1
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
2
|
Bhattacharya S, Jenkins MC, Keshavarz-Joud P, Bourque AR, White K, Alvarez Barkane AM, Bryksin AV, Hernandez C, Kopylov M, Finn M. Heterologous Prime-Boost with Immunologically Orthogonal Protein Nanoparticles for Peptide Immunofocusing. ACS NANO 2024; 18:20083-20100. [PMID: 39041587 PMCID: PMC11308774 DOI: 10.1021/acsnano.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Myxococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle, inducing the formation of several nonicosahedral structures that were characterized by cryogenic electron microscopy. This immunogen elicited conformationally relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.
Collapse
Affiliation(s)
- Sonia Bhattacharya
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Matthew C. Jenkins
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Parisa Keshavarz-Joud
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Alisyn Retos Bourque
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keiyana White
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Amina Maria Alvarez Barkane
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton V. Bryksin
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carolina Hernandez
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Mykhailo Kopylov
- New
York Structural Biology Center, New York, New York 10027, United States
| | - M.G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
3
|
Sakamoto K, Yamamoto Y, Inaba H, Matsuura K. Strategy toward In-Cell Self-Assembly of an Artificial Viral Capsid from a Fluorescent Protein-Modified β-Annulus Peptide. ACS Synth Biol 2024; 13:1842-1850. [PMID: 38729919 DOI: 10.1021/acssynbio.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In-cell self-assembly of natural viral capsids is an event that can be visualized under transmission electron microscopy (TEM) observations. By mimicking the self-assembly of natural viral capsids, various artificial protein- and peptide-based nanocages were developed; however, few studies have reported the in-cell self-assembly of such nanocages. Our group developed a β-Annulus peptide that can form a nanocage called artificial viral capsid in vitro, but in-cell self-assembly of the capsid has not been achieved. Here, we designed an artificial viral capsid decorated with a fluorescent protein, StayGold, to visualize in-cell self-assembly. Fluorescence anisotropy measurements and fluorescence resonance energy transfer imaging, in addition to TEM observations of the cells and super-resolution microscopy, revealed that StayGold-conjugated β-Annulus peptides self-assembled into the StayGold-decorated artificial viral capsid in a cell. Using these techniques, we achieved the in-cell self-assembly of an artificial viral capsid.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Yuka Yamamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
4
|
Hori M, Steinauer A, Tetter S, Hälg J, Manz EM, Hilvert D. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun 2024; 15:3576. [PMID: 38678040 PMCID: PMC11055949 DOI: 10.1038/s41467-024-47808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.
Collapse
Affiliation(s)
- Mao Hori
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LIBN, Lausanne, Switzerland
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jamiro Hälg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Eva-Maria Manz
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells‐Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. Protein Sci 2024; 33:e4973. [PMID: 38533546 PMCID: PMC10966355 DOI: 10.1002/pro.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Elena A. Scott
- Department of ChemistryTexas A&M UniversityCollege StationTexasUSA
| | - Kyle Meador
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eric J. Lee
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Todd O. Yeates
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
- UCLA‐DOE Institute for Genomics and ProteomicsLos AngelesCaliforniaUSA
| | | |
Collapse
|
6
|
Bhattacharya S, Jenkins MC, Keshavarz-Joud P, Bourque AR, White K, Alvarez Barkane AM, Bryksin AV, Hernandez C, Kopylov M, Finn MG. Heterologous Prime-Boost with Immunologically Orthogonal Protein Nanoparticles for Peptide Immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581861. [PMID: 38464232 PMCID: PMC10925081 DOI: 10.1101/2024.02.24.581861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Mxyococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle. This immunogen elicited conformationally-relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.
Collapse
Affiliation(s)
- Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew C Jenkins
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Parisa Keshavarz-Joud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alisyn Retos Bourque
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Keiyana White
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amina M Alvarez Barkane
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anton V Bryksin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Mykhailo Kopylov
- New York Structural Biology Center, New York, New York, 10027, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells-Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566319. [PMID: 37986890 PMCID: PMC10659388 DOI: 10.1101/2023.11.08.566319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Elena A. Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Eric J. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Arthur D. Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| | - Roger Castells-Graells
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| |
Collapse
|
8
|
Keshavarz-Joud P, Zhao L, Bobe D, Hernandez C, Kopylov M, Yen LY, Djeddar N, Thompson B, Connors C, Gibson G, Bryksin A, Finn M. Exploring the Landscape of the PP7 Virus-like Particle for Peptide Display. ACS NANO 2023; 17:18470-18480. [PMID: 37669408 PMCID: PMC10540251 DOI: 10.1021/acsnano.3c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Self-assembling virus-like particles (VLPs) can tolerate a wide degree of genetic and chemical manipulation to their capsid protein to display a foreign molecule polyvalently. We previously reported the successful incorporation of foreign peptide sequences in the junction loop and onto the C-terminus of PP7 dimer VLPs, as these regions are accessible for surface display on assembled capsids. Here, we report the implementation of a library-based approach to test the assembly tolerance of PP7 dimer capsid proteins to insertions or terminal extensions of randomized 15-mer peptide sequences. By performing two iterative rounds of assembly-based selection, we evaluated the degree of favorability of all 20 amino acids at each of the 15 randomized positions. Deep sequencing analysis revealed a distinct preference for the inclusion of hydrophilic peptides and negatively charged amino acids (Asp and Glu) and the exclusion of positively charged peptides and bulky and hydrophobic amino acid residues (Trp, Phe, Tyr, and Cys). Within the libraries tested here, we identified 4000 to 22,000 unique 15-mer peptide sequences that can successfully be displayed on the surface of the PP7 dimer capsid. Overall, the use of small initial libraries consisting of no more than a few million members yielded a significantly larger number of unique and assembly-competent VLP sequences than have been previously characterized for this class of nucleoprotein particle.
