habitat temperature, are directly affected by temperature changes. Thus, warming could have a profound effect on insect behavior and physiology. To test if the urban heat island effect drives higher thermal tolerance and activity changes, we used globally distributed and abundant insects-ants. We measured the heat and cold tolerance of 14 ant species distributed across urban and peri-urban areas. As thermal traits are often correlated with ant foraging, we measured foraging activity during three consecutive years across eight sites. Contrary to our prediction, ants exposed to the urban heat island effect did not have a higher heat tolerance than peri-urban ants. Instead, cold tolerance varied across habitats, with ants from the cooler, peri-urban habitats being able to tolerate lower temperatures. We recorded the same pattern of invariant heat and higher cold tolerance for ants in the canopy, compared to ground nesting ants. Ant activity was almost 10 times higher in urban sites and best predicted by cold, not heat tolerance. These unexpected results suggest that we need to rethink predictions about urban heat islands increasing insect heat tolerance in urban habitats, as cold tolerance might be a more plastic or adaptable trait, particularly in the temperate zone.
Collapse
Affiliation(s)
- Jelena Bujan
- Division for Marine and Environmental ResearchRuđer Bošković InstituteZagrebCroatia
- University of LausanneLausanneSwitzerland
- Croatian Myrmecological SocietyZagrebCroatia
| | | | - Ana Ješovnik
- Croatian Myrmecological SocietyZagrebCroatia
- Department of Entomology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Institute for Environment and NatureZagrebCroatia
| |
Collapse
|
6
|
Diamant ES, Yeh PJ. Complex patterns of morphological diversity across multiple populations of an urban bird species. Evolution 2024; 78:1325-1337. [PMID: 38700135 DOI: 10.1093/evolut/qpae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Urbanization presents a natural evolutionary experiment because selection pressures in cities can be strongly mismatched with those found in species' historic habitats. However, some species have managed to adapt and even thrive in these novel conditions. When a species persists across multiple cities, a fundamental question arises: do we see similar traits evolve in similar novel environments? By testing if and how similar phenotypes emerge across multiple urban populations, we can begin to assess the predictability of population response to anthropogenic change. Here, we examine variation within and across multiple populations of a songbird, the dark-eyed junco (Junco hyemalis). We measured morphological variations in juncos across urban and nonurban populations in Southern California. We investigated whether the variations we observed were due to differences in environmental conditions across cities. Bill shape differed across urban populations; Los Angeles and Santa Barbara juncos had shorter, deeper bills than nonurban juncos, but San Diego juncos did not. On the other hand, wing length decreased with the built environment, regardless of the population. Southern Californian urban juncos exhibit both similarities and differences in morphological traits. Studying multiple urban populations can help us determine the predictability of phenotypic evolutionary responses to novel environments.
Collapse
Affiliation(s)
- Eleanor S Diamant
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Jacob Blaustein Center for Scientific Cooperation, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Pamela J Yeh
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
7
|
Ridley AR, Speechley EM. Problem-solving ability: a link between cognition and conservation? Trends Ecol Evol 2024; 39:609-611. [PMID: 38821782 DOI: 10.1016/j.tree.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Traditionally, conservation and cognition have been disparate research disciplines. However, Audet et al.'s recent research contributes to an increasing body of evidence that innovative behaviours may determine the ability of species to respond to rapid environmental change, identifying an opportunity for cognition research to directly contribute to conservation outcomes.
Collapse
Affiliation(s)
- Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| | - Elizabeth M Speechley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Babik W, Marszałek M, Dudek K, Antunes B, Palomar G, Zając B, Taugbøl A, Pabijan M. Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural-urban gradients. Evol Appl 2024; 17:e13700. [PMID: 38832082 PMCID: PMC11146147 DOI: 10.1111/eva.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad Bufo bufo (26 localities, 480 individuals), and the smooth newt Lissotriton vulgaris (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in B. bufo and 7040 in L. vulgaris) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Zając
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| | - A. Taugbøl
- Norwegian Institute for Nature ResearchLillehammerNorway
| | - M. Pabijan
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| |
Collapse
|
9
|
Santicchia F, Tranquillo C, Wauters LA, Palme R, Panzeri M, Preatoni D, Bisi F, Martinoli A. Physiological stress response to urbanisation differs between native and invasive squirrel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171336. [PMID: 38423339 DOI: 10.1016/j.scitotenv.2024.171336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Novel pressures derived from urbanisation can alter native habitats and ultimately impact wildlife. Coping with such human-driven changes might induce shifts in species phenotypic traits, such as physiological responses to anthropogenic stressors. Preadaptation to face those challenges has been suggested to favour settlement and spread of invasive alien species in urbanised areas which, consequently, might respond differently than ecologically similar native species to stressors posed by urbanisation. The activation of the hypothalamic-pituitary-adrenal (HPA) axis and the subsequent release of glucocorticoids (GCs) has been suggested to mediate responses to anthropogenic disturbance in vertebrates. Furthermore, intraspecific competition, in conjunction with stressors related to urbanisation, might affect invasive and native species physiological stress responses differently. Using a parallel pseudo-experimental study system we measured faecal glucocorticoid metabolite (FGM) concentrations of the native Eurasian red squirrel and the invasive alien Eastern grey squirrel along a rural-urban gradient and in relation to conspecific density. The two species responded differently to challenges posed by the synergic effect of urbanisation and intraspecific competition. Association of FGMs and conspecific density in native red squirrels varied between rural and suburban sites, potentially depending on differential HPA axis responses. In urban sites, this relationship did not differ significantly from that in rural and suburban ones. Conversely, invasive grey squirrels' FGMs did not vary in relation to conspecific density, nor differed along the rural-urban gradient. Improving knowledge about native and competing invasive species' physiological responses to anthropogenic stressors can support conservation strategies in habitats altered by man. Our findings suggested that the invasive squirrels might be preadapted to cope with these challenges in urbanised areas, potentially increasing their success under the future global change scenario.
Collapse
Affiliation(s)
- Francesca Santicchia
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Claudia Tranquillo
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Lucas A Wauters
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Mattia Panzeri
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Damiano Preatoni
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Francesco Bisi
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Adriano Martinoli
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
10
|
Candolin U. Coping with light pollution in urban environments: Patterns and challenges. iScience 2024; 27:109244. [PMID: 38433890 PMCID: PMC10904992 DOI: 10.1016/j.isci.2024.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Artificial light at night is a growing environmental problem that is especially pronounced in urban environments. Yet, impacts on urban wildlife have received scant attention and patterns and consequences are largely unknown. Here, I present a conceptual framework outlining the challenges species encounter when exposed to urban light pollution and how they may respond through plastic adjustments and genetic adaptation. Light pollution interferes with biological rhythms, influences behaviors, fragments habitats, and alters predation risk and resource abundance, which changes the diversity and spatiotemporal distribution of species and, hence, the structure and function of urban ecosystems. Furthermore, light pollution interacts with other urban disturbances, which can exacerbate negative effects on species. Given the rapid growth of urban areas and light pollution and the importance of healthy urban ecosystems for human wellbeing, more research is needed on the impacts of light pollution on species and the consequences for urban ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Bustamante N, Garitano-Zavala Á. Natural Patterns in the Dawn and Dusk Choruses of a Neotropical Songbird in Relation to an Urban Sound Environment. Animals (Basel) 2024; 14:646. [PMID: 38396616 PMCID: PMC10886165 DOI: 10.3390/ani14040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Urbanization is one of the more important phenomena affecting biodiversity in the Anthropocene. Some organisms can cope with urban challenges, and changes in birds' acoustic communication have been widely studied. Although changes in the timing of the daily organization of acoustic communication have been previously reported, there is a significant gap regarding possible variations in song structure between dawn and dusk choruses. Considering that urbanization imposes different soundscapes for dawn and dusk choruses, we postulate two hypotheses: (i) there are variations in song parameters between dawn and dusk choruses, and (ii) such parameters within the city will vary in response to urban noise. We studied urban and extra-urban populations of Chiguanco Thrush in La Paz, Bolivia, measuring in dawn and dusk choruses: song length; song sound pressure level; minimum, maximum, range and dominant frequency; and the number of songs per individual. The results support our two hypotheses: there were more songs, and songs were louder and had larger band widths at dawn than at dusk in urban and extra-urban populations. Urban Chiguanco Thrushes sing less, the frequency of the entire song rises, and the amplitude increases as compared with extra-urban Chiguanco Thrushes. Understanding variations between dawn and dusk choruses could allow for a better interpretation of how some bird species cope with urban challenges.
