1
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
2
|
Cohen ED, Roethlin K, Yee M, Woeller CF, Brookes PS, Porter GA, O'Reilly MA. PPARγ drives mitochondrial stress signaling and the loss of atrial cardiomyocytes in newborn mice exposed to hyperoxia. Redox Biol 2024; 76:103351. [PMID: 39276392 PMCID: PMC11417530 DOI: 10.1016/j.redox.2024.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Diastolic dysfunction is increasingly common in preterm infants exposed to supplemental oxygen (hyperoxia). Previous studies in neonatal mice showed hyperoxia suppresses fatty acid synthesis genes required for proliferation and survival of atrial cardiomyocytes. The loss of atrial cardiomyocytes creates a hypoplastic left atrium that inappropriately fills the left ventricle during diastole. Here, we show that hyperoxia stimulates adenosine monophosphate-activated kinase (AMPK) and peroxisome proliferator activated receptor-gamma (PPARγ) signaling in atrial cardiomyocytes. While both pathways can regulate lipid homeostasis, PPARγ was the primary pathway by which hyperoxia inhibits fatty acid gene expression and inhibits proliferation of mouse atrial HL-1 cells. It also enhanced the toxicity of hyperoxia by increasing expression of activating transcription factor (ATF) 5 and other mitochondrial stress response genes. Silencing PPARγ signaling restored proliferation and survival of HL-1 cells as well as atrial cardiomyocytes in neonatal mice exposed to hyperoxia. Our findings reveal PPARγ enhances the toxicity of hyperoxia on atrial cardiomyocytes, thus suggesting inhibitors of PPARγ signaling may prevent diastolic dysfunction in preterm infants.
Collapse
Affiliation(s)
- E David Cohen
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA.
| | - Kyle Roethlin
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Collynn F Woeller
- Department of Ophthalmology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Paul S Brookes
- Department of Anesthesiology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - George A Porter
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
4
|
Alqahtani QH, Alkharashi LA, Alajami H, Alkharashi I, Alkharashi L, Alhinti SN. Pioglitazone enhances cisplatin's impact on triple-negative breast cancer: Role of PPARγ in cell apoptosis. Saudi Pharm J 2024; 32:102059. [PMID: 38601974 PMCID: PMC11004990 DOI: 10.1016/j.jsps.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) has been recently shown to play a role in many cancers. The breast tissue of triple-negative breast cancer (TNBC) patients were found to have a significantly lower expression of PPARγ than the other subtypes. Furthermore, PPARγ activation was found to exert anti-tumor effects by inhibiting cell proliferation, differentiation, cell growth, cell cycle, and inducing apoptosis. To start with, we performed a bioinformatic analysis of data from OncoDB, which showed a lower expression pattern of PPARγ in different cancer types. In addition, high expression of PPARγ was associated with better breast cancer patient survival. Therefore, we tested the impact of pioglitazone, a PPARγ ligand, on the cytotoxic activity of cisplatin in the TNBC cell line. MDA-MB-231 cells were treated with either cisplatin (40 μM) with or without pioglitazone (30 or 60 μM) for 72 h. The MTT results showed a significant dose-dependent decrease in cell viability as a result of using cisplatin and pioglitazone combination compared with cisplatin alone. In addition, the protein expression of Bcl-2, a known antiapoptotic marker, decreased in the cells treated with cisplatin and pioglitazone combination at doses of 40 and 30 μM, respectively. On the other hand, cleaved- poly-ADP ribose polymerase (PARP) and -caspase-9, which are known as pro-apoptotic markers, were upregulated in the combination group compared with the solo treatments. Taken together, the addition of pioglitazone to cisplatin further reduced the viability of MDA-MB-231 cells and enhanced apoptosis compared with chemotherapy alone.
Collapse
Affiliation(s)
- Qamraa Hamad Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Layla Abdullah Alkharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanaa Alajami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ishraq Alkharashi
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Layan Alkharashi
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shoug Nasser Alhinti
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
7
|
Ji XY, Lei CJ, Kong S, Li HF, Pan SY, Chen YJ, Zhao FR, Zhu TT. Hydroxy-Safflower Yellow A Mitigates Vascular Remodeling in Rat Pulmonary Arterial Hypertension. Drug Des Devel Ther 2024; 18:475-491. [PMID: 38405578 PMCID: PMC10893878 DOI: 10.2147/dddt.s439686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Cheng-Jing Lei
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Tian-Tian Zhu
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
8
|
Tate T, Plumber SA, Al-Ahmadie H, Chen X, Choi W, Lu C, Viny A, Batourina E, Gartensson K, Alija B, Molotkov A, Wiessner G, McKiernan J, McConkey D, Dinney C, Czerniak B, Mendelsohn CL. Combined Mek inhibition and Pparg activation Eradicates Muscle Invasive Bladder cancer in a Mouse Model of BBN-induced Carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553961. [PMID: 37662238 PMCID: PMC10473651 DOI: 10.1101/2023.08.19.553961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Bladder cancers (BCs) can be divided into 2 major subgroups displaying distinct clinical behaviors and mutational profiles: basal/squamous (BASQ) tumors that tend to be muscle invasive, and luminal/papillary (LP) tumors that are exophytic and tend to be non-invasive. Pparg is a likely driver of LP BC and has been suggested to act as a tumor suppressor in BASQ tumors, where it is likely suppressed by MEK-dependent phosphorylation. Here we tested the effects of rosiglitazone, a Pparg agonist, in a mouse model of BBN-induced muscle invasive BC. Rosiglitazone activated Pparg signaling in suprabasal epithelial layers of tumors but not in basal-most layers containing highly proliferative invasive cells, reducing proliferation but not affecting tumor survival. Addition of trametinib, a MEK inhibitor, induced Pparg signaling throughout all tumor layers, and eradicated 91% of tumors within 7-days of treatment. The 2-drug combination also activated a luminal differentiation program, reversing squamous metaplasia in the urothelium of tumor-bearing mice. Paired ATAC-RNA-seq analysis revealed that tumor apoptosis was most likely linked to down-regulation of Bcl-2 and other pro-survival genes, while the shift from BASQ to luminal differentiation was associated with activation of the retinoic acid pathway and upregulation of Kdm6a, a lysine demethylase that facilitates retinoid-signaling. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients. That muscle invasive tumors are populated by basal and suprabasal cell types with different responsiveness to PPARG agonists will be an important consideration when designing new treatments.
Collapse
|
9
|
Drosos Y, Konstantakou EG, Bassogianni AS, Nikolakopoulos KS, Koumoundourou DG, Markaki SP, Tsitsilonis OE, Voutsinas GE, Valakos D, Anastasiadou E, Thanos D, Velentzas AD, Stravopodis DJ. Microtubule Dynamics Deregulation Induces Apoptosis in Human Urothelial Bladder Cancer Cells via a p53-Independent Pathway. Cancers (Basel) 2023; 15:3730. [PMID: 37509392 PMCID: PMC10378115 DOI: 10.3390/cancers15143730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bladder cancer (BLCA) is the sixth most common type of cancer and has a dismal prognosis if diagnosed late. To identify treatment options for BLCA, we systematically evaluated data from the Broad Institute DepMap project. We found that urothelial BLCA cell lines are among the most sensitive to microtubule assembly inhibition by paclitaxel treatment. Strikingly, we revealed that the top dependencies in BLCA cell lines include genes encoding proteins involved in microtubule assembly. This highlights the importance of microtubule network dynamics as a major vulnerability in human BLCA. In cancers such as ovarian and breast, where paclitaxel is the gold standard of care, resistance to paclitaxel treatment has been linked to p53-inactivating mutations. To study the response of BLCA to microtubule assembly inhibition and its mechanistic link with the mutational status of the p53 protein, we treated a collection of BLCA cell lines with a dose range of paclitaxel and performed a detailed characterization of the response. We discovered that BLCA cell lines are significantly sensitive to low concentrations of paclitaxel, independently of their p53 status. Paclitaxel induced a G2/M cell cycle arrest and growth inhibition, followed by robust activation of apoptosis. Most importantly, we revealed that paclitaxel triggered a robust DNA-damage response and apoptosis program without activating the p53 pathway. Integration of transcriptomics, epigenetic, and dependency data demonstrated that the response of BLCA to paclitaxel is independent of p53 mutational signatures but strongly depends on the expression of DNA repair genes. Our work highlights urothelial BLCA as an exceptional candidate for paclitaxel treatment. It paves the way for the rational use of a combination of paclitaxel and DNA repair inhibitors as an effective, novel therapeutic strategy.
