1
|
Chik MW, Meor Mohd Affandi MMR, Mohd Nor Hazalin NA, Surindar Singh GK. Astaxanthin nanoemulsion improves cognitive function and synaptic integrity in Streptozotocin-induced Alzheimer's disease model. Metab Brain Dis 2025; 40:136. [PMID: 40047916 DOI: 10.1007/s11011-025-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025]
Abstract
Astaxanthin derived from natural sources has excellent antioxidant and anti-inflammatory effects, and it is currently being widely researched as a neuroprotectant. However, astaxanthin possesses low oral bioavailability, and thus, astaxanthin extract from Haematococcus pluvialis was formulated into a nanoemulsion to improve its bioavailability and administered to Alzheimer's disease (AD)-like rats to study its possible neuroprotective benefits. Astaxanthin nanoemulsion was administered orally once a day for 28 days to streptozotocin (STZ)-induced AD rats at concentrations of 160, 320, and 640 mg/kg of body weight (bw) and subsequently assessed for cognitive function using behavioral assessments. Brain samples were collected for the assessment of AD biomarkers. Astaxanthin nanoemulsion at a dosage of 640 mg/kg bw significantly improved spatial learning, spatial memory, and recognition memory against STZ-AD rats. At 320 and 640 mg/kg bw, astaxanthin nanoemulsion significantly reduced levels of hippocampus synaptosomal amyloid beta and paired-helical fibrillary tau protein while increasing neuron survival. Additionally, astaxanthin nanoemulsion at 640 mg/kg bw significantly increased acetylcholine levels in the hippocampus and cerebellum. Astaxanthin nanoemulsion at all treatment dosages significantly reduced malondialdehyde, a lipid peroxidation product, and neuroinflammatory mediators (GFAP and TNF-α). Astaxanthin nanoemulsion supplementation has the potential to improve cognitive function and synaptic function by lowering amyloid beta and tau levels, as well as preserve neuron integrity by reducing neuroinflammation and lipid peroxidation, indicating that it may be able to treat some of the underlying causes of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia
| | - Meor Mohd Redzuan Meor Mohd Affandi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia
- Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia.
- Brain Degeneration and Therapeutics Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, 40450, Malaysia.
| |
Collapse
|
2
|
Ren M, Li Y, Jiang T, Liu B, Li X, Jia X, Li A, Luo Q, Gong H, Li X. Long-range inputome of prefrontal GABAergic interneurons in the Alzheimer's disease mouse. Alzheimers Dement 2025; 21:e14552. [PMID: 39823141 PMCID: PMC11851137 DOI: 10.1002/alz.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/15/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood. METHODS In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice. RESULTS Pathological axonal degeneration was widely observed in upstream regions, including the cortex, hippocampus, and thalamus, across all AD brains examined. The proportion of input neurons projecting to parvalbumin-expressing neurons, compared to those projecting to somatostatin-expressing neurons, decreased in the hippocampus and basal forebrain. This decline was closely related to mouse age and the cell type of the presynaptic input neurons. DISCUSSION This study demonstrates the selective vulnerability of long-range circuits in the prelimbic area in AD at the mesoscopic level, thereby enhancing our understanding of circuit architecture degeneration across the brain. HIGHLIGHTS We used whole-brain imaging with single-cell resolution to generate brain-wide input maps of the Alzheimer's disease mouse model. The pathological changes in the input proportions showed relevance with the mouse age, distribution, and cell type of the presynaptic input neurons. Compared to the cell body and dendrites of the medial prefrontal cortex input neurons, the pathological changes in the axonal structure are more extensive.
Collapse
Affiliation(s)
- Miao Ren
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversitySanyaChina
| | - Yuxiao Li
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversitySanyaChina
| | - Tao Jiang
- HUST‐Suzhou Institute for BrainsmaticsJITRISuzhouChina
| | - Bimin Liu
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversitySanyaChina
| | - Xuhan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
| | - Xueyan Jia
- HUST‐Suzhou Institute for BrainsmaticsJITRISuzhouChina
| | - Anan Li
- HUST‐Suzhou Institute for BrainsmaticsJITRISuzhouChina
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversitySanyaChina
| | - Hui Gong
- HUST‐Suzhou Institute for BrainsmaticsJITRISuzhouChina
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
| | - Xiangning Li
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversitySanyaChina
- HUST‐Suzhou Institute for BrainsmaticsJITRISuzhouChina
| |
Collapse
|
3
|
Kondo H, Zaborszky L. Basal Forebrain Projections to the Retrosplenial and Cingulate Cortex in Rats. J Comp Neurol 2025; 533:e70027. [PMID: 39924777 PMCID: PMC11808200 DOI: 10.1002/cne.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
The basal forebrain (BF) plays a crucial role in modulating cortical activation through its widespread projections across the cortical mantle. Previous anatomical studies have demonstrated that each cortical region receives a specific projection from the BF. In this study, we examined BF cholinergic and non-cholinergic projections to the retrosplenial cortex (RSC) and anterior cingulate cortex (ACC) using two retrograde tracers, Fast Blue (FB) and Fluoro-Gold (FG), in combination with choline acetyltransferase (ChAT) immunostaining in rats. The RSC and ACC receive cholinergic and non-cholinergic projections mainly from the medial part of the horizontal limb of the diagonal band (HDB) and the vertical limb of the diagonal band (VDB). The main difference of BF projections to the RSC, ACC, and prelimbic cortex (PL) is that the ACC and PL receive projections from the rostral half of the medial globus pallidus (GP), whereas the RSC receives stronger non-cholinergic projections from the VDB and medial septum (MS). As the injection site shifts from rostral (PL) to caudal (RSC) through the ACC, the strong GP and weak MS/VDB projections of non-cholinergic neurons are reversed. Cholinergic projection neurons make up a similar proportion of the total projection neurons in both ACC (37%) and RSC (33%) injections. Double retrograde tracer injections in the RSC and ACC revealed a small number of double-labeled projection neurons in the MS/VDB and HDB. These findings indicate that the ACC and RSC receive both spatially overlapping and differential projections from the BF, with the cholinergic and non-cholinergic projections varying between BF subregions and different rostrocaudal cortical regions.
