1
|
Liu F, Baye W, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics 2024:S1673-8527(24)00194-2. [PMID: 39053846 DOI: 10.1016/j.jgg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Sorghum, renowned for its substantial biomass production and remarkable tolerance to various stresses, possesses extensive gene resources and phenotypic variations. A comprehensive understanding of the genetic basis underlying complex agronomic traits is essential for unlocking the potential of sorghum in addressing food and feed security and utilizing marginal lands. In this context, we provide an overview of the major trends in genomic resource studies focusing on key agronomic traits over the past decade, accompanied by a summary of functional genomic platforms. We also delve into the molecular functions and regulatory networks of impactful genes for important agricultural traits. Lastly, we discuss and synthesize the current challenges and prospects for advancing molecular design breeding by gene-editing and polymerization of the excellent alleles, with the aim of accelerating the development of desired sorghum varieties.
Collapse
Affiliation(s)
- Fangyuan Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wodajo Baye
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Natural and Computational Science, Woldia University, Woldia, Po.box-400, Ethiopia.
| | - Kangxu Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Xie
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
2
|
Gong Q, Wang C, Fan W, Li S, Zhang H, Huang Z, Liu X, Ma Z, Wang Y, Zhang B. RsRbohD1 Plays a Significant Role in ROS Production during Radish Pithiness Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1386. [PMID: 38794456 PMCID: PMC11125187 DOI: 10.3390/plants13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Pithiness is one of the physiological diseases of radishes, which is accompanied by the accumulation of reactive oxygen species (ROS) during the sponging of parenchyma tissue in the fleshy roots. A respiratory burst oxidase homolog (Rboh, also known as NADPH oxidase) is a key enzyme that catalyzes the production of ROS in plants. To understand the role of Rboh genes in radish pithiness, herein, 10 RsRboh gene families were identified in the genome of Raphanus sativus using Blastp and Hmmer searching methods and were subjected to basic functional analyses such as phylogenetic tree construction, chromosomal localization, conserved structural domain analysis, and promoter element prediction. The expression profiles of RsRbohs in five stages (Pithiness grade = 0, 1, 2, 3, 4, respectively) of radish pithiness were analyzed. The results showed that 10 RsRbohs expressed different levels during the development of radish pithiness. Except for RsRbohB and RsRbohE, the expression of other members increased and reached the peak at the P2 (Pithiness grade = 2) stage, among which RsRbohD1 showed the highest transcripts. Then, the expression of 40 genes related to RsRbohD1 and pithiness were analyzed. These results can provide a theoretical basis for improving pithiness tolerance in radishes.
Collapse
Affiliation(s)
- Qiong Gong
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Chaonan Wang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Weiqiang Fan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Shuiling Li
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Hong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Zhiyin Huang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Xiaohui Liu
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Ziyun Ma
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Yong Wang
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Bin Zhang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| |
Collapse
|
3
|
Tsuda K, Maeno A, Nonomura KI. Heat shock-inducible clonal analysis reveals the stepwise establishment of cell fate in the rice stem. THE PLANT CELL 2023; 35:4366-4382. [PMID: 37757885 PMCID: PMC10689193 DOI: 10.1093/plcell/koad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The stem, consisting of nodes and internodes, is the shoot axis, which supports aboveground organs and connects them to roots. In contrast to other organs, developmental processes of the stem remain elusive, especially those initiating nodes and internodes. By introducing an intron into the Cre recombinase gene, we established a heat shock-inducible clonal analysis system in a single binary vector and applied it to the stem in the flag leaf phytomer of rice (Oryza sativa). With detailed characterizations of stem structure and development, we show that cell fate acquisition for each domain of the stem occurs stepwise. Cell fate for a single phytomer was established in the shoot apical meristem (SAM) by one plastochron before leaf initiation. Cells destined for the foot (nonelongating domain at the stem base) also started emerging before leaf initiation. Cell fate acquisition for the node began just before leaf initiation at the flank of the SAM, separating cell lineages for leaves and stems. Subsequently, cell fates for the axillary bud were established in early leaf primordia. Finally, cells committed to the internode emerged from, at most, a few cell tiers of the 12- to 25-cell stage stem epidermis. Thus, internode cell fate is established last during stem development. This study provides the groundwork to unveil underlying molecular mechanisms in stem development and a valuable tool for clonal analysis, which can be applied to various species.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Akiteru Maeno
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
4
|
