1
|
Martinón-Torres F, Salamanca de la Cueva I, Horn M, Westerholt S, Bosis S, Meyer N, Cheuvart B, Virk N, Jakes RW, Duchenne M, Van den Steen P. Disparate kinetics in immune response of two different Haemophilus influenzae type b conjugate vaccines: Immunogenicity and safety observations from a randomized controlled phase IV study in healthy infants and toddlers using a 2+1 schedule. Hum Vaccin Immunother 2024; 20:2342630. [PMID: 38687024 PMCID: PMC11062389 DOI: 10.1080/21645515.2024.2342630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Since the introduction of Haemophilus Influenzae type b (Hib) conjugate vaccines, invasive Hib disease has strongly declined worldwide, yet continued control of Hib disease remains important. In Europe, currently three different hexavalent combination vaccines containing Hib conjugates are marketed. In this phase IV, single-blind, randomized, controlled, multi-country study (NCT04535037), we aimed to compare, in a 2 + 1 vaccination schedule, the immunogenicity and safety and show non-inferiority, as well as superiority, of DTPa-HBV-IPV/Hib (Ih group) versus DTaP5-HB-IPV-Hib (Va group) in terms of anti-polyribosylribitol phosphate (PRP) antibody geometric mean concentrations (GMCs) and proportion of participants reaching anti-PRP antibody concentrations greater than or equal to a threshold of 5 µg/mL. One month after the booster vaccination, the anti-PRP antibody GMC ratio (Ih group/Va group) was 0.917 (95% CI: 0.710-1.185), meeting the non-inferiority criteria. The difference in percentage of participants (Ih group - Va group) reaching GMCs ≥5 µg/mL was -6.3% (95% CI: -14.1% to 1.5%), not reaching the predefined non-inferiority threshold. Interestingly, a slightly higher post-booster antibody avidity was observed in the Ih group versus the Va group. Both vaccines were well tolerated, and no safety concerns were raised. This study illustrates the different kinetics of the anti-PRP antibody response post-primary and post-booster using the two vaccines containing different Hib conjugates and indicates a potential differential impact of concomitant vaccinations on the anti-PRP responses. The clinical implications of these differences should be further studied.
Collapse
MESH Headings
- Humans
- Haemophilus Vaccines/immunology
- Haemophilus Vaccines/adverse effects
- Haemophilus Vaccines/administration & dosage
- Antibodies, Bacterial/blood
- Infant
- Immunization Schedule
- Female
- Male
- Single-Blind Method
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/adverse effects
- Haemophilus influenzae type b/immunology
- Vaccines, Combined/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/adverse effects
- Haemophilus Infections/prevention & control
- Haemophilus Infections/immunology
- Hepatitis B Vaccines/immunology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/adverse effects
- Poliovirus Vaccine, Inactivated/immunology
- Poliovirus Vaccine, Inactivated/administration & dosage
- Poliovirus Vaccine, Inactivated/adverse effects
- Diphtheria-Tetanus-Pertussis Vaccine/immunology
- Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage
- Diphtheria-Tetanus-Pertussis Vaccine/adverse effects
- Child, Preschool
- Immunogenicity, Vaccine
- Europe
- Polysaccharides
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Genetics, Vaccines and Infectious Diseases Research Group (GENvip), Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Michael Horn
- Praxis Dr. med. Michael Horn, Bayern, Schoenau am Koenigssee, Germany
| | - Soeren Westerholt
- Praxis für Kinder und Jugendmedizin Drs. Westerholt/Matyas, Wolfsburg, Germany
| | - Samantha Bosis
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
2
|
Nguyen AT, McSorley SJ. Fighting the enemy within: Systemic immune defense against mucosal Salmonella infection. Immunol Lett 2024; 270:106930. [PMID: 39343314 DOI: 10.1016/j.imlet.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Salmonella infection remains a persistent global health threat, as different serovars induce a range of clinical disease, depending upon bacterial virulence and host susceptibility. While some Salmonella serovars induce gastroenteritis in healthy individuals, others can cause more serious systemic enteric fever or invasive nontyphoidal Salmonellosis. The rise of antibiotic resistance, coupled with the absence of effective vaccines for most serovars, perpetuates the spread of Salmonella in endemic regions. A detailed mechanistic understanding of immunity to Salmonella infections has been aided by the availability of mouse models that have served as a valuable tool for understanding host-pathogen interactions under controlled laboratory conditions. These mouse studies have delineated the processes by which early inflammation is triggered after infection, how adaptive immunity is initiated in lymphoid tissues, and the contribution of lymphocyte memory responses to resistance. While recent progress has been made in vaccine development for some causes of enteric fever, deeper understanding of Salmonella-specific immune memory might allow the formation of new vaccines for all serovars. This review will provide a summary of our understanding of vaccination and protective immunity to Salmonella with a focus on recent developments in T cell memory formation.
Collapse
Affiliation(s)
- Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Brader M, Kim HYA, Koo O, Nagapudi K, Su Y. Industrial Horizons in Pharmaceutical Science. Mol Pharm 2024; 21:4183-4188. [PMID: 38807456 DOI: 10.1021/acs.molpharmaceut.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Affiliation(s)
- Mark Brader
- Moderna, Inc., Cambridge, Massachusetts 02139, United States
| | - Hai-Young Anne Kim
- Therapeutic Discovery, Johnson and Johnson, Spring House, Pennsylvania 19477, United States
| | - Otilia Koo
- Emerging Technologies Portfolio Management, Novo Nordisk, Plainsboro, New Jersey 08536, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutics, Genentech, Inc., South San Francisco, California 94080, United States
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
4
|
Sarkar R, Adhikary K, Banerjee A, Ganguly K, Sarkar R, Mohanty S, Dhua R, Bhattacharya K, Ahuja D, Pal S, Maiti R. Novel targets and improved immunotherapeutic techniques with an emphasis on antimycosal drug resistance for the treatment and management of mycosis. Heliyon 2024; 10:e35835. [PMID: 39224344 PMCID: PMC11367498 DOI: 10.1016/j.heliyon.2024.e35835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.