Collapse
Affiliation(s)
- Hideki Kondo
- Center for Molecular and Behavioral NeuroscienceRutgers, the State University of New JerseyNewarkNew JerseyUSA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral NeuroscienceRutgers, the State University of New JerseyNewarkNew JerseyUSA
| |
Collapse
|
4
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Shivakumar AB, Mehak SF, Gupta A, Gangadharan G. Medial septal cholinergic neurotransmission is essential for social memory in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111207. [PMID: 39615870 DOI: 10.1016/j.pnpbp.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 01/29/2025]
Abstract
Social memory, a fundamental component of social behavior, is essential for the recognition and recall of familiar and novel animals/humans which is disrupted in several neuropsychiatric disorders. Although hippocampal circuitry is crucial for social memory, the role of extra-hippocampal regions in this behavior remains elusive. Here, we identified the physiological link between medial septal dependent cholinergic theta oscillations in the hippocampus and social memory behavior. We found that selective ablation of cholinergic neurons in the medial septum impaired social memory in mice, while their sociability and social novelty remained intact. Additionally, these mice showed an attenuation of cholinergic theta oscillations (3-7 Hz) in the hippocampal dorsal CA2 (dCA2) region. Furthermore, enhancing dCA2 theta oscillations by elevating cholinergic signaling using acetylcholinesterase inhibitor rescued social memory deficit. Together, these results indicate that 1) medial septal cholinergic neurons are essential for modulating social memory 2) cholinergic hippocampal theta oscillations contribute to social memory processes.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Amritanshu Gupta
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Chen H, Liu C, Cui S, Xia Y, Zhang K, Cheng H, Peng J, Yu X, Li L, Yu H, Zhang J, Zheng JS, Zhang B. Intermittent fasting triggers interorgan communication to suppress hair follicle regeneration. Cell 2025; 188:157-174.e22. [PMID: 39674178 DOI: 10.1016/j.cell.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Intermittent fasting has gained global popularity for its potential health benefits, although its impact on somatic stem cells and tissue biology remains elusive. Here, we report that commonly used intermittent fasting regimens inhibit hair follicle regeneration by selectively inducing apoptosis in activated hair follicle stem cells (HFSCs). This effect is independent of calorie reduction, circadian rhythm alterations, or the mTORC1 cellular nutrient-sensing mechanism. Instead, fasting activates crosstalk between adrenal glands and dermal adipocytes in the skin, triggering the rapid release of free fatty acids into the niche, which in turn disrupts the normal metabolism of HFSCs and elevates their cellular reactive oxygen species levels, causing oxidative damage and apoptosis. A randomized clinical trial (NCT05800730) indicates that intermittent fasting inhibits human hair growth. Our study uncovers an inhibitory effect of intermittent fasting on tissue regeneration and identifies interorgan communication that eliminates activated HFSCs and halts tissue regeneration during periods of unstable nutrient supply.
Collapse
Affiliation(s)
- Han Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Shiyao Cui
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Yingqian Xia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jingyu Peng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Xiaoling Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Luyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hualin Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
7
|
Li Z, Lu W, Yang L, Lai N, Wang Y, Chen Z. Decade of TRAP progress: Insights and future prospects for advancing functional network research in epilepsy. Prog Neurobiol 2025; 244:102707. [PMID: 39725016 DOI: 10.1016/j.pneurobio.2024.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Targeted Recombination in Active Populations (TRAP) represents an effective and extensively applied technique that has earned significant utilization in neuroscience over the past decade, primarily for identifying and modulating functionally activated neuronal ensembles associated with diverse behaviors. As epilepsy is a neurological disorder characterized by pathological hyper-excitatory networks, TRAP has already been widely applied in epilepsy research. However, the deployment of TRAP in this field remains underexplored, and there is significant potential for further application and development in epilepsy-related investigations. In this review, we embark on a concise examination of the mechanisms behind several TRAP tools, introduce the current applications of TRAP in epilepsy research, and collate the key advantages as well as limitations of TRAP. Furthermore, we sketch out perspectives on potential applications of TRAP in future epilepsy research, grounded in the present landscape and challenges of the field, as well as the ways TRAP has been embraced in other neuroscience domains.
Collapse
Affiliation(s)
- Zhisheng Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangjialu Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Yang
- key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China; key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China; key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Wu JL, Li ZM, Chen H, Chen WJ, Hu NY, Jin SY, Li XW, Chen YH, Yang JM, Gao TM. Distinct septo-hippocampal cholinergic projections separately mediate stress-induced emotional and cognitive deficits. SCIENCE ADVANCES 2024; 10:eado1508. [PMID: 39514666 PMCID: PMC11546849 DOI: 10.1126/sciadv.ado1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Patients suffering from chronic stress develop numerous symptoms, including emotional and cognitive deficits. The precise circuit mechanisms underlying different symptoms remain poorly understood. We identified two distinct basal forebrain cholinergic subpopulations in mice projecting to the dorsal hippocampus (dHPC) or ventral hippocampus (vHPC), which exhibited distinct input organizations, electrophysiological characteristics, transcriptomics, and responses to positive and negative valences of stimuli and were critical for cognitive and emotional modulation, respectively. Moreover, chronic stress induced elevated anxiety levels and cognitive deficits in mice, accompanied by enhanced vHPC but suppressed dHPC cholinergic projections. Chemogenetic activation of dHPC or inhibition of vHPC cholinergic projections alleviated stress-induced aberrant behaviors. Furthermore, we identified that the acetylcholinesterase inhibitor donepezil combined with blockade of muscarinic receptor 1-type muscarinic acetylcholine receptors in the vHPC rescued both stress-induced phenotypes. These data illuminated distinct septo-hippocampal cholinergic circuits mediated specific symptoms independently under stress, which may provide promising strategies for circuit-based treating of stress-related psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Jun Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Keijser J, Hertäg L, Sprekeler H. Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis. J Neurosci 2024; 44:e2371232024. [PMID: 39299800 PMCID: PMC11529809 DOI: 10.1523/jneurosci.2371-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal's behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences.
Collapse
Affiliation(s)
- Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Loreen Hertäg
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
10
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. Nat Commun 2024; 15:8990. [PMID: 39420185 PMCID: PMC11487139 DOI: 10.1038/s41467-024-53148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert. In the neocortex, this gradient is expressed by progressively reduced tethering from unimodal sensory to transmodal cortex, with the lowest tethering in the midcingulo-insular network, and is also spatially correlated with the molecular concentration of VAChT, measured by [18F]fluoroethoxy-benzovesamicol (FEOBV) PET. In mice, viral tracing of BF cholinergic projections and [18F]FEOBV PET confirm a gradient of axonal arborization. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration with their cortical targets.
Collapse
Affiliation(s)
- Sudesna Chakraborty
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Department of Integrated Information Technology, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.
| | - Roy A M Haast
- Robarts Research Institute, Western University, London, Ontario, Canada
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Kate M Onuska
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K.Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Marco A M Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Ali R Khan
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Taylor W Schmitz
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Lawson Health Research Institute, Western University, London, Ontario, Canada.
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| |
Collapse
|
11
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chan RW, Hamilton-Fletcher G, Edelman BJ, Faiq MA, Sajitha TA, Moeller S, Chan KC. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39463889 PMCID: PMC11506209 DOI: 10.1162/imag_a_00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024]
Abstract
NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis (PCA) has been shown to selectively suppress thermal noise and improve the temporal signal-to-noise ratio (tSNR) in human functional magnetic resonance imaging (fMRI). However, the feasibility to improve data quality for rodent fMRI using NORDIC PCA remains uncertain. NORDIC PCA may also be particularly beneficial for improving topological brain mapping, as conventional mapping requires precise spatiotemporal signals from large datasets (ideally ~1 hour acquisition) for individual representations. In this study, we evaluated the effects of NORDIC PCA compared with "Standard" processing in various rodent fMRI contexts that range from task-evoked optogenetic fMRI to resting-state fMRI. We also evaluated the effects of NORDIC PCA on human resting-state and retinotopic mapping fMRI via population receptive field (pRF) modeling. In rodent optogenetic fMRI, apart from doubling the tSNR, NORDIC PCA resulted in a larger number of activated voxels and a significant decrease in the variance of evoked brain responses without altering brain morphology. In rodent resting-state fMRI, we found that NORDIC PCA induced a nearly threefold increase in tSNR and preserved task-free relative cerebrovascular reactivity (rCVR) across cortical depth. NORDIC PCA further improved the detection of TGN020-induced aquaporin-4 inhibition on rCVR compared with Standard processing without NORDIC PCA. NORDIC PCA also increased the tSNR for both human resting-state and pRF fMRI, and for the latter also increased activation cluster sizes while retaining retinotopic organization. This suggests that NORDIC PCA preserves the spatiotemporal precision of fMRI signals needed for pRF analysis, and effectively captures small activity changes with high sensitivity. Taken together, these results broadly demonstrate the value of NORDIC PCA for the enhanced detection of neural dynamics across various rodent and human fMRI contexts. This can in turn play an important role in improving fMRI image quality and sensitivity for translational and preclinical neuroimaging research.
