1
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Wang Y, Salazar RJ, Simonetta LT, Sorrentino V, Gatton TJ, Wu B, Vecsey CG, Carrillo RA. hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit. Commun Biol 2024; 7:507. [PMID: 38678127 PMCID: PMC11055905 DOI: 10.1038/s42003-024-06184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins. In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth, and cell survival. However, the upstream regulatory mechanisms of Dprs and DIPs are not clear. On the other hand, while transcription factors have been implicated in target recognition, their downstream cell surface proteins remain mostly unknown. We conduct an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We identify huckebein (hkb), a transcription factor previously implicated in target recognition of the dorsal Is motor neuron. We show that hkb genetically interacts with DIP-α and loss of hkb leads to complete removal of DIP-α expression specifically in dorsal Is motor neurons. We then confirm that this specificity is through the dorsal Is motor neuron specific transcription factor, even-skipped (eve), which acts downstream of hkb. Analysis of the genetic interaction between hkb and eve reveals that they act in the same pathway to regulate dorsal Is motor neuron connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA.
| | - Rio J Salazar
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Luciano T Simonetta
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Violet Sorrentino
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Terrence J Gatton
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Bill Wu
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Robert A Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
4
|
Hergenreder T, Yang T, Ye B. The role of Down syndrome cell adhesion molecule in Down syndrome. MEDICAL REVIEW (2021) 2024; 4:31-41. [PMID: 38515781 PMCID: PMC10954295 DOI: 10.1515/mr-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the entire or a portion of human chromosome 21 (HSA21). This genomic alteration leads to elevated expression of numerous HSA21 genes, resulting in a variety of health issues in individuals with DS. Among the genes located in the DS "critical region" of HSA21, Down syndrome cell adhesion molecule (DSCAM) plays an important role in neuronal development. There is a growing body of evidence underscoring DSCAM's involvement in various DS-related disorders. This review aims to provide a concise overview of the established functions of DSCAM, with a particular focus on its implications in DS. We delve into the roles that DSCAM plays in DS-associated diseases. In the concluding section of this review, we explore prospective avenues for future research to further unravel DSCAM's role in DS and opportunities for therapeutic treatments.
Collapse
Affiliation(s)
- Ty Hergenreder
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Tadenev ALD, Hatton CL, Pattavina B, Mullins T, Schneider R, Bogdanik LP, Burgess RW. Two new mouse models of Gjb1-associated Charcot-Marie-Tooth disease type 1X. J Peripher Nerv Syst 2023; 28:317-328. [PMID: 37551045 DOI: 10.1111/jns.12588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1X is caused by mutations in GJB1, which is the second most common gene associated with inherited peripheral neuropathy. The GJB1 gene encodes connexin 32 (CX32), a gap junction protein expressed in myelinating glial cells. The gene is X-linked, and the mutations cause a loss of function. AIMS A large number of disease-associated variants have been identified, and many result in mistrafficking and mislocalization of the protein. An existing knockout mouse lacking Gjb1 expression provides a valid animal model of CMT1X, but the complete lack of protein may not fully recapitulate the disease mechanisms caused by aberrant CX32 proteins. To better represent the spectrum of human CMT1X-associated mutations, we have generated a new Gjb1 knockin mouse model. METHODS CRISPR/Cas9 genome editing was used to produce mice carrying the R15Q mutation in Gjb1. In addition, we identified a second allele with an early frame shift mutation in codon 7 (del2). Mice were analyzed using clinically relevant molecular, histological, neurophysiological, and behavioral assays. RESULTS Both alleles produce protein detectable by immunofluorescence in Schwann cells, with some protein properly localizing to nodes of Ranvier. However, both alleles also result in peripheral neuropathy with thinly myelinated and demyelinated axons, as well as degenerating and regenerating axons, predominantly in distal motor nerves. Nerve conduction velocities were only mildly reduced at later ages and compound muscle action potential amplitudes were not reduced. Levels of neurofilament light chain in plasma were elevated in both alleles. The del2 mice have an onset at ~3 months of age, whereas the R15Q mice had a later onset at 5-6 months of age, suggesting a milder loss of function. Both alleles performed comparably to wild type littermates in accelerating rotarod and grip strength tests of neuromuscular performance. INTERPRETATION We have generated and characterized two new mouse models of CMT1X that will be useful for future mechanistic and preclinical studies.