Zhang Y, Huang D, Miao Y. Epigenetic control of plant senescence and cell death and its application in crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1258487. [PMID: 37965008 PMCID: PMC10642554 DOI: 10.3389/fpls.2023.1258487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Yang L, Zhou Q, Sheng X, Chen X, Hua Y, Lin S, Luo Q, Yu B, Shao T, Wu Y, Chang J, Li Y, Tu M. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Int J Mol Sci 2023; 24:14549. [PMID: 37833996 PMCID: PMC10573072 DOI: 10.3390/ijms241914549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of fossil fuels and global climate change have raised ever-increasing attention to sustainable development, global food security and the replacement of fossil fuels by renewable energy. Several C4 monocot grasses have excellent photosynthetic ability, stress tolerance and may rapidly produce biomass in marginal lands with low agronomic inputs, thus representing an important source of bioenergy. Among these grasses, Sorghum bicolor has been recognized as not only a promising bioenergy crop but also a research model due to its diploidy, simple genome, genetic diversity and clear orthologous relationship with other grass genomes, allowing sorghum research to be easily translated to other grasses. Although sorghum molecular genetic studies have lagged far behind those of major crops (e.g., rice and maize), recent advances have been made in a number of biomass-related traits to dissect the genetic loci and candidate genes, and to discover the functions of key genes. However, molecular and/or targeted breeding toward biomass-related traits in sorghum have not fully benefited from these pieces of genetic knowledge. Thus, to facilitate the breeding and bioenergy applications of sorghum, this perspective summarizes the bioenergy applications of different types of sorghum and outlines the genetic control of the biomass-related traits, ranging from flowering/maturity, plant height, internode morphological traits and metabolic compositions. In particular, we describe the dynamic changes of carbohydrate metabolism in sorghum internodes and highlight the molecular regulators involved in the different stages of internode carbohydrate metabolism, which affects the bioenergy utilization of sorghum biomass. We argue the way forward is to further enhance our understanding of the genetic mechanisms of these biomass-related traits with new technologies, which will lead to future directions toward tailored designing sorghum biomass traits suitable for different bioenergy applications.
Collapse
Affiliation(s)
- Lin Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qin Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Xuan Sheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangqian Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Yuqing Hua
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Shuang Lin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qiyun Luo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Boju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Ti Shao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yixiao Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Min Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| |
Collapse
|
6
|
Xue X, Beuchat G, Wang J, Yu YC, Moose S, Chen J, Chen LQ. Sugar accumulation enhancement in sorghum stem is associated with reduced reproductive sink strength and increased phloem unloading activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1233813. [PMID: 37767289 PMCID: PMC10519796 DOI: 10.3389/fpls.2023.1233813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Sweet sorghum has emerged as a promising source of bioenergy mainly due to its high biomass and high soluble sugar yield in stems. Studies have shown that loss-of-function Dry locus alleles have been selected during sweet sorghum domestication, and decapitation can further boost sugar accumulation in sweet sorghum, indicating that the potential for improving sugar yields is yet to be fully realized. To maximize sugar accumulation, it is essential to gain a better understanding of the mechanism underlying the massive accumulation of soluble sugars in sweet sorghum stems in addition to the Dry locus. We performed a transcriptomic analysis upon decapitation of near-isogenic lines for mutant (d, juicy stems, and green leaf midrib) and functional (D, dry stems and white leaf midrib) alleles at the Dry locus. Our analysis revealed that decapitation suppressed photosynthesis in leaves, but accelerated starch metabolic processes in stems. SbbHLH093 negatively correlates with sugar levels supported by genotypes (DD vs. dd), treatments (control vs. decapitation), and developmental stages post anthesis (3d vs.10d). D locus gene SbNAC074A and other programmed cell death-related genes were downregulated by decapitation, while sugar transporter-encoding gene SbSWEET1A was induced. Both SbSWEET1A and Invertase 5 were detected in phloem companion cells by RNA in situ assay. Loss of the SbbHLH093 homolog, AtbHLH093, in Arabidopsis led to a sugar accumulation increase. This study provides new insights into sugar accumulation enhancement in bioenergy crops, which can be potentially achieved by reducing reproductive sink strength and enhancing phloem unloading.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gabriel Beuchat
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jiang Wang
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ya-Chi Yu
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stephen Moose
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jin Chen
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Li-Qing Chen
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Li H, Liu X, Zhang J, Chen L, Zhang M, Miao Y, Ma P, Hao M, Jiang B, Ning S, Huang L, Yuan Z, Chen X, Chen X, Liu D, Wan H, Zhang L. Identification of the Solid Stem Suppressor Gene Su-TdDof in Synthetic Hexaploid Wheat Syn-SAU-117. Int J Mol Sci 2023; 24:12845. [PMID: 37629026 PMCID: PMC10454891 DOI: 10.3390/ijms241612845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqing Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Longyu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongping Miao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pan Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Liu Q, Zhao Y, Rahman S, She M, Zhang J, Yang R, Islam S, O'Hara G, Varshney RK, Liu H, Ma H, Ma W. The putative vacuolar processing enzyme gene TaVPE3cB is a candidate gene for wheat stem pith-thickness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:138. [PMID: 37233825 DOI: 10.1007/s00122-023-04372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The vacuolar processing enzyme gene TaVPE3cB is identified as a candidate gene for a QTL of wheat