Collapse
Affiliation(s)
- Noelia Bustamante
- Carrera de Biología, Universidad Mayor de San Andrés, La Paz P. O. Box 10077, Bolivia
| | | |
Collapse
|
12
|
Nadal J, Sáez D, Volponi S, Serra L, Spina F, Margalida A. The effects of cities on quail (Coturnix coturnix) migration: a disturbing story of population connectivity, health, and ecography. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:266. [PMID: 38353774 PMCID: PMC10867070 DOI: 10.1007/s10661-023-12277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
The increasing impact of human activities on ecosystems is provoking a profound and dangerous effect, particularly in wildlife. Examining the historical migration patterns of quail (Coturnix coturnix) offers a compelling case study to demonstrate the repercussions of human actions on biodiversity. Urbanization trends, where people gravitate toward mega-urban areas, amplify this effect. The proliferation of artificial urban ecosystems extends its influence across every biome, as human reliance on infrastructure and food sources alters ecological dynamics extensively. We examine European quail migrations pre- and post-World War II and in the present day. Our study concentrates on the Italian peninsula, investigating the historical and contemporary recovery of ringed quail populations. To comprehend changes in quail migration, we utilize trajectory analysis, open statistical data, and linear generalized models. We found that while human population and economic growth have shown a linear increase, quail recovery rates exhibit a U-shaped trajectory, and cereal and legume production displays an inverse U-shaped pattern. Generalized linear models have unveiled the significant influence of several key factors-time periods, cereal and legume production, and human demographics-on quail recovery rates. These factors closely correlate with the levels of urbanization observed across these timeframes. These insights underscore the profound impact of expanding human populations and the rise of mega-urbanization on ecosystem dynamics and services. As our planet becomes more urbanized, the pressure on ecosystems intensifies, highlighting the urgent need for concerted efforts directed toward conserving and revitalizing ecosystem integrity. Simultaneously, manage the needs and demands of burgeoning mega-urban areas. Achieving this balance is pivotal to ensuring sustainable coexistence between urban improvement and the preservation of our natural environment.
Collapse
Affiliation(s)
- Jesús Nadal
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Avd. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - David Sáez
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Avd. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Stefano Volponi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Lorenzo Serra
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Fernando Spina
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), 13005, Ciudad Real, Spain
- Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| |
Collapse
|
13
|
Palkovitz RE, Lawler RR. Developing evolutionary anthropology in local ecosystems. Evol Anthropol 2024; 33:e22016. [PMID: 38088455 DOI: 10.1002/evan.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
The traditional regional focus of evolutionary anthropology-typically defined as places where hominin fossils, nonhuman primates, and non-western populations reside-forms the basis of much evolutionary anthropological research. Using the highly biodiverse temperate region of Appalachia as an example, we suggest that evolutionary anthropologists have much to gain by stepping outside of this traditional geographic area. Being purposely provocative, we argue that evolutionary anthropologists might also benefit from conducting research in Appalachia and other temperate ecosystems. We briefly discuss multiple areas of study-including studies of seed dispersal, functional redundancy, convergent evolution, human behavioral ecology, and conservation-and how they can be considered within the purview of integrative and evolutionary anthropology. We also highlight broader impacts to higher education that evolutionary anthropologists can help promote by working in local ecosystems.
Collapse
Affiliation(s)
- Rachel E Palkovitz
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
14
|
Alberti M. Cities of the Anthropocene: urban sustainability in an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220264. [PMID: 37952615 PMCID: PMC10645089 DOI: 10.1098/rstb.2022.0264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Cities across the globe are driving systemic change in social and ecological systems by accelerating the rates of interactions and intensifying the links between human activities and Earth's ecosystems, thereby expanding the scale and influence of human activities on fundamental processes that sustain life. Increasing evidence shows that cities not only alter biodiversity, they change the genetic makeup of many populations, including animals, plants, fungi and microorganisms. Urban-driven rapid evolution in species traits might have significant effects on socially relevant ecosystem functions such as nutrient cycling, pollination, water and air purification and food production. Despite increasing evidence that cities are causing rapid evolutionary change, current urban sustainability strategies often overlook these dynamics. The dominant perspectives that guide these strategies are essentially static, focusing on preserving biodiversity in its present state or restoring it to pre-urban conditions. This paper provides a systemic overview of the socio-eco-evolutionary transition associated with global urbanization. Using examples of observed changes in species traits that play a significant role in maintaining ecosystem function and resilience, I propose that these evolutionary changes significantly impact urban sustainability. Incorporating an eco-evolutionary perspective into urban sustainability science and planning is crucial for effectively reimagining the cities of the Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
15
|
Ruzi SA, Youngsteadt E, Cherveny AH, Kettenbach J, Levenson HK, Carley DS, Collazo JA, Irwin RE. Bee species richness through time in an urbanizing landscape of the southeastern United States. GLOBAL CHANGE BIOLOGY 2024; 30:e17060. [PMID: 38273538 DOI: 10.1111/gcb.17060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 01/27/2024]
Abstract
Compared to non-urban environments, cities host ecological communities with altered taxonomic diversity and functional trait composition. However, we know little about how these urban changes take shape over time. Using historical bee (Apoidea: Anthophila) museum specimens supplemented with online repositories and researcher collections, we investigated whether bee species richness tracked urban and human population growth over the past 118 years. We also determined which species were no longer collected, whether those species shared certain traits, and if collector behavior changed over time. We focused on Wake County, North Carolina, United States where human population size has increased over 16 times over the last century along with the urban area within its largest city, Raleigh, which has increased over four times. We estimated bee species richness with occupancy models, and rarefaction and extrapolation curves to account for imperfect detection and sample coverage. To determine if bee traits correlated with when species were collected, we compiled information on native status, nesting habits, diet breadth, and sociality. We used non-metric multidimensional scaling to determine if individual collectors contributed different bee assemblages over time. In total, there were 328 species collected in Wake County. We found that although bee species richness varied, there was no clear trend in bee species richness over time. However, recent collections (since 2003) were missing 195 species, and there was a shift in trait composition, particularly lost species were below-ground nesters. The top collectors in the dataset differed in how often they collected bee species, but this was not consistent between historic and contemporary time periods; some contemporary collectors grouped closer together than others, potentially due to focusing on urban habitats. Use of historical collections and complimentary analyses can fill knowledge gaps to help understand temporal patterns of species richness in taxonomic groups that may not have planned long-term data.