Collapse
Affiliation(s)
- Yiannis Drosos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Eumorphia G Konstantakou
- Massachusetts General Hospital Cancer Center (MGHCC), Harvard Medical School, Boston, MA 02114, USA
| | - Aggeliki-Stefania Bassogianni
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Dimitra G Koumoundourou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Sophia P Markaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Ourania E Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications (IBA), National Center for Scientific Research (NCSR) "Demokritos", 15310 Athens, Greece
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece
| |
Collapse
|
10
|
Biswas P, Swaroop S, Dutta N, Arya A, Ghosh S, Dhabal S, Das P, Majumder C, Pal M, Bhattacharjee A. IL-13 and the hydroperoxy fatty acid 13(S)HpODE play crucial role in inducing an apoptotic pathway in cancer cells involving MAO-A/ROS/p53/p21 signaling axis. Free Radic Biol Med 2023; 195:309-328. [PMID: 36592660 DOI: 10.1016/j.freeradbiomed.2022.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
This study depicted the effect of IL-13 and 13(S)HpODE (the endogenous product during IL-13 activation) in the process of cancer cell apoptosis. We examined the role of both IL-13 and 13(S)HpODE in mediating apoptotic pathway in three different in vitro cellular models namely A549 lung cancer, HCT116 colorectal cancer and CCF52 GBM cells. Our data showed that IL-13 promotes apoptosis of A549 lung carcinoma cells through the involvement of 15-LO, PPARγ and MAO-A. Our observations demonstrated that IL-13/13(S)HpODE stimulate MAO-A-mediated intracellular ROS production and p53 as well as p21 induction which play a crucial role in IL-13-stimulated A549 cell apoptosis. We further showed that 13(S)HpODE promotes apoptosis of HCT116 and CCF52 cells through the up-regulation of p53 and p21 expression. Our data delineated that IL-13 stimulates p53 and p21 induction which is mediated through 15-LO and MAO-A in A549 cells. In addition, we observed that PPARγ plays a vital role in apoptosis as well as in p53 and p21 expression in A549 cells in the presence of IL-13. We validated our observations in case of an in vivo colon cancer tumorigenic study using syngeneic mice model and demonstrated that 13(S)HpODE significantly reduces solid tumor growth through the activation of apoptosis. These data thus confirmed that IL-13 > 15-LO>13(S)HpODE > PPARγ>MAO-A > ROS > p53>p21 axis has a major contribution in regulating cancer cell apoptosis and further identified 13(S)HpODE as a potential chemo-preventive agent which can improve the efficacy of cancer treatment as a combination compound.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Surbhi Swaroop
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Aditi Arya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India.
| |
Collapse
|
11
|
Liu J, Yang X, Gao S, Wen M, Yu Q. DDX11-AS1 modulates DNA damage repair to enhance paclitaxel resistance of lung adenocarcinoma cells. Pharmacogenomics 2023; 24:163-172. [PMID: 36779347 DOI: 10.2217/pgs-2022-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Aim: To investigate the influence of DDX11-AS1 on paclitaxel (PTX) resistance in lung adenocarcinoma (LUAD). Methods: LncRNA expression and functional enrichment analyses were processed via bioinformatics methods. DDX11-AS1 expression was detected via quantitative real-time PCR. Cell counting kit-8, colony formation, flow cytometry and comet assays were manipulated to measure cell proliferation, apoptosis, cell cycle and DNA damage repair, respectively. Western blot was used to assess DNA damage-related protein expression. Results: DDX11-AS1 was in a high expression status in LUAD, and could promote LUAD cell proliferation and PTX resistance, while suppressing cell apoptosis. DNA damage repairing ability was also modulated by the change of DDX11-AS1 expression. Conclusion: LncRNA DDX11-AS1 promotes DNA damage repair to enhance PTX resistance in LUAD.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Xu Yang
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Shasha Gao
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Minya Wen
- Department of Laboratory, Jinhua Wenrong Hospital, Jinhua City, Zhejiang Province, 322118, China
| | - Qiong Yu
- Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China
| |
Collapse
|
12
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
13
|
Zhang FL, Yang SY, Liao L, Zhang TM, Zhang YL, Hu SY, Deng L, Huang MY, Andriani L, Ma XY, Shao ZM, Li DQ. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics 2023; 13:973-990. [PMID: 36793866 PMCID: PMC9925317 DOI: 10.7150/thno.79688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: SUMOylation regulates a plethora of biological processes, and its inhibitors are currently under investigation in clinical trials as anticancer agents. Thus, identifying new targets with site-specific SUMOylation and defining their biological functions will not only provide new mechanistic insights into the SUMOylation signaling but also open an avenue for developing new strategy for cancer therapy. MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme with an emerging role in the DNA damage response (DDR), but its regulatory mechanism remains enigmatic. Methods: In vivo and in vitro SUMOylation assays were used to determine the SUMOylation levels of MORC2. Overexpression and knockdown of SUMO-associated enzymes were used to detect their effects on MORC2 SUMOylation. The effect of dynamic MORC2 SUMOylation on the sensitivity of breast cancer cells to chemotherapeutic drugs was examined through in vitro and in vivo functional assays. Immunoprecipitation, GST pull-down, MNase, and chromatin segregation assays were used to explore the underlying mechanisms. Results: Here, we report that MORC2 is modified by small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 at lysine 767 (K767) in a SUMO-interacting motif dependent manner. MORC2 SUMOylation is induced by SUMO E3 ligase tripartite motif containing 28 (TRIM28) and reversed by deSUMOylase sentrin-specific protease 1 (SENP1). Intriguingly, SUMOylation of MORC2 is decreased at the early stage of DNA damage induced by chemotherapeutic drugs that attenuate the interaction of MORC2 with TRIM28. MORC2 deSUMOylation induces transient chromatin relaxation to enable efficient DNA repair. At the relatively late stage of DNA damage, MORC2 SUMOylation is restored, and SUMOylated MORC2 interacts with protein kinase CSK21 (casein kinase II subunit alpha), which in turn phosphorylates DNA-PKcs (DNA-dependent protein kinase catalytic subunit), thus promoting DNA repair. Notably, expression of a SUMOylation-deficient mutant MORC2 or administration of SUMO inhibitor enhances the sensitivity of breast cancer cells to DNA-damaging chemotherapeutic drugs. Conclusions: Collectively, these findings uncover a novel regulatory mechanism of MORC2 by SUMOylation and reveal the intricate dynamics of MORC2 SUMOylation important for proper DDR. We also propose a promising strategy to sensitize MORC2-driven breast tumors to chemotherapeutic drugs by inhibition of the SUMO pathway.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Muhammad N, Ruiz F, Stanley J, Rashmi R, Cho K, Jayachandran K, Zahner MC, Huang Y, Zhang J, Markovina S, Patti GJ, Schwarz JK. Monounsaturated and Diunsaturated Fatty Acids Sensitize Cervical Cancer to Radiation Therapy. Cancer Res 2022; 82:4515-4527. [PMID: 36214635 PMCID: PMC9772149 DOI: 10.1158/0008-5472.can-21-4369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
