1
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2025; 182:471-483. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
3
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
4
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Chen W, Chen Q, Huang J, Shen X, Zhang L, Jiang G, Wu T, Wang F, Cheng X. Huanglian-banxia promotes gastric motility of diabetic rats by modulating brain-gut neurotransmitters through MAPK signaling pathway. Neurogastroenterol Motil 2024; 36:e14779. [PMID: 38488234 DOI: 10.1111/nmo.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/13/2023] [Accepted: 03/02/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.
Collapse
Affiliation(s)
- Wei Chen
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Qiong Chen
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Jiayi Huang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xianmin Shen
- Department of Gastroenterology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Lurong Zhang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Guorong Jiang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Tingting Wu
- Department of Gastroenterology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Fei Wang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xudong Cheng
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Wu S, Wang J, Zhang Z, Jin X, Xu Y, Si Y, Liang Y, Ge Y, Zhan H, Peng L, Bi W, Luo D, Li M, Meng B, Guan Q, Zhao J, Gao L, He Z. Shank3 deficiency elicits autistic-like behaviors by activating p38α in hypothalamic AgRP neurons. Mol Autism 2024; 15:14. [PMID: 38570876 PMCID: PMC10993499 DOI: 10.1186/s13229-024-00595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Zicheng Zhang
- School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210009, China
| | - Xinchen Jin
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences,East China Normal University, Shanghai, 200062, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences,East China Normal University, Shanghai, 200062, China
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, 544 Jingsi Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
O'Connell CJ, Reeder EL, Hymore JA, Brown RS, Notorgiacomo GA, Collins SM, Gudelsky GA, Robson MJ. Transcriptomic dynamics governing serotonergic dysregulation in the dorsal raphe nucleus following mild traumatic brain injury. Exp Neurol 2024; 374:114695. [PMID: 38246304 DOI: 10.1016/j.expneurol.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of disability in the United States, with neuropsychiatric disturbances such as depression, anxiety, PTSD, and social disturbances being common comorbidities following injury. The molecular mechanisms driving neuropsychiatric complications following neurotrauma are not well understood and current FDA-approved pharmacotherapies employed to ameliorate these comorbidities lack desired efficacy. Concerted efforts to understand the molecular mechanisms of and identify novel drug candidates for treating neurotrauma-elicited neuropsychiatric sequelae are clearly needed. Serotonin (5-HT) is linked to the etiology of neuropsychiatric disorders, however our understanding of how various forms of TBI directly affect 5-HT neurotransmission is limited. 5-HT neurons originate in the raphe nucleus (RN) of the midbrain and project throughout the brain to regulate diverse behavioral phenotypes. We hypothesize that the characterization of the dynamics governing 5-HT neurotransmission after injury will drive the discovery of novel drug targets and lead to a greater understanding of the mechanisms associated with neuropsychiatric disturbances following mild TBI (mTBI). Herein, we provide evidence that closed-head mTBI alters total DRN 5-HT levels, with RNA sequencing of the DRN revealing injury-derived alterations in transcripts required for the development, identity, and functional stability of 5-HT neurons. Further, using gene ontology analyses combined with immunohistological analyses, we have identified a novel mechanism of transcriptomic control within 5-HT neurons that may directly influence 5-HT neuron identity/function post-injury. These studies provide molecular evidence of injury-elicited 5-HT neuron dysregulation, data which may expedite the identification of novel therapeutic targets to attenuate TBI-elicited neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Christopher J O'Connell
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Evan L Reeder
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Jacob A Hymore
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Ryan S Brown
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | | | - Sean M Collins
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Gary A Gudelsky
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew J Robson
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Gajeswski-Kurdziel PA, Walsh AE, Blakely RD. Functional and pathological consequences of being fast on the uptake: Protein kinase G and p38α MAPK regulation of serotonin transporters. Curr Res Physiol 2024; 7:100117. [PMID: 38298474 PMCID: PMC10825370 DOI: 10.1016/j.crphys.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) signaling plays an important role in dynamic control of peripheral and central nervous system physiology, with altered 5-HT homeostasis implicated in a significant number of disorders, ranging from pulmonary, bowel, and metabolic disease to depression, obsessive-compulsive disorder, and autism spectrum disorder (ASD). The presynaptic, 5-HT transporter (SERT) has a well-established role in regulating 5-HT signaling and is a target of widely prescribed psychotherapeutics, the 5-HT selective reuptake inhibitors (SSRIs). Although SSRI therapy provides symptom relief for many suffering from mood and anxiety disorders, response to these medications is slow (weeks), and too many receive modest or no benefit. At present, all prescribed SSRIs act as competitive SERT antagonists. Although non-serotonergic therapeutics for mood disorders deserve aggressive investigation, the development of agents that target SERT regulatory pathways have yet to be considered for their possible utility and may possibly offer improved efficacy and more rapid onset. Here, we focus attention on a significant body of evidence that SERT transport activity can be rapidly elevated by protein kinase G (PKG) and p38α mitogen activated protein kinase (MAPK) linked pathways, mechanisms that are impacted by disease-associated genetic variation. Here, we provide a brief overview of kinase-linked, posttranslational regulation of SERT, with a particular focus on evidence from pharmacological and genetic studies that the transporter's regulation by PKG/p38α MAPK associated pathways offers an opportunity to more subtly adjust, rather than eliminate, SERT function as a therapeutic strategy.