pith-thickness on chromosome 3B by BSR-seq and differential expression analyses. The high pith-thickness (PT) of the wheat stem could greatly enhance stem mechanical strength, especially the basal internodes which support the heavier upper part, such as upper stems, leaves and spikes. A QTL for PT in wheat was previously discovered on 3BL in a double haploid population of 'Westonia' × 'Kauz'. Here, a bulked segregant RNA-seq analysis was applied to identify candidate genes and develop associated SNP markers for PT. In this study, we aimed at screening differentially expressed genes (DEGs) and SNPs in the 3BL QTL interval. Sixteen DEGs were obtained based on BSR-seq and differential expression analyses. Twenty-four high-probability SNPs in eight genes were identified by comparing the allelic polymorphism in mRNA sequences between the high PT and low PT samples. Among them, six genes were confirmed to be associated with PT by qRT-PCR and sequencing. A putative vacuolar processing enzyme gene TaVPE3cB was screened out as a potential PT candidate gene in Australian wheat 'Westonia'. A robust SNP marker associated with TaVPE3cB was developed, which can assist in the introgression of TaVPE3cB.b in wheat breeding programs. In addition, we also discussed the function of other DEGs which may be related to pith development and programmed cell death (PCD). A five-level hierarchical regulation mechanism of stem pith PCD in wheat was proposed.
Collapse
Affiliation(s)
- Qier Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yun Zhao
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, People's Republic of China
| | - Shanjida Rahman
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rongchang Yang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Shahidul Islam
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Graham O'Hara
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hang Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hongxiang Ma
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wujun Ma
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
9
|
Ge F, Xie P, Wu Y, Xie Q. Genetic architecture and molecular regulation of sorghum domestication. ABIOTECH 2023; 4:57-71. [PMID: 37220542 PMCID: PMC10199992 DOI: 10.1007/s42994-022-00089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 05/25/2023]
Abstract
Over time, wild crops have been domesticated by humans, and the knowledge gained from parallel selection and convergent domestication-related studies in cereals has contributed to current techniques used in molecular plant breeding. Sorghum (Sorghum bicolor (L.) Moench) is the world's fifth-most popular cereal crop and was one of the first crops cultivated by ancient farmers. In recent years, genetic and genomic studies have provided a better understanding of sorghum domestication and improvements. Here, we discuss the origin, diversification, and domestication processes of sorghum based on archeological discoveries and genomic analyses. This review also comprehensively summarized the genetic basis of key genes related to sorghum domestication and outlined their molecular mechanisms. It highlights that the absence of a domestication bottleneck in sorghum is the result of both evolution and human selection. Additionally, understanding beneficial alleles and their molecular interactions will allow us to quickly design new varieties by further de novo domestication.
Collapse
Affiliation(s)
- Fengyong Ge
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
10
|
Takanashi H. Genetic control of morphological traits useful for improving sorghum. BREEDING SCIENCE 2023; 73:57-69. [PMID: 37168813 PMCID: PMC10165342 DOI: 10.1270/jsbbs.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
Global climate change and global warming, coupled with the growing population, have raised concerns about sustainable food supply and bioenergy demand. Sorghum [Sorghum bicolor (L.) Moench] ranks fifth among cereals produced worldwide; it is a C4 crop with a higher stress tolerance than other major cereals and has a wide range of uses, such as grains, forage, and biomass. Therefore, sorghum has attracted attention as a promising crop for achieving sustainable development goals (SDGs). In addition, sorghum is a suitable genetic model for C4 grasses because of its high morphological diversity and relatively small genome size compared to other C4 grasses. Although sorghum breeding and genetic studies have lagged compared to other crops such as rice and maize, recent advances in research have identified several genes and many quantitative trait loci (QTLs) that control important agronomic traits in sorghum. This review outlines traits and genetic information with a focus on morphogenetic aspects that may be useful in sorghum breeding for grain and biomass utilization.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
11
|
Šim�škov� M, Daneva A, Doll N, Schilling N, Cubr�a-Rad�o M, Zhou L, De Winter F, Aesaert S, De Rycke R, Pauwels L, Dresselhaus T, Brugi�re N, Simmons CR, Habben JE, Nowack MK. KIL1 terminates fertility in maize by controlling silk senescence. THE PLANT CELL 2022; 34:2852-2870. [PMID: 35608197 PMCID: PMC9338811 DOI: 10.1093/plcell/koac151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/15/2022] [Indexed: 05/05/2023]
Abstract
Plant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen. Here we show that KIRA1-LIKE1 (KIL1), an ortholog of the Arabidopsis NAC (NAM (NO APICAL MERISTEM), ATAF1/2 (Arabidopsis thaliana Activation Factor1 and 2) and CUC (CUP-SHAPED COTYLEDON 2)) transcription factor KIRA1, promotes senescence and programmed cell death (PCD) in the silk strand base, ending the window of accessibility for fertilization of the ovary. Loss of KIL1 function extends silk receptivity and thus strongly increases kernel yield following late pollination. This phenotype offers new opportunities for possibly improving yield stability in cereal crops. Moreover, despite diverging flower morphologies and the substantial evolutionary distance between Arabidopsis and maize, our data indicate remarkably similar principles in terminating floral receptivity by PCD, whose modulation offers the potential to be widely used in agriculture.