Collapse
Affiliation(s)
- Selina A Ruzi
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Elsa Youngsteadt
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - April Hamblin Cherveny
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jessica Kettenbach
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Hannah K Levenson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Danesha Seth Carley
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jaime A Collazo
- U.S. Geological Survey, North Carolina Cooperative Fish and Wildlife Research Unit, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Faure J, Volz V, Joly S. Variation in flower size and shape of Impatiens capensis is correlated with urbanization in Montreal, Canada. Ecol Evol 2023; 13:e10826. [PMID: 38094148 PMCID: PMC10716670 DOI: 10.1002/ece3.10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 10/17/2024] Open
Abstract
Urbanization is changing the conditions in which many species live, forcing them to adjust to these novel environments. Floral size and shape are critical traits for the reproduction of plants pollinated by animals as they are involved in the attraction of pollinators and in efficient pollination. Variation in size and shape could be affected by urbanization via its modification of the abiotic environment (habitat fragmentation, water availability, temperature, soil properties), or via its impact on the biotic environment of plants (pollination, herbivory). Although numerous studies have assessed the impact of urbanization on pollinator communities and many plant traits, few have investigated its impact on floral size and shape while quantifying the proportion of the total urbanization effect that is due to biotic interactions. In this study, we tested if urbanization and pollinator visitation rates affect the flower shape of the spotted jewelweed, Impatiens capensis. We quantified the size and shape of flowers in frontal and profile views using geometric morphometrics for 228 individuals from six populations from the region of Montreal, Canada. Pollinator visitation rates were estimated at each site and the main pollinators were found to be bumblebees, honeybees and hummingbirds. We found that floral size and shape are significantly correlated with urbanization as measured by the amount of vegetation in the surrounding environment of the plants (mean normalized vegetation index, NDVI) and by the visitation rates of bumblebees and honey bees. Partitioning of the total flower shape variation suggests that urbanization affects flower shape through abiotic factors and via its impact on pollinator visitation rates. While further studies from other cities are necessary to confirm the role of urbanization in shaping the floral shape of I. capensis, these results support the idea that urbanization could affect flower shapes.
Collapse
Affiliation(s)
- Julie Faure
- Institut de Recherche en Biologie VégétaleDépartement de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Valentine Volz
- Institut de Recherche en Biologie VégétaleDépartement de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Simon Joly
- Institut de Recherche en Biologie VégétaleDépartement de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
- Montreal Botanical GardenMontréalQuebecCanada
| |
Collapse
|
17
|
Ålund M, Cenzer M, Bierne N, Boughman JW, Cerca J, Comerford MS, Culicchi A, Langerhans B, McFarlane SE, Möst MH, North H, Qvarnström A, Ravinet M, Svanbäck R, Taylor SA. Anthropogenic Change and the Process of Speciation. Cold Spring Harb Perspect Biol 2023; 15:a041455. [PMID: 37788888 PMCID: PMC10691492 DOI: 10.1101/cshperspect.a041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
Collapse
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Meredith Cenzer
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Nicolas Bierne
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier 34095, France
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Alessandro Culicchi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Brian Langerhans
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming 82071, USA
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Markus H Möst
- Research Department for Limnology, University of Innsbruck, Innsbruck 6020, Austria
| | - Henry North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Svanbäck
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Babik W, Dudek K, Marszałek M, Palomar G, Antunes B, Sniegula S. The genomic response to urbanization in the damselfly Ischnura elegans. Evol Appl 2023; 16:1805-1818. [PMID: 38029064 PMCID: PMC10681423 DOI: 10.1111/eva.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
The complex and rapid environmental changes brought about by urbanization pose significant challenges to organisms. The multifaceted effects of urbanization often make it difficult to define and pinpoint the very nature of adaptive urban phenotypes. In such situations, scanning genomes for regions differentiated between urban and non-urban populations may be an attractive approach. Here, we investigated the genomic signatures of adaptation to urbanization in the damselfly Ischnura elegans sampled from 31 rural and urban localities in three geographic regions: southern and northern Poland, and southern Sweden. Genome-wide variation was assessed using more than 370,000 single nucleotide polymorphisms (SNPs) genotyped by ddRADseq. Associations between SNPs and the level of urbanization were tested using two genetic environment association methods: Latent Factors Mixed Models and BayPass. While we found numerous candidate SNPs and a highly significant overlap between candidates identified by the two methods within the geographic regions, there was a distinctive lack of repeatability between the geographic regions both at the level of individual SNPs and of genomic regions. However, we found "synapse organization" at the top of the functional categories enriched among the genes located in the proximity of the candidate urbanization SNPs. Interestingly, the overall significance of "synapse organization" was built up by the accretion of different genes associated with candidate SNPs in different geographic regions. This finding is consistent with the highly polygenic nature of adaptation, where the response may be achieved through a subtle adjustment of allele frequencies in different genes that contribute to adaptive phenotypes. Taken together, our results point to a polygenic adaptive response in the nervous system, specifically implicating genes involved in synapse organization, which mirrors the findings from several genomic and behavioral studies of adaptation to urbanization in other taxa.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - S. Sniegula
- Department of Ecosystem Conservation, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
19
|
Salmón P, López-Idiáquez D, Capilla-Lasheras P, Pérez-Tris J, Isaksson C, Watson H. Urbanisation impacts plumage colouration in a songbird across Europe: Evidence from a correlational, experimental and meta-analytical approach. J Anim Ecol 2023; 92:1924-1936. [PMID: 37574652 DOI: 10.1111/1365-2656.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023]
Abstract
Urbanisation is accelerating across the globe, transforming landscapes, presenting organisms with novel challenges, shaping phenotypes and impacting fitness. Urban individuals are claimed to have duller carotenoid-based colouration, compared to their non-urban counterparts, the so-called 'urban dullness' phenomenon. However, at the intraspecific level, this generalisation is surprisingly inconsistent and often based on comparisons of single urban/non-urban populations or studies from a limited geographical area. Here, we combine correlational, experimental and meta-analytical data on a common songbird, the great tit Parus major, to investigate carotenoid-based plumage colouration in urban and forest populations across Europe. We find that, as predicted, urban individuals are paler than forest individuals, although there are large population-specific differences in the magnitude of the urban-forest contrast in colouration. Using one focal region (Malmö, Sweden), we reveal population-specific processes behind plumage colouration differences, which are unlikely to be the result of genetic or early-life conditions, but instead a consequence of environmental factors acting after fledging. Finally, our meta-analysis indicates that the urban dullness phenomenon is well established in the literature, for great tits, with consistent changes in carotenoid-based plumage traits, particularly carotenoid chroma, in response to anthropogenic disturbances. Overall, our results provide evidence for uniformity in the 'urban dullness' phenomenon but also highlight that the magnitude of the effect on colouration depends on local urban characteristics. Future long-term replicated studies, covering a wider range of species and feeding guilds, will be essential to further our understanding of the eco-evolutionary implications of this phenomenon.
Collapse
Affiliation(s)
- Pablo Salmón
- Department of Biology, Lund University, Lund, Sweden
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - David López-Idiáquez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Javier Pérez-Tris
- Evolution and Conservation Biology Research Group, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Hannah Watson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Lokatis S, Jeschke JM, Bernard-Verdier M, Buchholz S, Grossart HP, Havemann F, Hölker F, Itescu Y, Kowarik I, Kramer-Schadt S, Mietchen D, Musseau CL, Planillo A, Schittko C, Straka TM, Heger T. Hypotheses in urban ecology: building a common knowledge base. Biol Rev Camb Philos Soc 2023; 98:1530-1547. [PMID: 37072921 DOI: 10.1111/brv.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.
