1
|
Rahimpour S, Clary BL, Nasoohi S, Berhanu YS, Brown CM. Immunometabolism In Brain Aging and Neurodegeneration: Bridging Metabolic Pathways and Immune Responses. Aging Dis 2024:AD.2024.1293. [PMID: 39751865 DOI: 10.14336/ad.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction. The first part of the review summarizes the contributions of critical immune cell populations such as microglia, astrocytes, and infiltrating immune cells in mediating inflammation and metabolism in CNS disorders. The remainder of the review addresses the impact of metabolic changes on immune cell activation and disease progression in brain aging, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury. Furthermore, we also address the therapeutic potential of targeting immunometabolic pathways to reduce neuroinflammation and slow disease progression. By focusing on the interactions among brain immune cells and the metabolic mechanisms they recruit in disease, we present a comprehensive overview of brain immunometabolism in human health and disease.
Collapse
Affiliation(s)
- Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Briana L Clary
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Sanaz Nasoohi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Yohanna S Berhanu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
2
|
Ginefra P, Hope HC, Lorusso G, D'Amelio P, Vannini N. The immunometabolic roots of aging. Curr Opin Immunol 2024; 91:102498. [PMID: 39461330 DOI: 10.1016/j.coi.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Aging is one of the greatest risk factors for several chronic diseases and is accompanied by a progressive decline of cellular and organ function. Recent studies have highlighted the changes in metabolism as one of the main drivers of organism dysfunctions during aging and how that strongly deteriorate immune cell performance and function. Indeed, a dysfunctional immune system has been shown to have a pleiotropic impact on the organism, accelerating the overall aging process of an individual. Intrinsic and extrinsic factors are responsible for such metabolic alterations. Understanding the contribution, regulation, and connection of these different factors is fundamental to comprehend the process of aging and develop approaches to mitigate age-related immune decline. Here, we describe metabolic perturbations occurring at cellular and systemic levels. Particularly, we emphasize the interplay between metabolism and immunosenescence and describe novel interventions to protect immune function and promote health span.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Helen C Hope
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Girieca Lorusso
- Service of Geriatric Medicine, Department of Internal Medicine, CHUV University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Patrizia D'Amelio
- Service of Geriatric Medicine, Department of Internal Medicine, CHUV University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
3
|
Baldwin JG, Heuser-Loy C, Saha T, Schelker RC, Slavkovic-Lukic D, Strieder N, Hernandez-Lopez I, Rana N, Barden M, Mastrogiovanni F, Martín-Santos A, Raimondi A, Brohawn P, Higgs BW, Gebhard C, Kapoor V, Telford WG, Gautam S, Xydia M, Beckhove P, Frischholz S, Schober K, Kontarakis Z, Corn JE, Iannacone M, Inverso D, Rehli M, Fioravanti J, Sengupta S, Gattinoni L. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy. Cell 2024; 187:6614-6630.e21. [PMID: 39276774 PMCID: PMC11623344 DOI: 10.1016/j.cell.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
Collapse
Affiliation(s)
- Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tanmoy Saha
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nicholas Strieder
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip Brohawn
- Translational Science and Experimental Medicine, Early R&I, AstraZeneca, Gaithersburg, MD, USA
| | | | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Veena Kapoor
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Xydia
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; University of Regensburg, Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Sina Frischholz
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), ETH Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, ETH Zürich, University of Zürich, Zürich 8057, Switzerland
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; University of Regensburg, Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Georgiev P, Han S, Huang AY, Nguyen TH, Drijvers JM, Creasey H, Pereira JA, Yao CH, Park JS, Conway TS, Fung ME, Liang D, Peluso M, Joshi S, Rowe JH, Miller BC, Freeman GJ, Sharpe AH, Haigis MC, Ringel AE. Age-Associated Contraction of Tumor-Specific T Cells Impairs Antitumor Immunity. Cancer Immunol Res 2024; 12:1525-1541. [PMID: 39186561 PMCID: PMC11532741 DOI: 10.1158/2326-6066.cir-24-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Progressive decline of the adaptive immune system with increasing age coincides with a sharp increase in cancer incidence. In this study, we set out to understand whether deficits in antitumor immunity with advanced age promote tumor progression and/or drive resistance to immunotherapy. We found that multiple syngeneic cancers grew more rapidly in aged versus young adult mice, driven by dysfunctional CD8+ T-cell responses. By systematically mapping immune cell profiles within tumors, we identified loss of tumor antigen-specific CD8+ T cells as a primary feature accelerating the growth of tumors in aged mice and driving resistance to immunotherapy. When antigen-specific T cells from young adult mice were administered to aged mice, tumor outgrowth was delayed and the aged animals became sensitive to PD-1 blockade. These studies reveal how age-associated CD8+ T-cell dysfunction may license tumorigenesis in elderly patients and have important implications for the use of aged mice as preclinical models of aging and cancer.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - SeongJun Han
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy Y. Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jefte M. Drijvers
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah Creasey
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph A. Pereira
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas S. Conway
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Peluso
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jared H. Rowe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian C. Miller
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alison E. Ringel
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
5
|
Qiu Y, Xie E, Xu H, Cheng H, Li G. One-carbon metabolism shapes T cell immunity in cancer. Trends Endocrinol Metab 2024; 35:967-980. [PMID: 38925992 DOI: 10.1016/j.tem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Haipeng Xu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fujian, 350011, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Wu H, Li J, Zhang Z, Zhang Y. Characteristics and mechanisms of T-cell senescence: A potential target for cancer immunotherapy. Eur J Immunol 2024; 54:e2451093. [PMID: 39107923 DOI: 10.1002/eji.202451093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024]
Abstract