Collapse
Affiliation(s)
- Parisa Keshavarz-Joud
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
| | - Daija Bobe
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Carolina Hernandez
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Mykhailo Kopylov
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Laura Y. Yen
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Naima Djeddar
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Brianna Thompson
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
| | - Caleb Connors
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
| | - Greg Gibson
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
| | - Anton Bryksin
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - M.G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30306, United States
| |
Collapse
|
9
|
Sun B, Wu W, Narasipura EA, Ma Y, Yu C, Fenton OS, Song H. Engineering nanoparticle toolkits for mRNA delivery. Adv Drug Deliv Rev 2023; 200:115042. [PMID: 37536506 DOI: 10.1016/j.addr.2023.115042] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The concept of using mRNA to produce its own medicine in situ in the body makes it an ideal drug candidate, holding great potential to revolutionize the way we approach medicine. The unique characteristics of mRNA, as well as its customizable biomedical functions, call for the rational design of delivery systems to protect and transport mRNA molecules. In this review, a nanoparticle toolkit is presented for the development of mRNA-based therapeutics from a drug delivery perspective. Nano-delivery systems derived from either natural systems or chemical synthesis, in the nature of organic or inorganic materials, are summarised. Delivery strategies in controlling the tissue targeting and mRNA release, as well as the role of nanoparticles in building and boosting the activity of mRNA drugs, have also been introduced. In the end, our insights into the clinical and translational development of mRNA nano-drugs are presented.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Zakaszewski D, Koziej L, Pankowski J, Malolan VV, Gämperli N, Heddle JG, Hilvert D, Azuma Y. Complementary charge-driven encapsulation of functional protein by engineered protein cages in cellulo. J Mater Chem B 2023; 11:6540-6546. [PMID: 37427706 DOI: 10.1039/d3tb00754e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Charge-driven inclusion complex formation in live cells was examined using a degradation-prone fluorescent protein and a series of protein cages. The results show that sufficiently strong host-guest ionic interaction and an intact shell-like structure are crucial for the protective guest encapsulation.
Collapse
Affiliation(s)
- Daniel Zakaszewski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30348 Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
| | - Jędrzej Pankowski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Faculty of Biochemistry, Biophysics, sand Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland
| | - V Vishal Malolan
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30348 Krakow, Poland
| | - Nina Gämperli
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Yusuke Azuma
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa 7A, 30387 Krakow, Poland.
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
11
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Kazmi MA, Thaler DS, Åberg KC, Mattheisen JM, Huber T, Sakmar TP. The Coronavirus Calendar (CoronaCal): a simplified SARS-CoV-2 test system for sampling and retrospective analysis. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1146006. [PMID: 38455914 PMCID: PMC10910978 DOI: 10.3389/fepid.2023.1146006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 03/09/2024]
Abstract
Objectives To develop a biological diary (CoronaCal) that allows anyone in the community to collect and store serial saliva samples and chart symptoms on ordinary printer paper. Methods Diaries were analyzed for the presence of SARS-CoV-2 RNA using established polymerase chain reaction (PCR) procedures. CoronaCal diaries were distributed to volunteer subjects in the community during the peak of the COVID-19 outbreak in New York. Volunteers collected their own daily saliva samples and self-reported symptoms. Results SARS-CoV-2 RNA extracted from CoronaCals was measured using qPCR and RNA levels were correlated with reported symptoms. SARS-CoV-2 RNA was detected in CoronaCals from nine of nine people with COVID-19 symptoms or exposure to someone with COVID-19, and not in one asymptomatic person. CoronaCals were stored for up to 70 days at room temperature during collection and then frozen for up to four months before analysis, suggesting that SARS-CoV-2 RNA is stable once dried onto paper. Conclusions Sampling saliva on simple paper provides a useful method to study the natural history and epidemiology of COVID-19. The CoronaCal collection and testing method is easy to implement, inexpensive, non-invasive and scalable. The approach can inform the historical and epidemiological understanding of infections in individuals and populations.
