1
|
Borcuk C, Parihar M, Sportelli L, Kleinman JE, Shin JH, Hyde TM, Bertolino A, Weinberger DR, Pergola G. Network-wide risk convergence in gene co-expression identifies reproducible genetic hubs of schizophrenia risk. Neuron 2024; 112:3551-3566.e6. [PMID: 39236717 DOI: 10.1016/j.neuron.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
The omnigenic model posits that genetic risk for traits with complex heritability involves cumulative effects of peripheral genes on mechanistic "core genes," suggesting that in a network of genes, those closer to clusters including core genes should have higher GWAS signals. In gene co-expression networks, we confirmed that GWAS signals accumulate in genes more connected to risk-enriched gene clusters, highlighting across-network risk convergence. This was strongest in adult psychiatric disorders, especially schizophrenia (SCZ), spanning 70% of network genes, suggestive of super-polygenic architecture. In snRNA-seq cell type networks, SCZ risk convergence was strongest in L2/L3 excitatory neurons. We prioritized genes most connected to SCZ-GWAS genes, which showed robust association to a CRISPRa measure of PGC3 regulation and were consistently identified across several brain regions. Several genes, including dopamine-associated ones, were prioritized specifically in the striatum. This strategy thus retrieves current drug targets and can be used to prioritize other potential drug targets.
Collapse
Affiliation(s)
- Christopher Borcuk
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Leonardo Sportelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Bettina JS, Chen Q, Goldman AL, Gregory MD, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine signaling enriched striatal gene set predicts striatal dopamine synthesis and physiological activity in vivo. Nat Commun 2024; 15:3342. [PMID: 38688917 PMCID: PMC11061310 DOI: 10.1038/s41467-024-47456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Leonardo Sportelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Roberta Passiatore
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Enrico D'Ambrosio
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Linda A Antonucci
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Jasmine S Bettina
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Holmusk Technologies, New York, NY, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Teresa Popolizio
- Radiology Department, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - William S Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore, MD, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Pergola G, Rampino A, Sportelli L, Borcuk CJ, Passiatore R, Di Carlo P, Marakhovskaia A, Fazio L, Amoroso N, Castro MN, Domenici E, Gennarelli M, Khlghatyan J, Kikidis GC, Lella A, Magri C, Monaco A, Papalino M, Parihar M, Popolizio T, Quarto T, Romano R, Torretta S, Valsecchi P, Zunuer H, Blasi G, Dukart J, Beaulieu JM, Bertolino A. A miR-137-Related Biological Pathway of Risk for Schizophrenia Is Associated With Human Brain Emotion Processing. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:356-366. [PMID: 38000716 DOI: 10.1016/j.bpsc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.
Collapse
Affiliation(s)
- Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.
| | - Leonardo Sportelli
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Christopher James Borcuk
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Roberta Passiatore
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Institute of Neuroscience and Medicine, Brain & Behaviour, Research Centre Jülich, Jülich, Germany
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Leonardo Fazio
- Department of Medicine and Surgery, Libera Università Mediterranea Giuseppe Degennaro, Casamassima, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Mariana Nair Castro
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina (MNC); Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Fleni-Consejo Nacional de Investigaciones Científicas y Técnicas Neurosciences Institute, Ciudad Autónoma de Buenos Aires, Argentina
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; Fondazione The Microsoft Research University of Trento, Centre for Computational and Systems Biology, Rovereto, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, Istituto di Ricovero e Cura a Carattere Sanitario Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Jivan Khlghatyan
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy; Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Gianluca Christos Kikidis
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Annalisa Lella
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina (MNC); Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Fleni-Consejo Nacional de Investigaciones Científicas y Técnicas Neurosciences Institute, Ciudad Autónoma de Buenos Aires, Argentina; Università degli Studi di Bari Aldo Moro, Dipartimento Interateneo di Fisica M. Merlin, Bari, Italy
| | - Marco Papalino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Teresa Popolizio