Immunosenescence, the aging of the immune system, leads to functional deficiencies, particularly in T cells, which undergo significant changes. While numerous studies have investigated age-related T-cell phenotypes in healthy aging, senescent T cells have also been observed in younger populations during pathological conditions like cancer. This review summarizes the recent advancements in age-associated alterations and markers of T cells, mechanisms, and the relationship between senescent T cells and the tumor microenvironment. We also discuss potential strategies for targeting senescent T cells to prevent age-related diseases and enhance tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Han Wu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junru Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
8
|
Chen X, Wang Z, Zhu B, Deng M, Qiu J, Feng Y, Ding N, Huang C. Metabolic Reprogramming Induced by Aging Modifies the Tumor Microenvironment. Cells 2024; 13:1721. [PMID: 39451239 PMCID: PMC11506685 DOI: 10.3390/cells13201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Aging is an important risk factor for tumorigenesis. Metabolic reprogramming is a hallmark of both aging and tumor initiation. However, the manner in which the crosstalk between aging and metabolic reprogramming affects the tumor microenvironment (TME) to promote tumorigenesis was poorly explored. We utilized a computational approach proposed by our previous work, MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to characterize aging-related metabolic plasticity events using pan-cancer bulk RNA-seq data. Our analysis revealed a high degree of metabolically organized heterogeneity across 17 aging-related cancer types. In particular, a higher degree of several energy generation pathways, i.e., glycolysis and impaired oxidative phosphorylation, was observed in older patients. Similar phenomena were also found via single-cell RNA-seq analysis. Furthermore, those energy generation pathways were found to be weakened in activated T cells and macrophages, whereas they increased in exhausted T cells, immunosuppressive macrophages, and Tregs in older patients. It was suggested that aging-induced metabolic switches alter glucose utilization, thereby influencing immune function and resulting in the remodeling of the TME. This work offers new insights into the associations between tumor metabolism and the TME mediated by aging, linking with novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xingyu Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Zihan Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Bo Zhu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Min Deng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China;
| | - Jiayue Qiu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Yunwen Feng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Ning Ding
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| |
Collapse
|
9
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
10
|
Mani NL, Weinberg SE, Chaudhuri S, Montauti E, Tang A, Iyer R, Fang D. Acidity induces durable enhancement of T reg cell suppressive functions for tumor immune evasion. Mol Immunol 2024; 174:57-68. [PMID: 39213947 PMCID: PMC11681611 DOI: 10.1016/j.molimm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The microenvironment within solid tumors often becomes acidic due to various factors associated with abnormal metabolism and cellular activities, including increased lactate production as a result of dysregulated tumor glycolysis. Recently, we have identified multiple tumor microenvironment (TME) factors that potentiate regulatory T (Treg) cell function in evading anti-tumor immunosurveillance. Despite the strong correlation between lactate and acidity, the potential roles of acidity in intratumoral Treg cell adaptation and underlying molecular mechanisms have gone largely unstudied. In this study, we demonstrate that acidity significantly enhances immunosuppressive functions of nTreg cells, but not iTreg cells, without altering the expression of either FoxP3 or the cell surface receptors CD25, CTLA4, or GITR in these cells. Surprisingly, the addition of lactate, often considered a major contributor to increased acidity of the TME, completely abolished the acidity-induced enhancement of nTreg suppressive functions. Consistently, metabolic flux analyses showed elevated basal mitochondrial respiratory capacity and ATP-coupled respiration in acidity-treated nTreg cells without altering glycolytic capacity. Genome-wide transcriptome and metabolomics analyses revealed alterations in multiple metabolic pathways, particularly the one-carbon folate metabolism pathway, with reduced SAM, folate, and glutathione, in nTreg cells exposed to low pH conditions. Addition of a one-carbon metabolic contributor, formate, diminished the acidity-induced enhancement in nTreg cell suppressive functions, but neither SAM nor glutathione could reverse the phenotype. Remarkably, in vitro transient treatment of nTreg cells resulted in sustained enhancement of their functions, as evidenced by more vigorous tumor growth observed in mice adoptively receiving acidity-treated nTreg cells. Further analysis of intratumoral infiltrated T cells confirmed a significant reduction in CD8+ T cell frequency and their granzyme B production. In summary, our study elucidates how acidity-mediated metabolic reprogramming leads to sustained Treg-mediated tumor immune evasion.
Collapse
Affiliation(s)
- Nikita L Mani
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA.
| | | | - Elena Montauti
- Department of Pathology, Northwestern University, USA; Department of Medicine Hematology and Oncology, University of California San Francisco, USA
| | - Amy Tang
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern Medicine, USA.
| |
Collapse
|
11
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
12
|
Gao J, Zhang P, Nie X, Tang M, Yuan Y, He L, Wang X, Ma J, Li L. Proteomic and metabolomic profiling of plasma predicts immune-related adverse events in older patients with advanced non-small cell lung cancer. iScience 2024; 27:109946. [PMID: 38827402 PMCID: PMC11141140 DOI: 10.1016/j.isci.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/12/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
The clinical success of immune checkpoint inhibitors is compromised by the fact of immune-related adverse events (irAEs), especially for older patients. To identify predictive biomarkers for older patients with irAEs, we used multiplex immunoassay and flow cytometry and liquid chromatography-tandem mass spectrometry to test immune factors and plasma protein and metabolites levels in non-small cell lung cancer (NSCLC) patients. The results showed that older patients with irAEs displayed lower CD28, CD4+ T cell, and B cell and higher interleukin (IL)-10 and CCL2 levels at baseline. Besides, lower aldolase, fructose-bisphosphate B (ALDOB), higher ST6GAL1, and lower lactate/pyruvate ratio at baseline were found in older patients with irAEs. Based on metabolomic markers, predictive models were developed to distinguish patients with grade 2-4 irAEs from grade 0-1 (Area under curve, AUC = 0.831) and to distinguish patients with grade 3-4 irAEs from grade 2 (AUC = 1). Our results confirmed the predictive value of plasma metabolites for irAEs in older patients with NSCLC.