Collapse
Affiliation(s)
- Riya Sarkar
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Adhikary
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Arundhati Banerjee
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, Dr. B. C. Roy Academy of Professional Courses, Durgapur, West Bengal, 713206, India
| | - Satyajit Mohanty
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Rumpa Dhua
- Department of Nutrition, Bankura Sammilani College, Kenduadihi, Bankura, West Bengal, 722102, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Suchandra Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, 713209, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, 722101, India
| |
Collapse
|
5
|
Tchalla EYI, Betadpur A, Khalil AY, Bhalla M, Bou Ghanem EN. Sex-based difference in immune responses and efficacy of the pneumococcal conjugate vaccine. J Leukoc Biol 2024:qiae177. [PMID: 39141715 DOI: 10.1093/jleuko/qiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Vaccine-mediated protection and susceptibility to Streptococcus pneumoniae (pneumococcus) infections are influenced by biological sex. The incidence of invasive pneumococcal disease remains higher in males compared to females even after the introduction of the pneumococcal conjugate vaccine (PCV). However, sex-based differences in the immune response to this conjugate vaccine remain unexplored. To investigate those differences, we vaccinated adult male and female mice with PCV and assessed cellular and humoral immune responses. Compared to females, male mice displayed lower levels of T follicular helper cells, germinal center B cells and plasmablasts, which are all required for antibody production following vaccination. This was linked to lower IgG and IgM levels against pneumococci and lower isotype switching to IgG3 in vaccinated males. Due to lower antibody levels, sera of vaccinated male mice had lower efficacy in several anti-pneumococcal functions including neutralization of bacterial binding to pulmonary epithelial cells as well as direct cytotoxicity against S. pneumoniae. Importantly, while the vaccine was highly protective in females, vaccinated males succumbed to infection more readily and were more susceptible to both lung-localized infection and systemic spread following S. pneumoniae challenge. These findings identify sex-based differences in immune responses to PCV that can inform future vaccine strategies.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Anagha Betadpur
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Andrew Y Khalil
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Palma JA, Bunyatov MI, Hulbert SW, Jewett MC, DeLisa MP. Bacterial glycoengineering: Cell-based and cell-free routes for producing biopharmaceuticals with customized glycosylation. Curr Opin Chem Biol 2024; 81:102500. [PMID: 38991462 DOI: 10.1016/j.cbpa.2024.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation plays a pivotal role in tuning the folding and function of proteins. Because most human therapeutic proteins are glycosylated, understanding and controlling glycosylation is important for the design, optimization, and manufacture of biopharmaceuticals. Unfortunately, natural eukaryotic glycosylation pathways are complex and often produce heterogeneous glycan patterns, making the production of glycoproteins with chemically precise and homogeneous glycan structures difficult. To overcome these limitations, bacterial glycoengineering has emerged as a simple, cost-effective, and scalable approach to produce designer glycoprotein therapeutics and vaccines in which the glycan structures are engineered to reduce heterogeneity and improve biological and biophysical attributes of the protein. Here, we discuss recent advances in bacterial cell-based and cell-free glycoengineering that have enabled the production of biopharmaceutical glycoproteins with customized glycan structures.
Collapse
Affiliation(s)
- Jaymee A Palma
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mehman I Bunyatov
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Pena JMS, Lannes-Costa PS, Nagao PE. Vaccines for Streptococcus agalactiae: current status and future perspectives. Front Immunol 2024; 15:1430901. [PMID: 38947337 PMCID: PMC11211565 DOI: 10.3389/fimmu.2024.1430901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
A maternal vaccine to protect newborns against invasive Streptococcus agalactiae infection is a developing medical need. The vaccine should be offered during the third trimester of pregnancy and induce strong immune responses and placental transfer of protective antibodies. Polysaccharide vaccines against S. agalactiae conjugated to protein carriers are in advanced stages of development. Additionally, protein-based vaccines are also in development, showing great promise as they can provide protection regardless of serotype. Furthermore, safety concerns regarding a new vaccine are the main barriers identified. Here, we present vaccines in development and identified safety, cost, and efficacy concerns, especially in high-need, low-income countries.
Collapse
Affiliation(s)
- João Matheus Sobral Pena
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Pamella Silva Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Yarmohammadi H, Aghasadeghi M, Akhavan Sepahi A, Hamidi-fard M, Bahramali G. Designing the fusion protein of rotavirus VP8 and hepatitis A virus VP1 and evaluating the immunological response in BALB/c mice. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:401-410. [PMID: 39005596 PMCID: PMC11245353 DOI: 10.18502/ijm.v16i3.15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background and Objectives Rotavirus and Hepatitis A virus are responsible for causing gastroenteritis and jaundice. The current vaccination approaches have proven insufficient, especially in low-income countries. In this study, we presented a novel dual-vaccine candidate that combines the rotavirus VP8 protein and the hepatitis A virus VP1. Materials and Methods The VP8*-rotavirus+AAY+HAV-VP1 fusion protein was produced using an Escherichia coli expression system. The recombinant protein had a molecular weight of approximately 45.5 kDa and was purified through affinity chromatography. BALB/c mice were injected subcutaneously with the recombinant protein, VP1, VP8 and vaccines for rotavirus and hepatitis A virus, both with and without ALUM and M720 adjuvants. ELISA assays were used to measure total IgG, IgG1, IgG2, and short-term and long-term IL-5 and IFN-γ responses. Results The fusion protein, when combined with adjuvants, elicited significantly higher total IgG, IgG1, and IgG2 responses compared to VP1 and VP8 alone, as well as the rotavirus and hepatitis A vaccines. Furthermore, it induced a higher short-term IL-5 and IFN-γ response while demonstrating a higher long-term IL-5 response compared to the rotavirus and hepatitis A vaccines. Conclusion This study demonstrates that the VP8*-rotavirus+AAY+HAV-VP1 fusion protein is a promising dual vaccine candidate for immunization against hepatitis A and rotaviruses.
Collapse
Affiliation(s)
- Hassan Yarmohammadi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abbas Akhavan Sepahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Duan H, Huang W, Lv Q, Liu P, Li Q, Kong D, Sun X, Zhang X, Jiang Y, Chen S. Using Surface Immunogenic Protein as a Carrier Protein to Elicit Protective Antibody to Multiple Serotypes for Candidate Group B Streptococcal Glycan Conjugate Vaccines. Vaccines (Basel) 2024; 12:573. [PMID: 38932301 PMCID: PMC11209137 DOI: 10.3390/vaccines12060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.