Collapse
Affiliation(s)
- Russell W. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- E-SENSE Innovation & Technology, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bradley J. Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Muneeb A. Faiq
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Thajunnisa A. Sajitha
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Kevin C. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, Qiao C, Jiang H, Guo J, Zhou Z, Luo Q, Shi S, Yao H, Lu Y, Zhang S. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024; 30:e70037. [PMID: 39268632 PMCID: PMC11393560 DOI: 10.1111/cns.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Yao
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Mei F, Zhao C, Li S, Xue Z, Zhao Y, Xu Y, Ye R, You H, Yu P, Han X, Carr GV, Weinberger DR, Yang F, Lu B. Ngfr + cholinergic projection from SI/nBM to mPFC selectively regulates temporal order recognition memory. Nat Commun 2024; 15:7342. [PMID: 39187496 PMCID: PMC11347598 DOI: 10.1038/s41467-024-51707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Acetylcholine regulates various cognitive functions through broad cholinergic innervation. However, specific cholinergic subpopulations, circuits and molecular mechanisms underlying recognition memory remain largely unknown. Here we show that Ngfr+ cholinergic neurons in the substantia innominate (SI)/nucleus basalis of Meynert (nBM)-medial prefrontal cortex (mPFC) circuit selectively underlies recency judgements. Loss of nerve growth factor receptor (Ngfr-/- mice) reduced the excitability of cholinergic neurons in the SI/nBM-mPFC circuit but not in the medial septum (MS)-hippocampus pathway, and impaired temporal order memory but not novel object and object location recognition. Expression of Ngfr in Ngfr-/- SI/nBM restored defected temporal order memory. Fiber photometry revealed that acetylcholine release in mPFC not only predicted object encounters but also mediated recency judgments of objects, and such acetylcholine release was absent in Ngfr-/- mPFC. Chemogenetic and optogenetic inhibition of SI/nBM projection to mPFC in ChAT-Cre mice diminished mPFC acetylcholine release and deteriorated temporal order recognition. Impaired cholinergic activity led to a depolarizing shift of GABAergic inputs to mPFC pyramidal neurons, due to disturbed KCC2-mediated chloride gradients. Finally, potentiation of acetylcholine signaling upregulated KCC2 levels, restored GABAergic driving force and rescued temporal order recognition deficits in Ngfr-/- mice. Thus, NGFR-dependent SI/nBM-mPFC cholinergic circuit underlies temporal order recognition memory.
Collapse
Affiliation(s)
- Fan Mei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chen Zhao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Zeping Xue
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- School of Basic Medicine, Capital Medical University, Beijing, China
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yueyang Zhao
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Rongrong Ye
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Yu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Ährlund-Richter S, Osako Y, Jenks KR, Odom E, Huang H, Arnold DB, Sur M. Prefrontal Cortex subregions provide distinct visual and behavioral feedback modulation to the Primary Visual Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606894. [PMID: 39149348 PMCID: PMC11326267 DOI: 10.1101/2024.08.06.606894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The mammalian Prefrontal Cortex (PFC) has been suggested to modulate sensory information processing across multiple cortical regions via long-range axonal projections. These axonal projections arise from PFC subregions with unique brain-wide connectivity and functional repertoires, which may provide the architecture for modular feedback intended to shape sensory processing. Here, we used axonal tracing, axonal and somatic 2-photon calcium imaging, and chemogenetic manipulations in mice to delineate how projections from the Anterior Cingulate Cortex (ACA) and ventrolateral Orbitofrontal Cortex (ORB) of the PFC modulate sensory processing in the primary Visual Cortex (VISp) across behavioral states. Structurally, we found that ACA and ORB have distinct patterning of projections across both cortical regions and layers. ACA axons in VISp had a stronger representation of visual stimulus information than ORB axons, but both projections showed non-visual, behavior-dependent activity. ACA input to VISp enhanced the encoding of visual stimuli by VISp neurons, and modulation of visual responses scaled with arousal. On the other hand, ORB input shaped movement and arousal related modulation of VISp visual responses, but specifically reduced the encoding of high-contrast visual stimuli. Thus, ACA and ORB feedback have separable projection patterns and encode distinct visual and behavioral information, putatively providing the substrate for their unique effects on visual representations and behavioral modulation in VISp. Our results offer a refined model of cortical hierarchy and its impact on sensory information processing, whereby distinct as opposed to generalized properties of PFC projections contribute to VISp activity during discrete behavioral states.
Collapse
Affiliation(s)
- S Ährlund-Richter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Y Osako
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K R Jenks
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - E Odom
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H Huang
- Department of Biology, Division of Molecular and Computational Biology, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - D B Arnold
- Department of Biology, Division of Molecular and Computational Biology, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - M Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Bennett HC, Zhang Q, Wu YT, Manjila SB, Chon U, Shin D, Vanselow DJ, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat Commun 2024; 15:6398. [PMID: 39080289 PMCID: PMC11289283 DOI: 10.1038/s41467-024-50559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Neurosurgery, Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Yogesh B, Keller GB. Cholinergic input to mouse visual cortex signals a movement state and acutely enhances layer 5 responsiveness. eLife 2024; 12:RP89986. [PMID: 39057843 PMCID: PMC11281783 DOI: 10.7554/elife.89986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.
Collapse
Affiliation(s)
- Baba Yogesh
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
18
|
Barabás B, Reéb Z, Papp OI, Hájos N. Functionally linked amygdala and prefrontal cortical regions are innervated by both single and double projecting cholinergic neurons. Front Cell Neurosci 2024; 18:1426153. [PMID: 39049824 PMCID: PMC11266109 DOI: 10.3389/fncel.2024.1426153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.
Collapse
Affiliation(s)
- Bence Barabás
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Zsófia Reéb
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya I. Papp
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
19
|
Oliver Goral R, Lamb PW, Yakel JL. Acetylcholine Neurons Become Cholinergic during Three Time Windows in the Developing Mouse Brain. eNeuro 2024; 11:ENEURO.0542-23.2024. [PMID: 38942474 PMCID: PMC11253243 DOI: 10.1523/eneuro.0542-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024] Open
Abstract
Acetylcholine (ACh) neurons in the central nervous system are required for the coordination of neural network activity during higher brain functions, such as attention, learning, and memory, as well as locomotion. Disturbed cholinergic signaling has been described in many neurodevelopmental and neurodegenerative disorders. Furthermore, cotransmission of other signaling molecules, such as glutamate and GABA, with ACh has been associated with essential roles in brain function or disease. However, it is unknown when ACh neurons become cholinergic during development. Thus, understanding the timeline of how the cholinergic system develops and becomes active in the healthy brain is a crucial part of understanding brain development. To study this, we used transgenic mice to selectively label ACh neurons with tdTomato. We imaged serial sectioned brains and generated whole-brain reconstructions at different time points during pre- and postnatal development. We found three crucial time windows-two in the prenatal and one in the postnatal brain-during which most ACh neuron populations become cholinergic in the brain. We also found that cholinergic gene expression is initiated in cortical ACh interneurons, while the cerebral cortex is innervated by cholinergic projection neurons from the basal forebrain. Taken together, we show that ACh neuron populations are present and become cholinergic before postnatal day 12, which is the onset of major sensory processes, such as hearing and vision. We conclude that the birth of ACh neurons and initiation of cholinergic gene expression are temporally separated during development but highly coordinated by brain anatomical structure.