Collapse
Affiliation(s)
- Jiayi Gao
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Graduate School Peking Union Medical College, Beijing 100730, China
| | - Ping Zhang
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xin Nie
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yue Yuan
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Liuer He
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xue Wang
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Junling Ma
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Graduate School Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Fisher JS, Adán‐Barrientos I, Kumar NR, Lancaster JN. The aged microenvironment impairs BCL6 and CD40L induction in CD4 + T follicular helper cell differentiation. Aging Cell 2024; 23:e14140. [PMID: 38481058 PMCID: PMC11296098 DOI: 10.1111/acel.14140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024] Open
Abstract
Weakened germinal center responses by the aged immune system result in diminished immunity against pathogens and reduced efficacy of vaccines. Prolonged contacts between activated B cells and CD4+ T cells are crucial to germinal center formation and T follicular helper cell (Tfh) differentiation, but it is unclear how aging impacts the quality of this interaction. Peptide immunization confirmed that aged mice have decreased expansion of antigen-specific germinal center B cells and reduced antibody titers. Furthermore, aging was associated with accumulated Tfh cells, even in naïve mice. Despite increased numbers, aged Tfh had reduced expression of master transcription factor BCL6 and increased expression of the ectonucleotidase CD39. In vitro activation revealed that proliferative capacity was maintained in aged CD4+ T cells, but not the costimulatory molecule CD40L. When activated in vitro by aged antigen-presenting cells, young CD4+ naïve T cells generated reduced numbers of activated cells with upregulated CD40L. To determine the contribution of cell-extrinsic influences on antigen-specific Tfh induction, young, antigen-specific B and CD4+ T cells were adoptively transferred into aged hosts prior to peptide immunization. Transferred cells had reduced expansion and differentiation into germinal center B cell and Tfh and reduced antigen-specific antibody titers when compared to young hosts. Young CD4+ T cells transferred aged hosts differentiated into Tfh cells with reduced PD-1 and BCL6 expression, and increased CD39 expression, though they maintained their mitochondrial capacity. These results highlight the role of the lymphoid microenvironment in modulating CD4+ T cell differentiation, which contributes to impaired establishment and maintenance of germinal centers.
Collapse
Affiliation(s)
| | - Irene Adán‐Barrientos
- Immunobiology LaboratoryCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Naveen R. Kumar
- Department of ImmunologyMayo ClinicScottsdaleArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo ClinicScottsdaleArizonaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Department of Cancer BiologyMayo ClinicScottsdaleArizonaUSA
| |
Collapse
|
14
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
15
|
Aquilani R, Brugnatelli S, Maestri R, Iadarola P, Corallo S, Pagani A, Serra F, Bellini A, Buonocore D, Dossena M, Boschi F, Verri M. Chemotherapy-Induced Changes in Plasma Amino Acids and Lipid Oxidation of Resected Patients with Colorectal Cancer: A Background for Future Studies. Int J Mol Sci 2024; 25:5300. [PMID: 38791339 PMCID: PMC11121634 DOI: 10.3390/ijms25105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies have documented that FOLFOX and XELOX therapies negatively impact the metabolism of skeletal muscle and extra-muscle districts. This pilot study tested whether three-month FOLFOX or XELOX therapy produced changes in plasma amino acid levels (PAAL) (an estimation of whole-body amino acid metabolism) and in plasma levels of malondialdehyde (MDA), a marker of lipid hyper oxidation. Fourteen ambulatory, resected patients with colorectal cancer scheduled to receive FOLFOX (n = 9) or XELOX (n = 5) therapy, after overnight fasting, underwent peripheral venous blood sampling, to determine PAAL and MDA before, during, and at the end of three-month therapy. Fifteen healthy matched subjects (controls) only underwent measures of PAAL at baseline. The results showed changes in 87.5% of plasma essential amino acids (EAAs) and 38.4% of non-EAAs in patients treated with FOLFOX or XELOX. These changes in EAAs occurred in two opposite directions: EAAs decreased with FOLFOX and increased or did not decrease with XELOX (interactions: from p = 0.034 to p = 0.003). Baseline plasma MDA levels in both FOLFOX and XELOX patients were above the normal range of values, and increased, albeit not significantly, during therapy. In conclusion, three-month FOLFOX or XELOX therapy affected plasma EAAs differently but not the baseline MDA levels, which were already high.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Silvia Brugnatelli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Paolo Iadarola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Salvatore Corallo
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Francesco Serra
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (S.C.); (A.P.); (F.S.)
| | - Anna Bellini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Daniela Buonocore
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Maurizia Dossena
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (P.I.); (A.B.); (D.B.); (M.D.)
| |
Collapse
|
16
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
17
|
Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol 2024; 21:419-435. [PMID: 38565887 PMCID: PMC11061161 DOI: 10.1038/s41423-024-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes-lipids, glucose, and amino acids-in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of "editing" metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| |
Collapse
|
18
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024:AD.2024.0219. [PMID: 38502582 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
|
19
|
Saleh Z, Mirzazadeh S, Mirzaei F, Heidarnejad K, Meri S, Kalantar K. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. FRONTIERS IN AGING 2024; 5:1358330. [PMID: 38505645 PMCID: PMC10949225 DOI: 10.3389/fragi.2024.1358330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Aging is a time-dependent progressive physiological process, which results in impaired immune system function. Age-related changes in immune function increase the susceptibility to many diseases such as infections, autoimmune diseases, and cancer. Different metabolic pathways including glycolysis, tricarboxylic acid cycle, amino acid metabolism, pentose phosphate pathway, fatty acid oxidation and fatty acid synthesis regulate the development, differentiation, and response of adaptive and innate immune cells. During aging all these pathways change in the immune cells. In addition to the changes in metabolic pathways, the function and structure of mitochondria also have changed in the immune cells. Thereby, we will review changes in the metabolism of different innate immune cells during the aging process.