- Istituto di Ricovero e Cura a Carattere Sanitario Istituto Centro San Giovanni di Dio Fatebenefratelli, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tiziana Quarto
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Law, University of Foggia, Foggia, Italy
| | - Raffaella Romano
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Valsecchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, Azienda Socio Sanitaria Territoriale Spedali Civili of Brescia, Brescia, Italy
| | - Hailiqiguli Zunuer
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour, Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
4
|
Selvaggi P, Fazio L, Toro VD, Mucci A, Rocca P, Martinotti G, Cascino G, Siracusano A, Zeppegno P, Pergola G, Bertolino A, Blasi G, Galderisi S. Effect of anticholinergic burden on brain activity during Working Memory and real-world functioning in patients with schizophrenia. Schizophr Res 2023; 260:76-84. [PMID: 37633126 DOI: 10.1016/j.schres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Cognitive impairment has been associated with poor real-world functioning in patients with Schizophrenia. Previous studies have shown that pharmacological treatment with anticholinergic properties may contribute to cognitive impairment in Schizophrenia. We investigated the effect of the anticholinergic burden (ACB) on brain activity, cognition, and real-world functioning in Schizophrenia. We hypothesized that greater ACB would be associated with altered brain activity along with poorer cognitive performance and lower real-world functioning. A sample of 100 patients with a diagnosis of schizophrenia or schizoaffective disorder was recruited in the naturalistic multicenter study of the Italian Network for Research on Psychoses (NIRP) across 7 centres. For each participant, ACB was evaluated using the Anticholinergic Cognitive Burden scale. The association of ACB with brain function was assessed using BOLD fMRI during the N-Back Working Memory (WM) task in a nested cohort (N = 31). Real-world functioning was assessed using the Specific Level of Functioning (SLOF) scale. Patients with high ACB scores (≥3) showed lower brain activity in the WM frontoparietal network (TFCE corrected alpha <0.05) and poorer cognitive performance (p = 0.05) than patients with low ACB scores (<3). Both effects were unaffected by demographic characteristics, clinical severity, and antipsychotic dosage. Moreover, patients with high ACB showed poorer real-world functioning than patients with lower ACB (p = 0.03). Our results suggest that ACB in Schizophrenia is associated with impaired WM and abnormal underlying brain function along with reduced real-world functioning. Clinical practice should consider the potential adverse cognitive effects of ACB in the treatment decision-making process.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Leonardo Fazio
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Veronica Debora Toro
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. D'Annunzio University, Chieti, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy.
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Chen Q, Czarapata J, Goldman AL, Gregory M, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine and schizophrenia from bench to bedside: Discovery of a striatal co-expression risk gene set that predicts in vivo measures of striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558594. [PMID: 37786720 PMCID: PMC10541621 DOI: 10.1101/2023.09.20.558594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.
Collapse
|
6
|
Pergola G, Parihar M, Sportelli L, Bharadwaj R, Borcuk C, Radulescu E, Bellantuono L, Blasi G, Chen Q, Kleinman JE, Wang Y, Sripathy SR, Maher BJ, Monaco A, Rossi F, Shin JH, Hyde TM, Bertolino A, Weinberger DR. Consensus molecular environment of schizophrenia risk genes in coexpression networks shifting across age and brain regions. SCIENCE ADVANCES 2023; 9:eade2812. [PMID: 37058565 PMCID: PMC10104472 DOI: 10.1126/sciadv.ade2812] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Schizophrenia is a neurodevelopmental brain disorder whose genetic risk is associated with shifting clinical phenomena across the life span. We investigated the convergence of putative schizophrenia risk genes in brain coexpression networks in postmortem human prefrontal cortex (DLPFC), hippocampus, caudate nucleus, and dentate gyrus granule cells, parsed by specific age periods (total N = 833). The results support an early prefrontal involvement in the biology underlying schizophrenia and reveal a dynamic interplay of regions in which age parsing explains more variance in schizophrenia risk compared to lumping all age periods together. Across multiple data sources and publications, we identify 28 genes that are the most consistently found partners in modules enriched for schizophrenia risk genes in DLPFC; twenty-three are previously unidentified associations with schizophrenia. In iPSC-derived neurons, the relationship of these genes with schizophrenia risk genes is maintained. The genetic architecture of schizophrenia is embedded in shifting coexpression patterns across brain regions and time, potentially underwriting its shifting clinical presentation.