Collapse
Affiliation(s)
| | - Allison E. Walsh
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
9
|
Støier JF, Jørgensen TN, Sparsø T, Rasmussen HB, Kumar V, Newman AH, Blakely RD, Werge T, Gether U, Herborg F. Disruptive mutations in the serotonin transporter associate serotonin dysfunction with treatment-resistant affective disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.29.23294386. [PMID: 37693601 PMCID: PMC10491376 DOI: 10.1101/2023.08.29.23294386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Affective or mood disorders are a leading cause of disability worldwide. The serotonergic system has been heavily implicated in the complex etiology and serves as a therapeutic target. The serotonin transporter (SERT) is a major regulator of serotonin neurotransmission, yet the disease-relevance of impaired SERT function remains unknown. Here, we present the first identification and functional characterization of disruptive coding SERT variants found in patients with psychiatric diseases. In a unique cohort of 144 patients characterized by treatment-resistant chronic affective disorders with a lifetime history of electroconvulsive therapy, we identified two previously uncharacterized coding SERT variants: SERT-N217S and SERT-A500T. Both variants were significantly enriched in the patient cohort compared to GnomAD (SERT-N217S: OR = 151, P = 0.0001 and SERT-A500T: OR = 1348, P = 0.0022) and ethnicity-matched healthy controls (SERT-N217S: OR ≥ 17.7, P ≤ 0.013 and SERT-A500T: OR = ∞, P = 0.029). Functional investigations revealed that the mutations exert distinct perturbations to SERT function, but their overall effects converge on a partial loss-of-function molecular phenotype. Thus, the SERT-A500T variant compromises the catalytic activity, while SERT-N217S disrupts proper glycosylation of SERT with a resulting dominant-negative trafficking deficiency. Moreover, we demonstrate that the trafficking deficiency of SERT-N217S is amenable to pharmacochaperoning by noribogaine. Collectively, our findings describe the first disease-associated loss-of-function SERT variants and implicate serotonergic disturbances arising from SERT dysfunction as a risk factor for chronic affective disorders.
Collapse
|
10
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:303-318. [PMID: 37076279 DOI: 10.1134/s0006297923030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as "the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment" is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.
Collapse
|
11
|
Xiong Y, Chen J, Lv M, Wang F, Zhang H, Tang B, Li Y. Thymol improves autism-like behaviour in VPA-induced ASD rats through the Pin1/p38 MAPK pathway. Int Immunopharmacol 2023; 117:109885. [PMID: 36842231 DOI: 10.1016/j.intimp.2023.109885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/28/2023]
Abstract
Inflammation plays an essential role in the pathogenesis of autism spectrum disorder (ASD). Thymol is a bioactive monoterpene isolated from Thymus vulgaris that has anti-inflammatory properties and is helpful in neurodevelopmental disorders. The purpose of this study was to investigate the effects of thymol on autism-like behaviours in rats with VPA-induced ASD and to assess the related molecular mechanisms. In the prefrontal cortex (PFC) of the valproic acid (VPA)-exposed rat model, the levels of Pin1, phosphorylated p38 MAPK, interleukin-1β (IL-1β) and tumour necrosis factor (TNF)-α, were increased, and the levels of PSD95 and synaptophysin (SYP) decreased. After thymol treatment (30 mg/kg), the VPA-induced autism-like behaviours were alleviated. Moreover, thymol also rescued the dysregulated levels of Pin1, phosphorylated p38 MAPK, IL-1β, TNF-α, PSD95, and SYP. In addition, immunofluorescence experiments showed that thymol treatment decreased the correlation between Pin1 and phosphorylated p38 MAPK. Mechanistically, Pin1 knockdown by RNA interference confirmed that Pin1 promotes inflammation via phosphorylation of p38 MAPK in the VPA exposure rat model. In conclusion, thymol improved autism-like behaviours in VPA-induced ASD rats by reducing inflammation and improving neurodevelopment. This effect was mediated by the Pin1/p38 MAPK pathway. These results experimentally provide the potential for thymol in new therapeutic avenues for autism.
Collapse
Affiliation(s)
- Yue Xiong
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Experimental Teaching Management Center of Chongqing Medical University, Chongqing 400016, China
| | - Feifei Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Hanhong Zhang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Boyi Tang
- The Second Clinical College of Chongqing Medical University, Chongqing 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Li Q, Shi Y, Li X, Yang Y, Zhang X, Xu L, Ma Z, Wang J, Fan L, Wu L. Proteomic-Based Approach Reveals the Involvement of Apolipoprotein A-I in Related Phenotypes of Autism Spectrum Disorder in the BTBR Mouse Model. Int J Mol Sci 2022; 23:ijms232315290. [PMID: 36499620 PMCID: PMC9737945 DOI: 10.3390/ijms232315290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Abnormal lipid metabolism has been suggested to contribute to its pathogenesis. Further exploration of its underlying biochemical mechanisms is needed. In a search for reliable biomarkers for the pathophysiology of ASD, hippocampal tissues from the ASD model BTBR T+ Itpr3tf/J (BTBR) mice and C57BL/6J mice were analyzed, using four-dimensional (4D) label-free proteomic analysis and bioinformatics analysis. Differentially expressed proteins were significantly enriched in lipid metabolic pathways. Among them, apolipoprotein A-I (ApoA-I) is a hub protein and its expression was significantly higher in the BTBR mice. The investigation of protein levels (using Western blotting) also confirmed this observation. Furthermore, expressions of SphK2 and S1P in the ApoA-I pathway both increased. Using the SphK inhibitor (SKI-II), ASD core phenotype and phenotype-related protein levels of P-CREB, P-CaMKII, and GAD1 were improved, as shown via behavioral and molecular biology experiments. Moreover, by using SKI-II, we found proteins related to the development and function of neuron synapses, including ERK, caspase-3, Bax, Bcl-2, CDK5 and KCNQ2 in BTBR mice, whose levels were restored to protein levels comparable to those in the controls. Elucidating the possible mechanism of ApoA-I in ASD-associated phenotypes will provide new ideas for studies on the etiology of ASD.