Collapse
Affiliation(s)
- Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mirzaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Heidarnejad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Akhter A, Schami A, Chiem K, Ault R, Zhang H, Cai H, Whigham A, Delgado J, Hicks A, Tsao PS, Gelfond J, Martinez‐Sobrido L, Wang Y, Torrelles JB, Turner J. Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4 + T Cells in Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303664. [PMID: 37990641 PMCID: PMC10837346 DOI: 10.1002/advs.202303664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Indexed: 11/23/2023]
Abstract
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | | | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Anwari Akhter
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Kevin Chiem
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Russell Ault
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
| | - Hao Zhang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Hong Cai
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Alison Whigham
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Jennifer Delgado
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Amberlee Hicks
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jonathan Gelfond
- UT‐Health San AntonioDepartment of Epidemiology & BiostatisticsSan AntonioTexas78229USA
| | - Luis Martinez‐Sobrido
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Yufeng Wang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| |
Collapse
|
21
|
Nettelfield S, Yu D, Cañete PF. Systemic immunometabolism and responses to vaccines: insights from T and B cell perspectives. Int Immunol 2023; 35:571-582. [PMID: 37330692 DOI: 10.1093/intimm/dxad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminished vaccine responses and efficacy. While the specific factors contributing to this impairment may vary, these individuals typically display a degree of metabolic dysregulation, thereby underscoring its potential significance as a fundamental determinant of suboptimal vaccine responses. The emerging field of immunometabolism aims to unravel the intricate interplay between immune regulation and metabolic pathways, and recent research has revealed diverse metabolic signatures linked to various vaccine responses and outcomes. In this review, we summarize the major metabolic pathways utilized by B and T cells during vaccine responses, their complex and varied metabolic requirements, and the impact of micronutrients and metabolic hormones on vaccine outcomes. Furthermore, we examine how systemic metabolism influences vaccine responses and the evidence suggesting that metabolic dysregulation in vulnerable populations can lead to impaired vaccine responses. Lastly, we reflect on the challenge of proving causality with respect to the contribution of metabolic dysregulation to poor vaccine outcomes, and highlight the need for a systems biology approach that combines multimodal profiling and mathematical modelling to reveal the underlying mechanisms of such complex interactions.
Collapse
Affiliation(s)
- Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Rowe JH, Elia I, Shahid O, Gaudiano EF, Sifnugel NE, Johnson S, Reynolds AG, Fung ME, Joshi S, LaFleur MW, Park JS, Pauken KE, Rabinowitz JD, Freeman GJ, Haigis MC, Sharpe AH. Formate Supplementation Enhances Antitumor CD8+ T-cell Fitness and Efficacy of PD-1 Blockade. Cancer Discov 2023; 13:2566-2583. [PMID: 37728660 PMCID: PMC10843486 DOI: 10.1158/2159-8290.cd-22-1301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
The tumor microenvironment (TME) restricts antitumor CD8+ T-cell function and immunotherapy responses. Cancer cells compromise the metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate that one-carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T-cell fitness and antitumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T-cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for enhanced tumor control. Our data demonstrate that formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T-cell function. SIGNIFICANCE This study identifies that deficiencies in 1C metabolism limit the efficacy of PD-1 blockade in B16-OVA tumors. Supplementing 1C metabolism with formate during anti-PD-1 therapy enhances CD8+ T-cell fitness in the TME and CD8+ T-cell-mediated tumor clearance. These findings demonstrate that formate supplementation can enhance exhausted CD8+ T-cell function. See related commentary by Lin et al., p. 2507. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Jared H. Rowe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Ilaria Elia
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Osmaan Shahid
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Emily F. Gaudiano
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Natalia E. Sifnugel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Sheila Johnson
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy G. Reynolds
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin W. LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Kristen E. Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Lin MC, Moller SH, Ho PC. Re-"Formate" T-cell Antitumor Responses. Cancer Discov 2023; 13:2507-2509. [PMID: 38084093 DOI: 10.1158/2159-8290.cd-23-1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
SUMMARY Rowe and colleagues discover that one-carbon (1C) metabolism rewiring occurs upon T-cell activation to support proliferation and cytolytic activity in CD8+ T cells and that supplementation of 1C donor formate rescues the dysfunctional T cells and their responsiveness to anti-PD-1 in selective tumor-infiltrated T-cell subsets. This finding represents an attractive strategy to overcome a metabolic vulnerability in the tumor microenvironment and improve the efficacy of immune checkpoint blockade. See related article by Rowe et al., p. 2566 (8).
Collapse
Affiliation(s)
- Mei-Chun Lin
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sofie Hedlund Moller
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Ontiveros CO, Murray CE, Crossland G, Curiel TJ. Considerations and Approaches for Cancer Immunotherapy in the Aging Host. Cancer Immunol Res 2023; 11:1449-1461. [PMID: 37769157 PMCID: PMC11287796 DOI: 10.1158/2326-6066.cir-23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.
Collapse
Affiliation(s)
- Carlos O. Ontiveros
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Clare E. Murray
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Grace Crossland
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tyler J. Curiel
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH 03756
| |
Collapse
|
25
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
26
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
27
|
Hu C, Wu H, Zhu Q, Cao N, Wang H. Cholesterol metabolism in T-cell aging: Accomplices or victims. FASEB J 2023; 37:e23136. [PMID: 37584624 DOI: 10.1096/fj.202300515r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Aging has a significant impact on the function and metabolism of T cells. Cholesterol, the most important sterol in mammals, is known as the "gold of the body" because it maintains membrane fluidity, rigidity, and signal transduction while also serving as a precursor of oxysterols, bile acids, and steroid hormones. Cholesterol homeostasis is primarily controlled by uptake, biosynthesis, efflux, and regulatory mechanisms. Previous studies have suggested that there are reciprocal interactions between cholesterol metabolism and T lymphocytes. Here, we will summarize the most recent advances in the effects of cholesterol and its derivatives on T-cell aging. We will furthermore discuss interventions that might be used to help older individuals with immune deficiencies or diminishing immune competence.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hongliang Wu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Qun Zhu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Na Cao
- Department of Hematology, Yueyang People's Hospital, Yueyang, P. R. China
- Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, P.R. China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
28
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
29
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
30
|
Bawamia B, Spray L, Wangsaputra VK, Bennaceur K, Vahabi S, Stellos K, Kharatikoopaei E, Ogundimu E, Gale CP, Keavney B, Maier R, Hancock H, Richardson G, Austin D, Spyridopoulos I. Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction. GeroScience 2023; 45:2689-2705. [PMID: 37086366 PMCID: PMC10122201 DOI: 10.1007/s11357-023-00794-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Myocardial infarction (MI) accelerates immune ageing characterised by lymphopenia, expansion of terminally differentiated CD8+ T-lymphocytes (CD8+ TEMRA) and inflammation. Pre-clinical data showed that TA-65, an oral telomerase activator, reduced immune ageing and inflammation after MI. We conducted a double blinded randomised controlled pilot trial evaluating the use of TA-65 to reduce immune cell ageing in patients following MI. Ninety MI patients aged over 65 years were randomised to either TA-65 (16 mg daily) or placebo for 12 months. Peripheral blood leucocytes were analysed by flow cytometry. The pre-defined primary endpoint was the proportion of CD8+ T-lymphocytes which were CD8+ TEMRA after 12 months. Secondary outcomes included high-sensitivity C-reactive protein (hsCRP) levels. Median age of participants was 71 years. Proportions of CD8+ TEMRA did not differ after 12 months between treatment groups. There was a significant increase in mean total lymphocyte count in the TA-65 group after 12 months (estimated treatment effect: + 285 cells/μl (95% CI: 117-452 cells/ μ l, p < 0.004), driven by significant increases from baseline in CD3+, CD4+, and CD8+ T-lymphocytes, B-lymphocytes and natural killer cells. No increase in lymphocyte populations was seen in the placebo group. At 12 months, hsCRP was 62% lower in the TA-65 group compared to placebo (1.1 vs. 2.9 mg/L). Patients in the TA-65 arm experienced significantly fewer adverse events (130 vs. 185, p = 0.002). TA-65 did not alter CD8+ TEMRA but increased all major lymphocyte subsets and reduced hsCRP in elderly patients with MI after 12 months.