Collapse
Affiliation(s)
- Manija A. Kazmi
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, United States
| | - David S. Thaler
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, United States
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, The Rockefeller University, New York, NY, United States
| | - Karina C. Åberg
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, United States
| | - Jordan M. Mattheisen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, United States
- Tri-Institutional Program in Chemical Biology, New York, NYUnited States
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, United States
| |
Collapse
|
13
|
Moreno-Gutierrez DS, Del Toro-Ríos X, Martinez-Sulvaran NJ, Perez-Altamirano MB, Hernandez-Garcia A. Programming the Cellular Uptake of Protein-Based Viromimetic Nanoparticles for Enhanced Delivery. Biomacromolecules 2023; 24:1563-1573. [PMID: 36877960 DOI: 10.1021/acs.biomac.2c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Viral mimetics is a noteworthy strategy to design efficient delivery systems without the safety drawbacks and engineering difficulties of modifying viral vectors. The triblock polypeptide CSB was previously designed de novo to self-assemble with DNA into nanocomplexes called artificial virus-like particles (AVLPs) due to their similarities to viral particles. Here, we show how we can incorporate new blocks into the CSB polypeptide to enhance its transfection without altering its self-assembly capabilities and the stability and morphology of the AVLPs. The addition of a short peptide (aurein) and/or a large protein (transferrin) to the AVLPs improved their internalization and specific targeting to cells by up to 11 times. Overall, these results show how we can further program the cellular uptake of the AVLPs with a wide range of bioactive blocks. This can pave the way to develop programmable and efficient gene delivery systems.
Collapse
Affiliation(s)
- David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Ximena Del Toro-Ríos
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Natalia J Martinez-Sulvaran
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Mayra B Perez-Altamirano
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| |
Collapse
|
14
|
Kraj P, Hewagama ND, Douglas T. Diffusion and molecular partitioning in hierarchically complex virus-like particles. Virology 2023; 580:50-60. [PMID: 36764014 DOI: 10.1016/j.virol.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Viruses are diverse infectious agents found in virtually every type of natural environment. Due to the range of conditions in which viruses have evolved, they exhibit a wide range of structure and function which has been exploited for biotechnology. The self-assembly process of virus-like particles (VLPs), derived from structural virus components, allows for the assembly of a hierarchy of materials. Because VLPs are robust in both their assembly and the final product, functionality can be incorporated through design of their building blocks or chemical modification after their synthesis and assembly. In particular, encapsulation of active enzymes inside VLP results in macromolecular concentration approximating that of cells, introducing excluded volume effects on encapsulated cargo which are not present in traditional experiments done on dilute proteins. This work reviews the hierarchical assembly of VLPs, experiments investigating diffusion in VLP systems, and methods for partitioning of chemical species in VLPs as functional biomaterials.
Collapse
Affiliation(s)
- Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
15
|
Kobayashi N, Arai R. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. Methods Mol Biol 2023; 2671:79-94. [PMID: 37308639 DOI: 10.1007/978-1-0716-3222-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
16
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Kwon S, Giessen TW. Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo. ACS Synth Biol 2022; 11:3504-3515. [PMID: 36170610 PMCID: PMC9944510 DOI: 10.1021/acssynbio.2c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein nanocages have emerged as an important engineering platform for biotechnological and biomedical applications. Among naturally occurring protein cages, encapsulin nanocompartments have recently gained prominence due to their favorable physico-chemical properties, ease of shell modification, and highly efficient and selective intrinsic protein packaging capabilities. Here, we expand encapsulin function by designing and characterizing encapsulins for concurrent RNA and protein encapsulation in vivo. Our strategy is based on modifying encapsulin shells with nucleic acid-binding peptides without disrupting the native protein packaging mechanism. We show that our engineered encapsulins reliably self-assemble in vivo, are capable of efficient size-selective in vivo RNA packaging, can simultaneously load multiple functional RNAs, and can be used for concurrent in vivo packaging of RNA and protein. Our engineered encapsulation platform has potential for codelivery of therapeutic RNAs and proteins to elicit synergistic effects and as a modular tool for other biotechnological applications.
Collapse
Affiliation(s)
- Seokmu Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias W. Giessen
- Department of Biological Chemistry and Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
19
|
Otoničar J, Hostnik M, Grundner M, Kostanjšek R, Gredar T, Garvas M, Arsov Z, Podlesek Z, Gostinčar C, Jakše J, Busby SJW, Butala M. A method for targeting a specified segment of DNA to a bacterial microorganelle. Nucleic Acids Res 2022; 50:e113. [PMID: 36029110 DOI: 10.1093/nar/gkac714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Encapsulation of a selected DNA molecule in a cell has important implications for bionanotechnology. Non-viral proteins that can be used as nucleic acid containers include proteinaceous subcellular bacterial microcompartments (MCPs) that self-assemble into a selectively permeable protein shell containing an enzymatic core. Here, we adapted a propanediol utilization (Pdu) MCP into a synthetic protein cage to package a specified DNA segment in vivo, thereby enabling subsequent affinity purification. To this end, we engineered the LacI transcription repressor to be routed, together with target DNA, into the lumen of a Strep-tagged Pdu shell. Sequencing of extracted DNA from the affinity-isolated MCPs shows that our strategy results in packaging of a DNA segment carrying multiple LacI binding sites, but not the flanking regions. Furthermore, we used LacI to drive the encapsulation of a DNA segment containing operators for LacI and for a second transcription factor.