Collapse
Affiliation(s)
- Rene Oliver Goral
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia W Lamb
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
20
|
Zhang Y, Karadas M, Liu J, Gu X, Vöröslakos M, Li Y, Tsien RW, Buzsáki G. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 2024; 112:1862-1875.e5. [PMID: 38537642 PMCID: PMC11156550 DOI: 10.1016/j.neuron.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 06/09/2024]
Abstract
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
Collapse
Affiliation(s)
| | | | | | - Xinyi Gu
- Neuroscience Institute, New York, NY, USA
| | | | - Yulong Li
- School of Life Science, Peking University, Beijing, China
| | - Richard W Tsien
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
21
|
Pastor V, Medina JH. α7 nicotinic acetylcholine receptor in memory processing. Eur J Neurosci 2024; 59:2138-2154. [PMID: 36634032 DOI: 10.1111/ejn.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Information storage in the brain involves different memory types and stages that are processed by several brain regions. Cholinergic pathways through acetylcholine receptors actively participate on memory modulation, and their disfunction is associated with cognitive decline in several neurological disorders. During the last decade, the role of α7 subtype of nicotinic acetylcholine receptors in different memory stages has been studied. However, the information about their role in memory processing is still scarce. In this review, we attempt to identify brain areas where α7 nicotinic receptors have an essential role in different memory types and stages. In addition, we discuss recent work implicating-or not-α7 nicotinic receptors as promising pharmacological targets for memory impairment associated with neurological disorders.
Collapse
Affiliation(s)
- Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
22
|
Li J, Yang M, Dai Y, Guo X, Ding Y, Li X, Zhang S, Xu W, Chen L, Tao J, Liu W. Electroacupuncture regulates Rab5a-mediating NGF transduction to improve learning and memory ability in the early stage of AD mice. CNS Neurosci Ther 2024; 30:e14743. [PMID: 38780008 PMCID: PMC11112630 DOI: 10.1111/cns.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
AIMS Nerve growth factor (NGF) loss is a potential factor for the degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD), and Rab5a is a key regulatory molecule of NGF signaling transduction. Here, we investigated the changes of Rab5a in 5 × FAD mice and further explored the mechanism of Electroacupuncture (EA) treatment in improving cognition in the early stage of AD. METHODS The total Rab5a and Rab5a-GTP in 5-month-old 5 × FAD mice and wild-type mice were detected using WB and IP technologies. 5 × FAD mice were treated with EA at the Bai hui (DU20) and Shen ting (DU24) acupoints for 4 weeks and CRE/LOXP technology was used to confirm the role of Rab5a in AD mediated by EA stimulation. The Novel Object Recognition and Morris water maze tests were used to evaluate the cognitive function of 5 × FAD mice. The Nissl, immunohistochemistry, and Thioflavin S staining were used to observe pathological morphological changes in the basal forebrain circuit. The Golgi staining was used to investigate the synaptic plasticity of the basal forebrain circuit and WB technology was used to detect the expression levels of cholinergic-related and NGF signal-related proteins. RESULTS The total Rab5a was unaltered, but Rab5a-GTP increased and the rab5a-positive early endosomes appeared enlarged in the hippocampus of 5 × FAD mice. Notably, EA reduced Rab5a-GTP in the hippocampus in the early stage of 5 × FAD mice. EA could improve object recognition memory and spatial learning memory by reducing Rab5a activity in the early stage of 5 × FAD mice. Moreover, EA could reduce Rab5a activity to increase NGF transduction and increase the levels of phosphorylated TrkA, AKT, and ERK in the basal forebrain and hippocampus, and increase the expression of cholinergic-related proteins, such as ChAT, vAchT, ChT1, m1AchR, and m2AchR in the basal forebrain and ChAT, m1AchR, and m2AchR in the hippocampus, improving synaptic plasticity in the basal forebrain hippocampal circuit in the early stage of 5 × FAD mice. CONCLUSIONS Rab5a hyperactivation is an early pathological manifestation of 5 × FAD mice. EA could suppress Rab5a-GTP to promote the transduction of NGF signaling, and enhance the synaptic plasticity of the basal forebrain hippocampal circuit improving cognitive impairment in the early stage of 5 × FAD mice.
Collapse
Affiliation(s)
- Jianhong Li
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Aptamers Technology900TH hospital of Joint Logistics Support ForceFuzhouChina
| | - Minguang Yang
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yaling Dai
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xiaoqin Guo
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yanyi Ding
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xiaoling Li
- Provincial and Ministerial Co‐founded Collaborative Innovation Center of Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology900TH hospital of Joint Logistics Support ForceFuzhouChina
| | - Wenshan Xu
- Fujian Key Laboratory of Cognitive RehabilitationAffiliated Rehabilitation Hospital of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Lidian Chen
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jing Tao
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
| | - Weilin Liu
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
23
|
Li H, Jiang T, An S, Xu M, Gou L, Ren B, Shi X, Wang X, Yan J, Yuan J, Xu X, Wu QF, Luo Q, Gong H, Bian WJ, Li A, Yu X. Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns. Neuron 2024; 112:1081-1099.e7. [PMID: 38290516 DOI: 10.1016/j.neuron.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Oxytocin (OXT) plays important roles in autonomic control and behavioral modulation. However, it is unknown how the projection patterns of OXT neurons align with underlying physiological functions. Here, we present the reconstructed single-neuron, whole-brain projectomes of 264 OXT neurons of the mouse paraventricular hypothalamic nucleus (PVH) at submicron resolution. These neurons hierarchically clustered into two groups, with distinct morphological and transcriptional characteristics and mutually exclusive projection patterns. Cluster 1 (177 neurons) axons terminated exclusively in the median eminence (ME) and have few collaterals terminating within hypothalamic regions. By contrast, cluster 2 (87 neurons) sent wide-spread axons to multiple brain regions, but excluding ME. Dendritic arbors of OXT neurons also extended outside of the PVH, suggesting capability to sense signals and modulate target regions. These single-neuron resolution observations reveal distinct OXT subpopulations, provide comprehensive analysis of their morphology, and lay the structural foundation for better understanding the functional heterogeneity of OXT neurons.
Collapse
Affiliation(s)
- Humingzhu Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Sile An
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingrui Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingfeng Gou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biyu Ren
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Shi
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofei Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohong Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Feng Wu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingming Luo
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen-Jie Bian
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
24
|
Chakraborty S, Lee SK, Arnold SM, Haast RAM, Khan AR, Schmitz TW. Focal acetylcholinergic modulation of the human midcingulo-insular network during attention: Meta-analytic neuroimaging and behavioral evidence. J Neurochem 2024; 168:397-413. [PMID: 37864501 DOI: 10.1111/jnc.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.