Collapse
Affiliation(s)
- Bilal Bawamia
- Freeman Hospital, Newcastle Upon Tyne, UK
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, UK
| | - Luke Spray
- Freeman Hospital, Newcastle Upon Tyne, UK
- Vascular Biology and Medicine Theme, Faculty of Medical Sciences, International Centre for Life, Translational and Clinical Research InstituteNewcastle UniversityNewcastle Upon Tyne, Central Parkway, NE1 3BZ, UK
| | - Vincent K Wangsaputra
- Vascular Biology and Medicine Theme, Faculty of Medical Sciences, International Centre for Life, Translational and Clinical Research InstituteNewcastle UniversityNewcastle Upon Tyne, Central Parkway, NE1 3BZ, UK
- Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Karim Bennaceur
- Vascular Biology and Medicine Theme, Faculty of Medical Sciences, International Centre for Life, Translational and Clinical Research InstituteNewcastle UniversityNewcastle Upon Tyne, Central Parkway, NE1 3BZ, UK
| | - Sharareh Vahabi
- Freeman Hospital, Newcastle Upon Tyne, UK
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, UK
| | - Konstantinos Stellos
- Freeman Hospital, Newcastle Upon Tyne, UK
- Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | | | | | - Chris P Gale
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca Maier
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, UK
- Newcastle Clinical Trials Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Helen Hancock
- Newcastle Clinical Trials Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Gavin Richardson
- Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - David Austin
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, UK
- Population Health Science Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Ioakim Spyridopoulos
- Freeman Hospital, Newcastle Upon Tyne, UK.
- Vascular Biology and Medicine Theme, Faculty of Medical Sciences, International Centre for Life, Translational and Clinical Research InstituteNewcastle UniversityNewcastle Upon Tyne, Central Parkway, NE1 3BZ, UK.
| |
Collapse
|
31
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
32
|
Ding C, Yu Z, Sefik E, Zhou J, Kaffe E, Wang G, Li B, Flavell RA, Hu W, Ye Y, Li HB. A T reg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver. NATURE AGING 2023; 3:813-828. [PMID: 37277640 DOI: 10.1038/s43587-023-00428-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhibin Yu
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Zhou
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gaoyang Wang
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Weiguo Hu
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
33
|
Hennequart M, Pilley SE, Labuschagne CF, Coomes J, Mervant L, Driscoll PC, Legrave NM, Lee Y, Kreuzaler P, Macintyre B, Panina Y, Blagih J, Stevenson D, Strathdee D, Schneider-Luftman D, Grönroos E, Cheung EC, Yuneva M, Swanton C, Vousden KH. ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep 2023; 42:112562. [PMID: 37245210 DOI: 10.1016/j.celrep.2023.112562] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.
Collapse
Affiliation(s)
- Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven E Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christiaan F Labuschagne
- Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), 11 Hoffman Street, Potchesfstoom 2531, South Africa
| | - Jack Coomes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Loic Mervant
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Younghwan Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Kreuzaler
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Yulia Panina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julianna Blagih
- Department of Obstetrics-Gynaecology, University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | | | | | | | - Eva Grönroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
34
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
35
|
Cable J, Rathmell JC, Pearce EL, Ho PC, Haigis MC, Mamedov MR, Wu MJ, Kaech SM, Lynch L, Febbraio MA, Bapat SP, Hong HS, Zou W, Belkaid Y, Sullivan ZA, Keller A, Wculek SK, Green DR, Postic C, Amit I, Benitah SA, Jones RG, Reina-Campos M, Torres SV, Beyaz S, Brennan D, O'Neill LAJ, Perry RJ, Brenner D. Immunometabolism at the crossroads of obesity and cancer-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523:38-50. [PMID: 36960914 PMCID: PMC10367315 DOI: 10.1111/nyas.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
Collapse
Affiliation(s)
| | - Jeffrey C Rathmell
- Vanderbilt-Ingram Cancer Center; Vanderbilt Center for Immunobiology; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erika L Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, Maryland, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ping-Chih Ho
- Department of Fundamental Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Murad R Mamedov
- Gladstone-UCSF Institute of Genomic Immunology and Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lydia Lynch
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Weiping Zou
- Department of Surgery; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center; Department of Pathology; Graduate Program in Immunology; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, and NIAID Microbiome Program National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zuri A Sullivan
- Department of Immunobiology, Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine; and Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Stefanie K Wculek
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Douglas R Green
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Catherine Postic
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST) and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Donal Brennan
- UCD Gynecological Oncology Group, UCD School of Medicine, Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Belfield, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Rachel J Perry
- Department of Cellular and Molecular Physiology and Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
37
|
Nanjireddy PM, Olejniczak SH, Buxbaum NP. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Front Immunol 2023; 14:1121565. [PMID: 36999013 PMCID: PMC10043186 DOI: 10.3389/fimmu.2023.1121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells can cure patients with cancers that are refractory to standard therapeutic approaches. To date, adoptive cell therapies have been less effective against solid tumors, largely due to impaired homing and function of immune cells within the immunosuppressive tumor microenvironment (TME). Cellular metabolism plays a key role in T cell function and survival and is amenable to manipulation. This manuscript provides an overview of known aspects of CAR T metabolism and describes potential approaches to manipulate metabolic features of CAR T to yield better anti-tumor responses. Distinct T cell phenotypes that are linked to cellular metabolism profiles are associated with improved anti-tumor responses. Several steps within the CAR T manufacture process are amenable to interventions that can generate and maintain favorable intracellular metabolism phenotypes. For example, co-stimulatory signaling is executed through metabolic rewiring. Use of metabolic regulators during CAR T expansion or systemically in the patient following adoptive transfer are described as potential approaches to generate and maintain metabolic states that can confer improved in vivo T cell function and persistence. Cytokine and nutrient selection during the expansion process can be tailored to yield CAR T products with more favorable metabolic features. In summary, improved understanding of CAR T cellular metabolism and its manipulations have the potential to guide the development of more effective adoptive cell therapies.