Collapse
Affiliation(s)
| | - C L Hatton
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - B Pattavina
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - T Mullins
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - R Schneider
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | |
Collapse
|
6
|
Neuronal and astrocytic protein connections and associated adhesion molecules. Neurosci Res 2023; 187:14-20. [PMID: 36202350 DOI: 10.1016/j.neures.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 02/11/2023]
Abstract
Astrocytes are morphologically complex, with a myriad of processes which allow contact with other astrocytes, blood vessels, and neurons. Adhesion molecules expressed by these cells regulate this connectivity. Adhesion molecules are required to form and maintain functional neural circuits, but their importance and mechanisms of action, particularly in astrocyte-neuron contact, remain unresolved. Several studies of neuron-astrocyte connections have demonstrated the vital functions of adhesion molecules, including neuron-glia cell adhesion molecules, astrotactins, and protocadherins. In this review, we provide an overview and perspective of astrocyte-neuron contacts mediated by adhesion molecules in developing neural circuits and synapse formation, especially in the cerebellum. We also outline a novel mechanism of interaction between neurons and astrocytes in the tripartite synapses that has been recently found by our group.
Collapse
|
7
|
Yang T, Veling MW, Zhao XF, Prin NP, Zhu L, Hergenreder T, Liu H, Liu L, Rane ZS, Savelieff MG, Fuerst PG, Li Q, Kwan KY, Giger RJ, Wang Y, Ye B. Migrating Pyramidal Neurons Require DSCAM to Bypass the Border of the Developing Cortical Plate. J Neurosci 2022; 42:5510-5521. [PMID: 35672151 PMCID: PMC9295838 DOI: 10.1523/jneurosci.0997-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/16/2023] Open
Abstract
During mammalian neocortex development, nascent pyramidal neurons migrate along radial glial cells and overtake earlier-born neurons to terminate at the front of the developing cortical plate (CP), leading to the outward expansion of the CP border. While much has been learned about the cellular and molecular mechanisms that underlie the migration of pyramidal neurons, how migrating neurons bypass the preceding neurons at the end of migration to reach their final positions remains poorly understood. Here, we report that Down syndrome cell adhesion molecule (DSCAM) is required for migrating neurons to bypass their postmigratory predecessors during the expansion of the upper cortical layers. DSCAM is a type I transmembrane cell adhesion molecule. It has been linked to Down syndrome through its location on Chromosome 21 trisomy and to autism spectrum disorders through loss-of-function mutations. Ex vivo time-lapse imaging demonstrates that DSCAM is required for migrating neurons to bypass their postmigratory predecessors, crossing the CP border to expand the upper cortical layers. In DSCAM-deficient cortices, migrating neurons stop prematurely under the CP border, leading to thinner upper cortical layers with higher neuronal density. We further show that DSCAM weakens cell adhesion mediated by N-cadherin in the upper cortical plate, allowing migrating neurons to traverse the CP border and expand the CP. These findings suggest that DSCAM is required for proper migratory termination and final positioning of nascent pyramidal neurons, which may provide insight into brain disorders that exhibit thinner upper layers of the cerebral cortex without neuronal loss.SIGNIFICANCE STATEMENT Newly born neurons in the developing mammalian neocortex migrate outward toward the cortical surface, bypassing earlier born neurons to expand the developing cortex. How migrating neurons bypass the preceding neurons and terminate at the front of the expanding cortex remains poorly understood. We demonstrate that Down syndrome cell adhesion molecule (DSCAM), linked to Down syndrome and autism spectrum disorder, is required by migrating neurons to bypass their postmigratory predecessors and terminate migration in the outwardly expanding cortical layer. Migrating neurons deficient in DSCAM stop prematurely, failing to expand the cortex. We further show that DSCAM likely mediates migratory termination by weakening cell adhesion mediated by N-cadherin.