Collapse
|
13
|
Mild traumatic brain injury elicits time- and region-specific reductions in serotonin transporter protein expression and uptake capacity. Neuroreport 2022; 33:612-616. [DOI: 10.1097/wnr.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Zhao F, Zhang H, Wang P, Cui W, Xu K, Chen D, Hu M, Li Z, Geng X, Wei S. Oxytocin and serotonin in the modulation of neural function: Neurobiological underpinnings of autism-related behavior. Front Neurosci 2022; 16:919890. [PMID: 35937893 PMCID: PMC9354980 DOI: 10.3389/fnins.2022.919890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) is a group of generalized neurodevelopmental disorders. Its main clinical features are social communication disorder and repetitive stereotyped behavioral interest. The abnormal structure and function of brain network is the basis of social dysfunction and stereotyped performance in patients with autism spectrum disorder. The number of patients diagnosed with ASD has increased year by year, but there is a lack of effective intervention and treatment. Oxytocin has been revealed to effectively improve social cognitive function and significantly improve the social information processing ability, empathy ability and social communication ability of ASD patients. The change of serotonin level also been reported affecting the development of brain and causes ASD-like behavioral abnormalities, such as anxiety, depression like behavior, stereotyped behavior. Present review will focus on the research progress of serotonin and oxytocin in the pathogenesis, brain circuit changes and treatment of autism. Revealing the regulatory effect and neural mechanism of serotonin and oxytocin on patients with ASD is not only conducive to a deeper comprehension of the pathogenesis of ASD, but also has vital clinical significance.
Collapse
Affiliation(s)
- Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Cui
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- Zifa Li,
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- Xiwen Geng,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
15
|
Collins SM, O’Connell CJ, Reeder EL, Norman SV, Lungani K, Gopalan P, Gudelsky GA, Robson MJ. Altered Serotonin 2A (5-HT2A) Receptor Signaling Underlies Mild TBI-Elicited Deficits in Social Dominance. Front Pharmacol 2022; 13:930346. [PMID: 35910378 PMCID: PMC9337880 DOI: 10.3389/fphar.2022.930346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Various forms of traumatic brain injury (TBI) are a leading cause of disability in the United States, with the generation of neuropsychiatric complications such as depression, anxiety, social dysfunction, and suicidality being common comorbidities. Serotonin (5-HT) signaling is linked to psychiatric disorders; however, the effects of neurotrauma on normal, homeostatic 5-HT signaling within the central nervous system (CNS) have not been well characterized. We hypothesize that TBI alters specific components of 5-HT signaling within the CNS and that the elucidation of specific TBI-induced alterations in 5-HT signaling may identify novel targets for pharmacotherapies that ameliorate the neuropsychiatric complications of TBI. Herein, we provide evidence that closed-head blast-induced mild TBI (mTBI) results in selective alterations in cortical 5-HT2A receptor signaling. We find that mTBI increases in vivo cortical 5-HT2A receptor sensitivity and ex vivo radioligand binding at time points corresponding with mTBI-induced deficits in social behavior. In contrast, in vivo characterizations of 5-HT1A receptor function revealed no effect of mTBI. Notably, we find that repeated pharmacologic activation of 5-HT2A receptors post-injury reverses deficits in social dominance resulting from mTBI. Cumulatively, these studies provide evidence that mTBI drives alterations in cortical 5-HT2A receptor function and that selective targeting of TBI-elicited alterations in 5-HT2A receptor signaling may represent a promising avenue for the development of pharmacotherapies for TBI-induced generation of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sean M. Collins
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH, United States
| | - Christopher J. O’Connell
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH, United States
| | - Evan L. Reeder
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH, United States
| | - Sophia V. Norman
- Department of Biological Sciences, University of Cincinnati College of Arts and Sciences, Cincinnati, OH, United States
| | - Kainat Lungani
- Department of Biological Sciences, University of Cincinnati College of Arts and Sciences, Cincinnati, OH, United States
| | - Poornima Gopalan
- Department of Biological Sciences, University of Cincinnati College of Arts and Sciences, Cincinnati, OH, United States
| | - Gary A. Gudelsky
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Matthew J. Robson,
| |
Collapse
|
16
|
Linlin Z, Ciai L, Yanhong S, Huizhong G, Yongchun L, Zhen Y, Shan X, Fengying G, Ying L, Jingjun L, Qin F. A Multi-Target and Multi-Channel Mechanism of Action for Jiawei Yinhuo Tang in the Treatment of Social Communication Disorders in Autism: Network Pharmacology and Molecular Docking Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4093138. [PMID: 35178102 PMCID: PMC8846994 DOI: 10.1155/2022/4093138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with complex pathogenesis. Currently, the pathogenesis of ASD is not fully understood. Moreover, current treatments do not effectively alleviate the primary symptoms of ASD social disorder (SCDA). Jiawei Yinhuo Tang (JWYHT) is an improved version of the classic prescription Yinhuo Tang. Although this medication has been shown to improve social behavior in ASD patients, the mechanism by which it works remains unknown. METHODS In this study, network pharmacology bioinformatics analysis was used to identify the key targets, biological functions, and signal pathways of JWYHT in SCDA. Then, molecular docking and molecular dynamic simulation were used to validate the activity and stability of the active ingredient and the target protein during the binding process. RESULTS The analysis identified 157 key targets and 9 core targets of JWYHT (including proto-oncogene (FOS), caspase 3 (CASP3), mitogen-activated protein kinase-3 (MAPK3), interleukin-6 (IL6), mitogen-activated protein kinase-1 (MAPK1), tumor necrosis factor (TNF), mitogen-activated protein kinase-8 (MAPK8), AKT serine/threonine kinase 1 (AKT1), and 5-hydroxytryptamine receptor 1B (5HT1B)) in SCDA. In addition, the Kyoto Encyclopedia of Gene and Genome results, as well as the staggering network analyses, revealed 20 biological processes and 20 signal pathways targeted by JWYHT in SCDA. Finally, molecular docking analysis was used to determine the binding activity of the main active components of JWYHT to the key targets. The binding activity and stability of methyl arachidonate and MAPK8 were demonstrated using molecular dynamics simulation. CONCLUSION This study demonstrates that JWYHT regulates neuronal development, synaptic transmission, intestinal and cerebral inflammatory response, and other processes in SCDA.