Collapse
Affiliation(s)
- Huiqi Duan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xuyang Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinran Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
10
|
Tembo G, Mayuni M, Kamng'ona R, Chimgoneko L, Chiwala G, Sichone S, Galafa B, Thole F, Mkandawire C, Chirwa AE, Nsomba E, Nkhoma V, Ngoliwa C, Toto N, Makhaza L, Muyaya A, Kudowa E, Henrion MYR, Dula D, Morton B, Chikaonda T, Gordon SB, Jambo KC. Poor association between 13-valent pneumococcal conjugate vaccine-induced serum and mucosal antibody responses with experimental Streptococcus pneumoniae serotype 6B colonisation. Vaccine 2024; 42:2975-2982. [PMID: 38570270 PMCID: PMC11056720 DOI: 10.1016/j.vaccine.2024.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Pneumococcal carriage is the primary reservoir for transmissionand a prerequisite for invasive pneumococcal disease. Pneumococcal Conjugate Vaccine 13 (PCV13) showed a 62% efficacy in protection against experimental Streptococcus pneumoniae serotype 6B (Spn6B) carriage in a controlled human infection model (CHIM) of healthy Malawian adults. We, therefore, measured humoral responses to experimental challenge and PCV-13 vaccination and determined the association with protection against pneumococcal carriage. METHODS We vaccinated 204 young, healthy Malawian adults with PCV13 or placebo and nasally inoculated them with Spn6B at least four weeks post-vaccination to establish carriage. We collected peripheral blood and nasal lining fluid at baseline, 4 weeks post-vaccination (7 days pre-inoculation), 2, 7, 14 and > 1 year post-inoculation. We measured the concentration of anti-serotype 6B Capsular Polysaccharide (CPS) Immunoglobulin G (IgG) and IgA antibodies in serum and nasal lining fluid using the World Health Organization (WHO) standardised enzyme-linked immunosorbent assay (ELISA). RESULTS PCV13-vaccinated adults had higher serum IgG and nasal IgG/IgA anti-Spn6B CPS-specific binding antibodies than placebo recipients 4 to 6 weeks post-vaccination, which persisted for at least a year after vaccination. Nasal challenge with Spn6B did not significantly alter serum or nasal anti-CPS IgG binding antibody titers with or without experimental pneumococcal carriage. Pre-challenge titers of PCV13-induced serum IgG and nasal IgG/IgA anti-Spn6B CPS binding antibodies did not significantly differ between those that got experimentally colonised by Spn6B compared to those that did not. CONCLUSION This study demonstrates that despite high PCV13 efficacy against experimental Spn6B carriage in young, healthy Malawian adults, robust vaccine-induced systemic and mucosal anti-Spn6B CPS binding antibodies did not directly relate to protection.
Collapse
Affiliation(s)
- G Tembo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi.
| | - M Mayuni
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - R Kamng'ona
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - L Chimgoneko
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - G Chiwala
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - S Sichone
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - B Galafa
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - F Thole
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - C Mkandawire
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - A E Chirwa
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - E Nsomba
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - V Nkhoma
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - C Ngoliwa
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - N Toto
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - L Makhaza
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - A Muyaya
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - E Kudowa
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - M Y R Henrion
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Clinical Sciences Department, Pembroke Place, Liverpool, UK
| | - D Dula
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - B Morton
- Liverpool School of Tropical Medicine, Clinical Sciences Department, Pembroke Place, Liverpool, UK
| | - T Chikaonda
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - S B Gordon
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Clinical Sciences Department, Pembroke Place, Liverpool, UK
| | - K C Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Clinical Sciences Department, Pembroke Place, Liverpool, UK.
| |
Collapse
|
11
|
Dolce M, Proietti D, Principato S, Giusti F, Adamo GM, Favaron S, Ferri E, Margarit I, Romano MR, Scarselli M, Carboni F. Impact of Protein Nanoparticle Shape on the Immunogenicity of Antimicrobial Glycoconjugate Vaccines. Int J Mol Sci 2024; 25:3736. [PMID: 38612547 PMCID: PMC11011275 DOI: 10.3390/ijms25073736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.
Collapse
Affiliation(s)
- Marta Dolce
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- GSK, 53100 Siena, Italy
| | | | | | | | | | - Sara Favaron
- GSK, 53100 Siena, Italy
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Knupp-Pereira PA, Cabral AS, Dolores ÍM, da Silva AB, Póvoa HCC, Neves FPG. Antimicrobial Resistance in Streptococcus pneumoniae before and after the Introduction of Pneumococcal Conjugate Vaccines in Brazil: A Systematic Review. Antibiotics (Basel) 2024; 13:66. [PMID: 38247625 PMCID: PMC10812409 DOI: 10.3390/antibiotics13010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Streptococcus pneumoniae causes serious illnesses, such as pneumonia, bacteremia, and meningitis, mainly in immunocompromised individuals and those of extreme ages. Currently, pneumococcal conjugate vaccines (PCVs) are the best allies against pneumococcal diseases. In Brazil, the 10-valent and 13-valent PCVs have been available since 2010, but the threat of antimicrobial resistance persists and has been changing over time. We conducted a systematic review of the literature with works published since 2000, generating a parallel between susceptibility data on isolates recovered from colonization and invasive diseases before and after the implementation of PCVs for routine childhood use in Brazil. This systematic review was based on the Cochrane Handbook for Systematic Reviews of Interventions and Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA) guidelines. Despite the inclusion of PCVs at a large scale in the national territory, high frequencies of non-susceptibility to important drugs used in pneumococcal diseases are still observed, especially penicillin, as well as increasing resistance to macrolides. However, there are still drugs for which pneumococci have a comprehensive sensitivity profile.
Collapse
Affiliation(s)
- Patricia Alice Knupp-Pereira
- Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, Brazil; (P.A.K.-P.); (A.S.C.); (A.B.d.S.)
| | - Amanda Seabra Cabral
- Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, Brazil; (P.A.K.-P.); (A.S.C.); (A.B.d.S.)
| | | | - Amanda Beiral da Silva
- Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, Brazil; (P.A.K.-P.); (A.S.C.); (A.B.d.S.)
| | | | | |
Collapse
|
13
|
Malley R, Lu YJ, Sebastian S, Zhang F, Willer DO. Multiple antigen presenting system (MAPS): state of the art and potential applications. Expert Rev Vaccines 2024; 23:196-204. [PMID: 38174559 DOI: 10.1080/14760584.2023.2299384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components. AREAS COVERED This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings. EXPERT OPINION The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.