Collapse
Affiliation(s)
| | | | - Nicolas Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Neeltje Schilling
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Marta Cubr�a-Rad�o
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Liangzi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Cheng Q, Sun L, Qiao H, Li Z, Li M, Cui X, Li W, Liu S, Wang H, Yang W, Shen H. Loci underlying leaf agronomic traits identified by re-sequencing celery accessions based on an assembled genome. iScience 2022; 25:104565. [PMID: 35784787 PMCID: PMC9240803 DOI: 10.1016/j.isci.2022.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 10/26/2022] Open
|
13
|
Yamazaki R, Katsube-Tanaka T, Ogiso-Tanaka E, Kawasaki Y, Shiraiwa T. High source-sink ratio at and after sink capacity formation promotes green stem disorder in soybean. Sci Rep 2022; 12:10440. [PMID: 35729247 PMCID: PMC9213405 DOI: 10.1038/s41598-022-14298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Green stem disorder (GSD) of soybean is characterized by delayed leaf and stem maturation despite normal pod maturation. Previous studies have suggested that GSD occurrence is promoted by a high source-sink ratio, which is produced by thinning or shade removal at the R5 growth stage (the beginning of seed filling). Here the effects of different times and durations of shade removal after the R5 stage on GSD severity were analyzed. First, shade removal for more than 28 days after R5 increased GSD severity by more than 0.4 point in GSD score. Thinning treatment at R5 increased specific leaf weight by 23%, suppressed stem dry weight reduction, and upregulated 19 genes including those encoding vegetative storage proteins at R5 + 28d, indicating excess source ability relative to sink size. On the contrary, shade removal for 14 days after R5 decreased GSD severity by 0.5 point in GSD score. In this treatment, seed size was smaller, while seed number was significantly larger than control, suggesting that shortage of source ability relative to sink size. These results implied that soybean plants regulate GSD occurrences either positively or negatively according to a source-sink ratio during the R5 to R5 + 28d growth stages.
Collapse
Affiliation(s)
- Ryo Yamazaki
- Western Region Agricultural Research Center (Kinki, Chugoku, and Shikoku Regions), National Agriculture and Food Research Organization (NARO), 6-12-1 Nishifukatsu-cho, Fukuyama-shi, Hiroshima, 721-8514, Japan
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Eri Ogiso-Tanaka
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yohei Kawasaki
- Western Region Agricultural Research Center (Kinki, Chugoku, and Shikoku Regions), National Agriculture and Food Research Organization (NARO), 6-12-1 Nishifukatsu-cho, Fukuyama-shi, Hiroshima, 721-8514, Japan
| | - Tatsuhiko Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
Upadhyaya HD, Wang L, Prakash CS, Liu Y, Gao L, Meng R, Seetharam K, Gowda CLL, Ganesamurthy K, Singh SK, Kumar R, Li J, Wang YH. Genome-wide association mapping identifies an SNF4 ortholog that impacts biomass and sugar yield in sorghum and sugarcane. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3584-3596. [PMID: 35290448 DOI: 10.1093/jxb/erac110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Sorghum is a feed/industrial crop in developed countries and a staple food elsewhere in the world. This study evaluated the sorghum mini core collection for days to 50% flowering (DF), biomass, plant height (PH), soluble solid content (SSC), and juice weight (JW), and the sorghum reference set for DF and PH, in 7-12 testing environments. We also performed genome-wide association mapping with 6 094 317 and 265 500 single nucleotide polymorphism markers in the mini core collection and the reference set, respectively. In the mini core panel we identified three quantitative trait loci for DF, two for JW, one for PH, and one for biomass. In the reference set panel we identified another quantitative trait locus for PH on chromosome 6 that was also associated with biomass, DF, JW, and SSC in the mini core panel. Transgenic studies of three genes selected from the locus revealed that Sobic.006G061100 (SbSNF4-2) increased biomass, SSC, JW, and PH when overexpressed in both sorghum and sugarcane, and delayed flowering in transgenic sorghum. SbSNF4-2 encodes a γ subunit of the evolutionarily conserved AMPK/SNF1/SnRK1 heterotrimeric complexes. SbSNF4-2 and its orthologs will be valuable in genetic enhancement of biomass and sugar yield in plants.