Collapse
Affiliation(s)
- Zhang Linlin
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Lai Ciai
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Su Yanhong
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Gan Huizhong
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Li Yongchun
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Yang Zhen
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Xu Shan
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Gong Fengying
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Lv Ying
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Li Jingjun
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Fan Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
18
|
Meinke C, Quinlan MA, Paffenroth KC, Harrison FE, Fenollar-Ferrer C, Katamish RM, Stillman I, Ramamoorthy S, Blakely RD. Serotonin Transporter Ala276 Mouse: Novel Model to Assess the Neurochemical and Behavioral Impact of Thr276 Phosphorylation In Vivo. Neurochem Res 2022; 47:37-60. [PMID: 33830406 PMCID: PMC11574550 DOI: 10.1007/s11064-021-03299-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
The serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressants and psychostimulants. Human SERT coding variants have been identified in subjects with obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) that impact transporter phosphorylation, cell surface trafficking and/or conformational dynamics. Prior to an initial description of a novel mouse line expressing the non-phosphorylatable SERT substitution Thr276Ala, we review efforts made to elucidate the structure and conformational dynamics of SERT with a focus on research implicating phosphorylation at Thr276 as a determinant of SERT conformational dynamics. Using the high-resolution structure of human SERT in inward- and outward-open conformations, we explore the conformation dependence of SERT Thr276 exposure, with results suggesting that phosphorylation is likely restricted to an inward-open conformation, consistent with prior biochemical studies. Assessment of genotypes from SERT/Ala276 heterozygous matings revealed a deviation from Mendelian expectations, with reduced numbers of Ala276 offspring, though no genotype differences were seen in growth or physical appearance. Similarly, no genotype differences were evident in midbrain or hippocampal 5-HT levels, midbrain and hippocampal SERT mRNA or midbrain protein levels, nor in midbrain synaptosomal 5-HT uptake kinetics. Behaviorally, SERT Ala276 homozygotes appeared normal in measures of anxiety and antidepressant-sensitive stress coping behavior. However, these mice displayed sex-dependent alterations in repetitive and social interactions, consistent with circuit-dependent requirements for Thr276 phosphorylation underlying these behaviors. Our findings indicate the utility of SERT Ala276 mice in evaluation of developmental, functional and behavioral consequences of regulatory SERT phosphorylation in vivo.
Collapse
Affiliation(s)
- Carina Meinke
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Fiona E Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cristina Fenollar-Ferrer
- Laboratories of Molecular Genetics and Molecular Biology, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rania M Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Isabel Stillman
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | | | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA.
- Florida Atlantic University Brain Institute, Rm 109, MC-17, 5353 Parkside Dr, Jupiter, FL, 35348, USA.
| |
Collapse
|
19
|
The Hypothermic Effect of Hydrogen Sulfide Is Mediated by the Transient Receptor Potential Ankyrin-1 Channel in Mice. Pharmaceuticals (Basel) 2021; 14:ph14100992. [PMID: 34681216 PMCID: PMC8538668 DOI: 10.3390/ph14100992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown in previous studies to cause hypothermia and hypometabolism in mice, and its thermoregulatory effects were subsequently investigated. However, the molecular target through which H2S triggers its effects on deep body temperature has remained unknown. We investigated the thermoregulatory response to fast-(Na2S) and slow-releasing (GYY4137) H2S donors in C57BL/6 mice, and then tested whether their effects depend on the transient receptor potential ankyrin-1 (TRPA1) channel in Trpa1 knockout (Trpa1−/−) and wild-type (Trpa1+/+) mice. Intracerebroventricular administration of Na2S (0.5–1 mg/kg) caused hypothermia in C57BL/6 mice, which was mediated by cutaneous vasodilation and decreased thermogenesis. In contrast, intraperitoneal administration of Na2S (5 mg/kg) did not cause any thermoregulatory effect. Central administration of GYY4137 (3 mg/kg) also caused hypothermia and hypometabolism. The hypothermic response to both H2S donors was significantly (p < 0.001) attenuated in Trpa1−/− mice compared to their Trpa1+/+ littermates. Trpa1 mRNA transcripts could be detected with RNAscope in hypothalamic and other brain neurons within the autonomic thermoeffector pathways. In conclusion, slow- and fast-releasing H2S donors induce hypothermia through hypometabolism and cutaneous vasodilation in mice that is mediated by TRPA1 channels located in the brain, presumably in hypothalamic neurons within the autonomic thermoeffector pathways.