Collapse
Affiliation(s)
- Priyanka Maridhi Nanjireddy
- Department of Pediatric Oncology, Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott H. Olejniczak
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nataliya Prokopenko Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Nataliya Prokopenko Buxbaum,
| |
Collapse
|
38
|
Maya J, Leddy SM, Gottschalk CG, Peterson DL, Hanson MR. Altered Fatty Acid Oxidation in Lymphocyte Populations of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2023; 24:2010. [PMID: 36768336 PMCID: PMC9916395 DOI: 10.3390/ijms24032010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling multisystem illness in which individuals are plagued with fatigue, inflammatory symptoms, cognitive dysfunction, and the hallmark symptom, post-exertional malaise. While the cause of this disease remains unknown, there is evidence of a potential infectious component that, along with patient symptoms and common onsets of the disease, implicates immune system dysfunction. To further our understanding of the state of ME/CFS lymphocytes, we characterized the role of fatty acids in isolated Natural Killer cells, CD4+ T cells, and CD8+ T cells in circulation and after overnight stimulation, through implicit perturbations to fatty acid oxidation. We examined samples obtained from at least 8 and as many as 20 subjects for immune cell fatty acid characterization in a variety of experiments and found that all three isolated cell types increased their utilization of lipids and levels of pertinent proteins involved in this metabolic pathway in ME/CFS samples, particularly during higher energy demands and activation. In T cells, we characterized the cell populations contributing to these metabolic shifts, which included CD4+ memory cells, CD4+ effector cells, CD8+ naïve cells, and CD8+ memory cells. We also discovered that patients with ME/CFS and healthy control samples had significant correlations between measurements of CD4+ T cell fatty acid metabolism and demographic data. These findings provide support for metabolic dysfunction in ME/CFS immune cells. We further hypothesize about the consequences that these altered fuel dependencies may have on T and NK cell effector function, which may shed light on the illness's mechanism of action.
Collapse
Affiliation(s)
- Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | - Daniel L. Peterson
- Simmaron Research, Incline Village, NV 89451, USA
- Sierra Internal Medicine, Incline Village, NV 89451, USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
39
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Booth LK, Redgrave RE, Tual-Chalot S, Spyridopoulos I, Phillips HM, Richardson GD. Heart Disease and Ageing: The Roles of Senescence, Mitochondria, and Telomerase in Cardiovascular Disease. Subcell Biochem 2023; 103:45-78. [PMID: 37120464 DOI: 10.1007/978-3-031-26576-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
During ageing molecular damage leads to the accumulation of several hallmarks of ageing including mitochondrial dysfunction, cellular senescence, genetic instability and chronic inflammation, which contribute to the development and progression of ageing-associated diseases including cardiovascular disease. Consequently, understanding how these hallmarks of biological ageing interact with the cardiovascular system and each other is fundamental to the pursuit of improving cardiovascular health globally. This review provides an overview of our current understanding of how candidate hallmarks contribute to cardiovascular diseases such as atherosclerosis, coronary artery disease and subsequent myocardial infarction, and age-related heart failure. Further, we consider the evidence that, even in the absence of chronological age, acute cellular stress leading to accelerated biological ageing expedites cardiovascular dysfunction and impacts on cardiovascular health. Finally, we consider the opportunities that modulating hallmarks of ageing offer for the development of novel cardiovascular therapeutics.
Collapse
Affiliation(s)
- Laura K Booth
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael E Redgrave
- Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Helen M Phillips
- Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
41
|
Severin Y, Hale BD, Mena J, Goslings D, Frey BM, Snijder B. Multiplexed high-throughput immune cell imaging reveals molecular health-associated phenotypes. SCIENCE ADVANCES 2022; 8:eabn5631. [PMID: 36322666 PMCID: PMC9629716 DOI: 10.1126/sciadv.abn5631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of eight distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and blood pressure, revealing distinct polarization and activation-associated phenotypes across immune cell classes. We further associate T cell morphology to transcriptional state based on their joint donor variability and validate an inflammation-associated polarized T cell morphology and an age-associated loss of mitochondria in CD4+ T cells. Together, we show that immune cell phenotypes reflect both molecular and personal health information, opening new perspectives into the deep immune phenotyping of individual people in health and disease.