Collapse
Affiliation(s)
- Richard Malley
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Fan Zhang
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - David O Willer
- GSK, Global Medical Affairs, Vaccines Research and Development, Mississauga, Ontario, Canada
| |
Collapse
|
14
|
Alberto Alcalá-Orozco E, Grote V, Fiebig T, Klamt S, Reichl U, Rexer T. A Cell-Free Multi-enzyme Cascade Reaction for the Synthesis of CDP-Glycerol. Chembiochem 2023; 24:e202300463. [PMID: 37578628 DOI: 10.1002/cbic.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
CDP-glycerol is a nucleotide-diphosphate-activated version of glycerol. In nature, it is required for the biosynthesis of teichoic acid in Gram-positive bacteria, which is an appealing target epitope for the development of new vaccines. Here, a cell-free multi-enzyme cascade was developed to synthetize nucleotide-activated glycerol from the inexpensive and readily available substrates cytidine and glycerol. The cascade comprises five recombinant enzymes expressed in Escherichia coli that were purified by immobilized metal affinity chromatography. As part of the cascade, ATP is regenerated in situ from polyphosphate to reduce synthesis costs. The enzymatic cascade was characterized at the laboratory scale, and the products were analyzed by high-performance anion-exchange chromatography (HPAEC)-UV and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After the successful synthesis had been confirmed, a design-of-experiments approach was used to screen for optimal operation conditions (temperature, pH value and MgCl2 concentration). Overall, a substrate conversion of 89 % was achieved with respect to the substrate cytidine.
Collapse
Affiliation(s)
- E Alberto Alcalá-Orozco
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Valerian Grote
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Rexer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| |
Collapse
|
15
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Deslauriers N, Boulianne M. Evolution of Bacterial Vaccines: from Pasteur to Genomics. Avian Dis 2023; 67:1-6. [PMID: 39126419 DOI: 10.1637/aviandiseases-d-23-99994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2024]
Abstract
Vaccination against bacteria offers its share of challenges, and important progress has been made in recent years. Conventional vaccinology has protected poultry for decades with killed and attenuated bacterial vaccines. Because of the limitations of these vaccines, and given the latest technological advances, other types of vaccines were developed using various strategies. New vaccines are also being commercialized using viral or bacterial recombinant vectors or in the form of subunit vaccines developed by a genomic approach and bioinformatics analyses. As bacteria are forever-evolving microorganisms, there is no doubt that vaccine strategies preventing bacterial diseases will also evolve and that new generations of vaccines are yet to come.
Collapse
Affiliation(s)
- Nicolas Deslauriers
- Chair in Poultry Research, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada QC J2S 2M2
| | - Martine Boulianne
- Chair in Poultry Research, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada QC J2S 2M2,
| |
Collapse
|
17
|
Zhu H, Chelysheva I, Cross DL, Blackwell L, Jin C, Gibani MM, Jones E, Hill J, Trück J, Kelly DF, Blohmke CJ, Pollard AJ, O’Connor D. Molecular correlates of vaccine-induced protection against typhoid fever. J Clin Invest 2023; 133:e169676. [PMID: 37402153 PMCID: PMC10425215 DOI: 10.1172/jci169676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Deborah L. Cross
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Daniel O’Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
18
|
Zheng Z, Ma M, Jia Y, Cui Y, Zhao R, Li S, Wenthur C, Li L, Li G. Expedited Evaluation of Conformational Stability-Heterogeneity Associations for Crude Polyclonal Antibodies in Response to Conjugate Vaccines. Anal Chem 2023; 95:10895-10902. [PMID: 37433088 PMCID: PMC10695093 DOI: 10.1021/acs.analchem.3c00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Conjugate vaccines have been demonstrated to be a promising strategy for immunotherapeutic intervention in substance use disorder, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. The antibodies generated following immunization with these species can provide long-lasting protection against overdose through sequestration of the abused drug in the periphery, which mitigates its ability to cross the blood-brain barrier. However, these antibodies exhibit a high degree of heterogeneity in structure. The resultant variations in chemical and structural compositions have not yet been clearly linked to the stability that directly affects their in vivo functional performance. In this work, we describe a rapid mass-spectrometry-based analytical workflow capable of simultaneous and comprehensive interrogation of the carrier protein-dependent heterogeneity and stability of crude polyclonal antibodies in response to conjugate vaccines. Quantitative collision-induced unfolding-ion mobility-mass spectrometry with an all-ion mode is adapted to rapidly assess the conformational heterogeneity and stability of crude serum antibodies collected from four different vaccine conditions, in an unprecedented manner. A series of bottom-up glycoproteomic experiments was performed to reveal the driving force underlying these observed heterogeneities. Overall, this study not only presents a generally applicable workflow for fast assessment of crude antibody conformational stability and heterogeneity at the intact protein level but also leverages carrier protein optimization as a simple solution to antibody quality control.
Collapse
Affiliation(s)
- Zhen Zheng
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yifei Jia
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Rui Zhao
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuangshuang Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cody Wenthur
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gongyu Li
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
19
|
Moeller T, Shah SB, Lai K, Lopez-Barbosa N, Desai P, Wang W, Zhong Z, Redmond D, Singh A, DeLisa MP. Profiling Germinal Center-like B Cell Responses to Conjugate Vaccines Using Synthetic Immune Organoids. ACS CENTRAL SCIENCE 2023; 9:787-804. [PMID: 37122450 PMCID: PMC10141597 DOI: 10.1021/acscentsci.2c01473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 05/03/2023]
Abstract
Glycoengineered bacteria have emerged as a cost-effective platform for rapid and controllable biosynthesis of designer conjugate vaccines. However, little is known about the engagement of such conjugates with naïve B cells to induce the formation of germinal centers (GC), a subanatomical microenvironment that converts naïve B cells into antibody-secreting plasma cells. Using a three-dimensional biomaterials-based B-cell follicular organoid system, we demonstrate that conjugates triggered robust expression of hallmark GC markers, B cell receptor clustering, intracellular signaling, and somatic hypermutation. These responses depended on the relative immunogenicity of the conjugate and correlated with the humoral response in vivo. The occurrence of these mechanisms was exploited for the discovery of high-affinity antibodies against components of the conjugate on a time scale that was significantly shorter than for typical animal immunization-based workflows. Collectively, these findings highlight the potential of synthetic organoids for rapidly predicting conjugate vaccine efficacy as well as expediting antigen-specific antibody discovery.