Collapse
Affiliation(s)
- Hari D Upadhyaya
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | | | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Li Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Ruirui Meng
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Kaliyamoorthy Seetharam
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | | | - Shailesh Kumar Singh
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - Rajendra Kumar
- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
15
|
Wu X, Liu Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H, Jing HC. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. MOLECULAR PLANT 2022; 15:537-551. [PMID: 34999019 DOI: 10.1016/j.molp.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Domestication and diversification have had profound effects on crop genomes. Originating in Africa and subsequently spreading to different continents, sorghum (Sorghum bicolor) has experienced multiple onsets of domestication and intensive breeding selection for various end uses. However, how these processes have shaped sorghum genomes is not fully understood. In the present study, population genomics analyses were performed on a worldwide collection of 445 sorghum accessions, covering wild sorghum and four end-use subpopulations with diverse agronomic traits. Frequent genetic exchanges were found among various subpopulations, and strong selective sweeps affected 14.68% (∼107.5 Mb) of the sorghum genome, including 3649, 4287, and 3888 genes during sorghum domestication, improvement of grain sorghum, and improvement of sweet sorghum, respectively. Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed, and Sh1- and SbTB1-type genes were representative of two prominent models, one of soft selection or multiple origins and one of hard selection or an early single domestication event. We also demonstrated that the Dry gene, which regulates stem juiciness, was unconsciously selected during the improvement of grain sorghum. Taken together, these findings provide new genomic insights into sorghum domestication and breeding selection, and will facilitate further dissection of the domestication and molecular breeding of sorghum.
Collapse
Affiliation(s)
- Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Lu
- Institute of Sorghum Research, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hongwei Cai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Hoang NV, Park S, Park C, Suh H, Kim S, Chae E, Kang B, Lee J. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:144-163. [PMID: 34724278 PMCID: PMC9298717 DOI: 10.1111/tpj.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/10/2023]
Abstract
Radish, Raphanus sativus L., is an important root crop that is cultivated worldwide. Owing to its evolutionary proximity to Arabidopsis thaliana, radish can be used as a model root crop in research on the molecular basis of agronomic traits. Pithiness is a significant defect that reduces the production of radish with commercial value; however, traditional breeding to eliminate this trait has thus far been unsuccessful. Here, we performed transcriptomics and genotype-by-sequencing (GBS)-based quantitative trait locus (QTL) analyses of radish inbred lines to understand the molecular basis of pithiness in radish roots. The transcriptome data indicated that pithiness likely stems from the response to oxidative stress, leading to cell death of the xylem parenchyma during the root-thickening process. Subsequently, we narrowed down a list of candidates responsible for pithiness near a major QTL and found polymorphisms in a radish homologue of Arabidopsis ANAC013 (RsNAC013), an endoplasmic reticulum bound NAC transcription factor that is targeted to the nucleus to mediate the mitochondrial retrograde signal. We analysed the effects of polymorphisms in RsNAC013 using Arabidopsis transgenic lines overexpressing RsNAC013 alleles as well as in radish inbred lines bearing these alleles. This analysis indicated that non-synonymous variations within the coding sequence result in different levels of RsNAC013 activities, thereby providing a genetic condition for root pithiness. The elevated oxidative stress or hypoxia that activates RsNAC013 for mitochondrial signalling enhances this process. Collectively, this study serves as an exemplary case of translational research taking advantage of the extensive information available from a model organism.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Suhyoung Park
- National Institute of Horticultural & Herbal ScienceRural Development AdministrationWanju55365Korea
| | - Chulmin Park
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Hannah Suh
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Sang‐Tae Kim
- Department of Medical & Biological SciencesThe Catholic University of KoreaJibong‐roBucheon‐siGyeonggi‐do14662Korea
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Byoung‐Cheorl Kang
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Ji‐Young Lee
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversityGwanak‐roSeoul08826Korea
| |
Collapse
|
17
|
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. Sorghum breeding in the genomic era: opportunities and challenges. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1899-1924. [PMID: 33655424 PMCID: PMC7924314 DOI: 10.1007/s00122-021-03789-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Lu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova VV, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. THE PLANT CELL 2021; 33:200-223. [PMID: 33582756 PMCID: PMC8136906 DOI: 10.1093/plcell/koaa019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/06/2023]
Abstract
Genome-wide gene expression maps with a high spatial resolution have substantially accelerated plant molecular science. However, the number of characterized tissues and growth stages is still small due to the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues. By combining fluorescence-activated nucleus sorting and laser-capture microdissection with next-generation RNA sequencing, we characterized the transcriptomes of xylem vessels, fibers, the proximal and distal cambium, phloem, phloem cap, pith, starch sheath, and epidermis cells. Our analyses classified more than 15,000 genes as being differentially expressed among different stem tissues and revealed known and novel tissue-specific cellular signatures. By determining overrepresented transcription factor binding regions in the promoters of differentially expressed genes, we identified candidate tissue-specific transcriptional regulators. Our datasets predict the expression profiles of an exceptional number of genes and allow hypotheses to be generated about the spatial organization of physiological processes. Moreover, we demonstrate that information about gene expression in a broad range of mature plant tissues can be established at high spatial resolution by nuclear mRNA profiling. Tissue-specific gene expression values can be accessed online at https://arabidopsis-stem.cos.uni-heidelberg.de/.