Obesity induces numerous physiological changes that can impact cancer risk and patient response to therapy. Obese patients with cervical cancer have been reported to have superior outcomes following chemoradiotherapy, suggesting that free fatty acids (FFA) might enhance response to radiotherapy. Here, using preclinical models, we show that monounsaturated and diunsaturated FFAs (uFFA) radiosensitize cervical cancer through a novel p53-dependent mechanism. UFFAs signaled through PPARγ and p53 to promote lipid uptake, storage, and metabolism after radiotherapy. Stable isotope labeling confirmed that cervical cancer cells increase both catabolic and anabolic oleate metabolism in response to radiotherapy, with associated increases in dependence on mitochondrial fatty acid oxidation for survival. In vivo, supplementation with exogenous oleate suppressed tumor growth in xenografts after radiotherapy, an effect that could be partially mimicked in tumors from high fat diet-induced obese mice. These results suggest that supplementation with uFFAs may improve tumor responses to radiotherapy, particularly in p53 wild-type tumors. SIGNIFICANCE Metabolism of monounsaturated and diunsaturated fatty acids improves the efficacy of radiotherapy in cancer through modulation of p53 activity. See related commentary by Jungles and Green, p. 4513.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, Washington University School of Medicine
| | - Fiona Ruiz
- Department of Radiation Oncology, Washington University School of Medicine
| | - Jennifer Stanley
- Department of Radiation Oncology, Washington University School of Medicine,Alvin J. Siteman Cancer Center, Washington University School of Medicine
| | | | - Kevin Cho
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine
| | - Michael C Zahner
- Department of Radiation Oncology, Washington University School of Medicine
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine
| | | | - Gary J. Patti
- Alvin J. Siteman Cancer Center, Washington University School of Medicine,Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine,Department of Cell Biology and Physiology, Washington University School of Medicine,Alvin J. Siteman Cancer Center, Washington University School of Medicine
| |
Collapse
|
15
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
16
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
17
|
Alfarhan MW, Al-Hussaini H, Kilarkaje N. Role of PPAR-γ in diabetes-induced testicular dysfunction, oxidative DNA damage and repair in leptin receptor-deficient obese type 2 diabetic mice. Chem Biol Interact 2022; 361:109958. [PMID: 35472412 DOI: 10.1016/j.cbi.2022.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The testis expresses peroxisome proliferator-activated receptor-γ (PPAR-γ), but its involvement in regulating diabetes-induced testicular dysfunction and DNA damage repair is not known. Pioglitazone-induced activation of PPAR-γ for 12 weeks in db/db obese diabetic mice increases bodyweights and reduces blood glucose levels, but PPAR-γ inhibition by 2-chloro-5-nitro-N-phenylbenzamide does not alter these parameters; instead, improves testis and epididymis weights and sperm count. Neither activation nor inhibition of PPAR-γ normalizes the diabetes-induced seminiferous epithelial degeneration. The PPAR-γ activation normalizes testicular lipid peroxidation, but its inhibition reduces lipid peroxidation and oxidative DNA damage (8-oxo-dG) in diabetic mice. As a response to diabetes-induced oxidative DNA damage, the base-excision repair (BER) mechanism proteins- 8-oxoguanine DNA glycosylases (OGG1/2) and X-ray repair cross-complementing protein-1 (XRCC1) increase, whereas the redox-factor-1 (REF1), DNA polymerase (pol) δ and poly (ADP-ribose) polymerase-1 (PARP1) show a tendency to increase suggesting an attempt to repair the oxidative DNA damage. The PPAR-γ stimulation inhibits OGG2, DNA pol δ, and XRCC1 in diabetic mice testes, but PPAR-γ inhibition reduces oxidative DNA damage and normalizes BER protein levels. In conclusion, type 2 diabetes negatively affects testicular structure and function and increases oxidative DNA damage and BER protein levels due to increased DNA damage. The PPAR-γ modulation does not significantly affect the structural changes in the testis. The PPAR-γ stimulation aggravates diabetes-induced effects on testis, including oxidative DNA damage and BER proteins, but PPAR-γ inhibition marginally recovers these diabetic effects indicating the involvement of the receptor in the reproductive effects of diabetes.
Collapse
Affiliation(s)
| | - Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
18
|
Hurst CD, Cheng G, Platt FM, Castro MAA, Marzouka NADS, Eriksson P, Black EVI, Alder O, Lawson ARJ, Lindskrog SV, Burns JE, Jain S, Roulson JA, Brown JC, Koster J, Robertson AG, Martincorena I, Dyrskjøt L, Höglund M, Knowles MA. Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Rep Med 2021; 2:100472. [PMID: 35028613 PMCID: PMC8714941 DOI: 10.1016/j.xcrm.2021.100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | | | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma V I Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Joanne C Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
19
|
Abstract
The intimate association between obesity and type II diabetes urges for a deeper understanding of adipocyte function. We and others have previously delineated a role for the tumor suppressor p53 in adipocyte biology. Here, we show that mice haploinsufficient for MDM2, a key regulator of p53, in their adipose stores suffer from overt obesity, glucose intolerance, and hepatic steatosis. These mice had decreased levels of circulating palmitoleic acid [non-esterified fatty acid (NEFA) 16:1] concomitant with impaired visceral adipose tissue expression of Scd1 and Ffar4. A similar decrease in Scd and Ffar4 expression was found in in vitro differentiated adipocytes with perturbed MDM2 expression. Lowered MDM2 levels led to nuclear exclusion of the transcriptional cofactors, MORC2 and LIPIN1, and thereby possibly hampered adipocyte function by antagonizing LIPIN1-mediated PPARγ coactivation. Collectively, these data argue for a hitherto unknown interplay between MDM2 and MORC2/LIPIN1 involved in balancing adipocyte function.
Collapse
|
20
|
Silva-Gomez JA, Galicia-Moreno M, Sandoval-Rodriguez A, Miranda-Roblero HO, Lucano-Landeros S, Santos A, Monroy-Ramirez HC, Armendariz-Borunda J. Hepatocarcinogenesis Prevention by Pirfenidone Is PPARγ Mediated and Involves Modification of Nuclear NF-kB p65/p50 Ratio. Int J Mol Sci 2021; 22:ijms222111360. [PMID: 34768791 PMCID: PMC8583060 DOI: 10.3390/ijms222111360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Targeted therapies for regulating processes such as inflammation, apoptosis, and fibrogenesis might modulate human HCC development. Pirfenidone (PFD) has shown anti-fibrotic and anti-inflammatory functions in both clinical and experimental studies. The aim of this study was to evaluate PPARγ expression and localization in samples of primary human tumors and assess PFD-effect in early phases of hepatocarcinogenic process. Human HCC tissue samples were obtained by surgical resection. Experimental hepatocarcinogenesis was induced in male Fischer-344 rats. TGF-β1 and α-SMA expression was evaluated as fibrosis markers. NF-kB cascade, TNFα, IL-6, and COX-2 expression and localization were evaluated as inflammation indicators. Caspase-3, p53, and PARP-1 were used as apoptosis markers, PCNA for proliferation. Finally, PPARα and PPARγ expression were evaluated to understand the effect of PFD on the activation of such pathways. PPARγ expression was predominantly localized in cytoplasm in human HCC tissue. PFD was effective to prevent histopathological damage and TGF-β1 and α-SMA overexpression in the experimental model. Anti-inflammatory effects of PFD correlate with diminished IKK and decrease in both IkB-phosphorylation/NF-kB p65 expression and p65-translocation into the nucleus. Pro-apoptotic PFD-induced effects are related with p53 expression, Caspase-3 p17 activation, and PARP-1-cleavage. In conclusion, PFD acts as a tumor suppressor by preventing fibrosis, reducing inflammation, and promoting apoptosis in MRHM.