Collapse
Affiliation(s)
- Tyler
D. Moeller
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shivem B. Shah
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kristine Lai
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Natalia Lopez-Barbosa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Primit Desai
- Biochemistry,
Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weiyao Wang
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhe Zhong
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David Redmond
- Institute
for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, New York 10021, United States
- Department
of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, New York 10021, United States
| | - Ankur Singh
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew P. DeLisa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Biochemistry,
Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Soegiarto G, Purnomosari D. Challenges in the Vaccination of the Elderly and Strategies for Improvement. PATHOPHYSIOLOGY 2023; 30:155-173. [PMID: 37218912 DOI: 10.3390/pathophysiology30020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
In recent years, the elderly has become a rapidly growing proportion of the world's population as life expectancy is extending. Immunosenescence and inflammaging contribute to the increased risk of chronic non-communicable and acute infectious diseases. Frailty is highly prevalent in the elderly and is associated with an impaired immune response, a higher propensity to infection, and a lower response to vaccines. Additionally, the presence of uncontrolled comorbid diseases in the elderly also contributes to sarcopenia and frailty. Vaccine-preventable diseases that threaten the elderly include influenza, pneumococcal infection, herpes zoster, and COVID-19, which contribute to significant disability-adjusted life years lost. Previous studies had shown that conventional vaccines only yielded suboptimal protection that wanes rapidly in a shorter time. This article reviews published papers on several vaccination strategies that were developed for the elderly to solve these problems: more immunogenic vaccine formulations using larger doses of antigen, stronger vaccine adjuvants, recombinant subunit or protein conjugated vaccines, newly developed mRNA vaccines, giving booster shots, and exploring alternative routes of administration. Included also are several publications on senolytic medications under investigation to boost the immune system and vaccine response in the elderly. With all those in regard, the currently recommended vaccines for the elderly are presented.
Collapse
Affiliation(s)
- Gatot Soegiarto
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Dr. Soetomo Academic General Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya 60286, Indonesia
- Master Program in Immunology, Postgraduate School, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Dewajani Purnomosari
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
21
|
Pifferi C, Aguinagalde L, Ruiz-de-Angulo A, Sacristán N, Baschirotto PT, Poveda A, Jiménez-Barbero J, Anguita J, Fernández-Tejada A. Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chem Sci 2023; 14:3501-3513. [PMID: 37006677 PMCID: PMC10055764 DOI: 10.1039/d2sc05639a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The overexpression of aberrantly glycosylated tumor-associated mucin-1 (TA-MUC1) in human cancers makes it a major target for the development of anticancer vaccines derived from synthetic MUC1-(glyco)peptide antigens. However, glycopeptide-based subunit vaccines are weakly immunogenic, requiring adjuvants and/or additional immunopotentiating approaches to generate optimal immune responses. Among these strategies, unimolecular self-adjuvanting vaccine constructs that do not need coadministration of adjuvants or conjugation to carrier proteins emerge as a promising but still underexploited approach. Herein, we report the design, synthesis, immune-evaluation in mice, and NMR studies of new, self-adjuvanting and self-assembling vaccines based on our QS-21-derived minimal adjuvant platform covalently linked to TA-MUC1-(glyco)peptide antigens and a peptide helper T-cell epitope. We have developed a modular, chemoselective strategy that harnesses two distal attachment points on the saponin adjuvant to conjugate the respective components in unprotected form and high yields via orthogonal ligations. In mice, only tri-component candidates but not unconjugated or di-component combinations induced significant TA-MUC1-specific IgG antibodies able to recognize the TA-MUC1 on cancer cells. NMR studies revealed the formation of self-assembled aggregates, in which the more hydrophilic TA-MUC1 moiety gets exposed to the solvent, favoring B-cell recognition. While dilution of the di-component saponin-(Tn)MUC1 constructs resulted in partial aggregate disruption, this was not observed for the more stably-organized tri-component candidates. This higher structural stability in solution correlates with their increased immunogenicity and suggests a longer half-life of the construct in physiological media, which together with the enhanced antigen multivalent presentation enabled by the particulate self-assembly, points to this self-adjuvanting tri-component vaccine as a promising synthetic candidate for further development.
Collapse
Affiliation(s)
- Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Priscila Tonon Baschirotto
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias Av. Monforte de Lemos, 3-5 28029 Madrid Spain
| | - Juan Anguita
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Inflammation and Macrophage Plasticity Laboratory, CIC BioGUNE, BRTA Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
22
|
Biggs AT, Littlejohn LF. Describing mRNA Vaccine Technology for a Military Audience. Mil Med 2023; 188:547-554. [PMID: 35584186 DOI: 10.1093/milmed/usac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Vaccine technology has improved substantially since the first smallpox vaccine, developed more than 200 years ago. As technology improves, vaccines can be produced more safely and reliably for many different pathogens. A recent breakthrough saw the first full deployment of mRNA vaccines to fight a pandemic. Despite the technological and logistical feat of developing a viable vaccine in an abbreviated time frame, there have been many questions about this new approach to vaccine development. The current review will provide descriptions about different types of vaccines as well as answers to some common questions about mRNA vaccines. The purpose is to provide military medical professionals with the information needed to better convey the importance and function of these new vaccines to service members. MATERIALS AND METHODS There were no explicit inclusion or exclusion criteria for articles describing mRNA vaccine technology. References included here were intended to illustrate important principles or empirical evidence in demonstrating the safety, efficacy, and function of mRNA vaccines. DISCUSSION The review describes three different types of vaccines: whole-pathogen, subunit, and nucleic acid. Each vaccine type has different implications for the development and production of a vaccine line. For example, whole-pathogen and subunit vaccines often require growing significant amounts of the vaccine sample in laboratory before the material can be incorporated into the vaccine. Nucleic acid vaccines instead provide cells the opportunity to produce key proteins without needing to reproduce the virus and attenuate it in a laboratory setting. This approach has a notable advantage of speed in moving from genome sequencing to vaccine production, but it also creates some potential confusion. The discussion covers three questions with regard to this confusion. First, was the vaccine developed too quickly? Speed here is a byproduct of the new technology and unprecedented government interdepartmental cooperation. No steps were skipped in development or production. Second, does the vaccine modify DNA? No, the mRNA vaccines never enter the cell nucleus and therefore cannot modify DNA. The discussion clarifies how mRNA enters cells and produces the key proteins required to stimulate an immune system response. Third, how long will immunity last? Because mRNA vaccines are new, long-term immunity cannot be projected without significant further study. Still, the discussion does cover issues in determining vaccine efficacy in clinical laboratory trials versus field effectiveness in the real world. CONCLUSIONS AND FUTURE USES These mRNA vaccines are the newest and most sophisticated defensive tool military medicine has against emerging biological threats. Evolving dangers, such as synthetic biology and engineered pathogens, further enhance the importance of having defensive countermeasures that can be rapidly deployed in response. Current evidence suggests high safety and effectiveness for a biological countermeasure, decades in the making, and military medical personnel should feel confident using and recommending this technology to ensure force health protection.