Collapse
Affiliation(s)
- Sudesna Chakraborty
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Sun Kyun Lee
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Sarah M Arnold
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Roy A M Haast
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- CRMBM, CNRS UMR 7339, Aix-Marseille University, Marseille, France
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Taylor W Schmitz
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
25
|
Vastagh C, Farkas I, Csillag V, Watanabe M, Kalló I, Liposits Z. Cholinergic Control of GnRH Neuron Physiology and Luteinizing Hormone Secretion in Male Mice: Involvement of ACh/GABA Cotransmission. J Neurosci 2024; 44:e1780232024. [PMID: 38320853 PMCID: PMC10957212 DOI: 10.1523/jneurosci.1780-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 03/22/2024] Open
Abstract
Gonadotropin-releasing hormone (GnRH)-synthesizing neurons orchestrate reproduction centrally. Early studies have proposed the contribution of acetylcholine (ACh) to hypothalamic control of reproduction, although the causal mechanisms have not been clarified. Here, we report that in vivo pharmacogenetic activation of the cholinergic system increased the secretion of luteinizing hormone (LH) in orchidectomized mice. 3DISCO immunocytochemistry and electron microscopy revealed the innervation of GnRH neurons by cholinergic axons. Retrograde viral labeling initiated from GnRH-Cre neurons identified the medial septum and the diagonal band of Broca as exclusive sites of origin for cholinergic afferents of GnRH neurons. In acute brain slices, ACh and carbachol evoked a biphasic effect on the firing rate in GnRH neurons, first increasing and then diminishing it. In the presence of tetrodotoxin, carbachol induced an inward current, followed by a decline in the frequency of miniature postsynaptic currents (mPSCs), indicating a direct influence on GnRH cells. RT-PCR and whole-cell patch-clamp studies revealed that GnRH neurons expressed both nicotinic (α4β2, α3β4, and α7) and muscarinic (M1-M5) AChRs. The nicotinic AChRs contributed to the nicotine-elicited inward current and the rise in firing rate. Muscarine via M1 and M3 receptors increased, while via M2 and M4 reduced the frequency of both mPSCs and firing. Optogenetic activation of channelrhodopsin-2-tagged cholinergic axons modified GnRH neuronal activity and evoked cotransmission of ACh and GABA from a subpopulation of boutons. These findings confirm that the central cholinergic system regulates GnRH neurons and activates the pituitary-gonadal axis via ACh and ACh/GABA neurotransmissions in male mice.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Veronika Csillag
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| |
Collapse
|
26
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
27
|
Kimchi EY, Burgos-Robles A, Matthews GA, Chakoma T, Patarino M, Weddington JC, Siciliano C, Yang W, Foutch S, Simons R, Fong MF, Jing M, Li Y, Polley DB, Tye KM. Reward contingency gates selective cholinergic suppression of amygdala neurons. eLife 2024; 12:RP89093. [PMID: 38376907 PMCID: PMC10942609 DOI: 10.7554/elife.89093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex. Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic receptor signaling, while also facilitating firing in BLA GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.
Collapse
Affiliation(s)
- Eyal Y Kimchi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Neurology, Northwestern UniversityChicagoUnited States
| | - Anthony Burgos-Robles
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- The Department of Neuroscience, Developmental, and Regenerative Biology, Neuroscience Institute & Brain Health Consortium, University of Texas at San AntonioSan AntonioUnited States
| | - Gillian A Matthews
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tatenda Chakoma
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Makenzie Patarino
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Javier C Weddington
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Cody Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Wannan Yang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shaun Foutch
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Renee Simons
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ming-fai Fong
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Coulter Department of Biomedical Engineering, Georgia Tech & Emory UniversityAtlantaUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKUIDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life SciencesBeijingChina
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and EarBostonUnited States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- HHMI Investigator, Member of the Kavli Institute for Brain and Mind, and Wylie Vale Professor at the Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
28
|
Koelle S, Mastrovito D, Whitesell JD, Hirokawa KE, Zeng H, Meila M, Harris JA, Mihalas S. Modeling the cell-type-specific mesoscale murine connectome with anterograde tracing experiments. Netw Neurosci 2023; 7:1497-1512. [PMID: 38144695 PMCID: PMC10745083 DOI: 10.1162/netn_a_00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/10/2023] [Indexed: 12/26/2023] Open
Abstract
The Allen Mouse Brain Connectivity Atlas consists of anterograde tracing experiments targeting diverse structures and classes of projecting neurons. Beyond regional anterograde tracing done in C57BL/6 wild-type mice, a large fraction of experiments are performed using transgenic Cre-lines. This allows access to cell-class-specific whole-brain connectivity information, with class defined by the transgenic lines. However, even though the number of experiments is large, it does not come close to covering all existing cell classes in every area where they exist. Here, we study how much we can fill in these gaps and estimate the cell-class-specific connectivity function given the simplifying assumptions that nearby voxels have smoothly varying projections, but that these projection tensors can change sharply depending on the region and class of the projecting cells. This paper describes the conversion of Cre-line tracer experiments into class-specific connectivity matrices representing the connection strengths between source and target structures. We introduce and validate a novel statistical model for creation of connectivity matrices. We extend the Nadaraya-Watson kernel learning method that we previously used to fill in spatial gaps to also fill in gaps in cell-class connectivity information. To do this, we construct a "cell-class space" based on class-specific averaged regionalized projections and combine smoothing in 3D space as well as in this abstract space to share information between similar neuron classes. Using this method, we construct a set of connectivity matrices using multiple levels of resolution at which discontinuities in connectivity are assumed. We show that the connectivities obtained from this model display expected cell-type- and structure-specific connectivities. We also show that the wild-type connectivity matrix can be factored using a sparse set of factors, and analyze the informativeness of this latent variable model.
Collapse
Affiliation(s)
- Samson Koelle
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Marina Meila
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
29
|
Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 2023; 12:RP89317. [PMID: 38126335 PMCID: PMC10735228 DOI: 10.7554/elife.89317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.