Collapse
Affiliation(s)
- Jan Otoničar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Hostnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tajda Gredar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Garvas
- Jožef Stefan Institute, Condensed Matter Physics Department, 1000 Ljubljana, Slovenia
| | - Zoran Arsov
- Jožef Stefan Institute, Condensed Matter Physics Department, 1000 Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stephen J W Busby
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Miller JE, Srinivasan Y, Dharmaraj NP, Liu A, Nguyen PL, Taylor SD, Yeates TO. Designing Protease-Triggered Protein Cages. J Am Chem Soc 2022; 144:12681-12689. [PMID: 35802879 DOI: 10.1021/jacs.2c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.
Collapse
Affiliation(s)
- Justin E Miller
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Yashes Srinivasan
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nithin P Dharmaraj
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Andrew Liu
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Phillip L Nguyen
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott D Taylor
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Todd O Yeates
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Tasneem N, Szyszka TN, Jenner EN, Lau YH. How Pore Architecture Regulates the Function of Nanoscale Protein Compartments. ACS NANO 2022; 16:8540-8556. [PMID: 35583458 DOI: 10.1021/acsnano.2c02178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembling proteins can form porous compartments that adopt well-defined architectures at the nanoscale. In nature, protein compartments act as semipermeable barriers to enable spatial separation and organization of complex biochemical processes. The compartment pores play a key role in their overall function by selectively controlling the influx and efflux of important biomolecular species. By engineering the pores, the functionality of compartments can be tuned to facilitate non-native applications, such as artificial nanoreactors for catalysis. In this review, we analyze how protein structure determines the porosity and impacts the function of both native and engineered compartments, highlighting the wealth of structural data recently obtained by cryo-EM and X-ray crystallography. Through this analysis, we offer perspectives on how current structural insights can inform future studies into the design of artificial protein compartments as nanoreactors with tunable porosity and function.
Collapse
Affiliation(s)
- Nuren Tasneem
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
22
|
Xie VC, Styles MJ, Dickinson BC. Methods for the directed evolution of biomolecular interactions. Trends Biochem Sci 2022; 47:403-416. [PMID: 35427479 PMCID: PMC9022280 DOI: 10.1016/j.tibs.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Noncovalent interactions between biomolecules such as proteins and nucleic acids coordinate all cellular processes through changes in proximity. Tools that perturb these interactions are and will continue to be highly valuable for basic and translational scientific endeavors. By taking cues from natural systems, such as the adaptive immune system, we can design directed evolution platforms that can generate proteins that bind to biomolecules of interest. In recent years, the platforms used to direct the evolution of biomolecular binders have greatly expanded the range of types of interactions one can evolve. Herein, we review recent advances in methods to evolve protein-protein, protein-RNA, and protein-DNA interactions.
Collapse
Affiliation(s)
| | - Matthew J Styles
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Veale CGL, Talukdar A, Vauzeilles B. ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chem Biol 2022; 17:728-743. [PMID: 35293726 DOI: 10.1021/acschembio.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clinton G. L. Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Frequency chasing of individual megadalton ions in an Orbitrap analyser improves precision of analysis in single-molecule mass spectrometry. Nat Chem 2022; 14:515-522. [PMID: 35273389 PMCID: PMC9068510 DOI: 10.1038/s41557-022-00897-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
To enhance the performance of charge-detection mass spectrometry, we investigated the behaviour of macromolecular single ions on their paths towards and within the Orbitrap analyser. Ions with a mass beyond one megadalton reach a plateau of stability and can be successfully trapped for seconds, travelling a path length of multiple kilometres, thereby enabling precise mass analysis with an effective resolution of greater than 100,000 at a mass-to-charge ratio of 35,000. Through monitoring the frequency of individual ions, we show that these high-mass ions, rather than being lost from the trap, can gradually lose residual solvent molecules and, in rare cases, a single elementary charge. We also demonstrate that the frequency drift of single ions due to desolvation and charge stripping can be corrected, which improves the effective ion sampling 23-fold and gives a twofold improvement in mass precision and resolution. ![]()
The mass precision and resolution in charge-detection mass spectrometry can be improved by correcting frequency drifts of single ions. Now, chasing these individual ions for seconds in an Orbitrap mass spectrometer has revealed the exceptional stability of ultra-high-mass ions, culminating in an effective resolution of greater than 100,000 at m/z = 35,000.