Collapse
Affiliation(s)
- Adam T Biggs
- Medical Department, Naval Special Warfare Command, Coronado, CA 92155, USA
| | - Lanny F Littlejohn
- Medical Department, Naval Special Warfare Command, Coronado, CA 92155, USA
| |
Collapse
|
23
|
Jarovsky D, Berezin EN. Impact of PCV10 on pediatric pneumococcal disease burden in Brazil: time for new recommendations? J Pediatr (Rio J) 2023; 99 Suppl 1:S46-S56. [PMID: 36495946 PMCID: PMC10066423 DOI: 10.1016/j.jped.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To describe the impact of the 10-valent pneumococcal conjugate vaccine on the pediatric burden of pneumococcal infections, carriage, serotype replacement, and antimicrobial resistance in Brazil since its introduction in 2010. DATA SOURCE A narrative review of English, Spanish, and Portuguese articles published in online databases and in Brazilian epidemiological surveillance databases was performed. The following keywords were used: Streptococcus pneumoniae, pneumococcal disease, conjugate vaccine, PCV10, antimicrobial resistance, and meningitis. SUMMARY OF THE FINDINGS Declines in hospitalization rates of all-cause pneumonia occurred in the target age groups and some age groups not targeted by vaccination early after the use of PCV10. Large descriptive studies of laboratory-confirmed pneumococcal meningitis and hospital-based historical series of hospitalized children with IPD have evidenced a significant impact on disease burden, in-hospital fatality rates, and admission to the intensive care unit before and after the inclusion of the vaccine. Impact data on otitis media is limited and inconsistent; the main benefit remains the prevention of complicated diseases. During the late post-vaccine years, a significant and progressive increase in high-level penicillin non-susceptibility pneumococci has been described. Since 2014 serotype 19A has been the leading serotype in all ages and was responsible for 28.2%-44.6% of all IPD in children under 5 yrs. CONCLUSIONS PCV10 has performed a significant impact on IPD in Brazil since 2010, however, progress has been continuously hampered by replacement. Broader spectrum PCVs could provide expanded direct and indirect protection against ST19A and other additional serotypes of increasing importance if administered to children in the Brazilian National Immunization Program.
Collapse
Affiliation(s)
- Daniel Jarovsky
- Santa Casa de São Paulo Faculty of Medical Sciences, São Paulo, SP, Brazil; Santa Casa de São Paulo, São Paulo, SP, Brazil.
| | - Eitan Naaman Berezin
- Santa Casa de São Paulo Faculty of Medical Sciences, São Paulo, SP, Brazil; Santa Casa de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Accardi KT, Bocchini JA. Control and Prevention of Invasive Pneumococcal Disease: A Current and Historical Perspective. Pediatr Ann 2023; 52:e96-e101. [PMID: 36881796 DOI: 10.3928/19382359-20230118-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Although significant progress has been made in reducing the incidence of invasive pneumococcal disease (IPD) in children, IPD remains a continued threat. Since the introduction of pneumococcal conjugate vaccines (PCVs), rates of IPD and non-IPD have substantially decreased. However, serotype replacement reversed some of the benefits of PCV7 and, more recently, PCV13. Several replacement serotypes are antibiotic resistant, which is a cause of concern for providers. The introduction of the higher-valency conjugate vaccines PCV15 and PCV20 is expected to provide greater serotype coverage; unfortunately, these vaccines do not include some of the recently emerged serotypes. Recommendations for the use of the 23-valent polysaccharide vaccine in high-risk populations may be modified because of the effectiveness of the newer PCVs. Pediatricians must be aware of the new vaccine strategies for the prevention of IPD and the manifestations of IPD so that prompt empirical therapy can be initiated when treatment is required. [Pediatr Ann. 2023;52(3):e96-e101.].
Collapse
|
25
|
Al-Jabri M, Rosero C, Saade EA. Vaccine-Preventable Diseases in Older Adults. Infect Dis Clin North Am 2023; 37:103-121. [PMID: 36805008 DOI: 10.1016/j.idc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Older adults are at an increased risk of vaccine-preventable diseases partly because of physiologic changes in the immune and other body systems related to age and/or accumulating comorbidities that increase the vulnerability to infections and decrease the response to vaccines. Strategies to improve the response to vaccines include using a higher antigenic dose (such as in the high-dose inactivated influenza vaccines) as well as adding adjuvants (such as MF59 in the adjuvanted inactivated influenza vaccine).
Collapse
Affiliation(s)
- Maha Al-Jabri
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue - Mailstop Fol. 5083, Cleveland, OH 44106, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Christian Rosero
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue - Mailstop Fol. 5083, Cleveland, OH 44106, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Elie A Saade
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue - Mailstop Fol. 5083, Cleveland, OH 44106, USA.
| |
Collapse
|
26
|
Warfel K, Williams A, Wong DA, Sobol SE, Desai P, Li J, Chang YF, DeLisa MP, Karim AS, Jewett MC. A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines. ACS Synth Biol 2023; 12:95-107. [PMID: 36548479 PMCID: PMC9872175 DOI: 10.1021/acssynbio.2c00392] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.