Collapse
Affiliation(s)
- Jorge Antonio Silva-Gomez
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
| | - Marina Galicia-Moreno
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
| | - Ana Sandoval-Rodriguez
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
| | - Hipolito Otoniel Miranda-Roblero
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
| | - Silvia Lucano-Landeros
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Mexico;
| | - Hugo Christian Monroy-Ramirez
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
- Correspondence: (H.C.M.-R.); (J.A.-B.)
| | - Juan Armendariz-Borunda
- Centro Universitario de Ciencias de la Salud, Instituto de Biologia Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.S.-G.); (M.G.-M.); (A.S.-R.); (H.O.M.-R.); (S.L.-L.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Mexico;
- Correspondence: (H.C.M.-R.); (J.A.-B.)
| |
Collapse
|
21
|
Loo SY, Syn NL, Koh APF, Teng JCF, Deivasigamani A, Tan TZ, Thike AA, Vali S, Kapoor S, Wang X, Wang JW, Tan PH, Yip GW, Sethi G, Huang RYJ, Hui KM, Wang L, Goh BC, Kumar AP. Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov 2021; 7:265. [PMID: 34580286 PMCID: PMC8476547 DOI: 10.1038/s41420-021-00635-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Clinical trials repurposing peroxisome proliferator-activated receptor-gamma (PPARγ) agonists as anticancer agents have exhibited lackluster efficacy across a variety of tumor types. Here, we report that increased PPARG expression is associated with a better prognosis but is anticorrelated with histone deacetylase (HDAC) 1 and 2 expressions. We show that HDAC overexpression blunts anti-proliferative and anti-angiogenic responses to PPARγ agonists via transcriptional and post-translational mechanisms, however, these can be neutralized with clinically approved and experimental HDAC inhibitors. Supporting this notion, concomitant treatment with HDAC inhibitors was required to license the tumor-suppressive effects of PPARγ agonists in triple-negative and endocrine-refractory breast cancer cells, and combination therapy also restrained angiogenesis in a tube formation assay. This combination was also synergistic in estrogen receptor-alpha (ERα)-positive cells because HDAC blockade abrogated ERα interference with PPARγ-regulated transcription. Following a pharmacokinetics optimization study, the combination of rosiglitazone and a potent pan-HDAC inhibitor, LBH589, stalled disease progression in a mouse model of triple-negative breast cancer greater than either of the monotherapies, while exhibiting a favorable safety profile. Our findings account for historical observations of de-novo resistance to PPARγ agonist monotherapy and propound a therapeutically cogent intervention against two aggressive breast cancer subtypes.
Collapse
Affiliation(s)
- Ser Yue Loo
- Cancer Science Institute of Singapore and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nicholas L Syn
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janet Cheng-Fei Teng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shireen Vali
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Shweta Kapoor
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore (NUHCS), National University Health System, Singapore, Singapore
| | - Jiong Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
22
|
Voutsadakis IA. Mutations of p53 associated with pancreatic cancer and therapeutic implications. Ann Hepatobiliary Pancreat Surg 2021; 25:315-327. [PMID: 34402431 PMCID: PMC8382872 DOI: 10.14701/ahbps.2021.25.3.315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic adenocarcinoma is a malignancy with rising incidence and grim prognosis. Despite improvements in therapeutics for treating metastatic pancreatic cancer, this disease is invariably fatal with survival time less than a few years. New molecular understanding of the pathogenesis of pancreatic adenocarcinoma based on efforts led by The Cancer Genome Atlas and other groups has elucidated the landscape of this disease and started to produce therapeutic results, leading to the first introduction of targeted therapies for subsets of pancreatic cancers bearing specific molecular lesions such as BRCA mutations. These efforts have highlighted that subsets of pancreatic cancers are particularly sensitive to chemotherapy. The most common molecular lesions in pancreatic adenocarcinomas are mutations in an oncogene KRAS and the TP53 gene that encodes for tumor suppressor protein p53. This paper will review the landscape of pancreatic cancers, focusing on mutations of p53, a major tumor suppressor protein, in pancreatic cancers and possible therapeutic repercussions.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON, Canada.,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
23
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
Heudobler D, Schulz C, Fischer JR, Staib P, Wehler T, Südhoff T, Schichtl T, Wilke J, Hahn J, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Held S, Beckers K, Bouche G, Reichle A. A Randomized Phase II Trial Comparing the Efficacy and Safety of Pioglitazone, Clarithromycin and Metronomic Low-Dose Chemotherapy with Single-Agent Nivolumab Therapy in Patients with Advanced Non-small Cell Lung Cancer Treated in Second or Further Line (ModuLung). Front Pharmacol 2021; 12:599598. [PMID: 33796020 PMCID: PMC8007965 DOI: 10.3389/fphar.2021.599598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Most non-small cell lung cancers occur in elderly and frequently comorbid patients. Therefore, it is necessary to evaluate the efficacy of biomodulatory active therapy regimen, concertedly interfering with tumor-associated homeostatic pathways to achieve tumor control paralleled by modest toxicity profiles. Patients and Methods: The ModuLung trial is a national, multicentre, prospective, open-label, randomized phase II trial in patients with histologically confirmed stage IIIB/IV squamous (n = 11) and non-squamous non-small cell (n = 26) lung cancer who failed first-line platinum-based chemotherapy. Patients were randomly assigned on a 1:1 ratio to the biomodulatory or control group, treated with nivolumab. Patients randomized to the biomodulatory group received an all-oral therapy consisting of treosulfan 250 mg twice daily, pioglitazone 45 mg once daily, clarithromycin 250 mg twice daily, until disease progression or unacceptable toxicity. Results: The study had to be closed pre-maturely due to approval of immune checkpoint inhibitors (ICi) in first-line treatment. Thirty-seven patients, available for analysis, were treated in second to forth-line. Progression-free survival (PFS) was significantly inferior for biomodulation (N = 20) vs. nivolumab (N = 17) with a median PFS (95% confidence interval) of 1.4 (1.2-2.0) months vs. 1.6 (1.4-6.2), respectively; with a hazard ratio (95% confidence interval) of 1.908 [0.962; 3.788]; p = 0.0483. Objective response rate was 11.8% with nivolumab vs. 5% with biomodulation, median follow-up 8.25 months. The frequency of grade 3-5 treatment related adverse events was 29% with nivolumab and 10% with biomodulation. Overall survival (OS), the secondary endpoint, was comparable in both treatment arms; biomodulation with a median OS (95% confidence interval) of 9.4 (6.0-33.0) months vs. nivolumab 6.9 (4.6-24.0), respectively; hazard ratio (95% confidence interval) of 0.733 [0.334; 1.610]; p = 0.4368. Seventy-five percent of patients in the biomodulation arm received rescue therapy with checkpoint inhibitors. Conclusions: This trial shows that the biomodulatory therapy was inferior to nivolumab on PFS. However, the fact that OS was similar between groups gives rise to the hypothesis that the well-tolerable biomodulatory therapy may prime tumor tissues for efficacious checkpoint inhibitor therapy, even in very advanced treatment lines where poor response to ICi might be expected with increasing line of therapy.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Peter Staib
- Euregio Cancer Center Eschweiler, Eschweiler, Germany
| | - Thomas Wehler
- Department of Hematology, Oncology, Palliative Care, Pneumology, Evangelisches Krankenhaus Hamm, Hamm, Germany.,Lungenklinik Hemer, Hemer, Germany
| | - Thomas Südhoff
- Department of Hematology and Oncology, Klinikum Passau, Passau, Germany
| | - Thomas Schichtl
- Medizinisches Versorgungszentrum Weiden, Weiden in der Oberpfalz, Bavaria, Germany
| | | | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Musicant AM, Parag-Sharma K, Gong W, Sengupta M, Chatterjee A, Henry EC, Tsai YH, Hayward MC, Sheth S, Betancourt R, Hackman TG, Padilla RJ, Parker JS, Giudice J, Flaveny CA, Hayes DN, Amelio AL. CRTC1/MAML2 directs a PGC-1α-IGF-1 circuit that confers vulnerability to PPARγ inhibition. Cell Rep 2021; 34:108768. [PMID: 33626346 PMCID: PMC7955229 DOI: 10.1016/j.celrep.2021.108768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/22/2020] [Accepted: 01/27/2021] [Indexed: 01/03/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is a life-threatening salivary gland cancer that is driven primarily by a transcriptional coactivator fusion composed of cyclic AMP-regulated transcriptional coactivator 1 (CRTC1) and mastermind-like 2 (MAML2). The mechanisms by which the chimeric CRTC1/MAML2 (C1/M2) oncoprotein rewires gene expression programs that promote tumorigenesis remain poorly understood. Here, we show that C1/M2 induces transcriptional activation of the non-canonical peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) splice variant PGC-1α4, which regulates peroxisome proliferator-activated receptor gamma (PPARγ)-mediated insulin-like growth factor 1 (IGF-1) expression. This mitogenic transcriptional circuitry is consistent across cell lines and primary tumors. C1/M2-positive tumors exhibit IGF-1 pathway activation, and small-molecule drug screens reveal that tumor cells harboring the fusion gene are selectively sensitive to IGF-1 receptor (IGF-1R) inhibition. Furthermore, this dependence on autocrine regulation of IGF-1 transcription renders MEC cells susceptible to PPARγ inhibition with inverse agonists. These results yield insights into the aberrant coregulatory functions of C1/M2 and identify a specific vulnerability that can be exploited for precision therapy.