Collapse
Affiliation(s)
- Sophie Lokatis
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig, 04103, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Maud Bernard-Verdier
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, Münster, 48149, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam, 14469, Germany
| | - Frank Havemann
- Institut für Bibliotheks- und Informationswissenschaft, Humboldt-Universität zu Berlin, Dorotheenstraße 26, Berlin, 10117, Germany
| | - Franz Hölker
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Yuval Itescu
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingo Kowarik
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Stephanie Kramer-Schadt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Daniel Mietchen
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute for Globally Distributed Open Research and Education (IGDORE), Gothenburg, Sweden
| | - Camille L Musseau
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Aimara Planillo
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Conrad Schittko
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tanja M Straka
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tina Heger
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Technical University of Munich, Restoration Ecology, Emil-Ramann-Str. 6, Freising, 85350, Germany
| |
Collapse
|
21
|
Cosentino BJ, Vanek JP, Gibbs JP. Rural selection drives the evolution of an urban-rural cline in coat color in gray squirrels. Ecol Evol 2023; 13:e10544. [PMID: 37829180 PMCID: PMC10565125 DOI: 10.1002/ece3.10544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Phenotypic differences between urban and rural populations are well-documented, but the evolutionary processes driving trait variation along urbanization gradients are often unclear. We combined spatial data on abundance, trait variation, and measurements of fitness to understand cline structure and test for natural selection on heritable coat color morphs (melanic, gray) of eastern gray squirrels (Sciurus carolinensis) along an urbanization gradient. Population surveys using remote cameras and visual counts at 76 sites along the urbanization gradient revealed a significant cline in melanism, decreasing from 48% in the city center to <5% in rural woodlands. Among 76 squirrels translocated to test for phenotypic selection, survival was lower for the melanic than gray morph in rural woodlands, whereas there was no difference in survival between color morphs in the city. These results suggest the urban-rural cline in melanism is explained by natural selection favoring the gray morph in rural woodlands combined with relaxed selection in the city. Our study illustrates how trait variation between urban and rural populations can emerge from selection primarily in rural populations rather than adaptation to novel features of the urban environment.
Collapse
Affiliation(s)
| | - John P. Vanek
- Department of BiologyHobart and William Smith CollegesGenevaNew YorkUSA
- Department of Environmental BiologyState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
- Present address:
New York Natural Heritage ProgramAlbanyNew YorkUSA
| | - James P. Gibbs
- Department of Environmental BiologyState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| |
Collapse
|
22
|
Sanderson S, Bolnick DI, Kinnison MT, O'Dea RE, Gorné LD, Hendry AP, Gotanda KM. Contemporary changes in phenotypic variation, and the potential consequences for eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S127-S139. [PMID: 37840026 DOI: 10.1111/ele.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/17/2023]
Abstract
Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco-evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco-evolutionary studies.
Collapse
Affiliation(s)
- Sarah Sanderson
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Daniel I Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael T Kinnison
- School of Biology and Ecology and Maine Center for Genetics in the Environment, University of Maine, Orono, Maine, USA
| | | | - Lucas D Gorné
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrew P Hendry
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
| |
Collapse
|
23
|
Diamant ES, MacGregor-Fors I, Blumstein DT, Yeh PJ. Urban birds become less fearful following COVID-19 reopenings. Proc Biol Sci 2023; 290:20231338. [PMID: 37608719 PMCID: PMC10445014 DOI: 10.1098/rspb.2023.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Following the COVID-19 pandemic, many people around the world stayed home, drastically altering human activity in cities. This exceptional moment provided researchers the opportunity to test how urban animals respond to human disturbance, in some cases testing fundamental questions on the mechanistic impact of urban behaviours on animal behaviour. However, at the end of this 'anthropause', human activity returned to cities. How might each of these strong shifts affect wildlife in the short and long term? We focused on fear response, a trait essential to tolerating urban life. We measured flight initiation distance-at both individual and population levels-for an urban bird before, during and after the anthropause to examine if birds experienced longer-term changes after a year and a half of lowered human presence. Dark-eyed juncos did not change fear levels during the anthropause, but they became drastically less fearful afterwards. These surprising and counterintuitive findings, made possible by following the behaviour of individuals over time, has led to a novel understanding that fear response can be driven by plasticity, yet not habituation-like processes. The pandemic-caused changes in human activity have shown that there is great complexity in how humans modify a behavioural trait fundamental to urban tolerance in animals.
Collapse
Affiliation(s)
- Eleanor S. Diamant
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ian MacGregor-Fors
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti 00014, Finland
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pamela J. Yeh
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
24
|
Palomar G, Wos G, Stoks R, Sniegula S. Latitude-specific urbanization effects on life history traits in the damselfly Ischnura elegans. Evol Appl 2023; 16:1503-1515. [PMID: 37622092 PMCID: PMC10445092 DOI: 10.1111/eva.13583] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
- Department of Genetics, Physiology, and MicrobiologyComplutense University of MadridMadridSpain
| | - Guillaume Wos
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and EcotoxicologyKU LeuvenLeuvenBelgium
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| |
Collapse
|
25
|
Serieys LE, Bishop JM, Rogan MS, Smith JA, Suraci JP, O’Riain MJ, Wilmers CC. Anthropogenic activities and age class mediate carnivore habitat selection in a human-dominated landscape. iScience 2023; 26:107050. [PMID: 37534145 PMCID: PMC10391726 DOI: 10.1016/j.isci.2023.107050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Human activities increasingly challenge wild animal populations by disrupting ecological connectivity and population persistence. Yet, human-modified habitats can provide resources, resulting in selection of disturbed areas by generalist species. To investigate spatial and temporal responses of a generalist carnivore to human disturbance, we investigated habitat selection and diel activity patterns in caracals (Caracal caracal). We GPS-collared 25 adults and subadults in urban and wildland-dominated subregions in Cape Town, South Africa. Selection responses for landscape variables were dependent on subregion, animal age class, and diel period. Contrary to expectations, caracals did not become more nocturnal in urban areas. Caracals increased their selection for proximity to urban areas as the proportion of urban area increased. Differences in habitat selection between urban and wildland caracals suggest that individuals of this generalist species exhibit high behavioral flexibility in response to anthropogenic disturbances that emerge as a function of habitat context.
Collapse
Affiliation(s)
- Laurel E.K. Serieys
- Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town 7701, South Africa
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Panthera, New York, NY 10018, USA
- Cape Leopard Trust, Cape Town 7966, South Africa
| | - Jacqueline M. Bishop
- Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town 7701, South Africa
| | - Matthew S. Rogan
- Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town 7701, South Africa
- Natural State, Nanyuki, Kenya
| | - Justine A. Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Justin P. Suraci
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Conservation Science Partners, Inc. Truckee, CA 96161, USA
| | - M. Justin O’Riain
- Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town 7701, South Africa
| | - Christopher C. Wilmers
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
26
|
Zhang Y, Su JQ, Liao H, Breed MF, Yao H, Shangguan H, Li HZ, Sun X, Zhu YG. Increasing Antimicrobial Resistance and Potential Human Bacterial Pathogens in an Invasive Land Snail Driven by Urbanization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7273-7284. [PMID: 37097110 DOI: 10.1021/acs.est.3c01233] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our understanding of the role urbanization has in augmenting invasive species that carry human bacterial pathogens and antimicrobial resistance (AMR) remains poorly understood. Here, we investigated the gut bacterial communities, antibiotic resistance genes (ARGs) and potential antibiotic-resistant pathogens in giant African snails (Achatina fulica) collected across an urbanization gradient in Xiamen, China (n = 108). There was a lack of correlation between the microbial profiles of giant African snails and the soils of their habitats, and the resistome and human-associated bacteria were significantly higher than those of native snails as well as soils. We observed high diversity (601 ARG subtypes) and abundance (1.5 copies per 16S rRNA gene) of giant African snail gut resistome. Moreover, giant African snails in more urban areas had greater diversity and abundance of high-risk ARGs and potential human bacterial pathogens (e.g., ESKAPE pathogens). We highlight that urbanization significantly impacted the gut microbiomes and resistomes of these invasive snails, indicating that they harbor greater biological contaminants such as ARGs and potential human bacterial pathogens than native snails and soils. This study advances our understanding of the effect of urbanization on human bacterial pathogens and AMR in a problematic invasive snail and should help combat risks associated with invasive species under the One Health framework.