Collapse
Affiliation(s)
- Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Leonardo Sportelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Rahul Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Christopher Borcuk
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Eugenia Radulescu
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Loredana Bellantuono
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Bari, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Fabiana Rossi
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Ferrera D, Gómez-Esquer F, Peláez I, Barjola P, Fernandes-Magalhaes R, Carpio A, De Lahoz ME, Martín-Buro MC, Mercado F. Working memory dysfunction in fibromyalgia is associated with genotypes of the catechol- O-methyltransferase gene: an event-related potential study. Eur Arch Psychiatry Clin Neurosci 2023; 273:25-40. [PMID: 36100778 PMCID: PMC9958168 DOI: 10.1007/s00406-022-01488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Recent findings have associated different COMT genotypes with working memory capacity in patients with fibromyalgia. Although it is thought that the COMT gene may influence neural correlates (P2 and P3 ERP components) underlying working memory impairment in this chronic-pain syndrome, it has not yet been explored. Therefore, the aim of the present research was to investigate the potential effect of the COMT gene in fibromyalgia patients on ERP working memory indices (P2 and P3 components). For this purpose, 102 participants (51 patients and 51 healthy control participants) took part in the experiment. Event-related potentials and behavioral responses were recorded while participants performed a spatial n-back task. Participants had to decide if the stimulus coincided or not in the same location as the one presented one (1-back condition) or two (2-back condition) trials before. Genotypes of the COMT gene were determined through a saliva sample from all participants. Present results significantly showed lower working memory performance (p < 0.05) in patients with fibromyalgia as compared to control participants (higher rate of errors and slower reaction times). At neural level, we found that patients exhibited enhanced frontocentral and parieto-occipital P2 amplitudes compared to control participants (p < 0.05). Interestingly, we also observed that only fibromyalgia patients carrying the Val/Val genotype of the COMT gene showed higher frontocentral P2 amplitudes than control participants (p < 0.05). Current results (behavioral outcomes and P2 amplitudes) confirmed the presence of an alteration in working memory functioning in fibromyalgia. The enhancement of frontocentral P2 could be reflecting that these patients would manifest an inefficient way of activating executive attention processes, in carriers of the Val/Val genotype of COMT. To our knowledge, the present findings are the first linking neural indices of working memory dysfunctions and COMT genotypes in fibromyalgia. Applying a subgroup of patient's strategy based on this genetic marker could be useful to establish more tailored therapeutical approaches.
Collapse
Affiliation(s)
- David Ferrera
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Gómez-Esquer
- grid.28479.300000 0001 2206 5938Emerging Research Group of Anatomical, Molecular and Human Development Bases, Department of Basic Health Sciences, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Irene Peláez
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Paloma Barjola
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Roberto Fernandes-Magalhaes
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Alberto Carpio
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Eugenia De Lahoz
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Carmen Martín-Buro
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
8
|
Lahti J, Tuominen S, Yang Q, Pergola G, Ahmad S, Amin N, Armstrong NJ, Beiser A, Bey K, Bis JC, Boerwinkle E, Bressler J, Campbell A, Campbell H, Chen Q, Corley J, Cox SR, Davies G, De Jager PL, Derks EM, Faul JD, Fitzpatrick AL, Fohner AE, Ford I, Fornage M, Gerring Z, Grabe HJ, Grodstein F, Gudnason V, Simonsick E, Holliday EG, Joshi PK, Kajantie E, Kaprio J, Karell P, Kleineidam L, Knol MJ, Kochan NA, Kwok JB, Leber M, Lam M, Lee T, Li S, Loukola A, Luck T, Marioni RE, Mather KA, Medland S, Mirza SS, Nalls MA, Nho K, O'Donnell A, Oldmeadow C, Painter J, Pattie A, Reppermund S, Risacher SL, Rose RJ, Sadashivaiah V, Scholz M, Satizabal CL, Schofield PW, Schraut KE, Scott RJ, Simino J, Smith AV, Smith JA, Stott DJ, Surakka I, Teumer A, Thalamuthu A, Trompet S, Turner ST, van der Lee SJ, Villringer A, Völker U, Wilson RS, Wittfeld K, Vuoksimaa E, Xia R, Yaffe K, Yu L, Zare H, Zhao W, Ames D, Attia J, Bennett DA, Brodaty H, Chasman DI, Goldman AL, Hayward C, Ikram MA, Jukema JW, Kardia SLR, Lencz T, Loeffler M, Mattay VS, Palotie A, Psaty BM, Ramirez A, Ridker PM, Riedel-Heller SG, Sachdev PS, Saykin AJ, Scherer M, Schofield PR, Sidney S, Starr JM, Trollor J, Ulrich W, Wagner M, Weir DR, Wilson JF, Wright MJ, Weinberger DR, Debette S, Eriksson JG, Mosley TH, Launer LJ, van Duijn CM, Deary IJ, Seshadri S, Räikkönen K. Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning. Mol Psychiatry 2022; 27:4419-4431. [PMID: 35974141 PMCID: PMC9734053 DOI: 10.1038/s41380-022-01710-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.