Collapse
Affiliation(s)
- Tao Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Macy W Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Nicholas P Prin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Limei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lu Liu
- Internal Medicine, Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Zachary S Rane
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Masha G Savelieff
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Qing Li
- Internal Medicine, Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kenneth Y Kwan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yu Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
8
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
9
|
Santos RA, Del Rio R, Alvarez AD, Romero G, Vo BZ, Cohen-Cory S. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Neural Dev 2022; 17:5. [PMID: 35422013 PMCID: PMC9011933 DOI: 10.1186/s13064-022-00161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Xenopus retinotectal circuit is organized topographically, where the dorsal-ventral axis of the retina maps respectively on to the ventral-dorsal axis of the tectum; axons from the nasal-temporal axis of the retina project respectively to the caudal-rostral axis of the tectum. Studies throughout the last two decades have shown that mechanisms involving molecular recognition of proper termination domains are at work guiding topographic organization. Such studies have shown that graded distribution of molecular cues is important for topographic mapping. However, the complement of molecular cues organizing topography along the developing optic nerve, and as retinal axons cross the chiasm and navigate towards and innervate their target in the tectum, remains unknown. Down syndrome cell adhesion molecule (DSCAM) has been characterized as a key molecule in axon guidance, making it a strong candidate involved in the topographic organization of retinal fibers along the optic path and at their target. METHODS Using a combination of whole-brain clearing and immunohistochemistry staining techniques we characterized DSCAM expression and the projection of ventral and dorsal retinal fibers starting from the eye, following to the optic nerve and chiasm, and into the terminal target in the optic tectum in Xenopus laevis tadpoles. We then assessed the effects of DSCAM on the establishment of retinotopic maps through spatially and temporally targeted DSCAM knockdown on retinal ganglion cells (RGCs) with axons innervating the optic tectum. RESULTS Highest expression of DSCAM was localized to the ventral posterior region of the optic nerve and chiasm; this expression pattern coincides with ventral fibers derived from ventral RGCs. Targeted downregulation of DSCAM expression on ventral RGCs affected the segregation of medial axon fibers from their dorsal counterparts within the tectal neuropil, indicating that DSCAM plays a role in retinotopic organization. CONCLUSION These findings together with previous studies demonstrating cell-autonomous roles for DSCAM during the development of pre- and postsynaptic arbors in the Xenopus retinotectal circuit indicates that DSCAM exerts multiple roles in coordinating axon targeting and structural connectivity in the developing vertebrate visual system.
Collapse
Affiliation(s)
- Rommel Andrew Santos
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Rodrigo Del Rio
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Alexander Delfin Alvarez
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Gabriela Romero
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Brandon Zarate Vo
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| |
Collapse
|
10
|
Molecular mechanisms regulating the spatial configuration of neurites. Semin Cell Dev Biol 2022; 129:103-114. [PMID: 35248463 DOI: 10.1016/j.semcdb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Precise neural networks, composed of axons and dendrites, are the structural basis for information processing in the brain. Therefore, the correct formation of neurites is critical for accurate neural function. In particular, the three-dimensional structures of dendrites vary greatly among neuron types, and the unique shape of each dendrite is tightly linked to specific synaptic connections with innervating axons and is correlated with its information processing. Although many systems are involved in neurite formation, the developmental mechanisms that control the orientation, size, and arborization pattern of neurites definitively defines their three-dimensional structure in tissues. In this review, we summarize these regulatory mechanisms that establish proper spatial configurations of neurites, especially dendrites, in invertebrates and vertebrates.