Collapse
Affiliation(s)
- Katherine
F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Asher Williams
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
| | - Derek A. Wong
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Sarah E. Sobol
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Primit Desai
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
| | - Jie Li
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Yung-Fu Chang
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853 United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, 676 North
Saint Clair Street, Suite 1200, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, 303 East Superior Street, Suite
11-131, Chicago, Illinois 60611, United States
| |
Collapse
|
27
|
Wang Z, Gimeno A, Lete MG, Overkleeft HS, van der Marel GA, Chiodo F, Jiménez‐Barbero J, Codée JDC. Synthetic Zwitterionic Streptococcus pneumoniae Type 1 Oligosaccharides Carrying Labile O-Acetyl Esters. Angew Chem Int Ed Engl 2023; 62:e202211940. [PMID: 36350770 PMCID: PMC10107948 DOI: 10.1002/anie.202211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/11/2022]
Abstract
We herein report the first total synthesis of the Streptococcus pneumoniae serotype 1 (Sp1) oligosaccharide, a unique zwitterionic capsular polysaccharide carrying labile O-acetyl esters. The target oligosaccharides, featuring rare α-2,4-diamino-2,4,6-trideoxy galactose (AAT) and α-galacturonic acids, were assembled up to the 9-mer level, in a highly stereoselective manner using trisaccharide building blocks. The lability of the O-acetyl esters imposed a careful deprotection scheme to prevent migration and hydrolysis. The migration was investigated in detail at various pD values using NMR spectroscopy, to show that migration and hydrolysis of the C-3-O-acetyl esters readily takes place under neutral conditions. Structural investigation showed the oligomers to adopt a right-handed helical structure with the acetyl esters exposed on the periphery of the helix in close proximity of the neighboring AAT residues, thereby imposing conformational restrictions on the AATα1-4GalA(3OAc) glycosidic linkages, supporting the helical shape of the polysaccharide, that has been proposed to be critical for its unique biological activity.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Ana Gimeno
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
| | - Marta G. Lete
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | | | - Fabrizio Chiodo
- Institute of Biomolecular ChemistryNational Research Council (CNR)Pozzuoli, NapoliItaly
- Amsterdam Infection and Immunity InstituteDepartment of Molecular Cell Biology and Immunology Amsterdam UMC, Location VUmc1007 MBAmsterdam (TheNetherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009Bilbao, BizkaiaSpain
- Department of Organic ChemistryII Faculty of Science and Technology, EHU-UPV48940LeioaSpain
- Centro de Investigación Biomédica En Red de Enfermedades RespiratoriasMadridSpain
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| |
Collapse
|
28
|
Harris K, Ling Y, Bukhbinder AS, Chen L, Phelps KN, Cruz G, Thomas J, Kim Y, Jiang X, Schulz PE. The Impact of Routine Vaccinations on Alzheimer's Disease Risk in Persons 65 Years and Older: A Claims-Based Cohort Study using Propensity Score Matching. J Alzheimers Dis 2023; 95:703-718. [PMID: 37574727 PMCID: PMC10578243 DOI: 10.3233/jad-221231] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Accumulating evidence suggests that adult vaccinations can reduce the risk of developing Alzheimer's disease (AD) and Alzheimer's disease related dementias. OBJECTIVE To compare the risk for developing AD between adults with and without prior vaccination against tetanus and diphtheria, with or without pertussis (Tdap/Td); herpes zoster (HZ); or pneumococcus. METHODS A retrospective cohort study was performed using Optum's de-identified Clinformatics® Data Mart Database. Included patients were free of dementia during a 2-year look-back period and were≥65 years old by the start of the 8-year follow-up period. We compared two similar cohorts identified using propensity score matching (PSM), one vaccinated and another unvaccinated, with Tdap/Td, HZ, or pneumococcal vaccines. We calculated the relative risk (RR) and absolute risk reduction (ARR) for developing AD. RESULTS For the Tdap/Td vaccine, 7.2% (n = 8,370) of vaccinated patients and 10.2% (n = 11,857) of unvaccinated patients developed AD during follow-up; the RR was 0.70 (95% CI, 0.68-0.72) and ARR was 0.03 (95% CI, 0.02-0.03). For the HZ vaccine, 8.1% (n = 16,106) of vaccinated patients and 10.7% (n = 21,417) of unvaccinated patients developed AD during follow-up; the RR was 0.75 (95% CI, 0.73-0.76) and ARR was 0.02 (95% CI, 0.02-0.02). For the pneumococcal vaccine, 7.92% (n = 20,583) of vaccinated patients and 10.9% (n = 28,558) of unvaccinated patients developed AD during follow-up; the RR was 0.73 (95% CI, 0.71-0.74) and ARR was 0.02 (95% CI, 0.02-0.03). CONCLUSION Several vaccinations, including Tdap/Td, HZ, and pneumococcal, are associated with a reduced risk for developing AD.
Collapse
Affiliation(s)
- Kristofer Harris
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yaobin Ling
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Avram S. Bukhbinder
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Pediatric Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Luyao Chen
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kamal N. Phelps
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela Cruz
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jenna Thomas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yejin Kim
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
29
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|
30
|
Naidu A, Lulu S S. Mucosal and systemic immune responses to Vibrio cholerae infection and oral cholera vaccines (OCVs) in humans: a systematic review. Expert Rev Clin Immunol 2022; 18:1307-1318. [PMID: 36255170 DOI: 10.1080/1744666x.2022.2136650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Cholera is an enteric disease caused by Vibrio cholerae, a water-borne pathogen, and characterized by severe diarrhea. Vaccines have been recommended for use by the WHO in resource-limited settings. Efficacies of the currently licensed cholera vaccines are not optimal in endemic settings and low in children below the age of five, a section of the population most susceptible to the disease. Development of next generation of cholera vaccines would require a detailed understanding of the required protective immune responses. AREA COVERED In this review, we revisit clinical trials which are focused on the early transcriptional mucosal responses elicited during Vibrio cholerae infection and upon vaccination along with summarizing various components of the effector immune response against Vibrio cholerae. EXPERT OPINION The inability of currently licensed killed/inactivated vaccines to elicit key inflammatory pathways locally may explain their restricted efficacy in endemic settings. More studies are required to understand the immunogenicity of the live attenuated cholera vaccine in these regions. Various extrinsic and intrinsic factors influence anti-cholera immunity and need to be considered to develop region-specific next generation vaccines.