Collapse
Affiliation(s)
- Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
- Turku Institute of Advanced Studies, University of Turku, Turku, Finland.
| | - Samuli Tuominen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Murdoch University, Murdoch, WA, Australia
| | - Alexa Beiser
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Janie Corley
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Eske M Derks
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Institute of Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zachary Gerring
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Francine Grodstein
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Harvard School of Public Health, Boston, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Assocation, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eleanor Simonsick
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Elizabeth G Holliday
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Institute of Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Pauliina Karell
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - John B Kwok
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Markus Leber
- Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Max Lam
- Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Teresa Lee
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Shuo Li
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Anu Loukola
- Helsinki Biobank, University of Helsinki Central Hospital, Helsinki, Finland
| | - Tobias Luck
- Department of Economic and Social Sciences & Institute of Social Medicine, Rehabilitation Sciences and Healthcare Research, University of Applied Sciences Nordhausen, Nordhausen, Germany
- University of Leipzig, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Sunnybrook Health Sciences Centre, University of Toronto, Randwick, NSW, Australia
| | - Sarah Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Saira S Mirza
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrienne O'Donnell
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Christopher Oldmeadow
- Clinical Research Design, IT and Statistical Support Unit, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Jodie Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alison Pattie
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard J Rose
- Department of Psychological & Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Vijay Sadashivaiah
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Claudia L Satizabal
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Peter W Schofield
- Neuropsychiatry Service, Hunter New England Local Health District, Charlestown, NSW, Australia
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Jeannette Simino
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Albert V Smith
- Icelandic Heart Assocation, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Rui Xia
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristine Yaffe
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Habil Zare
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas, San Antonio, TX, USA
- University of Texas Health Sciences Center, Houston, NA, US
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - David Ames
- National Ageing Research Institute, Parkville, Melbourne, VIC, Australia
- University of Melbourne, Academic Unit for Psychiatry of Old Age, St George's Hospital, Melbourne, VIC, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Clinical Research Design, IT and Statistical Support Unit, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Todd Lencz
- Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Food and Drug Administration, Washington, DC, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology and Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Heath Research Institute, Seattle, WA, USA
| | - Alfredo Ramirez
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin Scherer
- Institute of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Stephen Sidney
- Kaiser Permanente Northern California, Division of Research, Oakland, CA, USA
| | - John M Starr
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Julian Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - William Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Debette
- Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, University of Bordeaux, Bordeaux, France
- Bordeaux University Hospital (CHU Bordeaux), Department of Neurology, Bordeaux, France
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Helsinki, Singapore
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Public Health, Oxford University, Oxford, UK
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Pergola G, Penzel N, Sportelli L, Bertolino A. Lessons Learned From Parsing Genetic Risk for Schizophrenia Into Biological Pathways. Biol Psychiatry 2022:S0006-3223(22)01701-2. [PMID: 36740470 DOI: 10.1016/j.biopsych.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
The clinically heterogeneous presentation of schizophrenia is compounded by the heterogeneity of risk factors and neurobiological correlates of the disorder. Genome-wide association studies in schizophrenia have uncovered a remarkably high number of genetic variants, but the biological pathways they impact upon remain largely unidentified. Among the diverse methodological approaches employed to provide a more granular understanding of genetic risk for schizophrenia, the use of biological labels, such as gene ontologies, regulome approaches, and gene coexpression have all provided novel perspectives into how genetic risk translates into the neurobiology of schizophrenia. Here, we review the salient aspects of parsing polygenic risk for schizophrenia into biological pathways. We argue that parsed scores, compared to standard polygenic risk scores, may afford a more biologically plausible and accurate physiological modeling of the different dimensions involved in translating genetic risk into brain mechanisms, including multiple brain regions, cell types, and maturation stages. We discuss caveats, opportunities, and pitfalls inherent in the parsed risk approach.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
| | - Nora Penzel
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
11
|
D'Ambrosio E, Pergola G, Pardiñas AF, Dahoun T, Veronese M, Sportelli L, Taurisano P, Griffiths K, Jauhar S, Rogdaki M, Bloomfield MAP, Froudist-Walsh S, Bonoldi I, Walters JTR, Blasi G, Bertolino A, Howes OD. A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Sci Rep 2022; 12:12610. [PMID: 35871219 PMCID: PMC9308811 DOI: 10.1038/s41598-022-16442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tarik Dahoun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leonardo Sportelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Michael A P Bloomfield
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | | | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK.