Collapse
Affiliation(s)
- Dongbo Shi
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Virginie Jouannet
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Javier Agustí
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), C/Enginyer Fausto Elio S/N. 46011 Valencia, Spain
| | - Verena Kaul
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Victor Levitsky
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Pablo Sanchez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Victoria V Mironova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Author for correspondence:
| |
Collapse
|
19
|
Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O 2 and mitochondrial cytochrome-c release. JOURNAL OF PLANT RESEARCH 2021; 134:179-194. [PMID: 33569718 DOI: 10.1007/s10265-021-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago de Compostela (USC), Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
20
|
Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 2021; 56:557-568.e6. [PMID: 33400914 DOI: 10.1016/j.devcel.2020.12.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nathan Fox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anding Luo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Anne W Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; USDA-ARS, Robert W. Holley Center, Ithaca, NY 14853, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
21
|
Nilsen KT, Walkowiak S, Xiang D, Gao P, Quilichini TD, Willick IR, Byrns B, N'Diaye A, Ens J, Wiebe K, Ruan Y, Cuthbert RD, Craze M, Wallington EJ, Simmonds J, Uauy C, Datla R, Pozniak CJ. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc Natl Acad Sci U S A 2020; 117:28708-28718. [PMID: 33127757 PMCID: PMC7682410 DOI: 10.1073/pnas.2009418117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem solidness is an important agronomic trait of durum (Triticum turgidum L. var. durum) and bread (Triticum aestivum L.) wheat that provides resistance to the wheat stem sawfly. This dominant trait is conferred by the SSt1 locus on chromosome 3B. However, the molecular identity and mechanisms underpinning stem solidness have not been identified. Here, we demonstrate that copy number variation of TdDof, a gene encoding a putative DNA binding with one finger protein, controls the stem solidness trait in wheat. Using map-based cloning, we localized TdDof to within a physical interval of 2.1 Mb inside the SSt1 locus. Molecular analysis revealed that hollow-stemmed wheat cultivars such as Kronos carry a single copy of TdDof, whereas solid-stemmed cultivars such as CDC Fortitude carry multiple identical copies of the gene. Deletion of all TdDof copies from CDC Fortitude resulted in the loss of stem solidness, whereas the transgenic overexpression of TdDof restored stem solidness in the TdDof deletion mutant pithless1 and conferred stem solidness in Kronos. In solid-stemmed cultivars, increased TdDof expression was correlated with the down-regulation of genes whose orthologs have been implicated in programmed cell death (PCD) in other species. Anatomical and histochemical analyses revealed that hollow-stemmed lines had stronger PCD-associated signals in the pith cells compared to solid-stemmed lines, which suggests copy number-dependent expression of TdDof could be directly or indirectly involved in the negative regulation of PCD. These findings provide opportunities to manipulate stem development in wheat and other monocots for agricultural or industrial purposes.