Collapse
Affiliation(s)
- Adele M Musicant
- Graduate Curriculum in Genetics and Molecular Biology, Biological and Biomedical Sciences Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology and Physiology, Biological and Biomedical Sciences Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weida Gong
- Bioinformatics Core, Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Monideepa Sengupta
- Graduate Curriculum in Pharmacological and Physiological Sciences, School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Arindam Chatterjee
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Erin C Henry
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yi-Hsuan Tsai
- Bioinformatics Core, Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele C Hayward
- Lineberger Comprehensive Cancer Center, Cancer Genetics Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siddharth Sheth
- Division of Hematology/Oncology, Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renee Betancourt
- Department of Pathology and Laboratory Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor G Hackman
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo J Padilla
- Division of Diagnostic Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, Cancer Genetics Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colin A Flaveny
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - David N Hayes
- Lineberger Comprehensive Cancer Center, Cancer Genetics Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medical Oncology, University of Tennessee Health Sciences West Cancer Center, Memphis, TN, USA
| | - Antonio L Amelio
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Hennigs JK, Cao A, Li CG, Shi M, Mienert J, Miyagawa K, Körbelin J, Marciano DP, Chen PI, Roughley M, Elliott MV, Harper RL, Bill M, Chappell J, Moonen JR, Diebold I, Wang L, Snyder MP, Rabinovitch M. PPARγ-p53-Mediated Vasculoregenerative Program to Reverse Pulmonary Hypertension. Circ Res 2021; 128:401-418. [PMID: 33322916 PMCID: PMC7908816 DOI: 10.1161/circresaha.119.316339] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.
Collapse
Affiliation(s)
- Jan K. Hennigs
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pneumology & Center for Pulmonary Arterial Hypertension Hamburg
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aiqin Cao
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minyi Shi
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Mienert
- Department of Pneumology & Center for Pulmonary Arterial Hypertension Hamburg
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kazuya Miyagawa
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob Körbelin
- Department of Pneumology & Center for Pulmonary Arterial Hypertension Hamburg
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David P. Marciano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pin-I Chen
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Roughley
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew V. Elliott
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca L. Harper
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bill
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James Chappell
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Isabel Diebold
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
28
|
Peng Y, Zhang Q, Zielinski RM, Howells RD, Welsh WJ. Identification of an irreversible PPARγ antagonist with potent anticancer activity. Pharmacol Res Perspect 2020; 8:e00693. [PMID: 33280279 PMCID: PMC7719157 DOI: 10.1002/prp2.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is responsible for most skin cancer deaths, and its incidence continues to rise year after year. Different treatment options have been developed for melanoma depending on the stage of the disease. Despite recent advances in immuno- and targeted therapies, advanced melanoma remains incurable and thus an urgent need persists for safe and more effective melanoma therapeutics. In this study, we demonstrate that a novel compound MM902 (3-(3-(bromomethyl)-5-(4-(tert-butyl) phenyl)-1H-1,2,4-triazol-1-yl) phenol) exhibited potent efficacies in inhibiting the growth of different cancer cells, and suppressed tumor growth in a mouse xenograft model of malignant melanoma. Beginning with MM902 instead of specific targets, computational similarity- and docking-based approaches were conducted to search for known anticancer drugs whose structural features match MM902 and whose pharmacological target would accommodate an irreversible inhibitor. Peroxisome proliferator-activated receptor (PPAR) was computationally identified as one of the pharmacological targets and confirmed by in vitro biochemical assays. MM902 was shown to bind to PPARγ in an irreversible mode of action and to function as a selective antagonist for PPARγ over PPARα and PPARδ. It is hoped that MM902 will serve as a valuable research probe to study the functions of PPARγ in tumorigenesis and other pathological processes.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
| | - Qiang Zhang
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
- Present address:
Intra‐Cellular Therapies, Inc.430 East 29th StreetNew YorkNY10016USA
| | - Robert M. Zielinski
- Graduate School of Biomedical SciencesNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - Richard D. Howells
- Department of Biochemistry & Molecular BiologyNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - William J. Welsh
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
29
|
Afdal P, Ismail HA, Ashraf M, Hafez N, Nasry N, Hafez N, Youssef N, Samy N, Saeed R, AbdelMassih AF. Peroxisome proliferator-activated receptor agonists and reversal of vascular degeneration through DNA repair, a step toward drug-induced regenerative medicine. Cardiovasc Endocrinol Metab 2020; 9:128-131. [PMID: 33225227 PMCID: PMC7673771 DOI: 10.1097/xce.0000000000000217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022]
Abstract
Endothelial dysfunction with subsequent degeneration and vasoocclusive remodeling is the hallmark of many cardiovascular disorders including pulmonary vascular disease (PVD). To date, the available treatments slows disease progression but does not prevent deterioration. Reversing such pathologies would spare many patients risky surgeries and long waiting lists for a possible organ donor. Peroxisome proliferator-activated receptor agonists were first introduced as sole insulin sensitizers, however, there is increasing body of evidence that they have different actions on DNA which might help reverse vascular degeneration. This effect appears to be mainly achieved through enhancement of DNA damage responses (DDR). The aforementioned effect could offer new insights about repurposing drugs for achieving organ or tissue regeneration, an understudied field named drug-induced regenerative medicine.
Collapse
Affiliation(s)
- Peter Afdal
- Students and Internship Research Program (Research Accessibility Team)
| | | | - Mirette Ashraf
- Students and Internship Research Program (Research Accessibility Team)
| | - Nada Hafez
- Students and Internship Research Program (Research Accessibility Team)
| | - Nardine Nasry
- Students and Internship Research Program (Research Accessibility Team)
| | - Nouran Hafez
- Students and Internship Research Program (Research Accessibility Team)
| | - Nourhan Youssef
- Students and Internship Research Program (Research Accessibility Team)
| | - Nourhan Samy
- Students and Internship Research Program (Research Accessibility Team)
| | - Rana Saeed
- Students and Internship Research Program (Research Accessibility Team)
| | | |
Collapse
|
30
|
Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARγ. Cancers (Basel) 2020; 12:cancers12123580. [PMID: 33266062 PMCID: PMC7761077 DOI: 10.3390/cancers12123580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been revealed to regulate tumor microenvironments. In particular, genetic alterations of PPARγ found in various cancers have been reported to play important roles in tumorigenesis by affecting PPARγ transactivation. In this study, we found that helix H3 of the PPARγ ligand-binding domain (LBD) has a number of sites that are mutated in cancers. To uncover underlying molecular mechanisms between helix H3 mutations and tumorigenesis, we performed structure‒function studies on the PPARγ LBDs containing helix H3 mutations found in cancers. Interestingly, PPARγ Q286E found in bladder cancer induces a constitutively active conformation of PPARγ LBD and thus abnormal activation of PPARγ/RXRα pathway, which suggests tumorigenic roles of PPARγ in bladder cancer. In contrast, other helix H3 mutations found in various cancers impair ligand binding essential for transcriptional activity of PPARγ. These data indicate that cancer-associated mutations clustered in helix H3 of PPARγ LBD exhibit differential effects in PPARγ-mediated tumorigenesis and provide a basis for the development of new biomarkers targeting tumor microenvironments.