Collapse
Affiliation(s)
- Yannik Severin
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | - Benjamin D. Hale
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | - Julien Mena
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, SRC, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zürich, SRC, 8952 Schlieren, Switzerland
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
- Corresponding author.
| |
Collapse
|
42
|
Liu B, Chau J, Dai Q, Zhong C, Zhang J. Exploring Gut Microbiome in Predicting the Efficacy of Immunotherapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:5401. [PMID: 36358819 PMCID: PMC9656313 DOI: 10.3390/cancers14215401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 11/02/2023] Open
Abstract
We performed various analyses on the taxonomic and functional features of the gut microbiome from NSCLC patients treated with immunotherapy to establish a model that may predict whether a patient will benefit from immunotherapy. We collected 65 published whole metagenome shotgun sequencing samples along with 14 samples from our previous study. We systematically studied the taxonomical characteristics of the dataset and used both the random forest (RF) and the multilayer perceptron (MLP) neural network models to predict patients with progression-free survival (PFS) above 6 months versus those below 3 months. Our results showed that the RF classifier achieved the highest F-score (85.2%) and the area under the receiver operating characteristic curve (AUC) (95%) using the protein families (Pfam) profile, and the MLP neural network classifier achieved a 99.9% F-score and 100% AUC using the same Pfam profile. When applying the model trained in the Pfam profile directly to predict the treatment response, we found that both trained RF and MLP classifiers significantly outperformed the stochastic predictor in F-score. Our results suggested that such a predictive model based on functional (e.g., Pfam) rather than taxonomic profile might be clinically useful to predict whether an NSCLC patient will benefit from immunotherapy, as both the F-score and AUC of functional profile outperform that of taxonomic profile. In addition, our model suggested that interactive biological processes such as methanogenesis, one-carbon, and amino acid metabolism might be important in regulating the immunotherapy response that warrants further investigation.
Collapse
Affiliation(s)
- Ben Liu
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA
| | - Justin Chau
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
- Center for Computational Biology, University of Kansa, Lawrence, KS 66045, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
43
|
Chen Y, Ye Y, Krauß PL, Löwe P, Pfeiffenberger M, Damerau A, Ehlers L, Buttgereit T, Hoff P, Buttgereit F, Gaber T. Age-related increase of mitochondrial content in human memory CD4+ T cells contributes to ROS-mediated increased expression of proinflammatory cytokines. Front Immunol 2022; 13:911050. [PMID: 35935995 PMCID: PMC9353942 DOI: 10.3389/fimmu.2022.911050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cellular metabolism modulates effector functions in human CD4+ T (Th) cells by providing energy and building blocks. Conversely, cellular metabolic responses are modulated by various influences, e.g., age. Thus, we hypothesized that metabolic reprogramming in human Th cells during aging modulates effector functions and contributes to “inflammaging”, an aging-related, chronic, sterile, low-grade inflammatory state characterized by specific proinflammatory cytokines. Analyzing the metabolic response of human naive and memory Th cells from young and aged individuals, we observed that memory Th cells exhibit higher glycolytic and mitochondrial fluxes than naive Th cells. In contrast, the metabolism of the latter was not affected by donor age. Memory Th cells from aged donors showed a higher respiratory capacity, mitochondrial content, and intracellular ROS production than those from young donors without altering glucose uptake and cellular ATP levels, which finally resulted in higher secreted amounts of proinflammatory cytokines, e.g., IFN-γ, IP-10 from memory Th cells taken from aged donors after TCR-stimulation which were sensitive to ROS inhibition. These findings suggest that metabolic reprogramming in human memory Th cells during aging results in an increased expression of proinflammatory cytokines through enhanced ROS production, which may contribute to the pathogenesis of inflammaging.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Yuanchun Ye
- Department of Gastroenterology, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pierre-Louis Krauß
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Pelle Löwe
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Thomas Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology, Venerology, and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Hoff
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Rheumatologie, Endokrinologikum Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Berlin, Germany
- *Correspondence: Timo Gaber,
| |
Collapse
|
44
|
Wang X, Wang D, Du J, Wei Y, Song R, Wang B, Qiu S, Li B, Zhang L, Zeng Y, Zhao H, Kong Y. High Levels of CD244 Rather Than CD160 Associate With CD8 + T-Cell Aging. Front Immunol 2022; 13:853522. [PMID: 35386693 PMCID: PMC8977780 DOI: 10.3389/fimmu.2022.853522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Aging leads to functional dysregulation of the immune system, especially T cell defects. Previous studies have shown that the accumulation of co-inhibitory molecules plays an essential role in both T cell exhaustion and aging. In the present study, we showed that CD244 and CD160 were both up-regulated on CD8+ T cells of elderly individuals. CD244+CD160- CD8+ T cells displayed the increased activity of β-GAL, higher production of cytokines, and severe metabolic disorders, which were characteristics of immune aging. Notably, the functional dysregulation associated with aging was reversed by blocking CD244 instead of CD160. Meanwhile, CD244+CD160+ CD8+ T cells exhibited features of exhaustion, including lower levels of cytokine, impaired proliferation, and intrinsic transcriptional regulation, compared to CD244+CD160- population. Collectively, our findings demonstrated that CD244 rather than CD160 acts as a prominent regulator involved in T cell aging, providing a solid therapeutic target to improve disorders and comorbidities correlated to immune system aging.
Collapse
Affiliation(s)
- Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuang Qiu
- Department of Laboratory, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Bei Li
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leidan Zhang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Møller SH, Hsueh PC, Yu YR, Zhang L, Ho PC. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. Cell Metab 2022; 34:378-395. [PMID: 35235773 DOI: 10.1016/j.cmet.2022.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Productive T cell responses to infection and cancer rely on coordinated metabolic reprogramming and epigenetic remodeling among the immune cells. In particular, T cell effector and memory differentiation, exhaustion, and senescence/aging are tightly regulated by the metabolism-epigenetics axis. In this review, we summarize recent advances of how metabolic circuits combined with epigenetic changes dictate T cell fate decisions and shape their functional states. We also discuss how the metabolic-epigenetic axis orchestrates T cell exhaustion and explore how physiological factors, such as diet, gut microbiota, and the circadian clock, are integrated in shaping T cell epigenetic modifications and functionality. Furthermore, we summarize key features of the senescent/aged T cells and discuss how to ameliorate vaccination- and COVID-induced T cell dysfunctions by metabolic modulations. An in-depth understanding of the unexplored links between cellular metabolism and epigenetic modifications in various physiological or pathological contexts has the potential to uncover novel therapeutic strategies for fine-tuning T cell immunity.