Collapse
Affiliation(s)
- Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Xiaobo Jia
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Wenjun Liang
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Sihan Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Zhiqiang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
30
|
Crews FT, Fisher RP, Qin L, Vetreno RP. HMGB1 neuroimmune signaling and REST-G9a gene repression contribute to ethanol-induced reversible suppression of the cholinergic neuron phenotype. Mol Psychiatry 2023; 28:5159-5172. [PMID: 37402853 PMCID: PMC10764639 DOI: 10.1038/s41380-023-02160-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Adolescent binge drinking increases Toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), the endogenous TLR4/RAGE agonist high-mobility group box 1 (HMGB1), and proinflammatory neuroimmune signaling in the adult basal forebrain in association with persistent reductions of basal forebrain cholinergic neurons (BFCNs). In vivo preclinical adolescent intermittent ethanol (AIE) studies find anti-inflammatory interventions post-AIE reverse HMGB1-TLR4/RAGE neuroimmune signaling and loss of BFCNs in adulthood, suggesting proinflammatory signaling causes epigenetic repression of the cholinergic neuron phenotype. Reversible loss of BFCN phenotype in vivo is linked to increased repressive histone 3 lysine 9 dimethylation (H3K9me2) occupancy at cholinergic gene promoters, and HMGB1-TLR4/RAGE proinflammatory signaling is linked to epigenetic repression of the cholinergic phenotype. Using an ex vivo basal forebrain slice culture (FSC) model, we report EtOH recapitulates the in vivo AIE-induced loss of ChAT+IR BFCNs, somal shrinkage of the remaining ChAT+ neurons, and reduction of BFCN phenotype genes. Targeted inhibition of EtOH-induced proinflammatory HMGB1 blocked ChAT+IR loss while disulfide HMBG1-TLR4 and fully reduced HMGB1-RAGE signaling decreased ChAT+IR BFCNs. EtOH increased expression of the transcriptional repressor RE1-silencing transcription factor (REST) and the H3K9 methyltransferase G9a that was accompanied by increased repressive H3K9me2 and REST occupancy at promoter regions of the BFCN phenotype genes Chat and Trka as well as the lineage transcription factor Lhx8. REST expression was similarly increased in the post-mortem human basal forebrain of individuals with alcohol use disorder, which is negatively correlated with ChAT expression. Administration of REST siRNA and the G9a inhibitor UNC0642 blocked and reversed the EtOH-induced loss of ChAT+IR BFCNs, directly linking REST-G9a transcriptional repression to suppression of the cholinergic neuron phenotype. These data suggest that EtOH induces a novel neuroplastic process involving neuroimmune signaling and transcriptional epigenetic gene repression resulting in the reversible suppression of the cholinergic neuron phenotype.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rachael P Fisher
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
31
|
Pan Y, Li S, He S, Wang G, Li C, Liu Z, Xiang M. Fgf8 P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells. Neurosci Bull 2023; 39:1762-1774. [PMID: 37233921 PMCID: PMC10661496 DOI: 10.1007/s12264-023-01069-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/08/2023] [Indexed: 05/27/2023] Open
Abstract
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Collapse
Affiliation(s)
- Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
32
|
Zhang M, Pan X, Jung W, Halpern AR, Eichhorn SW, Lei Z, Cohen L, Smith KA, Tasic B, Yao Z, Zeng H, Zhuang X. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 2023; 624:343-354. [PMID: 38092912 PMCID: PMC10719103 DOI: 10.1038/s41586-023-06808-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3, including several brain regions (for example, refs. 1-11). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.
Collapse
Affiliation(s)
- Meng Zhang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Xingjie Pan
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aaron R Halpern
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Stephen W Eichhorn
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Zhiyun Lei
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Limor Cohen
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Mieling M, Meier H, Bunzeck N. Structural degeneration of the nucleus basalis of Meynert in mild cognitive impairment and Alzheimer's disease - Evidence from an MRI-based meta-analysis. Neurosci Biobehav Rev 2023; 154:105393. [PMID: 37717861 DOI: 10.1016/j.neubiorev.2023.105393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Recent models of Alzheimer's disease (AD) suggest that neuropathological changes of the medial temporal lobe, especially entorhinal cortex, are preceded by degenerations of the cholinergic Nucleus basalis of Meynert (NbM). Evidence from imaging studies in humans, however, is limited. Therefore, we performed an activation-likelihood estimation meta-analysis on whole brain voxel-based morphometry (VBM) MRI data from 54 experiments and 2581 subjects in total. It revealed, compared to healthy older controls, reduced gray matter in the bilateral NbM in AD, but only limited evidence for such an effect in patients with mild cognitive impairment (MCI), which typically precedes AD. Both patient groups showed less gray matter in the amygdala and hippocampus, with hints towards more pronounced amygdala effects in AD. We discuss our findings in the context of studies that highlight the importance of the cholinergic basal forebrain in learning and memory throughout the lifespan, and conclude that they are partly compatible with pathological staging models suggesting initial and pronounced structural degenerations within the NbM in the progression of AD.
Collapse
Affiliation(s)
- Marthe Mieling
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hannah Meier
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
34
|
Gamage R, Rossetti I, Niedermayer G, Münch G, Buskila Y, Gyengesi E. Chronic neuroinflammation during aging leads to cholinergic neurodegeneration in the mouse medial septum. J Neuroinflammation 2023; 20:235. [PMID: 37833764 PMCID: PMC10576363 DOI: 10.1186/s12974-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Low-grade, chronic inflammation in the central nervous system characterized by glial reactivity is one of the major hallmarks for aging-related neurodegenerative diseases like Alzheimer's disease (AD). The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex and may be differentially vulnerable in various neurodegenerative diseases. However, the impact of chronic neuroinflammation on the cholinergic function is still unclear. METHODS To gain further insight into age-related cholinergic decline, we investigated the cumulative effects of aging and chronic neuroinflammation on the structure and function of the septal cholinergic neurons in transgenic mice expressing interleukin-6 under the GFAP promoter (GFAP-IL6), which maintains a constant level of gliosis. Immunohistochemistry combined with unbiased stereology, single cell 3D morphology analysis and in vitro whole cell patch-clamp measurements were used to validate the structural and functional changes of BFCN and their microglial environment in the medial septum. RESULTS Stereological estimation of MS microglia number displayed significant increase across all three age groups, while a significant decrease in cholinergic cell number in the adult and aged groups in GFAP-IL6 mice compared to control. Moreover, we observed age-dependent alterations in the electrophysiological properties of cholinergic neurons and an increased excitability profile in the adult GFAP-IL6 group due to chronic neuroinflammation. These results complimented the significant decrease in hippocampal pyramidal spine density seen with aging and neuroinflammation. CONCLUSIONS We provide evidence of the significant impact of both aging and chronic glial activation on the cholinergic and microglial numbers and morphology in the MS, and alterations in the passive and active electrophysiological membrane properties of septal cholinergic neurons, resulting in cholinergic dysfunction, as seen in AD. Our results indicate that aging combined with gliosis is sufficient to cause cholinergic disruptions in the brain, as seen in dementias.
Collapse
Affiliation(s)
- Rashmi Gamage
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Erika Gyengesi
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
35
|
Liu B, Li Y, Ren M, Li X. Targeted approaches to delineate neuronal morphology during early development. Front Cell Neurosci 2023; 17:1259360. [PMID: 37854514 PMCID: PMC10579594 DOI: 10.3389/fncel.2023.1259360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Understanding the developmental changes that affect neurons is a key step in exploring the assembly and maturation of neural circuits in the brain. For decades, researchers have used a number of labeling techniques to visualize neuronal morphology at different stages of development. However, the efficiency and accuracy of neuronal labeling technologies are limited by the complexity and fragility of neonatal brains. In this review, we illustrate the various labeling techniques utilized for examining the neurogenesis and morphological changes occurring during the early stages of development. We compare the advantages and limitations of each technique from different aspects. Then, we highlight the gaps remaining in our understanding of the structure of neurons in the neonatal mouse brain.
Collapse
Affiliation(s)
- Bimin Liu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Yuxiao Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Miao Ren
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xiangning Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| |
Collapse
|
36
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
37
|
Chung L, Jing M, Li Y, Tapper AR. Feed-forward Activation of Habenula Cholinergic Neurons by Local Acetylcholine. Neuroscience 2023; 529:172-182. [PMID: 37572877 PMCID: PMC10840387 DOI: 10.1016/j.neuroscience.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.