Collapse
|
11
|
Williams DL, Sikora VM, Hammer MA, Amin S, Brinjikji T, Brumley EK, Burrows CJ, Carrillo PM, Cromer K, Edwards SJ, Emri O, Fergle D, Jenkins MJ, Kaushik K, Maydan DD, Woodard W, Clowney EJ. May the Odds Be Ever in Your Favor: Non-deterministic Mechanisms Diversifying Cell Surface Molecule Expression. Front Cell Dev Biol 2022; 9:720798. [PMID: 35087825 PMCID: PMC8787164 DOI: 10.3389/fcell.2021.720798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
How does the information in the genome program the functions of the wide variety of cells in the body? While the development of biological organisms appears to follow an explicit set of genomic instructions to generate the same outcome each time, many biological mechanisms harness molecular noise to produce variable outcomes. Non-deterministic variation is frequently observed in the diversification of cell surface molecules that give cells their functional properties, and is observed across eukaryotic clades, from single-celled protozoans to mammals. This is particularly evident in immune systems, where random recombination produces millions of antibodies from only a few genes; in nervous systems, where stochastic mechanisms vary the sensory receptors and synaptic matching molecules produced by different neurons; and in microbial antigenic variation. These systems employ overlapping molecular strategies including allelic exclusion, gene silencing by constitutive heterochromatin, targeted double-strand breaks, and competition for limiting enhancers. Here, we describe and compare five stochastic molecular mechanisms that produce variety in pathogen coat proteins and in the cell surface receptors of animal immune and neuronal cells, with an emphasis on the utility of non-deterministic variation.
Collapse
Affiliation(s)
- Donnell L. Williams
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Veronica Maria Sikora
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Max A. Hammer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Sayali Amin
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Taema Brinjikji
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Emily K. Brumley
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Connor J. Burrows
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Paola Michelle Carrillo
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Kirin Cromer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Summer J. Edwards
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Olivia Emri
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Fergle
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - M. Jamal Jenkins
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Krishangi Kaushik
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniella D. Maydan
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Wrenn Woodard
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - E. Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
13
|
Structure of cell-cell adhesion mediated by the Down syndrome cell adhesion molecule. Proc Natl Acad Sci U S A 2021; 118:2022442118. [PMID: 34531300 DOI: 10.1073/pnas.2022442118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily (IgSF) and plays important roles in neural development. It has a large ectodomain, including 10 Ig-like domains and 6 fibronectin III (FnIII) domains. Previous data have shown that DSCAM can mediate cell adhesion by forming homophilic dimers between cells and contributes to self-avoidance of neurites or neuronal tiling, which is important for neural network formation. However, the organization and assembly of DSCAM at cell adhesion interfaces has not been fully understood. Here we combine electron microscopy and other biophysical methods to characterize the structure of the DSCAM-mediated cell adhesion and generate three-dimensional views of the adhesion interfaces of DSCAM by electron tomography. The results show that mouse DSCAM forms a regular pattern at the adhesion interfaces. The Ig-like domains contribute to both trans homophilic interactions and cis assembly of the pattern, and the FnIII domains are crucial for the cis pattern formation as well as the interaction with the cell membrane. By contrast, no obvious assembly pattern is observed at the adhesion interfaces mediated by mouse DSCAML1 or Drosophila DSCAMs, suggesting the different structural roles and mechanisms of DSCAMs in mediating cell adhesion and neural network formation.
Collapse
|
14
|
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021; 22:ijms22168511. [PMID: 34445216 PMCID: PMC8395195 DOI: 10.3390/ijms22168511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Olivier D. Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
15
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
16
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
17
|
Honig B, Shapiro L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 2021; 181:520-535. [PMID: 32359436 DOI: 10.1016/j.cell.2020.04.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The ability of cells to organize into multicellular structures in precise patterns requires that they "recognize" one another with high specificity. We discuss recent progress in understanding the molecular basis of cell-cell recognition, including unique phenomena associated with neuronal interactions. We describe structures of select adhesion receptor complexes and their assembly into larger intercellular junction structures and discuss emerging principles that relate cell-cell organization to the binding specificities and energetics of adhesion receptors. Armed with these insights, advances in protein design and gene editing should pave the way for breakthroughs toward understanding the molecular basis of cell patterning in vivo.