Collapse
|
20
|
Understanding Abnormal c-JNK/p38MAPK Signaling Overactivation Involved in the Progression of Multiple Sclerosis: Possible Therapeutic Targets and Impact on Neurodegenerative Diseases. Neurotox Res 2021; 39:1630-1650. [PMID: 34432262 DOI: 10.1007/s12640-021-00401-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Demyelination, immune dysregulation, and neuroinflammation are the most common triggers of motor neuron disorders such as multiple sclerosis (MS). MS is a chronic demyelinating neurodegenerative disease of the central nervous system caused by abnormal immune activation, which causes myelin sheath damage. Cell signal transduction pathways are required for a variety of physiological and pathological processes in the brain. When these signaling systems become overactive, they can lead to disease progression. In various physiological conditions, abnormal mitogen-activated protein kinase (MAPK) activation is associated with several physiological dysfunctions that cause neurodegeneration. Previous research indicates that c-JNK and p38MAPK signaling play critical roles in neuronal growth and differentiation. c-JNK/p38MAPK is a member of the MAPK family, which regulates metabolic pathways, cell proliferation, differentiation, and apoptosis that control certain neurological activities. During brain injuries, c-JNK/p38MAPK also affects neuronal elastic properties, nerve growth, and cognitive processing. This review systematically linked abnormal c-JNK/p38MAPK signaling activation to multiple neuropathological pathways in MS and related neurological dysfunctions. MS progression is linked to genetic defects, oligodendrocyte destruction, glial overactivation, and immune dysregulation. We concluded that inhibiting both the c-JNK/p38MAPK signaling pathways can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of MS and influence other neurological disorders. As a result, the potential benefits of c-JNK/p38MAPK downregulation for the development of disease-modifying treatment interventions in the future could include MS prevention and related neurocomplications.
Collapse
|
21
|
Zhao X, Wilson K, Uteshev V, He JJ. Activation of α7 nicotinic acetylcholine receptor ameliorates HIV-associated neurology and neuropathology. Brain 2021; 144:3355-3370. [PMID: 34196664 PMCID: PMC8677536 DOI: 10.1093/brain/awab251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/28/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy are primarily manifested as impaired behaviours, glial activation/neuroinflammation and compromised neuronal integrity, for which there are no effective treatments currently available. In the current study, we used doxycycline-inducible astrocyte-specific HIV Tat transgenic mice (iTat), a surrogate HAND model, and determined effects of PNU-125096, a positive allosteric modulator of α7 nicotinic acetylcholine receptor (α7 nAChR) on Tat-induced behavioural impairments and neuropathologies. We showed that PNU-125096 treatment significantly improved locomotor, learning and memory deficits of iTat mice while inhibited glial activation and increased PSD-95 expression in the cortex and hippocampus of iTat mice. Using α7 nAChR knockout mice, we showed that α7 nAChR knockout eliminated the protective effects of PNU-125096 on iTat mice. In addition, we showed that inhibition of p38 phosphorylation by SB239063, a p38 MAPK-specific inhibitor exacerbated Tat neurotoxicity in iTat mice. Last, we used primary mouse cortical individual cultures and neuron-astrocytes co-cultures and in vivo staining of iTat mouse brain tissues and showed that glial activation was directly involved in the interplay among Tat neurotoxicity, α7 nAChR activation and the p38 MAPK signalling pathway. Taken together, these findings demonstrated for the first time that α7 nAChR activation led to protection against HAND and suggested that α7 nAChR modulator PNU-125096 holds significant promise for development of therapeutics for HAND.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Kelly Wilson
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Victor Uteshev
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences of University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
22
|
Stilley SE, Blakely RD. Rare Opportunities for Insights Into Serotonergic Contributions to Brain and Bowel Disorders: Studies of the SERT Ala56 Mouse. Front Cell Neurosci 2021; 15:677563. [PMID: 34149362 PMCID: PMC8210832 DOI: 10.3389/fncel.2021.677563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Altered structure, expression, and regulation of the presynaptic serotonin (5-HT) transporter (SERT) have been associated with multiple neurobehavioral disorders, including mood disorders, obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). Opportunities to investigate mechanistic links supporting these associations were spurred with the identification of multiple, rare human SERT coding variants in a study that established a male-specific linkage of ASD to a linkage marker on chromosome 17 which encompassed the location of the SERT gene (SLC6A4). We have explored the most common of these variants, SERT Ala56, in vitro and in vivo. Results support a tonic elevation of 5-HT transport activity in transfected cells and human lymphoblasts by the variant in vitro that leads to an increased 5-HT clearance rate in vivo when studied in the SERT Ala56 mouse model, along with altered sensitivity to SERT regulatory signaling pathways. Importantly, hyperserotonemia, or an elevated whole blood 5-HT, level, was found in SERT Ala56 mice, reproducing a well-replicated trait observed in a significant fraction of ASD subjects. Additionally, we found multiple biochemical, physiological, and behavioral alterations in the SERT Ala56 mice that can be analogized to those observed in ASD and its medical comorbidities. The similarity of the functional impact of the SERT Ala56 variant to the consequences of p38α MAPK activation, ascribed to the induction of a biased conformation of the transporter toward an outward-facing conformation, has resulted in successful efforts to restore normal behavioral and bowel function via pharmacological and genetic p38α MAPK targeting. Moreover, the ability of the inflammatory cytokine IL-1β to enhance SERT activity via a p38α MAPK-dependent pathway suggests that the SERT Ala56 conformation mimics that of a chronic inflammatory state, supporting findings in ASD of elevated inflammatory cytokine levels. In this report, we review studies of the SERT Ala56 variant, discussing opportunities for continued insight into how chronically altered synaptic 5-HT homeostasis can drive reversible, functional perturbations in 5-HT sensitive pathways in the brain and periphery, and how targeting the SERT regulome, particularly through activating pathways such as those involving IL-1β/p38α MAPK, may be of benefit for neurobehavioral disorders, including ASD.