Collapse
Affiliation(s)
- Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
38
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
39
|
Miyawaki EK, Bhattacharyya S, Torre M. Revisiting a Telencephalic Extent of the Ascending Reticular Activating System. Cell Mol Neurobiol 2023; 43:2591-2602. [PMID: 36964874 PMCID: PMC11410145 DOI: 10.1007/s10571-023-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Is the cerebrum involved in its own activation to states of attention or arousal? "Telencephalon" is a term borrowed from embryology to identify not only the cerebral hemispheres of the forebrain, but also the basal forebrain. We review a generally undercited literature that describes nucleus basalis of Meynert, located within the substantia innominata of the ventrobasal forebrain, as a telencephalic extension of the ascending reticular activating formation. Although that formation's precise anatomical definition and localization have proven elusive over more than 70 years, a careful reading of sources reveals that there are histological features common to certain brainstem neurons and those of the nucleus basalis, and that a largely common dendritic architecture may be a morphological aspect that helps to define non-telencephalic structures of the ascending reticular activating formation (e.g., in brainstem) as well as those parts of the formation that are telencephalic and themselves responsible for cortical activation. We draw attention to a pattern of dendritic arborization described as "isodendritic," a uniform (isos-) branching in which distal dendrite branches are significantly longer than proximal ones. Isodendritic neurons also differ from other morphological types based on their heterogeneous, rather than specific afferentation. References reviewed here are consistent in their descriptions of histology, particularly in studies of locales rich in cholinergic neurons. We discuss the therapeutic implications of a basal forebrain site that may activate cortex. Interventions that specifically target nucleus basalis and, especially, the survival of its constituent neurons may benefit afflictions in which higher cortical function is compromised due to disturbed arousal or attentiveness, including not only coma and related syndromes, but also conditions colloquially described as states of cognitive "fog" or of "long-haul" mental compromise.
Collapse
Affiliation(s)
- Edison K Miyawaki
- Department of Neurology, Brigham and Women's Hospital, Mass General Brigham, 60 Fenwood Rd., Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham and Women's Hospital, Mass General Brigham, 60 Fenwood Rd., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew Torre
- Department of Pathology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Kim JH, Han YE, Oh SJ, Lee B, Kwon O, Choi CW, Kim MS. Enhanced neuronal activity by suffruticosol A extracted from Paeonia lactiflora via partly BDNF signaling in scopolamine-induced memory-impaired mice. Sci Rep 2023; 13:11731. [PMID: 37474737 PMCID: PMC10359324 DOI: 10.1038/s41598-023-38773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Neurodegenerative diseases are explained by progressive defects of cognitive function and memory. These defects of cognition and memory dysfunction can be induced by the loss of brain-derived neurotrophic factors (BDNF) signaling. Paeonia lactiflora is a traditionally used medicinal herb in Asian countries and some beneficial effects have been reported, including anti-oxidative, anti-inflammatory, anti-cancer activity, and potential neuroprotective effects recently. In this study, we found that suffruticosol A is a major compound in seeds of Paeonia lactiflora. When treated in a SH-SY5 cell line for measuring cell viability and cell survival, suffruticosol A increased cell viability (at 20 µM) and recovered scopolamine-induced neurodegenerative characteristics in the cells. To further confirm its neural amelioration effects in the animals, suffruticosol A (4 or 15 ng, twice a week) was administered into the third ventricle beside the brain of C57BL/6 mice for one month then the scopolamine was intraperitoneally injected into these mice to induce impairments of cognition and memory before conducting behavioral experiments. Central administration of suffruticosol A into the brain restored the memory and cognition behaviors in mice that received the scopolamine. Consistently, the central treatments of suffruticosol A showed rescued cholinergic deficits and BDNF signaling in the hippocampus of mice. Finally, we measured the long-term potentiation (LTP) in the hippocampal CA3-CA1 synapse to figure out the restoration of the synaptic mechanism of learning and memory. Bath application of suffruticosol A (40 µM) improved LTP impairment induced by scopolamine in hippocampal slices. In conclusion, the central administration of suffruticosol A ameliorated neuronal effects partly through elevated BDNF signaling.
Collapse
Affiliation(s)
- June Hee Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun Whan Choi
- Natural Biomaterial Team, Biocenter, Gyeonggido Business and Science Accelerator, Suwon, 16229, Gyeonggi-do, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
41
|
Wang Q, Zhang X, Guo YJ, Pang YY, Li JJ, Zhao YL, Wei JF, Zhu BT, Tang JX, Jiang YY, Meng J, Yue JR, Lei P. Scopolamine causes delirium-like brain network dysfunction and reversible cognitive impairment without neuronal loss. Zool Res 2023; 44:712-724. [PMID: 37313848 PMCID: PMC10415773 DOI: 10.24272/j.issn.2095-8137.2022.473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia. However, given its inherent complexity, few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive. Here, we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors, including anesthesia with surgery (AS), systemic inflammation, and neurotransmission modulation. We found that both bacterial lipopolysaccharide (LPS) and cholinergic receptor antagonist scopolamine (Scop) induction reduced neuronal activities in the delirium-related brain network, with the latter presenting a similar pattern of reduction as found in delirium patients. Consistently, Scop injection resulted in reversible cognitive impairment with hyperactive behavior. No loss of cholinergic neurons was found with treatment, but hippocampal synaptic functions were affected. These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice.
Collapse
Affiliation(s)
- Qing Wang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang Zhang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Jie Guo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-Yan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jun-Jie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yan-Li Zhao
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun-Fen Wei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bai-Ting Zhu
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Xiang Tang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang-Yang Jiang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Meng
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Rong Yue
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| | - Peng Lei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| |
Collapse
|
42
|
Shi Q, Yang H, Chen Y, Zheng N, Li X, Wang X, Ding W, Zhang B. Developmental Neurotoxicity of Trichlorfon in Zebrafish Larvae. Int J Mol Sci 2023; 24:11099. [PMID: 37446277 DOI: 10.3390/ijms241311099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Trichlorfon is an organophosphorus pesticide widely used in aquaculture and has potential neurotoxicity, but the underlying mechanism remains unclear. In the present study, zebrafish embryos were exposed to trichlorfon at concentrations (0, 0.1, 2 and 5 mg/L) used in aquaculture from 2 to 144 h post fertilization. Trichlorfon exposure reduced the survival rate, hatching rate, heartbeat and body length and increased the malformation rate of zebrafish larvae. The locomotor activity of larvae was significantly reduced. The results of molecular docking revealed that trichlorfon could bind to acetylcholinesterase (AChE). Furthermore, trichlorfon significantly inhibited AChE activity, accompanied by decreased acetylcholine, dopamine and serotonin content in larvae. The transcription patterns of genes related to acetylcholine (e.g., ache, chrna7, chata, hact and vacht), dopamine (e.g., drd4a and drd4b) and serotonin systems (e.g., tph1, tph2, tphr, serta, sertb, htrlaa and htrlab) were consistent with the changes in acetylcholine, dopamine, serotonin content and AChE activity. The genes related to the central nervous system (CNS) (e.g., a1-tubulin, mbp, syn2a, shha and gap-43) were downregulated. Our results indicate that the developmental neurotoxicity of trichlorfon might be attributed to disorders of cholinergic, dopaminergic and serotonergic signaling and the development of the CNS.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yangli Chen
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
43
|