Collapse
Affiliation(s)
- Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Liao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Ritz-Radlinská A, Barták V, Hodačová L, Maidlová K, Zasadil P. The singing activity of the Yellowhammer (Emberiza citrinella) under traffic noise around highways. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1020982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Steadily increasing human population is changing the environment in many ways. One of the most disturbing impacts is the development of anthropogenic noise pollution connected to ever-growing traffic intensity. The road network can have both positive and negative effects on biodiversity and populations. Many bird species use acoustic communication to establish and maintain their territories and for intra-pair and adult–young communication. Noise pollution can impact negatively on breeding success and biorhythm if this communication is masked by noise and the individuals must adjust their singing activity. Yellowhammer (Emberiza citrinella) is a common bird species of agricultural landscapes whose population is declining due to agricultural intensification. It is found also in habitats near highways with forest steppe-like characteristics, where it is affected by the high levels of anthropogenic noise pollution. This study aimed to determine how this species adapts to noise from highway traffic by adjusting its singing activity. The influence of locality type, immediate and long-term impact of traffic noise on the average and total length of song sequences in the birdsong, and influence on the total number of recorded song sequences during the second hour after sunrise were evaluated in this study. Our results showed that Yellowhammer’s singing activity changed in localities close to highways compared to agricultural landscape. With increasing long-term traffic intensity on highways, song duration of the Yellowhammer song was decreasing. The present traffic intensity led to later onset of dawn chorus and decreasing strophe length with increasing number of passing vehicles. Furthermore, in the agricultural landscape, Yellowhammer’s song duration increased with increasing distance from the nearest road.
Collapse
|
28
|
Abou Zeid F, Morelli F, Ibáñez-Álamo JD, Díaz M, Reif J, Jokimäki J, Suhonen J, Kaisanlahti-Jokimäki ML, Markó G, Bussière R, Mägi M, Tryjanowski P, Kominos T, Galanaki A, Bukas N, Pruscini F, Jerzak L, Ciebiera O, Benedetti Y. Spatial Overlap and Habitat Selection of Corvid Species in European Cities. Animals (Basel) 2023; 13:ani13071192. [PMID: 37048448 PMCID: PMC10093487 DOI: 10.3390/ani13071192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Understanding habitat and spatial overlap in sympatric species of urban areas would aid in predicting species and community modifications in response to global change. Habitat overlap has been widely investigated for specialist species but neglected for generalists living in urban settings. Many corvid species are generalists and are adapted to urban areas. This work aimed to determine the urban habitat requirements and spatial overlap of five corvid species in sixteen European cities during the breeding season. All five studied corvid species had high overlap in their habitat selection while still having particular tendencies. We found three species, the Carrion/Hooded Crow, Rook, and Eurasian Magpie, selected open habitats. The Western Jackdaw avoided areas with bare soil cover, and the Eurasian Jay chose more forested areas. The species with similar habitat selection also had congruent spatial distributions. Our results indicate that although the corvids had some tendencies regarding habitat selection, as generalists, they still tolerated a wide range of urban habitats, which resulted in high overlap in their habitat niches and spatial distributions.
Collapse
Affiliation(s)
- Farah Abou Zeid
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (F.M.); (Y.B.)
- Correspondence:
| | - Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (F.M.); (Y.B.)
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana St. 1, 65-516 Zielona Góra, Poland; (L.J.); (O.C.)
| | | | - Mario Díaz
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (BGC-MNCN-CSIC), 28006 Madrid, Spain;
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Benatska 2, 128 01 Praha, Czech Republic;
- Department of Zoology, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 50, 771 46 Olomouc, Czech Republic
| | - Jukka Jokimäki
- Nature Inventory and EIA-Services, Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland; (J.J.); (M.-L.K.-J.)
| | - Jukka Suhonen
- Department of Biology, University of Turku, 20014 Turku, Finland;
| | - Marja-Liisa Kaisanlahti-Jokimäki
- Nature Inventory and EIA-Services, Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland; (J.J.); (M.-L.K.-J.)
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, 1118 Budapest, Hungary;
| | | | - Marko Mägi
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 50409 Tartu, Estonia;
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland;
| | - Theodoros Kominos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (A.G.)
| | - Antonia Galanaki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (A.G.)
| | - Nikos Bukas
- Plegadis, Riga Feraiou 6A, 45444 Ioannina, Greece;
| | | | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana St. 1, 65-516 Zielona Góra, Poland; (L.J.); (O.C.)
| | - Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana St. 1, 65-516 Zielona Góra, Poland; (L.J.); (O.C.)
| | - Yanina Benedetti
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (F.M.); (Y.B.)
| |
Collapse
|
29
|
Aguilera MA, Rojas A, Bulleri F, Thiel M. Breakwaters as habitats for synanthropes: Spatial associations of vertebrates and vegetation with anthropogenic litter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160753. [PMID: 36513231 DOI: 10.1016/j.scitotenv.2022.160753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Urban infrastructures can provide 'novel' habitats for marine and terrestrial animals and plants, enhancing their ability to adapt to urban environments. In particular, coastal infrastructures characterized by a complex three-dimensional morphology, such as breakwaters, could provide species refuges and food. We investigated the role of breakwaters in providing habitat for vertebrates and plants, and the influence of anthropogenic litter in regulating the value of these structures as habitat. We sampled vertebrate and plant species and quantified the amount of anthropogenic litter on breakwaters and adjacent rocky habitats at several sites in three different countries (Italy, Spain and Chile). We found breakwaters to accumulate more litter items (e.g. especially plastics) than adjacent rocky habitats by means of their large-scale (i.e., 1 m) structural complexity. Birds, which used the artificial infrastructure as transitory habitat, reached similar abundances in breakwaters compared with adjacent rocky platforms. In contrast, synanthropic mammal species, such as Rattus norvegicus and feral cats, were slightly more frequent on breakwaters and appeared to use them as permanent habitat. Plants were frequent in the upper zone of breakwaters and, even though many macrophyte species can trap litter, their cover correlated negatively with anthropogenic litter density. Therefore, breakwaters provide either transitory or permanent habitats for different species, despite functioning as a sink for anthropogenic litter. Thus, new infrastructure should be designed with lower structural complexity in their supralittoral zone limiting the proliferation of synanthropic species. In addition, restricting public access to sensitive areas and enforcing littering fines could enhance the ecological value of these novel habitats by reducing the benefits to pest species.
Collapse
Affiliation(s)
- Moisés A Aguilera
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640 Peñalolén, Santiago, Chile.
| | - Ariel Rojas
- Departamento de Calidad y Laboratorio, Empresa AQUADEUS S.L. Crta. El ballestero, Km. 2, 02340 Robledo, Albacete, Spain
| | - Fabio Bulleri
- Dipartimento di Biologia, University of Pisa, CoNISMa, Pisa, Italy
| | - Martin Thiel
- Departamento de Biología Marina, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| |
Collapse
|
30
|
Consistent Nest Site Selection by Turtles across Habitats with Varying Levels of Human Disturbance. DIVERSITY 2023. [DOI: 10.3390/d15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Human disturbance impacts the breeding behavior of many species, and it is particularly important to understand how these human-caused changes affect vulnerable taxa, such as turtles. Habitat alteration can change the amount and quality of suitable nesting habitat, while human presence during nesting may influence nesting behavior. Consequently, both habitat alteration and human presence can influence the microhabitat that females choose for nesting. In the summer of 2019, we located emydid turtle nests in east-central Alabama, USA, in areas with varying levels of human disturbance (high, intermediate, low). We aimed to determine whether turtles selected nest sites based on a range of microhabitat variables comparing maternally selected natural nests to randomly chosen artificial nests. We also compared nest site choice across areas with different levels of human disturbance. Natural nests had less variance in canopy openness and average daily mean and minimum temperature than artificial nests, but microhabitat variables were similar across differing levels of disturbance. Additionally, we experimentally quantified nest predation across a natural to human-disturbed gradient. Nest predation rates were higher in areas with low and intermediate levels of disturbance than in areas with high human disturbance. Overall, these results show that turtles are not adjusting their choices of nest microhabitat when faced with anthropogenic change, suggesting that preserving certain natural microhabitat features will be critical for populations in human-disturbed areas.