Collapse
|
26
|
Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022; 27:1237. [PMID: 35209027 PMCID: PMC8874777 DOI: 10.3390/molecules27041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
Collapse
Affiliation(s)
- José A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Nairiti J. Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Naozumi Teramoto
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Christopher D. Von Bargen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| |
Collapse
|
27
|
Naskalska A, Borzęcka-Solarz K, Różycki J, Stupka I, Bochenek M, Pyza E, Heddle JG. Artificial Protein Cage Delivers Active Protein Cargos to the Cell Interior. Biomacromolecules 2021; 22:4146-4154. [PMID: 34499838 PMCID: PMC8512669 DOI: 10.1021/acs.biomac.1c00630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Artificial protein
cages have potential as programmable, protective
carriers of fragile macromolecules to cells. While natural cages and
VLPs have been extensively exploited, the use of artificial cages
to deliver active proteins to cells has not yet been shown. TRAP-cage
is an artificial protein cage with an unusual geometry and extremely
high stability, which can be triggered to break apart in the presence
of cellular reducing agents. Here, we demonstrate that TRAP-cage can
be filled with a protein cargo and decorated with a cell-penetrating
peptide, allowing it to enter cells. Tracking of both the TRAP-cage
and the cargo shows that the protein of interest can be successfully
delivered intracellularly in the active form. These results provide
a valuable proof of concept for the further development of TRAP-cage
as a delivery platform.
Collapse
Affiliation(s)
- Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | - Jan Różycki
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Michał Bochenek
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
28
|
Obata J, Kawakami N, Tsutsumi A, Nasu E, Miyamoto K, Kikkawa M, Arai R. Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chem Commun (Camb) 2021; 57:10226-10229. [PMID: 34523636 DOI: 10.1039/d1cc03114g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecular protein nanoparticles and nanocages have potential in a broad range of applications. Recently, we developed a uniform supramolecular protein nanoparticle, TIP60, symmmetrically self-assembled from fusion proteins of a pentameric Sm-like protein and a dimeric MyoX-coil domain. Herein, we report the icosahedral 60-meric structure of TIP60 solved using single-particle cryo-electron microscopy. Interestingly, the structure revealed 20 regular-triangle-like pores on the surface. TIP60 and its mutants have many modifiable sites on their exterior and interior surfaces. The TIP60 architecture will be useful in the development of biomedical and biochemical nanoparticles/nanocages for future applications.
Collapse
Affiliation(s)
- Junya Obata
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
29
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
30
|
Olshefsky A, King NP. Hallmarks of icosahedral virus capsids emerged during laboratory evolution of a bacterial enzyme. Trends Biochem Sci 2021; 46:863-865. [PMID: 34456123 DOI: 10.1016/j.tibs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
Viruses are fascinating molecular machines that inspire many therapeutic design efforts. Tetter, Terasaka, Steinauer et al. recently reported the laboratory evolution of a synthetic nucleocapsid from a bacterial enzyme. Their work sheds light on the potential origin of viruses and points the way to improved nanotechnology platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Tetter S, Terasaka N, Steinauer A, Bingham RJ, Clark S, Scott AJP, Patel N, Leibundgut M, Wroblewski E, Ban N, Stockley PG, Twarock R, Hilvert D. Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein. Science 2021; 372:1220-1224. [PMID: 34112695 DOI: 10.1126/science.abg2822] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications.
Collapse
Affiliation(s)
- Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Naohiro Terasaka
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Richard J Bingham
- Departments of Mathematics and Biology, University of York, York YO10 5DD, UK
| | - Sam Clark
- Departments of Mathematics and Biology, University of York, York YO10 5DD, UK
| | - Andrew J P Scott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marc Leibundgut
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Reidun Twarock
- Departments of Mathematics and Biology, University of York, York YO10 5DD, UK
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
33
|
Levasseur MD, Mantri S, Hayashi T, Reichenbach M, Hehn S, Waeckerle-Men Y, Johansen P, Hilvert D. Cell-Specific Delivery Using an Engineered Protein Nanocage. ACS Chem Biol 2021; 16:838-843. [PMID: 33881303 DOI: 10.1021/acschembio.1c00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle-based delivery systems have shown great promise for theranostics and bioimaging on the laboratory scale due to favorable pharmacokinetics and biodistribution. In this study, we examine the utility of a cage-forming variant of the protein lumazine synthase, which was previously designed and evolved to encapsulate biomacromolecular cargo. Linking antibody-binding domains to the exterior of the cage enabled binding of targeting immunoglobulins and cell-specific uptake of encapsulated cargo. Protein nanocages displaying antibody-binding domains appear to be less immunogenic than their unmodified counterparts, but they also recruit serum antibodies that can mask the efficacy of the targeting antibody. Our study highlights the strengths and limitations of a common targeting strategy for practical nanoparticle-based delivery applications.
Collapse
Affiliation(s)
| | - Shiksha Mantri
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maria Reichenbach
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Svenja Hehn
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
34
|
Adenovirus - a blueprint for gene delivery. Curr Opin Virol 2021; 48:49-56. [PMID: 33892224 DOI: 10.1016/j.coviro.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
A central quest in gene therapy and vaccination is to achieve effective and long-lasting gene expression at minimal dosage. Adenovirus vectors are widely used therapeutics and safely deliver genes into many cell types. Adenoviruses evolved to use elaborate trafficking and particle deconstruction processes, and efficient gene expression and progeny formation. Here, we discuss recent insights into how human adenoviruses deliver their double-stranded DNA genome into cell nuclei, and effect lytic cell killing, non-lytic persistent infection or vector gene expression. The mechanisms underlying adenovirus entry, uncoating, nuclear transport and gene expression provide a blueprint for the emerging field of synthetic virology, where artificial virus-like particles are evolved to deliver therapeutic payload into human cells without viral proteins and genomes.