Collapse
Affiliation(s)
- Samantha E. Stilley
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
23
|
Tormählen NM, Martorelli M, Kuhn A, Maier F, Guezguez J, Burnet M, Albrecht W, Laufer SA, Koch P. Design and Synthesis of Highly Selective Brain Penetrant p38α Mitogen-Activated Protein Kinase Inhibitors. J Med Chem 2021; 65:1225-1242. [PMID: 33974419 DOI: 10.1021/acs.jmedchem.0c01773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stress-induced p38α mitogen-activated protein (MAP) kinase activation modulates cytokine overproduction and is associated with neuroinflammation and neurodegeneration. As a potential therapeutic approach, novel Skepinone-based p38α MAP kinase inhibitors were optimized to cross the blood-brain barrier via either amino acid transporters or hydrophobic diffusion. To enhance absorption from the oral route, we used methyl ester prodrugs of the active carboxy analogs. Of these, 3-(8-((2,4-difluorophenyl)amino)-5-oxo-10,11-dihydro-5H-dibenzo[a,d][7]annulene-3-carboxamido)propanoic acid (43; p38α, IC50 = 5.5 nM) and 4-(8-((2,4-difluorophenyl)amino)-5-oxo-10,11-dihydro-5H-dibenzo[a,d][7]annulene-3-carboxamido)butanoic acid (44; p38α, IC50 = 12 nM) had brain-to-plasma ratios of 1.4 and 4.4, respectively. Compound 70, 3-(8-((2-aminophenyl)amino)-5-oxo-10,11-dihydro-5H-dibenzo[a,d][7]annulene-3-carboxamido)propanoic acid (p38α, IC50 = 1.0 nM), the Skepinone-N counterpart of 43, was most present in the mouse brain (brain-to-plasma ratio of 4.7; 0.4 mg/kg p.o., 2 h, 580 nmol/kg). Compounds 43, 44, and 70 were p38α-MAP-kinase-selective, metabolically stable, hERG nonbinding, and able to modulate IL-6 and TNF-α production in cell-based assays.
Collapse
Affiliation(s)
- Niklas M Tormählen
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | - Annette Kuhn
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Florian Maier
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Jamil Guezguez
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Yadav RK, Minz E, Mehan S. Understanding Abnormal c-JNK/p38MAPK Signaling in Amyotrophic Lateral Sclerosis: Potential Drug Targets and Influences on Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:417-429. [PMID: 33557726 DOI: 10.2174/1871527320666210126113848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
c-JNK (c-Jun N-terminal kinase) and p38 mitogen-activated protein kinase (MAPK) family members work in a cell-specific manner to regulate neuronal signals. The abnormal activation of these cellular signals can cause glutamate excitotoxicity, disrupted protein homeostasis, defective axonal transport, and synaptic dysfunction. Various pre-clinical and clinical findings indicate that the up-regulation of c-JNK and p38MAPK signaling is associated with neurological disorders. Exceptionally, a significant amount of experimental data has recently shown that dysregulated c-JNK and p38MAPK are implicated in the damage to the central nervous system, including amyotrophic lateral sclerosis. Furthermore, currently available information has shown that c- JNK/p38MAPK signaling inhibitors may be a promising therapeutic alternative for improving histopathological, functional, and demyelination defects related to motor neuron disabilities. Understanding the abnormal activation of c-JNK/p38MAPK signaling and the prediction of motor neuron loss may help identify important therapeutic interventions that could prevent neurocomplications. Based on the involvement of c-JNK/p38MAPK signaling in the brain, we have assumed that the downregulation of the c-JNK/p38MAPK signaling pathway could trigger neuroprotection and neurotrophic effects towards clinicopathological presentations of ALS and other brain diseases. Thus, this research-based review also outlines the inhibition of c-JNK and p38MAPK signal downregulation in the pursuit of disease-modifying therapies for ALS.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Elizabeth Minz
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
25
|
Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021; 22:346-366. [PMID: 33504982 PMCID: PMC7838852 DOI: 10.1038/s41580-020-00322-w] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases — in particular, p38α — have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts. p38α — the best-characterized member of the p38 kinase family — is a key mediator of cellular stress responses. p38α is activated by a plethora of signals and functions through a multitude of substrates to regulate different cellular behaviours. Understanding context-dependent p38α signalling provides important insights into p38α roles in physiology and pathology.
Collapse
Affiliation(s)
- Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
26
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
27
|
Béroule DG. Paradoxical Effects of a Cytokine and an Anticonvulsant Strengthen the Epigenetic/Enzymatic Avenue for Autism Research. Front Cell Neurosci 2020; 14:585395. [PMID: 33262691 PMCID: PMC7686807 DOI: 10.3389/fncel.2020.585395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Maternal exposure to the valproate short-chain fatty acid (SCFA) during pregnancy is known to possibly induce autism spectrum disorders (ASDs) in the offspring. By contrast, case studies have evidenced positive outcomes of this anticonvulsant drug in children with severe autism. Interestingly, the same paradoxical pattern applies to the IL-17a inflammatory cytokine involved in the immune system regulation. Such joint apparent contradictions can be overcome by pointing out that, among their respective signaling pathways, valproate and IL-17a share an enhancement of the “type A monoamine oxidase” (MAOA) enzyme carried by the X chromosome. In the Guided Propagation (GP) model of autism, such enzymatic rise triggers a prenatal epigenetic downregulation, which, without possible X-inactivation, and when coinciding with genetic expression variants of other brain enzymes, results in the delayed onset of autistic symptoms. The underlying imbalance of synaptic monoamines, serotonin in the first place, would reflect a mismatch between the environment to which the brain metabolism was prepared during gestation and the postnatal actual surroundings. Following a prenatal exposure to molecules that significantly elicit the MAOA gene expression, a daily treatment with the same metabolic impact would tend to recreate the fetal environment and contribute to rebalance monoamines, thus allowing proper neural circuits to gradually develop, provided behavioral re-education. Given the multifaceted other players than MAOA that are involved in the regulation of serotonin levels, potential compensatory effects are surveyed, which may underlie the autism heterogeneity. This explanatory framework opens up prospects regarding autism prevention and treatment, strikingly in line with current advances along the gut microbiome–brain axis.