Collapse
|
31
|
Do Suburban Populations of Lizards Behave Differently from Forest Ones? An Analysis of Perch Height, Time Budget, and Display Rate in the Cuban Endemic Anolis homolechis. DIVERSITY 2023. [DOI: 10.3390/d15020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Urbanization transforms natural ecosystems into novel habitats, which can result in negative consequences for biodiversity. Therefore, it is important to understand the mechanisms of maintenance of native species in urbanized environments, including behavior—which can act as a fast response to rapid environmental changes. We compared some behavioral traits between two suburban and two forest populations of Anolis homolechis. Direct observations of 779 individuals revealed that perch height was positively influenced by body size, but not by sex. Suburban individuals perched higher than forest ones, and even more so in the afternoon compared to the morning; a behavior that was not observed in forests populations. These differences might be due to a change from foraging activities in the morning to vigilance, display, and/or thermoregulation in the afternoon, promoted by suburban habitat conditions (e.g., higher predator abundance, open habitat structure, and urban heat). Video recordings of 81 focal individuals showed that males were more active than females (i.e., spending less time in stationary behavior and having a higher display rate), with no significant effect of habitat type. As some of our results diverge from previous studies on invasive anoles, we recommend extending comparative studies of urban and non-urban populations to other native Anolis.
Collapse
|
32
|
Genome-wide parallelism underlies contemporary adaptation in urban lizards. Proc Natl Acad Sci U S A 2023; 120:e2216789120. [PMID: 36634133 PMCID: PMC9934206 DOI: 10.1073/pnas.2216789120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated "natural experiments" in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus, a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions.
Collapse
|
33
|
Ichikawa I, Kuriwada T. The combined effects of artificial light at night and anthropogenic noise on life history traits in ground crickets. Ecol Res 2023. [DOI: 10.1111/1440-1703.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Izumi Ichikawa
- Faculty of Education, Laboratory of Zoology Kagoshima University Kagoshima Japan
| | - Takashi Kuriwada
- Faculty of Education, Laboratory of Zoology Kagoshima University Kagoshima Japan
| |
Collapse
|
34
|
Comparing Ant Assemblages and Functional Groups across Urban Habitats and Seasons in an East Asia Monsoon Climate Area. Animals (Basel) 2022; 13:ani13010040. [PMID: 36611650 PMCID: PMC9817932 DOI: 10.3390/ani13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
China's East Asia monsoon zone is undergoing rapid land-use conversion and urbanization. Safeguarding remaining biodiversity requires reducing, mitigating, and/or eliminating the negative impacts of human-induced landscape modification. In this study, we sampled ground-dwelling ants at 40 plots over 12 continuous months in a suburban area in southwestern China to examine whether and how vegetation composition and habitat fragmentation affected species richness and assemblage composition for the general ant community and, specifically, for principal functional groups (including Opportunists and Generalized Myrmicinae). Warmer seasons were associated with a higher capture rate for all functional groups. Patterns of ant species richness among Opportunists were more sensitive to vegetation and fragmentation than for Generalized Myrmicinae, and these effects generally varied with season. Patterns of ant assemblage composition for Opportunists were exclusively sensitive to vegetation, whereas Generalized Myrmicinae were sensitive to both vegetation and fragmentation with variation among seasons. Overall, our findings highlight the important role of seasonality, vegetation composition, and habitat fragmentation in mediating the impacts of human-induced landscape modification on urbanized ant communities, which make an essential functional contribution to biodiversity in the East Asia monsoon zone.
Collapse
|
35
|
Caspi T, Johnson JR, Lambert MR, Schell CJ, Sih A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol Evol 2022; 37:1092-1103. [PMID: 36058767 DOI: 10.1016/j.tree.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Plasticity-led evolution is central to evolutionary theory. Although challenging to study in nature, this process may be particularly apparent in novel environments such as cities. We document abundant evidence of plastic behavioral changes in urban animals, including learning, contextual, developmental, and transgenerational plasticities. Using behavioral drive as a conceptual framework, our analysis of notable case studies suggests that plastic behaviors, such as altered habitat use, migration, diurnal and seasonal activity, and courtship, can have faciliatory and cascading effects on urban evolution via spatial, temporal, and mate-choice mechanisms. Our findings highlight (i) the need to incorporate behavioral plasticity more formally into urban evolutionary research and (ii) the opportunity provided by urban environments to study behavioral mechanisms of plasticity-led processes.
Collapse
Affiliation(s)
- Tal Caspi
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Jacob R Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA.
| | - Max R Lambert
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA; Science Division, Habitat Program, Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| |
Collapse
|
36
|
Morozov NS. The Role of Predators in Shaping Urban Bird Populations: 1. Who Succeeds in Urban Landscapes? BIOL BULL+ 2022. [DOI: 10.1134/s1062359022080118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
The importance of habitat in the tumor-associated Pten, Mtor, and Akt gene expressions and chromosomal aberrations for wild rats. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Lafferty DJR, McKenney EA, Gillman SJ, Kailing CD, Walimaa MC, Kailing MJ, Roell BJ. The gut microbiome of wild American marten in the Upper Peninsula of Michigan. PLoS One 2022; 17:e0275850. [PMID: 36327319 PMCID: PMC9632765 DOI: 10.1371/journal.pone.0275850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Carnivores are ecologically important and sensitive to habitat loss and anthropogenic disruption. Here we measured trophic level and gut bacterial composition as proxies of carnivore ecological status across the Upper Peninsula, Michigan, for wild American marten (Martes americana; hereafter marten). In contrast to studies that have focused on omnivorous and herbivorous species, we find that marten, like other carnivore species without a cecum, are dominated by Firmicutes (52.35%) and Proteobacteria (45.31%) but lack Bacteroidetes. Additionally, a majority of the 12 major bacterial genera (occurring at ≥1%) are known hydrogen producers, suggesting these taxa may contribute to host energy requirements through fermentative production of acetate. Our study suggests that live trapping and harvest methods yield similar marten gut microbiome data. In addition, preserving undisturbed forest likely impacts marten ecology by measurably increasing marten trophic level and altering the gut microbiome. Our study underscores the utility of the gut microbiome as a tool to monitor the ecological status of wild carnivore populations.
Collapse
Affiliation(s)
- Diana J. R. Lafferty
- Department of Biology, Wildlife Ecology and Conservation Science Lab, Northern Michigan University, Marquette, Michigan, United States of America
- * E-mail:
| | - Erin A. McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sierra J. Gillman
- School of Environment and Forest Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chris D. Kailing
- Department of Biology, Wildlife Ecology and Conservation Science Lab, Northern Michigan University, Marquette, Michigan, United States of America
| | - Myles C. Walimaa
- Department of Earth, Environmental, and Geographical Sciences, Wildlife Ecology and Conservation Science Lab, Northern Michigan University, Marquette, Michigan, United States of America
| | - Macy J. Kailing
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Brian J. Roell
- Michigan Department of Natural Resources, Marquette, Michigan, United States of America
| |
Collapse
|
39
|
Capilla‐Lasheras P, Thompson MJ, Sánchez‐Tójar A, Haddou Y, Branston CJ, Réale D, Charmantier A, Dominoni DM. A global meta-analysis reveals higher variation in breeding phenology in urban birds than in their non-urban neighbours. Ecol Lett 2022; 25:2552-2570. [PMID: 36136999 PMCID: PMC9826320 DOI: 10.1111/ele.14099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Cities pose a major ecological challenge for wildlife worldwide. Phenotypic variation, which can result from underlying genetic variation or plasticity, is an important metric to understand eco-evolutionary responses to environmental change. Recent work suggests that urban populations might have higher levels of phenotypic variation than non-urban counterparts. This prediction, however, has never been tested across species nor over a broad geographical range. Here, we conducted a meta-analysis of the avian literature to compare urban versus non-urban means and variation in phenology (i.e. lay date) and reproductive effort (i.e. clutch size, number of fledglings). First, we show that urban populations reproduce earlier and have smaller broods than non-urban conspecifics. Second, we show that urban populations have higher phenotypic variation in laying date than non-urban populations. This result arises from differences between populations within breeding seasons, conceivably due to higher landscape heterogeneity in urban habitats. These findings reveal a novel effect of urbanisation on animal life histories with potential implications for species adaptation to urban environments (which will require further investigation). The higher variation in phenology in birds subjected to urban disturbance could result from plastic responses to a heterogeneous environment, or from higher genetic variation in phenology, possibly linked to higher evolutionary potential.