Collapse
|
35
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
36
|
Honarmand Ebrahimi K. Ferritin as a Platform for Creating Antiviral Mosaic Nanocages: Prospects for Treating COVID-19. Chembiochem 2020; 22:1371-1378. [PMID: 33350032 DOI: 10.1002/cbic.202000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Indexed: 11/11/2022]
Abstract
Infectious diseases are a continues threat to human health and the economy worldwide. The latest example is the global pandemic of COVID-19 caused by SARS-CoV-2. Antibody therapy and vaccines are promising approaches to treat the disease; however, they have bottlenecks: they might have low efficacy or narrow breadth due to the continuous emergence of new strains of the virus or antibodies could cause antibody-dependent enhancement (ADE) of infection. To address these bottlenecks, I propose the use of 24-meric ferritin for the synthesis of mosaic nanocages to deliver a cocktail of antibodies or nanobodies alone or in combination with another therapeutic, like a nucleotide analogue, to mimic the viral entry process and deceive the virus, or to develop mosaic vaccines. I argue that available data showing the effectiveness of ferritin-antibody conjugates in targeting specific cells and ferritin-haemagglutinin nanocages in developing influenza vaccines strongly support my proposals.
Collapse
|
37
|
Wang Y, Uchida M, Waghwani HK, Douglas T. Synthetic Virus-like Particles for Glutathione Biosynthesis. ACS Synth Biol 2020; 9:3298-3310. [PMID: 33232156 DOI: 10.1021/acssynbio.0c00368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based nanocompartments found in nature have inspired the development of functional nanomaterials for a range of applications including delivery of catalytic activities with therapeutic effects. As glutathione (GSH) plays a vital role in metabolic adaptation and many diseases are associated with its deficiency, supplementation of GSH biosynthetic activity might be a potential therapeutic when delivered directly to the disease site. Here, we report the successful design and production of active nanoreactors capable of catalyzing the partial or complete pathway for GSH biosynthesis, which was realized by encapsulating essential enzymes of the pathway inside the virus-like particle (VLP) derived from the bacteriophage P22. These nanoreactors are the first examples of nanocages specifically designed for the biosynthesis of oligomeric biomolecules. A dense packing of enzymes is achieved within the cavities of the nanoreactors, which allows us to study enzyme behavior, in a crowded and confined environment, including enzymatic kinetics and protein stability. In addition, the biomedical utility of the nanoreactors in protection against oxidative stress was confirmed using an in vitro cell culture model. Given that P22 VLP capsid was suggested as a potential liver-tropic nanocarrier in vivo, it will be promising to test the efficacy of these GSH nanoreactors as a novel treatment for GSH-deficient hepatic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California 93740, United States
| | - Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Rajeev R, Prathiviraj R, Kiran GS, Selvin J. Zoonotic evolution and implications of microbiome in viral transmission and infection. Virus Res 2020; 290:198175. [PMID: 33007342 PMCID: PMC7524452 DOI: 10.1016/j.virusres.2020.198175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/07/2023]
Abstract
The outbreak and spread of new strains of coronavirus (SARS-CoV-2) remain a global threat with increasing cases in affected countries. The evolutionary tree of SARS-CoV-2 revealed that Porcine Reproductive and Respiratory Syndrome virus 2, which belongs to the Beta arterivirus genus from the Arteriviridae family is possibly the most ancient ancestral origin of SARS-CoV-2 and other Coronaviridae. This review focuses on phylogenomic distribution and evolutionary lineage of zoonotic viral cross-species transmission of the Coronaviridae family and the implications of bat microbiome in zoonotic viral transmission and infection. The review also casts light on the role of the human microbiome in predicting and controlling viral infections. The significance of microbiome-mediated interventions in the treatment of viral infections is also discussed. Finally, the importance of synthetic viruses in the study of viral evolution and transmission is highlighted.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
39
|
Encapsulation of mRNA into Artificial Viral Capsids via Hybridization of a β-Annulus-dT20 Conjugate and the Poly(A) Tail of mRNA. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Messenger RNA (mRNA) drugs have attracted considerable attention as promising tools with many therapeutic applications. The efficient delivery of mRNA drugs using non-viral materials is currently being explored. We demonstrate a novel concept where mCherry mRNA bearing a poly(A) tail is encapsulated into capsids co-assembled from viral β-annulus peptides bearing a 20-mer oligothymine (dT20) at the N-terminus and unmodified peptides via hybridization of dT20 and poly(A). Dynamic light scattering measurements and transmission electron microscopy images of the mRNA-encapsulated capsids show the formation of spherical assemblies of approximately 50 nm. The encapsulated mRNA shows remarkable ribonuclease resistance. Further, modification by a cell-penetrating peptide (His16) on the capsid enables the intracellular expression of mCherry of encapsulated mRNA.