Collapse
|
31
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
32
|
Hussain MF, Roesler A, Kazak L. Regulation of adipocyte thermogenesis: mechanisms controlling obesity. FEBS J 2020; 287:3370-3385. [PMID: 32301220 DOI: 10.1111/febs.15331] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Adipocyte biology has been intensely researched in recent years due to the emergence of obesity as a serious global health concern and because of the realization that adipose tissue is more than simply a cell type that stores and releases lipids. The plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. The capacity for white adipocytes to store chemical energy in lipid droplets is key for protecting other organs from the toxic effects of ectopic lipid deposition. In contrast, thermogenic (brown and beige) adipocytes combust macronutrients to generate heat. The thermogenic activity of adipocytes allows them to protect themselves and other tissues from lipid overaccumulation. Advances in brown fat biology have uncovered key molecular players involved in adipocyte determination, differentiation, and thermogenic activation. It is now, well appreciated that three distinct adipocyte types exist: white, beige, and brown. Moreover, functional differences are present within adipocyte subtypes located in anatomically distinct locations. Adding to this complexity is the recent realization from single-cell sequencing studies that adipocyte progenitors are also heterogeneous. Understanding the molecular details of how to increase the number of thermogenic fat cells and their activation may delineate some of the pathophysiological basis of obesity and obesity-related diseases. Here, we review recent advances that have extended our understanding of the central role that adipose tissue plays in energy balance and the mechanisms that control their amount and function.
Collapse
Affiliation(s)
- Mohammed Faiz Hussain
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna Roesler
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Kovacsics D, Brózik A, Tihanyi B, Matula Z, Borsy A, Mészáros N, Szabó E, Németh E, Fóthi Á, Zámbó B, Szüts D, Várady G, Orbán TI, Apáti Á, Sarkadi B. Precision-engineered reporter cell lines reveal ABCG2 regulation in live lung cancer cells. Biochem Pharmacol 2020; 175:113865. [PMID: 32142727 DOI: 10.1016/j.bcp.2020.113865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.
Collapse
Affiliation(s)
- Daniella Kovacsics
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Anna Brózik
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Borbála Tihanyi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Zsolt Matula
- South-Pest Hospital Centre, National Institute of Hematology and Infectious Diseases, Laboratory of Molecular and Cytogenetics, Budapest, Hungary
| | - Adrienn Borsy
- South-Pest Hospital Centre, National Institute of Hematology and Infectious Diseases, Laboratory of Molecular and Cytogenetics, Budapest, Hungary
| | - Nikolett Mészáros
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Edit Szabó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Eszter Németh
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Ábel Fóthi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Boglárka Zámbó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Dávid Szüts
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Tamás I Orbán
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Ágota Apáti
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.
| |
Collapse
|
34
|
Ahn S, Jang DM, Park SC, An S, Shin J, Han BW, Noh M. Cyclin-Dependent Kinase 5 Inhibitor Butyrolactone I Elicits a Partial Agonist Activity of Peroxisome Proliferator-Activated Receptor γ. Biomolecules 2020; 10:biom10020275. [PMID: 32054125 PMCID: PMC7072624 DOI: 10.3390/biom10020275] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Adiponectin is an adipocyte-derived cytokine having an insulin-sensitizing activity. During the phenotypic screening of secondary metabolites derived from the marine fungus Aspergillus terreus, a poly cyclin-dependent kinase (CDK) inhibitor butyrolactone I affecting CDK1 and CDK5 was discovered as a potent adiponectin production-enhancing compound in the adipogenesis model of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). CDK5 inhibitors exhibit insulin-sensitizing activities by suppressing the phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ). However, the adiponectin production-enhancing activities of butyrolactone I have not been correlated with the potency of CDK5 inhibitor activities. In a target identification study, butyrolactone I was found to directly bind to PPARγ. In the crystal structure of the human PPARγ, the ligand-binding domain (LBD) in complex with butyrolactone I interacted with the amino acid residues located in the hydrophobic binding pockets of the PPARγ LBD, which is a typical binding mode of the PPARγ partial agonists. Therefore, the adiponectin production-enhancing effect of butyrolactone I was mediated by its polypharmacological dual modulator activities as both a CDK5 inhibitor and a PPARγ partial agonist.
Collapse
Affiliation(s)
- Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.A.); (S.C.P.); (J.S.)
| | - Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Sung Chul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.A.); (S.C.P.); (J.S.)
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.A.); (S.C.P.); (J.S.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.A.); (S.C.P.); (J.S.)
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
- Correspondence: (M.N); (B.W.H); Tel.: +82-2-880-7898 (B.W.H.); +82-2-880-2481 (M.N.)
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.A.); (S.C.P.); (J.S.)
- Correspondence: (M.N); (B.W.H); Tel.: +82-2-880-7898 (B.W.H.); +82-2-880-2481 (M.N.)
| |
Collapse
|
35
|
Yamamoto K, Tamura T, Nakamura R, Hosoe S, Matsubara M, Nagata K, Kodaira H, Uemori T, Takahashi Y, Suzuki M, Saito JI, Ueno K, Shuto S. Development of a novel class of peroxisome proliferator-activated receptor (PPAR) gamma ligands as an anticancer agent with a unique binding mode based on a non-thiazolidinedione scaffold. Bioorg Med Chem 2019; 27:115122. [PMID: 31623970 DOI: 10.1016/j.bmc.2019.115122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 01/12/2023]
Abstract
We previously identified dibenzooxepine derivative 1 as a potent PPARγ ligand with a unique binding mode owing to its non-thiazolidinedione scaffold. However, while 1 showed remarkably potent MKN-45 gastric cancer cell aggregation activity, an indicator of cancer differentiation-inducing activity induced by PPARγ activation, we recognized that 1 was metabolically unstable. In the present study, we identified a metabolically soft spot, and successfully discovered 3-fluoro dibenzooxepine derivative 9 with better metabolic stability. Further optimization provided imidazo[1,2-a]pyridine derivative 17, which showed potent MKN-45 gastric cancer cell aggregation activity and excellent PK profiles compared with 9. Compound 17 exerted a growth inhibitory effect on AsPC-1/AG1 pancreatic tumor in mice. Furthermore, the decrease in the hematocrit (an indicator of localized edema, a serious adverse effect of PPARγ ligands) was tolerable even with oral administration at 200 mg/kg in healthy mice.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Tomohiro Tamura
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Rina Nakamura
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Shintaro Hosoe
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Masahiro Matsubara
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Keiko Nagata
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Hiroshi Kodaira
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Takeshi Uemori
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Yuichi Takahashi
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Michihiko Suzuki
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Jun-Ichi Saito
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Kimihisa Ueno
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
36
|
Iakobishvili Z, Hasin T, Klempfner R, Shlomo N, Goldenberg I, Brenner R, Kornowski R, Gerber Y. Association of Bezafibrate Treatment With Reduced Risk of Cancer in Patients With Coronary Artery Disease. Mayo Clin Proc 2019; 94:1171-1179. [PMID: 31272567 DOI: 10.1016/j.mayocp.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the association between bezafibrate, a drug used to treat hypertriglyceridemia, and long-term cancer incidence in patients with coronary artery disease (CAD). PATIENTS AND METHODS The study comprised 2980 patients with CAD (mean age, 60 years; 2729 [91.6%] men) who were free of cancer and were enrolled in the Bezafibrate Infarction Prevention study, a double-blind trial conducted between May 1, 1990, and January 31, 1993, in 18 cardiology departments in Israel. Patients randomized to receive 400 mg of bezafibrate (n=1486) or placebo (n=1494) daily for a median of 6.2 years (range, 4.7-7.6 years) were followed up for incidence of cancer through the Israeli National Cancer Registry and all-cause death through the Population Registry of the State of Israel until December 31, 2013. Cox proportional hazards and Fine and Gray survival models were used to assess the bezafibrate-cancer association. RESULTS Clinical characteristics and laboratory values were well balanced between the 2 groups at the study entry. Over a median follow-up of 22.5 years (range, 21.2-23.9 years), cancer developed in 753 patients. With death considered a competing event, the cumulative incidence of cancer at the end of the follow-up was lower in the bezafibrate vs the placebo group (23.9%; 95 CI, 21.9%-26.1% vs 27.2%; 95 CI, 25.1%-29.4%; P=.04). The hazard ratio for cancer in the bezafibrate vs placebo groups was 0.86 (95% CI, 0.74-0.99). In mediation analysis, the association between bezafibrate treatment and cancer incidence was not sensitive to adjustment for on-trial lipid levels but was attenuated on adjustment for on-trial fibrinogen levels. CONCLUSION Bezafibrate treatment is associated with reduced risk of cancer among patients with CAD. Fibrinogen, but not lipid lowering, is linked to this association.