Collapse
Affiliation(s)
- Pablo Capilla‐Lasheras
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Megan J. Thompson
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontrealCanada,Centre d'Ecologie Fonctionnelle et EvolutiveUniversité de Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | | | - Yacob Haddou
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Claire J. Branston
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontrealCanada
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et EvolutiveUniversité de Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Davide M. Dominoni
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
40
|
Isabwe A, Yao H, Zhang S, Jiang Y, Breed MF, Sun X. Spatial assortment of soil organisms supports the size-plasticity hypothesis. ISME COMMUNICATIONS 2022; 2:102. [PMID: 37938741 PMCID: PMC9723746 DOI: 10.1038/s43705-022-00185-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2023]
Abstract
The size-plasticity hypothesis posits that larger size organisms are less plastic in their metabolic rates and, therefore, are more strongly environmental-filtered than smaller organisms. Many studies have supported this hypothesis by evaluating the relative roles of environmental filtration and dispersal for different taxonomic groups of soil organisms. Most observations are made at large spatial scales, which are assumed to have a wide array of varying habitats. However, since urbanization causes habitat fragmentation at smaller regional scales, testing the size-plasticity hypothesis at this scale would help better understand the spatial assortment of urban soil organisms which, in turn, would help to develop improved management and conservation strategies for urban soil health. Here, we used DNA metabarcoding on five groups of soil biota (bacteria, fungi, protists, nematodes, and invertebrates) to assess the relative importance of dispersal and environmental filters to examine the size-plasticity hypothesis at this spatial scale in an urban environment. We observed strong distance-decay of community similarities associated with higher levels of stochastic changes in bacteria, nematode, and protist communities but not fungal or invertebrate communities. Bacterial communities occupied the widest niche followed by protists and nematodes, potentially because of their higher dispersal abilities compared to the larger soil organisms. Null deviation of communities varied with taxonomic groups where bacteria and nematodes were mainly driven by homogenizing dispersal, protists and fungi by drift, and soil invertebrates by environmental selection. We further identified a small percentage of locally-adapted taxa (2.1%) that could be focal taxa for conservation and restoration efforts by, for example, restoring their habitats and enhancing their regional connectivity. These results support the size-plasticity hypothesis at the relatively unexplored regional scale in an urbanization context, and provide new information for improving urban soil health and sustainable city models.
Collapse
Affiliation(s)
- Alain Isabwe
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shixiu Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Nieto-Blázquez ME, Schreiber D, Mueller SA, Koch K, Nowak C, Pfenninger M. Human impact on the recent population history of the elusive European wildcat inferred from whole genome data. BMC Genomics 2022; 23:709. [PMID: 36258177 PMCID: PMC9578205 DOI: 10.1186/s12864-022-08930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/07/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The extent and impact of evolutionary change occurring in natural populations in response to rapid anthropogenic impact is still poorly understood on the genome-wide level. Here, we explore the genetic structure, demographic history, population differentiation, and domestic introgression based on whole genome data of the endangered European wildcat in Germany, to assess potential genomic consequences of the species' recent spread across human-dominated cultural landscapes. RESULTS Reconstruction of demographic history and introgression rates based on 47 wildcat and 37 domestic cat genomes suggested late introgression between wild and domestic cat, coinciding with the introduction of domestic cat during the Roman period, but overall relatively low rates of hybridization and introgression from domestic cats. Main population divergence found between an eastern and central German wildcat clade was found to be of rather recent origin (200 y), and thus the likely consequence of anthropogenic persecution and resulting isolation in population refugia. We found similar effective population sizes and no substantial inbreeding across populations. Interestingly, highly differentiated genes between wild cat populations involved in the tryptophan-kynurenine-serotonin pathway were revealed, which plays a role in behavioral processes such as stress susceptibility and tolerance, suggesting that differential selection acted in the populations. CONCLUSIONS We found strong evidence for substantial recent anthropogenic impact on the genetic structure of European wildcats, including recent persecution-driven population divergence, as well as potential adaptation to human-dominate environments. In contrast, the relatively low levels of domestic introgression and inbreeding found in this study indicate a substantial level of "resistance" of this elusive species towards major anthropogenic impacts, such as the omnipresence of domestic cats as well as substantial habitat fragmentation. While those findings have strong implications for ongoing conservation strategies, we demand closer inspection of selective pressures acting on this and other wildlife species in anthropogenic environments.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325, Frankfurt am Main, Germany.
| | - Dennis Schreiber
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325, Frankfurt am Main, Germany
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Planegg-Martinsried 82152, Munich, Germany
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
| | - Katrin Koch
- European Wildcat Monitoring, Bund Für Umwelt Und Naturschutz, Rheinland-Pfalz, 55118, Mainz, Germany
| | - Carsten Nowak
- Centre for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
42
|
Urbanization driving changes in plant species and communities – A global view. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Marques P, Zandonà E, Amaral J, Selhorst Y, El-Sabaawi R, Mazzoni R, Castro L, Pilastro A. Using fish to understand how cities affect sexual selection before and after mating. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.928277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urbanization transforms natural and agricultural areas into built landscapes. Such profound habitat alteration imposes strong pressure on phenotypic trait changes through processes related to natural and/or sexual selection. Evidence of how natural selection drives changes to traits in urban biota is increasing, but little is known about the role of sexual selection. In this study, we assessed the effect of urbanization on the expression and interaction of males' pre-mating traits (body size and color) and a post-mating trait (sperm load). We used a widespread invasive species, the guppy (Poecilia reticulata), which is a wellknown model for studying sexual selection, but have never been studied in urban systems for this purpose. We found that urbanization did not affect mean body size or condition, but it resulted in size-dependent reductions in the expression of orange and iridescent colors, as well as sperm load. The orange color was reduced in small urban guppies, while the iridescent colors were reduced in large urban guppies compared to non-urban guppies. The difference in sperm load was only found in large males, with lower sperm load in urban guppies. The relationship between orange color and sperm load was positive in urban guppies but negative in non-urban guppies, while the association between iridescent color and sperm load followed the opposite pattern. Our findings suggest that sexual selection on pre- and post-mating traits is weaker in urban than in non-urban systems and that interactions between such traits are context dependent. These responses can be related to the pollution and altered visual environment of urban systems and provide an opportunity to advance our understanding of the mechanisms determining adaptation in cities.
Collapse
|
44
|
Kay AD, Hughes MT, Ammend MG, Granger MR, Hodge JJ, Mohamud J, Romfoe EA, Said H, Selden L, Welter AL, Heinen-Kay JL. College squirrels gone wild? Using Sciurus carolinensis behavior to assess the ecosystem value of urban green spaces. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Komine H, Yasumiba K, Schwarzkopf L. The country toad and the city toad: comparing morphology of invasive cane toads ( Rhinella marina) from rural and urban environments. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Urbanization is a principal driver of global biodiversity loss. Although many studies have examined the impacts of urbanization on biodiversity, we are only beginning to study urbanization as an evolutionary force. Urban environments are hotspots for invasive species, but most previous studies have focused on phenotypic changes in native species responding to urbanization. Quantifying the phenotypic responses of invasive species to urbanization may help reveal mechanisms promoting invasion. There are, however, few studies investigating the phenotypic response of invasive species to urbanization. We compared morphological traits of invasive cane toads (Rhinella marina) between urban and rural areas in three cities in north-eastern Australia using generalized linear mixed models. We found that the parotoid glands, which are the major anti-predator defence of toads were smaller in urban than in rural populations. The tibiofibula length of males in urban populations was longer than those in rural populations, but females showed opposite trends, suggesting potential effects of urbanization on sexual dimorphism. These results demonstrate that urbanization drives morphological changes in invasive toads, suggesting they may adapt to urban environments rapidly.