Collapse
Affiliation(s)
- Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
18
|
Dysfunction of NMDA receptors in neuronal models of an autism spectrum disorder patient with a DSCAM mutation and in Dscam-knockout mice. Mol Psychiatry 2021; 26:7538-7549. [PMID: 34253863 PMCID: PMC8873012 DOI: 10.1038/s41380-021-01216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heterogeneity in the etiopathology of autism spectrum disorders (ASD) limits the development of generic remedies, requires individualistic and patient-specific research. Recent progress in human-induced pluripotent stem cell (iPSC) technology provides a novel platform for modeling ASDs for studying complex neuronal phenotypes. In this study, we generated telencephalic induced neuronal (iN) cells from iPSCs derived from an ASD patient with a heterozygous point mutation in the DSCAM gene. The mRNA of DSCAM and the density of DSCAM in dendrites were significantly decreased in ASD compared to control iN cells. RNA sequencing analysis revealed that several synaptic function-related genes including NMDA receptor subunits were downregulated in ASD iN cells. Moreover, NMDA receptor (R)-mediated currents were significantly reduced in ASD compared to control iN cells. Normal NMDA-R-mediated current levels were rescued by expressing wild-type DSCAM in ASD iN cells, and reduced currents were observed by truncated DSCAM expression in control iN cells. shRNA-mediated DSCAM knockdown in control iN cells resulted in the downregulation of an NMDA-R subunit, which was rescued by the overexpression of shRNA-resistant DSCAM. Furthermore, DSCAM was co-localized with NMDA-R components in the dendritic spines of iN cells whereas their co-localizations were significantly reduced in ASD iN cells. Levels of phospho-ERK1/2 were significantly lower in ASD iN cells, suggesting a potential mechanism. A neural stem cell-specific Dscam heterozygous knockout mouse model, showing deficits in social interaction and social memory with reduced NMDA-R currents. These data suggest that DSCAM mutation causes pathological symptoms of ASD by dysregulating NMDA-R function.
Collapse
|
19
|
Gallerani N, Au E. Loss of Clustered Protocadherin Diversity Alters the Spatial Distribution of Cortical Interneurons in Mice. Cereb Cortex Commun 2020; 1:tgaa089. [PMID: 34296145 PMCID: PMC8152951 DOI: 10.1093/texcom/tgaa089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Cortical interneurons (cINs) are locally projecting inhibitory neurons that are distributed throughout the cortex. Due to their relatively limited range of influence, their arrangement in the cortex is critical to their function. cINs achieve this arrangement through a process of tangential and radial migration and apoptosis during development. In this study, we investigated the role of clustered protocadherins (cPcdhs) in establishing the spatial patterning of cINs through the use of genetic cPcdh knockout mice. cPcdhs are expressed in cINs and are known to play key functions in cell spacing and cell survival, but their role in cINs is poorly understood. Using spatial statistical analysis, we found that the 2 main subclasses of cINs, parvalbumin-expressing and somatostatin-expressing (SST) cINs, are nonrandomly spaced within subclass but randomly with respect to each other. We also found that the relative laminar distribution of each subclass was distinctly altered in whole α- or β-cluster mutants. Examination of perinatal time points revealed that the mutant phenotypes emerged relatively late, suggesting that cPcdhs may be acting during cIN morphological elaboration and synaptogenesis. We then analyzed an isoform-specific knockout for pcdh-αc2 and found that it recapitulated the α-cluster knockout but only in SST cells, suggesting that subtype-specific expression of cPcdh isoforms may help govern subtype-specific spatial distribution.