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
12
|
Braun U, Harneit A, Pergola G, Menara T, Schäfer A, Betzel RF, Zang Z, Schweiger JI, Zhang X, Schwarz K, Chen J, Blasi G, Bertolino A, Durstewitz D, Pasqualetti F, Schwarz E, Meyer-Lindenberg A, Bassett DS, Tost H. Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nat Commun 2021; 12:3478. [PMID: 34108456 PMCID: PMC8190281 DOI: 10.1038/s41467-021-23694-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Dynamical brain state transitions are critical for flexible working memory but the network mechanisms are incompletely understood. Here, we show that working memory performance entails brain-wide switching between activity states using a combination of functional magnetic resonance imaging in healthy controls and individuals with schizophrenia, pharmacological fMRI, genetic analyses and network control theory. The stability of states relates to dopamine D1 receptor gene expression while state transitions are influenced by D2 receptor expression and pharmacological modulation. Individuals with schizophrenia show altered network control properties, including a more diverse energy landscape and decreased stability of working memory representations. Our results demonstrate the relevance of dopamine signaling for the steering of whole-brain network dynamics during working memory and link these processes to schizophrenia pathophysiology. Working memory requires the brain to switch between cognitive states and activity patterns. Here, the authors show that the steering of these neural network dynamics is influenced by dopamine D1- and D2-receptor function and altered in schizophrenia.
Collapse
Affiliation(s)
- Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. .,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Anais Harneit
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Menara
- Mechanical Engineering Department, University of California at Riverside, Riverside, CA, USA
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Gießen, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Gießen, Germany
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xiaolong Zhang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Pasqualetti
- Mechanical Engineering Department, University of California at Riverside, Riverside, CA, USA
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
The interaction between cannabis use and a CB1-related polygenic co-expression index modulates dorsolateral prefrontal activity during working memory processing. Brain Imaging Behav 2021; 15:288-299. [PMID: 32124274 DOI: 10.1007/s11682-020-00256-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Convergent findings indicate that cannabis use and variation in the cannabinoid CB1 receptor coding gene (CNR1) modulate prefrontal function during working memory (WM). Other results also suggest that cannabis modifies the physiological relationship between genetically induced expression of CNR1 and prefrontal WM processing. However, it is possible that cannabis exerts its modifying effect on prefrontal physiology by interacting with complex molecular ensembles co-regulated with CB1. Since co-regulated genes are likely co-expressed, we investigated how genetically predicted co-expression of a molecular network including CNR1 interacts with cannabis use in modulating WM processing in humans. Using post-mortem human prefrontal data, we first computed a polygenic score (CNR1-PCI), combining the effects of single nucleotide polymorphisms (SNPs) on co-expression of a cohesive gene set including CNR1, and positively correlated with such co-expression. Then, in an in vivo study, we computed CNR1-PCI in 88 cannabis users and 147 non-users and investigated its interaction with cannabis use on brain activity during WM. Results revealed an interaction between cannabis use and CNR1-PCI in the dorsolateral prefrontal cortex (DLPFC), with a positive relationship between CNR1-PCI and DLPFC activity in cannabis users and a negative relationship in non-users. Furthermore, DLPFC activity in cannabis users was positively correlated with the frequency of cannabis use. Taken together, our results suggest that co-expression of a CNR1-related network predicts WM-related prefrontal activation as a function of cannabis use. Furthermore, they offer novel insights into the biological mechanisms associated with the use of cannabis.