Collapse
Affiliation(s)
- Kirby T Nilsen
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Sean Walkowiak
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB R3C 3G8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Ian R Willick
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Brook Byrns
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Richard D Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | | | | | | | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
22
|
Zhou X, Xiang Y, Li C, Yu G. Modulatory Role of Reactive Oxygen Species in Root Development in Model Plant of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:485932. [PMID: 33042167 PMCID: PMC7525048 DOI: 10.3389/fpls.2020.485932] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 08/31/2020] [Indexed: 05/13/2023]
Abstract
Reactive oxygen species (ROS), a type of oxygen monoelectronic reduction product, have a higher chemical activity than O2. Although ROS pose potential risks to all organisms via inducing oxidative stress, indispensable role of ROS in individual development cannot be ignored. Among them, the role of ROS in the model plant Arabidopsis thaliana is deeply studied. Mounting evidence suggests that ROS are essential for root and root hair development. In the present review, we provide an updated perspective on the latest research progress pertaining to the role of ROS in the precise regulation of root stem cell maintenance and differentiation, redox regulation of the cell cycle, and root hair initiation during root growth. Among the different types of ROS, O2 •- and H2O2 have been extensively investigated, and they exhibit different gradient distributions in the roots. The concentration of O2 •- decreases along a gradient from the meristem to the transition zone and the concentration of H2O2 decreases along a gradient from the differentiation zone to the elongation zone. These gradients are regulated by peroxidases, which are modulated by the UPBEAT1 (UPB1) transcription factor. In addition, multiple transcriptional factors, such as APP1, ABO8, PHB3, and RITF1, which are involved in the brassinolide signaling pathway, converge as a ROS signal to regulate root stem cell maintenance. Furthermore, superoxide anions (O2 •-) are generated from the oxidation in mitochondria, ROS produced during plasmid metabolism, H2O2 produced in apoplasts, and catalysis of respiratory burst oxidase homolog (RBOH) in the cell membrane. Furthermore, ROS can act as a signal to regulate redox status, which regulates the expression of the cell-cycle components CYC2;3, CYCB1;1, and retinoblastoma-related protein, thereby controlling the cell-cycle progression. In the root maturation zone, the epidermal cells located in the H cell position emerge to form hair cells, and plant hormones, such as auxin and ethylene regulate root hair formation via ROS. Furthermore, ROS accumulation can influence hormone signal transduction and vice versa. Data about the association between nutrient stress and ROS signals in root hair development are scarce. However, the fact that ROBHC/RHD2 or RHD6 is specifically expressed in root hair cells and induced by nutrients, may explain the relationship. Future studies should focus on the regulatory mechanisms underlying root hair development via the interactions of ROS with hormone signals and nutrient components.
Collapse
Affiliation(s)
| | | | | | - Guanghui Yu
- *Correspondence: Guanghui Yu, ; orcid.org/0000-0002-3174-1878
| |
Collapse
|
23
|
Li Y, Tu M, Feng Y, Wang W, Messing J. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:274. [PMID: 31832097 PMCID: PMC6868837 DOI: 10.1186/s13068-019-1612-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/09/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Sorghum bicolor (L.) is an important bioenergy source. The stems of sweet sorghum function as carbon sinks and accumulate large amounts of sugars and lignocellulosic biomass and considerable amounts of starch, therefore providing a model of carbon allocation and accumulation for other bioenergy crops. While omics data sets for sugar accumulation have been reported in different genotypes, the common features of primary metabolism in sweet genotypes remain unclear. To obtain a cohesive and comparative picture of carbohydrate metabolism between sorghum genotypes, we compared the phenotypes and transcriptome dynamics of sugar-accumulating internodes among three different sweet genotypes (Della, Rio, and SIL-05) and two non-sweet genotypes (BTx406 and R9188). RESULTS Field experiments showed that Della and Rio had similar dynamics and internode patterns of sugar concentration, albeit distinct other phenotypes. Interestingly, cellulose synthases for primary cell wall and key genes in starch synthesis and degradation were coordinately upregulated in sweet genotypes. Sweet sorghums maintained active monolignol biosynthesis compared to the non-sweet genotypes. Comparative RNA-seq results support the role of candidate Tonoplast Sugar Transporter gene (TST), but not the Sugars Will Eventually be Exported Transporter genes (SWEETs) in the different sugar accumulations between sweet and non-sweet genotypes. CONCLUSIONS Comparisons of the expression dynamics of carbon metabolic genes across the RNA-seq data sets identify several candidate genes with contrasting expression patterns between sweet and non-sweet sorghum lines, including genes required for cellulose and monolignol synthesis (CesA, PTAL, and CCR), starch metabolism (AGPase, SS, SBE, and G6P-translocator SbGPT2), and sucrose metabolism and transport (TPP and TST2). The common transcriptome features of primary metabolism identified here suggest the metabolic networks contributing to carbon sink strength in sorghum internodes, prioritize the candidate genes for manipulating carbon allocation with bioenergy purposes, and provide a comparative and cohesive picture of the complexity of carbon sink strength in sorghum stem.
Collapse
Affiliation(s)
- Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Min Tu
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Wenqing Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai, 200240 China
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
24
|
Micromanagement of Developmental and Stress-Induced Senescence: The Emerging Role of MicroRNAs. Genes (Basel) 2019; 10:genes10030210. [PMID: 30871088 PMCID: PMC6470504 DOI: 10.3390/genes10030210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are short (19⁻24-nucleotide-long), non-coding RNA molecules. They downregulate gene expression by triggering the cleavage or translational inhibition of complementary mRNAs. Senescence is a stage of development following growth completion and is dependent on the expression of specific genes. MicroRNAs control the gene expression responsible for plant competence to answer senescence signals. Therefore, they coordinate the juvenile-to-adult phase transition of the whole plant, the growth and senescence phase of each leaf, age-related cellular structure changes during vessel formation, and remobilization of resources occurring during senescence. MicroRNAs are also engaged in the ripening and postharvest senescence of agronomically important fruits. Moreover, the hormonal regulation of senescence requires microRNA contribution. Environmental cues, such as darkness or drought, induce senescence-like processes in which microRNAs also play regulatory roles. In this review, we discuss recent findings concerning the role of microRNAs in the senescence of various plant species.