Collapse
Affiliation(s)
- Nicholas Gallerani
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Rehabilitative Medicine and Regeneration, Columbia University Irving Medical Center, New York, NY 10032, USA.,Columbia University Irving Medical Center, New York NY, 10032, USA
| |
Collapse
|
20
|
Chelicerata sDscam isoforms combine homophilic specificities to define unique cell recognition. Proc Natl Acad Sci U S A 2020; 117:24813-24824. [PMID: 32963097 DOI: 10.1073/pnas.1921983117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thousands of Down syndrome cell adhesion molecule (Dscam1) isoforms and ∼60 clustered protocadhrein (cPcdh) proteins are required for establishing neural circuits in insects and vertebrates, respectively. The strict homophilic specificity exhibited by these proteins has been extensively studied and is thought to be critical for their function in neuronal self-avoidance. In contrast, significantly less is known about the Dscam1-related family of ∼100 shortened Dscam (sDscam) proteins in Chelicerata. We report that Chelicerata sDscamα and some sDscamβ protein trans interactions are strictly homophilic, and that the trans interaction is meditated via the first Ig domain through an antiparallel interface. Additionally, different sDscam isoforms interact promiscuously in cis via membrane proximate fibronectin-type III domains. We report that cell-cell interactions depend on the combined identity of all sDscam isoforms expressed. A single mismatched sDscam isoform can interfere with the interactions of cells that otherwise express an identical set of isoforms. Thus, our data support a model by which sDscam association in cis and trans generates a vast repertoire of combinatorial homophilic recognition specificities. We propose that in Chelicerata, sDscam combinatorial specificity is sufficient to provide each neuron with a unique identity for self-nonself discrimination. Surprisingly, while sDscams are related to Drosophila Dscam1, our results mirror the findings reported for the structurally unrelated vertebrate cPcdh. Thus, our findings suggest a remarkable example of convergent evolution for the process of neuronal self-avoidance and provide insight into the basic principles and evolution of metazoan self-avoidance and self-nonself discrimination.
Collapse
|
21
|
Abstract
Many of the immunoglobulin superfamily (IgSF) molecules play pivotal roles in cell communication. The Sidekick (Sdk) gene, first described in Drosophila, encodes the single-pass transmembrane protein, Sdk, which is one of the largest among IgSF membrane proteins. Sdk first appeared in multicellular animals during the Precambrian age and later evolved to Sdk1 and Sdk2 in vertebrates by gene duplication. In flies, a single Sdk is involved in positioning photoreceptor neurons and their axons in the visual system and is responsible for dynamically rearranging cell shapes by strictly populating tricellular adherens junctions in epithelia. In vertebrates, Sdk1 and Sdk2 are expressed by unique sets of cell types and distinctively participate in the formation and/or maintenance of neural circuits in the retina, indicating that they are determinants of synaptic specificity. These functions are mediated by specific homophilic binding of their ectodomains and by intracellular association with PDZ scaffold proteins. Recent human genetic studies as well as animal experiments implicate that Sdk genes may influence various neurodevelopmental and psychiatric disorders, such as autism spectrum disorders, attention-deficit hyperactivity disorder, addiction, and depression. The gigantic Sdk1 gene is susceptible to erratic gene rearrangements or mutations in both somatic and germ-line cells, potentially contributing to neurological disorders and some types of cancers. This review summarizes what is known about the structure and roles of Sdks.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
22
|
Arimura N, Okada M, Taya S, Dewa KI, Tsuzuki A, Uetake H, Miyashita S, Hashizume K, Shimaoka K, Egusa S, Nishioka T, Yanagawa Y, Yamakawa K, Inoue YU, Inoue T, Kaibuchi K, Hoshino M. DSCAM regulates delamination of neurons in the developing midbrain. SCIENCE ADVANCES 2020; 6:6/36/eaba1693. [PMID: 32917586 PMCID: PMC7467692 DOI: 10.1126/sciadv.aba1693] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/22/2020] [Indexed: 06/10/2023]
Abstract
For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Mako Okada
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Akiko Tsuzuki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirotomo Uetake
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Saki Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
23
|
Graham HK, Duan X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e379. [PMID: 32267095 DOI: 10.1002/wdev.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