Collapse
Affiliation(s)
- Zaza Iakobishvili
- Department of Community Cardiology, Tel Aviv District, Clalit Health Services, Tel Aviv, Israel.
| | - Tal Hasin
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Robert Klempfner
- Olga and Lev Leviev Heart Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Nir Shlomo
- Israel Association for Cardiovascular Trials, Sheba Medical Center, Tel HaShomer, Israel
| | - Ilan Goldenberg
- Olga and Lev Leviev Heart Center, Sheba Medical Center, Tel HaShomer, Israel; Israel Association for Cardiovascular Trials, Sheba Medical Center, Tel HaShomer, Israel
| | - Ronen Brenner
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
| | - Yariv Gerber
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine and Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Broekema M, Savage D, Monajemi H, Kalkhoven E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:715-732. [PMID: 30742913 DOI: 10.1016/j.bbalip.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
|
38
|
Broekema MF, Massink MPG, Donato C, de Ligt J, Schaarschmidt J, Borgman A, Schooneman MG, Melchers D, Gerding MN, Houtman R, Bonvin AMJJ, Majithia AR, Monajemi H, van Haaften GW, Soeters MR, Kalkhoven E. Natural helix 9 mutants of PPARγ differently affect its transcriptional activity. Mol Metab 2019; 20:115-127. [PMID: 30595551 PMCID: PMC6358588 DOI: 10.1016/j.molmet.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten P G Massink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cinzia Donato
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joerg Schaarschmidt
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marieke G Schooneman
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Diana Melchers
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | | | - René Houtman
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Amit R Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Houshang Monajemi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Rijnstate Hospital, Arnhem, the Netherlands
| | - Gijs W van Haaften
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
39
|
Li CG, Mahon C, Sweeney NM, Verschueren E, Kantamani V, Li D, Hennigs JK, Marciano DP, Diebold I, Abu-Halawa O, Elliott M, Sa S, Guo F, Wang L, Cao A, Guignabert C, Sollier J, Nickel NP, Kaschwich M, Cimprich KA, Rabinovitch M. PPARγ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis. Cell Rep 2019; 26:1333-1343.e7. [PMID: 30699358 PMCID: PMC6436616 DOI: 10.1016/j.celrep.2019.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 01/13/2023] Open
Abstract
Using proteomic approaches, we uncovered a DNA damage response (DDR) function for peroxisome proliferator activated receptor γ (PPARγ) through its interaction with the DNA damage sensor MRE11-RAD50-NBS1 (MRN) and the E3 ubiquitin ligase UBR5. We show that PPARγ promotes ATM signaling and is essential for UBR5 activity targeting ATM interactor (ATMIN). PPARγ depletion increases ATMIN protein independent of transcription and suppresses DDR-induced ATM signaling. Blocking ATMIN in this context restores ATM activation and DNA repair. We illustrate the physiological relevance of PPARγ DDR functions by using pulmonary arterial hypertension (PAH) as a model that has impaired PPARγ signaling related to endothelial cell (EC) dysfunction and unresolved DNA damage. In pulmonary arterial ECs (PAECs) from PAH patients, we observed disrupted PPARγ-UBR5 interaction, heightened ATMIN expression, and DNA lesions. Blocking ATMIN in PAH PAEC restores ATM activation. Thus, impaired PPARγ DDR functions may explain the genomic instability and loss of endothelial homeostasis in PAH.
Collapse
Affiliation(s)
- Caiyun G Li
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Cathal Mahon
- California Institute for Quantitative Biosciences, Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Nathaly M Sweeney
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- California Institute for Quantitative Biosciences, Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Vivek Kantamani
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Li
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jan K Hennigs
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David P Marciano
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Isabel Diebold
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ossama Abu-Halawa
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Matthew Elliott
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Silin Sa
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lingli Wang
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aiqin Cao
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Christophe Guignabert
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Julie Sollier
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Nils P Nickel
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Mark Kaschwich
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, Department of Pediatrics and Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Yamamoto K, Tamura T, Henmi K, Kuboyama T, Yanagisawa A, Matsubara M, Takahashi Y, Suzuki M, Saito JI, Ueno K, Shuto S. Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands of a Novel Binding Mode as Anticancer Agents: Effective Mimicry of Chiral Structures by Olefinic E/ Z-Isomers. J Med Chem 2018; 61:10067-10083. [PMID: 30351933 DOI: 10.1021/acs.jmedchem.8b01200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel class of PPARγ ligand 1 (EC50 = 197 nM) with a dibenzoazepin scaffold was identified through high-throughput screening campaign. To avoid the synthetically troublesome chiral center of 1, its conformational analysis using the MacroModel was conducted, focusing on conformational flip of the tricyclic ring and the conformational restriction by the methyl group at the chiral center. On the basis of this analysis, scaffold hopping of dibenzoazepine into dibenzo[ b, e]oxepine by replacing the chiral structures with the corresponding olefinic E/ Z isomers was performed. Consequently, dibenzo[ b, e]oxepine scaffold 9 was developed showing extremely potent PPARγ reporter activity (EC50 = 2.4 nM, efficacy = 9.5%) as well as differentiation-inducing activity against a gastric cancer cell line MKN-45 that was more potent than any other well-known PPARγ agonists in vitro (94% at 30 nM). The X-ray crystal structure analysis of 9 complexed with PPARγ showed that it had a unique binding mode to PPARγ ligand-binding domain that differed from that of any other PPARγ agonists identified thus far.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Tomohiro Tamura
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Kazuki Henmi
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Takeshi Kuboyama
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Arata Yanagisawa
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Masahiro Matsubara
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Yuichi Takahashi
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Michihiko Suzuki
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Jun-Ichi Saito
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Kimihisa Ueno
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | | |
Collapse
|
41
|
Ahmadi Y, Karimian R, Panahi Y. Effects of statins on the chemoresistance-The antagonistic drug-drug interactions versus the anti-cancer effects. Biomed Pharmacother 2018; 108:1856-1865. [PMID: 30372891 DOI: 10.1016/j.biopha.2018.09.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
There has been growing interest in the potential anti-cancer activity of statins based on evidence of their anti-proliferative, pro-apoptotic, and radiosensitizing properties, but no studies have focused on the effects of statins on the chemoresistance. In spite of their direct cytostatic/cytotoxic effects on the cancer cells, statins via drug interactions may affect therapeutic effects of the chemotherapy agents and so cause chemoresistance in cancer cells. Here, we aim to present the molecular mechanisms underlying cytotoxic effects of statins on the cancer cells against those mechanisms by which statins may lead to chemoresistance, in order to clarify whether the positive effects of the co-treatment of statins on the efficiency of chemotherapeutic agents is due to the natural anti-cancer effects of statins or it is due to increasing the cellular concentrations of chemotherapy drugs in cancer cells.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Deb P, Ghose M, Sepay N, Maiti S, Mukherjea KK. Synthesis, characterization, theoretical simulation, and DNA-nuclease activity of a newly synthesized Mn–oximato complex. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1508662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Priyangana Deb
- aDepartment of Chemistry, Jadavpur University, Kolkata, India