Collapse
Affiliation(s)
- D G Béroule
- CNRS, Bat.508, Faculté des Sciences d'Orsay, BP 133, Orsay, France.,CRIIGEN, Paris, France
| |
Collapse
|
28
|
Simon CM, Van Alstyne M, Lotti F, Bianchetti E, Tisdale S, Watterson DM, Mentis GZ, Pellizzoni L. Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Rep 2020; 29:3885-3901.e5. [PMID: 31851921 PMCID: PMC6956708 DOI: 10.1016/j.celrep.2019.11.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Reduced expression of the survival motor neuron (SMN) protein causes the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that adeno-associated virus serotype 9 (AAV9)-mediated delivery of Stasimon—a gene encoding an endoplasmic reticulum (ER)-resident transmembrane protein regulated by SMN—improves motor function in a mouse model of SMA through multiple mechanisms. In proprioceptive neurons, Stasimon overexpression prevents the loss of afferent synapses on motor neurons and enhances sensory-motor neurotransmission. In motor neurons, Stasimon suppresses neurodegeneration by reducing phosphorylation of the tumor suppressor p53. Moreover, Stasimon deficiency converges on SMA-related mechanisms of p53 upregulation to induce phosphorylation of p53 through activation of p38 mitogen-activated protein kinase (MAPK), and pharmacological inhibition of this kinase prevents motor neuron death in SMA mice. These findings identify Stasimon dysfunction induced by SMN deficiency as an upstream driver of distinct cellular cascades that lead to synaptic loss and motor neuron degeneration, revealing a dual contribution of Stasimon to motor circuit pathology in SMA. SMN deficiency causes motor circuit dysfunction in SMA. Simon et al. show that Stasimon—an ER-resident protein regulated by SMN—contributes to sensory synaptic loss and motor neuron death in SMA mice through distinct mechanisms. In motor neurons, Stasimon dysfunction induces p38 MAPK-mediated phosphorylation of p53 whose inhibition prevents neurodegeneration.
Collapse
Affiliation(s)
- Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Elena Bianchetti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
29
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
30
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in Synaptic Function and Dysfunction. Int J Mol Sci 2020; 21:ijms21165624. [PMID: 32781522 PMCID: PMC7460549 DOI: 10.3390/ijms21165624] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Many studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer’s disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aβ peptide or in the presence of tauopathies. Here, we describe the role of p38 MAPK in the regulation of synaptic plasticity and its implication in an animal model of neurodegeneration. In particular, recent evidence suggests the p38 MAPK α isoform as a potential neurotherapeutic target, and specific inhibitors have been developed and have proven to be effective in ameliorating synaptic and memory deficits in AD mouse models.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy;
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| | | | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-3153193
| |
Collapse
|
32
|
Quinlan MA, Robson MJ, Ye R, Rose KL, Schey KL, Blakely RD. Ex vivo Quantitative Proteomic Analysis of Serotonin Transporter Interactome: Network Impact of the SERT Ala56 Coding Variant. Front Mol Neurosci 2020; 13:89. [PMID: 32581705 PMCID: PMC7295033 DOI: 10.3389/fnmol.2020.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Altered serotonin (5-HT) signaling is associated with multiple brain disorders, including major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). The presynaptic, high-affinity 5-HT transporter (SERT) tightly regulates 5-HT clearance after release from serotonergic neurons in the brain and enteric nervous systems, among other sites. Accumulating evidence suggests that SERT is dynamically regulated in distinct activity states as a result of environmental and intracellular stimuli, with regulation perturbed by disease-associated coding variants. Our lab identified a rare, hypermorphic SERT coding substitution, Gly56Ala, in subjects with ASD, finding that the Ala56 variant stabilizes a high-affinity outward-facing conformation (SERT∗) that leads to elevated 5-HT uptake in vitro and in vivo. Hyperactive SERT Ala56 appears to preclude further activity enhancements by p38α mitogen-activated protein kinase (MAPK) and can be normalized by pharmacological p38α MAPK inhibition, consistent with SERT Ala56 mimicking, constitutively, a high-activity conformation entered into transiently by p38α MAPK activation. We hypothesize that changes in SERT-interacting proteins (SIPs) support the shift of SERT into the SERT∗ state which may be captured by comparing the composition of SERT Ala56 protein complexes with those of wildtype (WT) SERT, defining specific interactions through comparisons of protein complexes recovered using preparations from SERT–/– (knockout; KO) mice. Using quantitative proteomic-based approaches, we identify a total of 459 SIPs, that demonstrate both SERT specificity and sensitivity to the Gly56Ala substitution, with a striking bias being a loss of SIP interactions with SERT Ala56 compared to WT SERT. Among this group are previously validated SIPs, such as flotillin-1 (FLOT1) and protein phosphatase 2A (PP2A), whose functions are believed to contribute to SERT microdomain localization and regulation. Interestingly, our studies nominate a number of novel SIPs implicated in ASD, including fragile X mental retardation 1 protein (FMR1) and SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), of potential relevance to long-standing evidence of serotonergic contributions to ASD. Further investigation of these SIPs, and the broader networks they engage, may afford a greater understanding of ASD as well as other brain and peripheral disorders associated with perturbed 5-HT signaling.