The central nervous system (CNS) is composed of precisely assembled circuits which support a variety of physiological functions and behaviors. These circuits include multiple subtypes of neurons with unique morphologies, electrical properties, and molecular identities. How these component parts are precisely wired-up has been a topic of great interest to the field of developmental neurobiology and has implications for our understanding of the etiology of many neurological disorders and mental illnesses. To date, many molecules involved in synaptic choice and specificity have been identified, including members of several families of cell-adhesion molecules (CAMs), which are cell-surface molecules that mediate cell-cell contacts and subsequent intracellular signaling. One favored hypothesis is that unique expression patterns of CAMs define specific neuronal subtype populations and determine compatible pre- and postsynaptic neuronal partners based on the expression of these unique CAMs. The mouse retina has served as a beautiful model for investigations into mammalian CAM interactions due to its well-defined neuronal subtypes and distinct circuits. Moreover, the retina is readily amenable to visualization of circuit organization and electrophysiological measurement of circuit function. The advent of recent genetic, genomic, and imaging technologies has opened the field up to large-scale, unbiased approaches for identification of new molecular determinants of synaptic specificity. Thus, building on the foundation of work reviewed here, we can expect rapid expansion of the field, harnessing the mouse retina as a model to understand the molecular basis for synaptic specificity and functional circuit assembly. This article is categorized under: Nervous System Development > Vertebrates: General Principles Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Hannah K Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
25
|
Garrett AM, Bosch PJ, Steffen DM, Fuller LC, Marcucci CG, Koch AA, Bais P, Weiner JA, Burgess RW. CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4. PLoS Genet 2019; 15:e1008554. [PMID: 31877124 PMCID: PMC6957209 DOI: 10.1371/journal.pgen.1008554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian Pcdhg gene cluster encodes a family of 22 cell adhesion molecules, the gamma-Protocadherins (γ-Pcdhs), critical for neuronal survival and neural circuit formation. The extent to which isoform diversity–a γ-Pcdh hallmark–is required for their functions remains unclear. We used a CRISPR/Cas9 approach to reduce isoform diversity, targeting each Pcdhg variable exon with pooled sgRNAs to generate an allelic series of 26 mouse lines with 1 to 21 isoforms disrupted via discrete indels at guide sites and/or larger deletions/rearrangements. Analysis of 5 mutant lines indicates that postnatal viability and neuronal survival do not require isoform diversity. Surprisingly, given reports that it might not independently engage in trans-interactions, we find that γC4, encoded by Pcdhgc4, is the only critical isoform. Because the human orthologue is the only PCDHG gene constrained in humans, our results indicate a conserved γC4 function that likely involves distinct molecular mechanisms. The γ-Protocadherins (γ-Pcdhs) are a family of 22 molecules that serve many crucial functions during neural development. They can combine to form multimers at the cell surface, such that each combination specifically recognizes the same combination at the surface of other cells. In this way, 22 molecules can generate thousands of distinct recognition complexes. To test the extent to which molecular diversity is required for the γ-Pcdhs to serve their many functions, we used CRISPR/Cas9 gene editing to make a series of mouse mutants in which different combinations of the γ-Pcdhs are disrupted. We report 25 new mouse lines with between 1 and 21 intact members of the γ-Pcdh family. Further, we found that for the critical function of neuronal survival–and consequently the survival of the animal–the molecular diversity was not essential. Rather, a single member of the family called γC4 was the only one necessary or sufficient for this function; databases of human genome sequences suggest that this important role is conserved. These new strains will be invaluable for disentangling the role of molecular diversity in the γ-Pcdhs’ functions, and as we have already found, will help identify specific functions for specific γ-Pcdh family members.
Collapse
Affiliation(s)
- Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan, United States of America
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (AMG); (JAW); (RWB)
| | - Peter J. Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - David M. Steffen
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Leah C. Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles G. Marcucci
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexis A. Koch
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Preeti Bais
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Joshua A. Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (AMG); (JAW); (RWB)
| | - Robert W. Burgess
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (AMG); (JAW); (RWB)
| |
Collapse
|
26
|
Kim B. Evolutionarily conserved and divergent functions for cell adhesion molecules in neural circuit assembly. J Comp Neurol 2019; 527:2061-2068. [PMID: 30779135 DOI: 10.1002/cne.24666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
The developing nervous system generates remarkably precise synaptic connections between neurons and their postsynaptic target cells. Numerous neural cell adhesion proteins have been identified to mediate cell recognition between synaptic partners in several model organisms. Here, I review the role of protein interactions of cell adhesion molecules in neural circuit assembly and address how these interactions are utilized to form different neural circuitries in different species. The emerging evidence suggests that the extracellular trans-interactions of cell adhesion proteins for neural wiring are evolutionarily conserved across taxa, but they are often used in different steps of circuit assembly. I also highlight how these conserved protein interactions work together as a group to specify neural connectivity.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Life Science, Dongguk University Seoul, Goyang, Republic of Korea
| |
Collapse
|
27
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|