Collapse
|
40
|
Stupka I, Heddle JG. Artificial protein cages – inspiration, construction, and observation. Curr Opin Struct Biol 2020; 64:66-73. [DOI: 10.1016/j.sbi.2020.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
|
41
|
Steinmetz NF, Lim S, Sainsbury F. Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomater Sci 2020; 8:2771-2777. [PMID: 32352101 PMCID: PMC8085892 DOI: 10.1039/d0bm00159g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein cages (viral and non-viral) found in nature have evolved for a variety of purposes and are found in all kingdoms of life. The main functions of these nanoscale compartments are the protection and delivery of nucleic acids e.g. virus capsids, or the enrichment and sequestration of metabolons e.g. bacterial microcompartments. This review focuses on recent developments of protein cages for use in immunotherapy and therapeutic delivery. In doing so, we highlight the unique ways in which protein cages have informed on fundamental principles governing bio-nano interactions. With the enormous existing design space among naturally occurring protein cages, there is still much to learn from studying them as biomimetic particles.
Collapse
Affiliation(s)
- Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA and Department of Bioengineering, University of California, San Diego, CA 92093, USA and Department of Radiology, University of California, San Diego, CA 92093, USA and Moores Cancer Center, University of California, San Diego, CA 92093, USA and Center for Nano-ImmunoEngineering, University of California, San Diego, CA 92093, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore and NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637457, Singapore
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia. and Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD 4001, Australia
| |
Collapse
|
42
|
Fu J, Woycechowsky KJ. Guest Sequence Can Influence RNA Encapsulation by an Engineered Cationic Protein Capsid. Biochemistry 2020; 59:1517-1526. [DOI: 10.1021/acs.biochem.0c00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiannan Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | | |
Collapse
|
43
|
Abstract
The use of proteins and peptides as nanoscale components to generate new-to-nature physical entities holds great promise in biocatalysis, therapeutic or diagnostic delivery, and materials templating. The majority of functionalized particles have been based on existing structures found in nature. Developing biomimetic particles in this way takes advantage of highly evolved platforms for organization or encapsulation of functional moieties, offering significant advantages in stoichiometry, multivalency, and sequestration. However, novel assembly paradigms for the modular construction of macromolecular structures are now greatly expanding the functional diversity of protein-based nanoparticles in health and manufacturing. In the February issue of ACS Nano, Kepiro et al. demonstrate the refinement of this concept, engineering the capacity for self-assembly such that it is integral to pore-forming peptide motifs, resulting in superior antibiotic activity of the self-assembled particle. Nature encodes multiple functions in proteins with exquisite efficiency, and emulating this multiplicity may be the ultimate goal of biomimetic nanotechnologies.
Collapse
Affiliation(s)
- Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland 4001, Australia
| |
Collapse
|
44
|
Abstract
Viruses are ubiquitous parasites of cellular life and the most abundant biological entities on Earth. It is widely accepted that viruses are polyphyletic, but a consensus scenario for their ultimate origin is still lacking. Traditionally, three scenarios for the origin of viruses have been considered: descent from primordial, precellular genetic elements, reductive evolution from cellular ancestors and escape of genes from cellular hosts, achieving partial replicative autonomy and becoming parasitic genetic elements. These classical scenarios give different timelines for the origin(s) of viruses and do not explain the provenance of the two key functional modules that are responsible, respectively, for viral genome replication and virion morphogenesis. Here, we outline a 'chimeric' scenario under which different types of primordial, selfish replicons gave rise to viruses by recruiting host proteins for virion formation. We also propose that new groups of viruses have repeatedly emerged at all stages of the evolution of life, often through the displacement of ancestral structural and genome replication genes.
Collapse
|
45
|
Luque D, Castón JR. Cryo-electron microscopy for the study of virus assembly. Nat Chem Biol 2020; 16:231-239. [PMID: 32080621 DOI: 10.1038/s41589-020-0477-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Although viruses are extremely diverse in shape and size, evolution has led to a limited number of viral classes or lineages, which is probably linked to the assembly constraints of a viable capsid. Viral assembly mechanisms are restricted to two general pathways, (i) co-assembly of capsid proteins and single-stranded nucleic acids and (ii) a sequential mechanism in which scaffolding-mediated capsid precursor assembly is followed by genome packaging. Cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), which are revolutionizing structural biology, are central to determining the high-resolution structures of many viral assemblies as well as those of assembly intermediates. This wealth of cryo-EM data has also led to the development and redesign of virus-based platforms for biomedical and biotechnological applications. In this Review, we will discuss recent viral assembly analyses by cryo-EM and cryo-ET showing how natural assembly mechanisms are used to encapsulate heterologous cargos including chemicals, enzymes, and/or nucleic acids for a variety of nanotechnological applications.