| | - Madhulika Ghose
- aDepartment of Chemistry, Jadavpur University, Kolkata, India
| | - Nayim Sepay
- aDepartment of Chemistry, Jadavpur University, Kolkata, India
| | | | | |
Collapse
|
43
|
New ML, White CM, McGonigle P, McArthur DG, Dwyer-Nield LD, Merrick DT, Keith RL, Tennis MA. Prostacyclin and EMT Pathway Markers for Monitoring Response to Lung Cancer Chemoprevention. Cancer Prev Res (Phila) 2018; 11:643-654. [PMID: 30045935 PMCID: PMC6170683 DOI: 10.1158/1940-6207.capr-18-0052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide and global burden could be reduced through targeted application of chemoprevention. The development of squamous lung carcinoma has been linked with persistent, high-grade bronchial dysplasia. Bronchial histology improved in former smokers in a chemoprevention trial with the prostacyclin analogue iloprost. Prostacyclin acts through peroxisome proliferator-activated receptor gamma (PPARγ) to reverse epithelial to mesenchymal transition and promote anticancer signaling. We hypothesized that the prostacyclin signaling pathway and EMT could provide response markers for prostacyclin chemoprevention of lung cancer. Human bronchial epithelial cells were treated with cigarette smoke condensate (CSC) or iloprost for 2 weeks, CSC for 16 weeks, or CSC for 4 weeks followed by 4 weeks of CSC and/or iloprost, and RNA was extracted. Wild-type or prostacyclin synthase transgenic mice were exposed to 1 week of cigarette smoke or one injection of urethane, and RNA was extracted from the lungs. We measured potential markers of prostacyclin and iloprost efficacy in these models. We identified a panel of markers altered by tobacco carcinogens and inversely affected by prostacyclin, including PPARγ, 15PGDH, CES1, COX-2, ECADHERIN, SNAIL, VIMENTIN, CRB3, MIR34c, and MIR221 These data introduce a panel of potential markers for monitoring interception of bronchial dysplasia progression during chemoprevention with prostacyclin. Chemoprevention is a promising approach to reduce lung cancer mortality in a high-risk population. Identifying markers for targeted use is critical for success in future clinical trials of prostacyclin for lung cancer chemoprevention. Cancer Prev Res; 11(10); 643-54. ©2018 AACR.
Collapse
Affiliation(s)
- Melissa L New
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Collin M White
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Polly McGonigle
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | | | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Robert L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
- Eastern Colorado Veterans Affairs Medical Center, Aurora, Colorado
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
44
|
Cignarelli A, Genchi VA, Caruso I, Natalicchio A, Perrini S, Laviola L, Giorgino F. Diabetes and cancer: Pathophysiological fundamentals of a 'dangerous affair'. Diabetes Res Clin Pract 2018; 143:378-388. [PMID: 29679627 DOI: 10.1016/j.diabres.2018.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Diabetes and cancer are worldwide chronic diseases with a major impact on the quality and expectancy of life. Metabolic abnormalities observed during the onset and progression of diabetes may have a critical role on the initiation and progression of carcinogenesis. To date, there are no conclusive data on the mechanisms underlying the relationship between diabetes and any type of human cancer. However, recent evidence suggests that both hyperglycemia and hyperinsulinemia in diabetes could elicit cell damage responses, such as glucotoxicity, lipotoxicity and oxidative stress, which participate in the cell transformation process raising the risk of cancer development. In addition, clinical trials have revealed that several anti-diabetes therapies may potentially affect the risk of cancer though largely undefined mechanisms. In this review, we highlight epidemiological and pathophysiological aspects of diabetes, which may influence cancer initiation and progression.
Collapse
Affiliation(s)
- Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Annamaria Genchi
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Irene Caruso
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
45
|
Corigliano DM, Syed R, Messineo S, Lupia A, Patel R, Reddy CVR, Dubey PK, Colica C, Amato R, De Sarro G, Alcaro S, Indrasena A, Brunetti A. Indole and 2,4-Thiazolidinedione conjugates as potential anticancer modulators. PeerJ 2018; 6:e5386. [PMID: 30123711 PMCID: PMC6087425 DOI: 10.7717/peerj.5386] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background Thiazolidinediones (TZDs), also called glitazones, are five-membered carbon ring molecules commonly used for the management of insulin resistance and type 2 diabetes. Recently, many prospective studies have also documented the impact of these compounds as anti-proliferative agents, though several negative side effects such as hepatotoxicity, water retention and cardiac issues have been reported. In this work, we synthesized twenty-six new TZD analogues where the thiazolidinone moiety is directly connected to an N-heterocyclic ring in order to lower their toxic effects. Methods By adopting a widely applicable synthetic method, twenty-six TZD derivatives were synthesized and tested for their antiproliferative activity in MTT and Wound healing assays with PC3 (prostate cancer) and MCF-7 (breast cancer) cells. Results Three compounds, out of twenty-six, significantly decreased cellular viability and migration, and these effects were even more pronounced when compared with rosiglitazone, a well-known member of the TZD class of antidiabetic agents. As revealed by Western blot analysis, part of this antiproliferative effect was supported by apoptosis studies evaluating BCL-xL and C-PARP protein expression. Conclusion Our data highlight the promising potential of these TZD derivatives as anti-proliferative agents for the treatment of prostate and breast cancer.
Collapse
Affiliation(s)
- Domenica M Corigliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Riyaz Syed
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, India
| | - Sebastiano Messineo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Antonio Lupia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rahul Patel
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | | | - Pramod K Dubey
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, India
| | - Carmela Colica
- CNR, IBFM UOS of Germaneto, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | | | - Stefano Alcaro
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Adisherla Indrasena
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, India
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
46
|
Frkic RL, Marshall AC, Blayo AL, Pukala TL, Kamenecka TM, Griffin PR, Bruning JB. PPARγ in Complex with an Antagonist and Inverse Agonist: a Tumble and Trap Mechanism of the Activation Helix. iScience 2018; 5:69-79. [PMID: 30123887 PMCID: PMC6095676 DOI: 10.1016/j.isci.2018.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) is a nuclear receptor and target for antidiabetics that increase insulin sensitivity. Owing to the side effects of PPARγ full agonists, research has recently focused on non-activating ligands of PPARγ, which increase insulin sensitivity with decreased side effects. Here, we present the crystal structures of inverse agonist SR10171 and a chemically related antagonist SR11023 bound to the PPARγ ligand-binding domain, revealing an allosteric switch in the activation helix, helix 12 (H12), forming an antagonist conformation in the receptor. H12 interacts with the antagonists to become fixed in an alternative location. Native mass spectrometry indicates that this prevents contacts with coactivator peptides and allows binding of corepressor peptides. Antagonists of related nuclear receptors act to sterically prevent the active configuration of H12, whereas these antagonists of PPARγ alternatively trap H12 in an inactive configuration, which we have termed the tumble and trap mechanism. SR10171 and SR11023 bind PPARγ LBD and “pull” H12 to an antagonist conformation H12 movement is mechanistically distinct from PPARα and other nuclear receptors The antagonist conformation of H12 enables corepressor binding Mechanism of antagonism key to improving T2DM treatments
Collapse
Affiliation(s)
- Rebecca L Frkic
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew C Marshall
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Anne-Laure Blayo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tara L Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.,Lead Contact
| |
Collapse
|
47
|
Selective PPARγ modulators for Type 2 diabetes treatment: how far have we come and what does the future hold? Future Med Chem 2018; 10:703-705. [PMID: 29671628 DOI: 10.4155/fmc-2018-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|