Collapse
|
25
|
Hu Z, Olatoye MO, Marla S, Morris GP. An Integrated Genotyping-by-Sequencing Polymorphism Map for Over 10,000 Sorghum Genotypes. THE PLANT GENOME 2019; 12:180044. [PMID: 30951089 DOI: 10.3835/plantgenome2018.06.0044] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mining crop genomic variation can facilitate the genetic research of complex traits and molecular breeding. In sorghum [ L. (Moench)], several large-scale single nucleotide polymorphism (SNP) datasets have been generated using genotyping-by-sequencing of KI reduced representation libraries. However, data reuse has been impeded by differences in reference genome coordinates among datasets. To facilitate reuse of these data, we constructed and characterized an integrated 459,304-SNP dataset for 10,323 sorghum genotypes on the version 3.1 reference genome. The SNP distribution showed high enrichment in subtelomeric chromosome arms and in genic regions (48% of SNPs) and was highly correlated ( = 0.82) to the distribution of KI restriction sites. The genetic structure reflected population differences by botanical race, as well as familial structure among recombinant inbred lines (RILs). Faster linkage disequilibrium decay was observed in the diversity panel than in the RILs, as expected, given the greater opportunity for recombination in diverse populations. To validate the quality and utility of the integrated SNP dataset, we used genome-wide association studies (GWAS) of genebank phenotype data, precisely mapping several known genes (e.g and ) and identifying novel associations for other traits. We further validated the dataset with GWAS of new and published plant height and flowering time data in a nested association mapping population, precisely mapping known genes and identifying epistatic interactions underlying both traits. These findings validate this integrated SNP dataset as a useful genomics resource for sorghum genetics and breeding.
Collapse
|
26
|
Punja ZK, Collyer D, Scott C, Lung S, Holmes J, Sutton D. Pathogens and Molds Affecting Production and Quality of Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2019; 10:1120. [PMID: 31681341 PMCID: PMC6811654 DOI: 10.3389/fpls.2019.01120] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/14/2019] [Indexed: 05/23/2023]
Abstract
Plant pathogens infecting marijuana (Cannabis sativa L.) plants reduce growth of the crop by affecting the roots, crown, and foliage. In addition, fungi (molds) that colonize the inflorescences (buds) during development or after harvest, and which colonize internal tissues as endophytes, can reduce product quality. The pathogens and molds that affect C. sativa grown hydroponically indoors (in environmentally controlled growth rooms and greenhouses) and field-grown plants were studied over multiple years of sampling. A PCR-based assay using primers for the internal transcribed spacer region (ITS) of ribosomal DNA confirmed identity of the cultures. Root-infecting pathogens included Fusarium oxysporum, Fusarium solani, Fusarium brachygibbosum, Pythium dissotocum, Pythium myriotylum, and Pythium aphanidermatum, which caused root browning, discoloration of the crown and pith tissues, stunting and yellowing of plants, and in some instances, plant death. On the foliage, powdery mildew, caused by Golovinomyces cichoracearum, was the major pathogen observed. On inflorescences, Penicillium bud rot (caused by Penicillium olsonii and Penicillium copticola), Botrytis bud rot (Botrytis cinerea), and Fusarium bud rot (F. solani, F. oxysporum) were present to varying extents. Endophytic fungi present in crown, stem, and petiole tissues included soil-colonizing and cellulolytic fungi, such as species of Chaetomium, Trametes, Trichoderma, Penicillium, and Fusarium. Analysis of air samples in indoor growing environments revealed that species of Penicillium, Cladosporium, Aspergillus, Fusarium, Beauveria, and Trichoderma were present. The latter two species were the result of the application of biocontrol products for control of insects and diseases, respectively. Fungal communities present in unpasteurized coconut (coco) fiber growing medium are potential sources of mold contamination on cannabis plants. Swabs taken from greenhouse-grown and indoor buds pre- and post-harvest revealed the presence of Cladosporium and up to five species of Penicillium, as well as low levels of Alternaria species. Mechanical trimming of buds caused an increase in the frequency of Penicillium species, presumably by providing entry points through wounds or spreading endophytes from pith tissues. Aerial distribution of pathogen inoculum and mold spores and dissemination through vegetative propagation are important methods of spread, and entry through wound sites on roots, stems, and bud tissues facilitates pathogen establishment on cannabis plants.
Collapse
|