Collapse
|
14
|
Genes that give our brains their rhythms. Nat Neurosci 2021; 24:455-456. [PMID: 33686296 DOI: 10.1038/s41593-021-00805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Du J, Palaniyappan L, Liu Z, Cheng W, Gong W, Zhu M, Wang J, Zhang J, Feng J. The genetic determinants of language network dysconnectivity in drug-naïve early stage schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:18. [PMID: 33658499 PMCID: PMC7930279 DOI: 10.1038/s41537-021-00141-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Schizophrenia is a neurocognitive illness of synaptic and brain network-level dysconnectivity that often reaches a persistent chronic stage in many patients. Subtle language deficits are a core feature even in the early stages of schizophrenia. However, the primacy of language network dysconnectivity and language-related genetic variants in the observed phenotype in early stages of illness remains unclear. This study used two independent schizophrenia dataset consisting of 138 and 53 drug-naïve first-episode schizophrenia (FES) patients, and 112 and 56 healthy controls, respectively. A brain-wide voxel-level functional connectivity analysis was conducted to investigate functional dysconnectivity and its relationship with illness duration. We also explored the association between critical language-related genetic (such as FOXP2) mutations and the altered functional connectivity in patients. We found elevated functional connectivity involving Broca's area, thalamus and temporal cortex that were replicated in two FES datasets. In particular, Broca's area - anterior cingulate cortex dysconnectivity was more pronounced for patients with shorter illness duration, while thalamic dysconnectivity was predominant in those with longer illness duration. Polygenic risk scores obtained from FOXP2-related genes were strongly associated with functional dysconnectivity identified in patients with shorter illness duration. Our results highlight the criticality of language network dysconnectivity, involving the Broca's area in early stages of schizophrenia, and the role of language-related genes in this aberration, providing both imaging and genetic evidence for the association between schizophrenia and the determinants of language.
Collapse
Affiliation(s)
- Jingnan Du
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Lena Palaniyappan
- Department of Psychiatry and Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Zhaowen Liu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Weikang Gong
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Mengmeng Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
16
|
Dopamine D1, but not D2, signaling protects mental representations from distracting bottom-up influences. Neuroimage 2020; 204:116243. [DOI: 10.1016/j.neuroimage.2019.116243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
|
17
|
Pergola G, Di Carlo P, Jaffe AE, Papalino M, Chen Q, Hyde TM, Kleinman JE, Shin JH, Rampino A, Blasi G, Weinberger DR, Bertolino A. Prefrontal Coexpression of Schizophrenia Risk Genes Is Associated With Treatment Response in Patients. Biol Psychiatry 2019; 86:45-55. [PMID: 31126695 DOI: 10.1016/j.biopsych.2019.03.981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Gene coexpression networks are relevant to functional and clinical translation of schizophrenia risk genes. We hypothesized that schizophrenia risk genes converge into coexpression pathways that may be associated with gene regulation mechanisms and with response to treatment in patients with schizophrenia. METHODS We identified gene coexpression networks in two prefrontal cortex postmortem RNA sequencing datasets (n = 688) and replicated them in four more datasets (n = 1295). We identified and replicated (p values < .001) a single module enriched for schizophrenia risk loci (13 risk genes in 10 loci). In silico screening of potential regulators of the schizophrenia risk module via bioinformatic analyses identified two transcription factors and three microRNAs associated with the risk module. To translate postmortem information into clinical phenotypes, we identified polymorphisms predicting coexpression and combined them to obtain an index approximating module coexpression (Polygenic Coexpression Index [PCI]). RESULTS The PCI-coexpression association was successfully replicated in two independent brain transcriptome datasets (n = 131; p values < .05). Finally, we tested the association between the PCI and short-term treatment response in two independent samples of patients with schizophrenia treated with olanzapine (n = 167). The PCI was associated with treatment response in the positive symptom domain in both clinical cohorts (p values < .05). CONCLUSIONS In summary, our findings in 1983 samples of human postmortem prefrontal cortex show that coexpression of a set of genes enriched for schizophrenia risk genes is relevant to treatment response. This coexpression pathway may be coregulated by transcription factors and microRNA associated with it.
Collapse
Affiliation(s)
- Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland.
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland
| | - Marco Papalino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.
| |
Collapse
|