Collapse
Affiliation(s)
- Meagan A Quinlan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Ran Ye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
33
|
Wang M, Wang L, Pu L, Li K, Feng T, Zheng P, Li S, Sun M, Yao Y, Jin L. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics 2020; 112:2302-2308. [DOI: 10.1016/j.ygeno.2020.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
34
|
Quinlan MA, Krout D, Katamish RM, Robson MJ, Nettesheim C, Gresch PJ, Mash DC, Keith Henry L, Blakely RD. Human Serotonin Transporter Coding Variation Establishes Conformational Bias with Functional Consequences. ACS Chem Neurosci 2019; 10:3249-3260. [PMID: 30668912 PMCID: PMC6640095 DOI: 10.1021/acschemneuro.8b00689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antidepressant-sensitive serotonin (5-HT) transporter (SERT) dictates rapid, high-affinity clearance of the neurotransmitter in both the brain and periphery. In a study of families with multiple individuals diagnosed with autism spectrum disorder (ASD), we previously identified several, rare, missense coding variants that impart elevated 5-HT transport activity, relative to wild-type SERT, upon heterologous expression as well as in ASD subject lymphoblasts. The most common of these variants, SERT Ala56, located in the transporter's cytosolic N-terminus, has been found to confer in transgenic mice hyperserotonemia, an ASD-associated biochemical trait, an elevated brain 5-HT clearance rate, and ASD-aligned behavioral changes. Hyperfunction of SERT Ala56 has been ascribed to a change in 5-HT KM, though the physical basis of this change has yet to be elucidated. Through assessments of fluorescence resonance energy transfer (FRET) between cytosolic N- and C-termini, sensitivity to methanethiosulfonates, and capacity for N-terminal tryptic digestion, we obtain evidence for mutation-induced conformational changes that support an open-outward 5-HT binding conformation in vitro and in vivo. Aspects of these findings were also evident with another naturally occurring C-terminal SERT coding variant identified in our ASD study, Asn605. We conclude that biased conformations of surface resident transporters that can impact transporter function and regulation are an unappreciated consequence of heritable and disease-associated SERT coding variation.
Collapse
Affiliation(s)
- Meagan A. Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Danielle Krout
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Rania M. Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH
| | | | - Paul J. Gresch
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| | - Deborah C. Mash
- Dr. Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL
| | - L. Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
35
|
Roy SM, Minasov G, Arancio O, Chico LW, Van Eldik LJ, Anderson WF, Pelletier JC, Watterson DM. A Selective and Brain Penetrant p38αMAPK Inhibitor Candidate for Neurologic and Neuropsychiatric Disorders That Attenuates Neuroinflammation and Cognitive Dysfunction. J Med Chem 2019; 62:5298-5311. [PMID: 30978288 PMCID: PMC6580366 DOI: 10.1021/acs.jmedchem.9b00058] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The p38αMAPK
is a serine/threonine protein kinase and a key
node in the intracellular signaling networks that transduce and amplify
stress signals into physiological changes. A preponderance of preclinical
data and clinical observations established p38αMAPK as a brain
drug discovery target involved in neuroinflammatory responses and
synaptic dysfunction in multiple degenerative and neuropsychiatric
brain disorders. We summarize the discovery of highly selective, brain-penetrant,
small molecule p38αMAPK inhibitors that are efficacious in diverse
animal models of neurologic disorders. A crystallography and pharmacoinformatic
approach to fragment expansion enabled the discovery of an efficacious
hit. The addition of secondary pharmacology screens to refinement
delivered lead compounds with improved selectivity, appropriate pharmacodynamics,
and efficacy. Safety considerations and additional secondary pharmacology
screens drove optimization that delivered the drug candidate MW01-18-150SRM
(MW150), currently in early stage clinical trials.
Collapse
Affiliation(s)
- Saktimayee M Roy
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - George Minasov
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - Ottavio Arancio
- Columbia University , New York , New York 10032 , United States
| | - Laura W Chico
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | | | - Wayne F Anderson
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - Jeffrey C Pelletier
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - D Martin Watterson
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| |
Collapse
|
36
|
Chen Y, Blough BE, Murnane KS, Canal CE. The synthetic cathinone psychostimulant α-PPP antagonizes serotonin 5-HT 2A receptors: In vitro and in vivo evidence. Drug Test Anal 2019; 11:990-998. [PMID: 30845376 DOI: 10.1002/dta.2582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
Synthetic cathinones (SCs) are β-keto analogs of amphetamines. Like amphetamines, SCs target monoamine transporters; however, unusual neuropsychiatric symptoms have been associated with abuse of some SCs, suggesting SCs might possess additional pharmacological properties. We performed radioligand competition binding assays to assess the affinities of nine SCs at human 5-HT2A receptors (5-HT2A R) and muscarinic M1 receptors (M1 R) transiently expressed in HEK293 cells. None of the SCs exhibited affinity at M1 R (minimal displacement of [~Kd ] [3 H]scopolamine up to 10 μM). However, two SCs, α-pyrrolidinopropiophenone (α-PPP) and 4-methyl-α-PPP, had low μM Ki values at 5-HT2A R. In 5-HT2A R-phosphoinositide hydrolysis assays, α-PPP and 4-methyl-α-PPP displayed inverse agonist activity. We further assessed the 5-HT2A R functional activity of α-PPP, and observed it competitively antagonized 5-HT2A R signaling stimulated by the 5-HT2 R agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI; Kb = 851 nM). To assess in vivo 5-HT2A R activity, we examined the effects of α-PPP on the DOI-elicited head-twitch response (HTR) in mice. α-PPP dose-dependently blocked the HTR with maximal suppression at 10 mg/kg (P < 0.0001), which is a moderate dose used in studies investigating psychostimulant properties of α-PPP. To corroborate a 5-HT2A R mechanism, we also tested 3,4-methylenedioxy-α-PPP (MDPPP) and 3-bromomethcathinone (3-BMC), SCs that we observed had 5-HT2A R Ki s > 10 μM. Neither MDPPP nor 3-BMC, at 10 mg/kg doses, attenuated the DOI HTR. Our results suggest α-PPP has antagonist interactions at 5-HT2A R in vitro that may translate at physiologically-relevant doses in vivo. Considering 5-HT2A R antagonism has been shown to mitigate effects of psychostimulants, this property may contribute to α-PPPs unpopularity compared to other monoamine transporter inhibitors.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| |
Collapse
|