Collapse
Affiliation(s)
- Sofie Hedlund Møller
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Ru Yu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
46
|
Green WD, Al-Shaer AE, Shi Q, Gowdy KM, MacIver NJ, Milner JJ, Beck MA, Shaikh SR. Metabolic and functional impairment of CD8 + T cells from the lungs of influenza-infected obese mice. J Leukoc Biol 2022; 111:147-159. [PMID: 33847405 PMCID: PMC8787296 DOI: 10.1002/jlb.4a0120-075rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is an independent risk factor for morbidity and mortality in response to influenza infection. However, the underlying mechanisms by which obesity impairs immunity are unclear. Herein, we investigated the effects of diet-induced obesity on pulmonary CD8+ T cell metabolism, cytokine production, and transcriptome as a potential mechanism of impairment during influenza virus infection in mice. Male C57BL/6J lean and obese mice were infected with sub-lethal mouse-adapted A/PR/8/34 influenza virus, generating a pulmonary anti-viral and inflammatory response. Extracellular metabolic flux analyses revealed pulmonary CD8+ T cells from obese mice, compared with lean controls, had suppressed oxidative and glycolytic metabolism at day 10 post-infection. Flow cytometry showed the impairment in pulmonary CD8+ T cell metabolism with obesity was independent of changes in glucose or fatty acid uptake, but concomitant with decreased CD8+ GrB+ IFNγ+ populations. Notably, the percent of pulmonary effector CD8+ GrB+ IFNγ+ T cells at day 10 post-infection correlated positively with total CD8+ basal extracellular acidification rate and basal oxygen consumption rate. Finally, next-generation RNA sequencing revealed complex and unique transcriptional regulation of sorted effector pulmonary CD8+ CD44+ T cells from obese mice compared to lean mice following influenza infection. Collectively, the data suggest diet-induced obesity increases influenza virus pathogenesis, in part, through CD8+ T cell-mediated metabolic reprogramming and impaired effector CD8+ T cell function.
Collapse
Affiliation(s)
- William D. Green
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Abrar E. Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nancie J. MacIver
- Department of Immunology, Department of Pediatrics, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - J. Justin Milner
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
48
|
Peeters MJW, Aehnlich P, Pizzella A, Mølgaard K, Seremet T, Met Ö, Rasmussen LJ, Thor Straten P, Desler C. Mitochondrial-Linked De Novo Pyrimidine Biosynthesis Dictates Human T-Cell Proliferation but Not Expression of Effector Molecules. Front Immunol 2021; 12:718863. [PMID: 34899685 PMCID: PMC8652221 DOI: 10.3389/fimmu.2021.718863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
T-cell activation upon antigen stimulation is essential for the continuation of the adaptive immune response. Impairment of mitochondrial oxidative phosphorylation is a well-known disruptor of T-cell activation. Dihydroorotate dehydrogenase (DHODH) is a component of the de novo synthesis of pyrimidines, the activity of which depends on functional oxidative phosphorylation. Under circumstances of an inhibited oxidative phosphorylation, DHODH becomes rate-limiting. Inhibition of DHODH is known to block clonal expansion and expression of effector molecules of activated T cells. However, this effect has been suggested to be caused by downstream impairment of oxidative phosphorylation rather than a lower rate of pyrimidine synthesis. In this study, we successfully inhibit the DHODH of T cells with no residual effect on oxidative phosphorylation and demonstrate a dose-dependent inhibition of proliferation of activated CD3+ T cells. This block is fully rescued when uridine is supplemented. Inhibition of DHODH does not alter expression of effector molecules but results in decreased intracellular levels of deoxypyrimidines without decreasing cell viability. Our results clearly demonstrate the DHODH and mitochondrial linked pyrimidine synthesis as an independent and important cytostatic regulator of activated T cells.
Collapse
Affiliation(s)
- Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Pia Aehnlich
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Adriano Pizzella
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Mølgaard
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Tina Seremet
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark.,Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark.,Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Xu Y, He L, Fu Q, Hu J. Metabolic Reprogramming in the Tumor Microenvironment With Immunocytes and Immune Checkpoints. Front Oncol 2021; 11:759015. [PMID: 34858835 PMCID: PMC8632143 DOI: 10.3389/fonc.2021.759015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), Ipilimumab, Nivolumab, Pembrolizumab and Atezolizumab, have been applied in anti-tumor therapy and demonstrated exciting performance compared to conventional treatments. However, the unsatisfactory response rates, high recurrence and adaptive resistance limit their benefits. Metabolic reprogramming appears to be one of the crucial barriers to immunotherapy. The deprivation of required nutrients and altered metabolites not only promote tumor progression but also confer dysfunction on immune cells in the tumor microenvironment (TME). Glycolysis plays a central role in metabolic reprogramming and immunoregulation in the TME, and many therapies targeting glycolysis have been developed, and their combinations with ICIs are in preclinical and clinical trials. Additional attention has been paid to the role of amino acids, lipids, nucleotides and mitochondrial biogenesis in metabolic reprogramming and clinical anti-tumor therapy. This review attempts to describe reprogramming metabolisms within tumor cells and immune cells, from the aspects of glycolysis, amino acid metabolism, lipid metabolism, nucleotide metabolism and mitochondrial biogenesis and their impact on immunity in the TME, as well as the significance of targeting metabolism in anti-tumor therapy, especially in combination with ICIs. In particular, we highlight the expression mechanism of programmed cell death (ligand) 1 [PD-(L)1] in tumor cells and immune cells under reprogramming metabolism, and discuss in detail the potential of targeting key metabolic pathways to break resistance and improve the efficacy of ICIs based on results from current preclinical and clinical trials. Besides, we draw out biomarkers of potential predictive value in ICIs treatment from a metabolic perspective.
Collapse
Affiliation(s)
- Yaolin Xu
- Department of Oncology, The People's Hospital of China Medical University/The People's Hospital of LiaoNing Province, Shenyang, China
| | - Lijie He
- Department of Oncology, The People's Hospital of China Medical University/The People's Hospital of LiaoNing Province, Shenyang, China
| | - Qiang Fu
- Department of Cardiology, The People's Hospital of China Medical University/The People's Hospital of LiaoNing Province, Shenyang, China
| | - Junzhe Hu
- The Second Clinic Medical College, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Zhang H, Weyand CM, Goronzy JJ. Hallmarks of the aging T-cell system. FEBS J 2021; 288:7123-7142. [PMID: 33590946 PMCID: PMC8364928 DOI: 10.1111/febs.15770] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.
Collapse
Affiliation(s)
- Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| |
Collapse
|