Collapse
Affiliation(s)
- Hirotaka Komine
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology , 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509 , Japan
- Faculty of Agriculture, Yamagata University , 1-23, Wakaba-machi, Tsuruoka, Yamagata 997 - 0037, Japan
| | - Kiyomi Yasumiba
- Institute of Agriculture, Tokyo University of Agriculture and Technology , 3-5-8, Saiwai-cho, Fuchu, Tokyo 183 - 8509, Japan
| | - Lin Schwarzkopf
- College of Science and Engineering, Centre for Biodiversity & Climate Change, James Cook University , Townsville , QLD 4811, Australia
| |
Collapse
|
46
|
Verrelli BC, Alberti M, Des Roches S, Harris NC, Hendry AP, Johnson MTJ, Savage AM, Charmantier A, Gotanda KM, Govaert L, Miles LS, Rivkin LR, Winchell KM, Brans KI, Correa C, Diamond SE, Fitzhugh B, Grimm NB, Hughes S, Marzluff JM, Munshi-South J, Rojas C, Santangelo JS, Schell CJ, Schweitzer JA, Szulkin M, Urban MC, Zhou Y, Ziter C. A global horizon scan for urban evolutionary ecology. Trends Ecol Evol 2022; 37:1006-1019. [PMID: 35995606 DOI: 10.1016/j.tree.2022.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
Abstract
Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.
Collapse
Affiliation(s)
- Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| | - Simone Des Roches
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - Marc T J Johnson
- Department of Biology, Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Amy M Savage
- Department of Biology and Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ 08103, USA
| | | | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Lindsay S Miles
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - L Ruth Rivkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristin M Winchell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kristien I Brans
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cristian Correa
- Instituto de Conservación Biodiversidad y Territorio, Centro de Humedales Río Cruces, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ben Fitzhugh
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sara Hughes
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason Munshi-South
- Louis Calder Center & Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA
| | - Carolina Rojas
- Instituto de Estudios Urbanos y Territoriales, Centro de Desarrollo Sustentable CEDEUS, Pontificia Universidad Católica de Chile, El Comendador 1916, Providencia, 7500000, Santiago, Chile
| | - James S Santangelo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37917, USA
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology & Center of Biological Risk, University of Connecticut, Storrs, CT 06269, USA
| | - Yuyu Zhou
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
| | - Carly Ziter
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
47
|
Hagemann J, Conejero C, Stillfried M, Mentaberre G, Castillo-Contreras R, Fickel J, López-Olvera JR. Genetic population structure defines wild boar as an urban exploiter species in Barcelona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155126. [PMID: 35405223 DOI: 10.1016/j.scitotenv.2022.155126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Urban wildlife ecology is gaining relevance as metropolitan areas grow throughout the world, reducing natural habitats and creating new ecological niches. However, knowledge is still scarce about the colonisation processes of such urban niches, the establishment of new communities, populations and/or species, and the related changes in behaviour and life histories of urban wildlife. Wild boar (Sus scrofa) has successfully colonised urban niches throughout Europe. The aim of this study is to unveil the processes driving the establishment and maintenance of an urban wild boar population by analysing its genetic structure. A set of 19 microsatellite loci was used to test whether urban wild boars in Barcelona, Spain, are an isolated population or if gene flow prevents genetic differentiation between rural and urban wild boars. This knowledge will contribute to the understanding of the effects of synurbisation and the associated management measures on the genetic change of large mammals in urban ecosystems. Despite the unidirectional gene flow from rural to urban areas, the urban wild boars in Barcelona form an island population genotypically differentiated from the surrounding rural ones. The comparison with previous genetic studies of urban wild boar populations suggests that forest patches act as suitable islands for wild boar genetic differentiation. Previous results and the genetic structure of the urban wild boar population in Barcelona classify wild boar as an urban exploiter species. These wild boar peri-urban island populations are responsible for conflict with humans and thus should be managed by reducing the attractiveness of urban areas. The management of peri-urban wild boar populations should aim at reducing migration into urban areas and preventing phenotypic changes (either genetic or plastic) causing habituation of wild boars to humans and urban environments.
Collapse
Affiliation(s)
- Justus Hagemann
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany; University of Potsdam, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Carles Conejero
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Milena Stillfried
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Gregorio Mentaberre
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Departament de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agraria (ETSEA), Universitat de Lleida (UdL), 25098 Lleida, Spain
| | - Raquel Castillo-Contreras
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Jörns Fickel
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany; University of Potsdam, Molecular Ecology and Evolution, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Jorge Ramón López-Olvera
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
48
|
Hüppi E, Geiger M. Fast‐paced city life? Tempo and mode of phenotypic changes in urban birds from Switzerland. Ecol Evol 2022. [DOI: 10.1002/ece3.9217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Evelyn Hüppi
- University of Zurich, Palaeontological Institute and Museum Zürich Switzerland
| | - Madeleine Geiger
- Naturmuseum St. Gallen St. Gallen Switzerland
- SWILD, Urban Ecology & Wildlife Research Zurich Switzerland
| |
Collapse
|
49
|
Caizergues AE, Grégoire A, Choquet R, Perret S, Charmantier A. Are behaviour and stress-related phenotypes in urban birds adaptive? J Anim Ecol 2022; 91:1627-1641. [PMID: 35575101 PMCID: PMC9540257 DOI: 10.1111/1365-2656.13740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Urbanisation is a world-wide phenomenon converting natural habitats into new artificial ones. Environmental conditions associated with urbanisation represent great challenges for wildlife. Behaviour and stress tolerance are considered of major importance in the adaptation to novel urban habitats and numerous studies already reported behavioural and stress response phenotypes associated with urbanisation, often suggesting they represented adaptations, while rarely demonstrating it. The main goal of this study was to test the adaptive nature of urban shifts in behavioural and stress-related traits, and by adaptive we mean phenotypic change favouring traits in the same direction as selection. Using 7 years of monitoring of urban and forest great tits, we first tested for differences in exploratory behaviour, aggressiveness and breath rate, between both habitats. Second, we performed habitat-specific analyses of selection on the three former traits using (a) reproductive success and (b) survival estimated via capture-mark-recapture models, as fitness estimates, to determine whether shifts in these behavioural and stress-related traits were aligned with patterns of ongoing selection. We found that urban birds displayed higher exploratory behaviour and aggressiveness, and higher breath rate, compared to forest birds. Selection analyses overall revealed that these shifts were not adaptive and could even be maladaptive. In particular, higher handling aggression and higher breath rate in urban birds was associated with lower fitness. Higher exploration scores were correlated with lower survival in both habitats, but higher reproductive success only in forest males. Overall, differences in patterns of selection between habitats were not consistent with the phenotypic divergence observed. Taken together, these results highlight that phenotypic shifts observed in cities do not necessarily result from new selection pressures and could be maladaptive. We hypothesise that divergences in behavioural traits for urban birds could result from the filtering of individuals settling in cities. We thus encourage urban evolutionary scientists to further explore the adaptive potential of behavioural traits measured in urban habitats (a) by replicating this type of study in multiple cities and species, (b) by implementing studies focusing on immigrant phenotypes and (c) by measuring selection at multiple life stages.
Collapse
Affiliation(s)
| | - Arnaud Grégoire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Rémi Choquet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Samuel Perret
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
50
|
Vidal A, Iturriaga M, Mancina CA, Cézilly F. Differences in sex ratio, tail autotomy, body size and body condition between suburban and forest populations of the cuban endemic lizard Anolis homolechis. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|