Yamahashi Y, Tsuboi D, Funahashi Y, Kaibuchi K. Neuroproteomic mapping of kinases and their substrates downstream of acetylcholine: finding and implications. Expert Rev Proteomics 2023; 20:291-298. [PMID: 37787112 DOI: 10.1080/14789450.2023.2265067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Since the emergence of the cholinergic hypothesis of Alzheimer's disease (AD), acetylcholine has been viewed as a mediator of learning and memory. Donepezil improves AD-associated learning deficits and memory loss by recovering brain acetylcholine levels. However, it is associated with side effects due to global activation of acetylcholine receptors. Muscarinic acetylcholine receptor M1 (M1R), a key mediator of learning and memory, has been an alternative target. The importance of targeting a specific pathway downstream of M1R has recently been recognized. Elucidating signaling pathways beyond M1R that lead to learning and memory holds important clues for AD therapeutic strategies. AREAS COVERED This review first summarizes the role of acetylcholine in aversive learning, one of the outputs used for preliminary AD drug screening. It then describes the phosphoproteomic approach focused on identifying acetylcholine intracellular signaling pathways leading to aversive learning. Finally, the intracellular mechanism of donepezil and its effect on learning and memory is discussed. EXPERT OPINION The elucidation of signaling pathways beyond M1R by phosphoproteomic approach offers a platform for understanding the intracellular mechanism of AD drugs and for developing AD therapeutic strategies. Clarifying the molecular mechanism that links the identified acetylcholine signaling to AD pathophysiology will advance the development of AD therapeutic strategies.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
44
|
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci 2023; 46:508-524. [PMID: 37164869 PMCID: PMC10330476 DOI: 10.1016/j.tins.2023.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Daniel Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Venegas JP, Navarrete M, Orellana-Garcia L, Rojas M, Avello-Duarte F, Nunez-Parra A. Basal Forebrain Modulation of Olfactory Coding In Vivo. Int J Psychol Res (Medellin) 2023; 16:62-86. [PMID: 38106956 PMCID: PMC10723750 DOI: 10.21500/20112084.6486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/19/2023] Open
Abstract
Sensory perception is one of the most fundamental brain functions, allowing individuals to properly interact and adapt to a constantly changing environment. This process requires the integration of bottom-up and topdown neuronal activity, which is centrally mediated by the basal forebrain, a brain region that has been linked to a series of cognitive processes such as attention and alertness. Here, we review the latest research using optogenetic approaches in rodents and in vivo electrophysiological recordings that are shedding light on the role of this region, in regulating olfactory processing and decisionmaking. Moreover, we summarize evidence highlighting the anatomical and physiological differences in the basal forebrain of individuals with autism spectrum disorder, which could underpin the sensory perception abnormalities they exhibit, and propose this research line as a potential opportunity to understand the neurobiological basis of this disorder.
Collapse
Affiliation(s)
- Juan Pablo Venegas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcela Navarrete
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Laura Orellana-Garcia
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcelo Rojas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Felipe Avello-Duarte
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| |
Collapse
|
46
|
Choi S, Chen Y, Zeng H, Biswal B, Yu X. Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI. J Cereb Blood Flow Metab 2023; 43:1115-1129. [PMID: 36803280 PMCID: PMC10291453 DOI: 10.1177/0271678x231158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 02/23/2023]
Abstract
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
Collapse
Affiliation(s)
- Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yi Chen
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, NJIT, Newark, NJ, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
47
|
Zhao P, Jiang T, Wang H, Jia X, Li A, Gong H, Li X. Upper brainstem cholinergic neurons project to ascending and descending circuits. BMC Biol 2023; 21:135. [PMID: 37280580 DOI: 10.1186/s12915-023-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.
Collapse
Affiliation(s)
- Peilin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute of neurological diseases, North Sichuan Medical University, Nanchong, 637100, China
| | - Tao Jiang
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Huading Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xueyan Jia
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
48
|
Bennett HC, Zhang Q, Wu YT, Chon U, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541998. [PMID: 37305850 PMCID: PMC10257218 DOI: 10.1101/2023.05.23.541998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Equal contribution
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Equal contribution
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Lead contact
| |
Collapse
|
49
|
Shi Q, Yang H, Zheng Y, Zheng N, Lei L, Li X, Ding W. Neurotoxicity of an emerging organophosphorus flame retardant, resorcinol bis(diphenyl phosphate), in zebrafish larvae. CHEMOSPHERE 2023; 334:138944. [PMID: 37211164 DOI: 10.1016/j.chemosphere.2023.138944] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Resorcinol bis(diphenyl phosphate) (RDP), an emerging organophosphorus flame retardant and alternative to triphenyl phosphate (TPHP), is a widespread environmental pollutant. The neurotoxicity of RDP has attracted much attention, as RDP exhibits a similar structure to TPHP, a neurotoxin. In this study, the neurotoxicity of RDP was investigated by using a zebrafish (Danio rerio) model. Zebrafish embryos were exposed to RDP (0, 0.3, 3, 90, 300 and 900 nM) from 2 to 144 h postfertilization. After this exposure, the decreased heart rates and body lengths and the increased malformation rates were observed. RDP exposure significantly reduced the locomotor behavior under light-dark transition stimulation and the flash stimulus response of larvae. Molecular docking results showed that RDP could bind to the active site of zebrafish AChE and that RDP and AChE exhibit potent binding affinity. RDP exposure also significantly inhibited AChE activity in larvae. The content of neurotransmitters (γ-aminobutyric, glutamate, acetylcholine, choline and epinephrine) was altered after RDP exposure. Key genes (α1-tubulin, mbp, syn2a, gfap, shhα, manf, neurogenin, gap-43 and ache) as well as proteins (α1-tubulin and syn2a) related to the development of the central nervous system (CNS) were downregulated. Taken together, our results showed that RDP can affect different parameters related to CNS development, eventually leading to neurotoxicity. This study indicated that more attention should be paid to the toxicity and environmental risk of emerging organophosphorus flame retardants.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yanan Zheng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
50
|
Li XW, Ren Y, Shi DQ, Qi L, Xu F, Xiao Y, Lau PM, Bi GQ. Biphasic Cholinergic Modulation of Reverberatory Activity in Neuronal Networks. Neurosci Bull 2023; 39:731-744. [PMID: 36670292 PMCID: PMC10170002 DOI: 10.1007/s12264-022-01012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/22/2023] Open
Abstract
Acetylcholine (ACh) is an important neuromodulator in various cognitive functions. However, it is unclear how ACh influences neural circuit dynamics by altering cellular properties. Here, we investigated how ACh influences reverberatory activity in cultured neuronal networks. We found that ACh suppressed the occurrence of evoked reverberation at low to moderate doses, but to a much lesser extent at high doses. Moreover, high doses of ACh caused a longer duration of evoked reverberation, and a higher occurrence of spontaneous activity. With whole-cell recording from single neurons, we found that ACh inhibited excitatory postsynaptic currents (EPSCs) while elevating neuronal firing in a dose-dependent manner. Furthermore, all ACh-induced cellular and network changes were blocked by muscarinic, but not nicotinic receptor antagonists. With computational modeling, we found that simulated changes in EPSCs and the excitability of single cells mimicking the effects of ACh indeed modulated the evoked network reverberation similar to experimental observations. Thus, ACh modulates network dynamics in a biphasic fashion, probably by inhibiting excitatory synaptic transmission and facilitating neuronal excitability through muscarinic signaling pathways.
Collapse
Affiliation(s)
- Xiao-Wei Li
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yi Ren
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dong-Qing Shi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Lei Qi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yanyang Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Pak-Ming Lau
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|