Collapse
Affiliation(s)
- Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
46
|
Cannon KA, Park RU, Boyken SE, Nattermann U, Yi S, Baker D, King NP, Yeates TO. Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Sci 2019; 29:919-929. [PMID: 31840320 DOI: 10.1002/pro.3802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
In recent years, new protein engineering methods have produced more than a dozen symmetric, self-assembling protein cages whose structures have been validated to match their design models with near-atomic accuracy. However, many protein cage designs that are tested in the lab do not form the desired assembly, and improving the success rate of design has been a point of recent emphasis. Here we present two protein structures solved by X-ray crystallography of designed protein oligomers that form two-component cages with tetrahedral symmetry. To improve on the past tendency toward poorly soluble protein, we used a computational protocol that favors the formation of hydrogen-bonding networks over exclusively hydrophobic interactions to stabilize the designed protein-protein interfaces. Preliminary characterization showed highly soluble expression, and solution studies indicated successful cage formation by both designed proteins. For one of the designs, a crystal structure confirmed at high resolution that the intended tetrahedral cage was formed, though several flipped amino acid side chain rotamers resulted in an interface that deviates from the precise hydrogen-bonding pattern that was intended. A structure of the other designed cage showed that, under the conditions where crystals were obtained, a noncage structure was formed wherein a porous 3D protein network in space group I21 3 is generated by an off-target twofold homomeric interface. These results illustrate some of the ongoing challenges of developing computational methods for polar interface design, and add two potentially valuable new entries to the growing list of engineered protein materials for downstream applications.
Collapse
Affiliation(s)
- Kevin A Cannon
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California.,UCLA Department of Chemistry and Biochemistry, Los Angeles, California
| | - Rachel U Park
- University of Washington Institute for Protein Design, Seattle, Washington
| | - Scott E Boyken
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington
| | - Una Nattermann
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington.,University of Washington Graduate Program in Biological Physics, Structure & Design, Seattle, Washington
| | - Sue Yi
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington
| | - David Baker
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington.,Howard Hughes Medical Institute, Seattle, Washington
| | - Neil P King
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California.,UCLA Department of Chemistry and Biochemistry, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
47
|
Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nat Commun 2019; 10:5403. [PMID: 31776333 PMCID: PMC6881330 DOI: 10.1038/s41467-019-13283-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Glycosylation of proteins profoundly impacts their physical and biological properties. Yet our ability to engineer novel glycoprotein structures remains limited. Established bacterial glycoengineering platforms require secretion of the acceptor protein to the periplasmic space and preassembly of the oligosaccharide substrate as a lipid-linked precursor, limiting access to protein and glycan substrates respectively. Here, we circumvent these bottlenecks by developing a facile glycoengineering platform that operates in the bacterial cytoplasm. The Glycoli platform leverages a recently discovered site-specific polypeptide glycosyltransferase together with variable glycosyltransferase modules to synthesize defined glycans, of bacterial or mammalian origin, directly onto recombinant proteins in the E. coli cytoplasm. We exploit the cytoplasmic localization of this glycoengineering platform to generate a variety of multivalent glycostructures, including self-assembling nanomaterials bearing hundreds of copies of the glycan epitope. This work establishes cytoplasmic glycoengineering as a powerful platform for producing glycoprotein structures with diverse future biomedical applications. Established bacterial glycoengineering platforms limit access to protein and glycan substrates. Here the authors design a cytoplasmic protein glycosylation system, Glycoli, to generate a variety of multivalent glycostructures.
Collapse
|
48
|
Twarock R, Luque A. Structural puzzles in virology solved with an overarching icosahedral design principle. Nat Commun 2019; 10:4414. [PMID: 31562316 PMCID: PMC6765026 DOI: 10.1038/s41467-019-12367-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022] Open
Abstract
Viruses have evolved protein containers with a wide spectrum of icosahedral architectures to protect their genetic material. The geometric constraints defining these container designs, and their implications for viral evolution, are open problems in virology. The principle of quasi-equivalence is currently used to predict virus architecture, but improved imaging techniques have revealed increasing numbers of viral outliers. We show that this theory is a special case of an overarching design principle for icosahedral, as well as octahedral, architectures that can be formulated in terms of the Archimedean lattices and their duals. These surface structures encompass different blueprints for capsids with the same number of structural proteins, as well as for capsid architectures formed from a combination of minor and major capsid proteins, and are recurrent within viral lineages. They also apply to other icosahedral structures in nature, and offer alternative designs for man-made materials and nanocontainers in bionanotechnology.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK.
| | - Antoni Luque
- Department of Mathematics and Statistics, Viral Information Institute, and Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-7720, USA.
| |
Collapse
|
49
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
50
|
Twarock R, Stockley PG. RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy. Annu Rev Biophys 2019; 48:495-514. [PMID: 30951648 PMCID: PMC7612295 DOI: 10.1146/annurev-biophys-052118-115611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision-a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, and York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, United Kingdom;
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|