Collapse
Affiliation(s)
- Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sajitha Lulu S
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
31
|
Abstract
Asplenia (the congenital or acquired absence of the spleen) and hyposplenism (defective spleen function) are common causes of morbidity and mortality. The spleen is a secondary lymphoid organ that is responsible for the regulation of immune responses and blood filtration. Hence, asplenia or hyposplenism increases susceptibility to severe and invasive infections, especially those sustained by encapsulated bacteria (namely, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae type b). Asplenia is predominantly due to splenectomy for either traumatic events or oncohaematological conditions. Hyposplenism can be caused by several conditions, including haematological, infectious, autoimmune and gastrointestinal disorders. Anatomical disruption of the spleen and depletion of immune cells, especially IgM memory B cells, seem to be predominantly responsible for the clinical manifestations. Early recognition of hyposplenism and proper management of asplenia are warranted to prevent overwhelming post-splenectomy infections through vaccination and antibiotic prophylaxis. Although recommendations are available, the implementation of vaccination strategies, including more effective and immunogenic vaccines, is needed. Additionally, screening programmes for early detection of hyposplenism in high-risk patients and improvement of patient education are warranted.
Collapse
|
32
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
33
|
Immunogenicity and protective efficacy of a prototype pneumococcal bioconjugate vaccine. Vaccine 2022; 40:6107-6113. [PMID: 36115800 PMCID: PMC10388713 DOI: 10.1016/j.vaccine.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Capsular polysaccharides (CPSs), with which most pathogenic bacterial surfaces are decorated, have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide. Pneumococcal conjugate vaccines (PCVs) are administered globally to prevent invasive pneumococcal disease (IPD). While PCVs have played important roles in controlling IPD in all age groups, their empirical, and labor-intensive chemical conjugation yield poorly characterized, heterogeneous, and variably immunogenic vaccines, with poor immune responses in high-risk populations such as the elderly and patients with weak immune systems. We previously developed a method that bypasses the dependency of chemical conjugation and instead exploits prokaryotic glycosylation systems to produce pneumococcal conjugate vaccines. The bioconjugation platform relies on a conjugating enzyme to transfer a bacterial polysaccharide to an engineered carrier protein all within the lab safe bacterium E. coli. In these studies, we demonstrate that a serotype 8 pneumococcal bioconjugate vaccine is highly immunogenic and elicits functionally protective anti-serotype 8 antibody responses. Specifically, using multiple models we show that mice immunized with multiple doses of a serotype 8 bioconjugate vaccine elicit antibody responses that mediate opsonophagocytic killing, protect mice from systemic infection, and decrease the ability of serotype 8 pneumococci to colonize the nasopharynx and disseminate. Collectively, these studies demonstrate the utility of bioconjugation to produce efficacious pneumococcal conjugate vaccines.
Collapse
|
34
|
Britto C, Alter G. The next frontier in vaccine design: blending immune correlates of protection into rational vaccine design. Curr Opin Immunol 2022; 78:102234. [PMID: 35973352 PMCID: PMC9612370 DOI: 10.1016/j.coi.2022.102234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Despite the extraordinary speed and success in SARS-Cov-2 vaccine development, the emergence of variants of concern perplexed the vaccine development community. Neutralizing antibodies waned antibodies waned and were evaded by viral variants, despite the preservation of protection against severe disease and death across vaccinated populations. Similar to other vaccine design efforts, the lack of mechanistic correlates of immunity against Coronavirus Disease 2019, raised questions related to the need for vaccine redesign and boosting. Hence, our limited understanding of mechanistic correlates of immunity - across pathogens - remains a major obstacle in vaccine development. The identification and incorporation of mechanistic correlates of immunity are key to the accelerated design of highly impactful globally relevant vaccines. Systems-biology tools can be applied strategically to define a complete understanding of mechanistic correlates of immunity. Embedding immunological dissection and target immune profile identification, beyond canonical antibody binding and neutralization, may accelerate the design and success of durable protective vaccines.
Collapse
Affiliation(s)
- Carl Britto
- Department of Pediatrics, Boston Children's Hospital, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Stefanetti G, MacLennan CA, Micoli F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022; 27:molecules27196432. [PMID: 36234967 PMCID: PMC9572008 DOI: 10.3390/molecules27196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoconjugate vaccines have contributed enormously to reducing and controlling encapsulated bacterial infections for over thirty years. Glycoconjugate vaccines are based on a carbohydrate antigen that is covalently linked to a carrier protein; this is necessary to cause T cell responses for optimal immunogenicity, and to protect young children. Many interdependent parameters affect the immunogenicity of glycoconjugate vaccines, including the size of the saccharide antigen. Here, we examine and discuss the impact of glycan chain length on the efficacy of glycoconjugate vaccines and report the methods employed to size polysaccharide antigens, while highlighting the underlying reaction mechanisms. A better understanding of the impact of key parameters on the immunogenicity of glycoconjugates is critical to developing a new generation of highly effective vaccines.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Calman Alexander MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
36
|
Maltoni G, Scutteri L, Mensitieri F, Piaz FD, Hochkoeppler A. High-yield production in Escherichia coli and convenient purification of a candidate vaccine against SARS-CoV-2. Biotechnol Lett 2022; 44:1313-1322. [PMID: 36161539 PMCID: PMC9512991 DOI: 10.1007/s10529-022-03298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES The aim of the present work was to identify a time-saving, effective, and low-cost strategy to produce in Escherichia coli a protein chimera representing a fusion anti-SARS-CoV-2 candidate vaccine, consisting of immunogenic and antigenic moieties. RESULTS We overexpressed in E. coli BL21(DE3) a synthetic gene coding for CRM197-RBD, and the target protein was detected in inclusion bodies. CRM197-RBD was solubilized with 1 % (w/v) of the anionic detergent N-lauroylsarcosine (sarkosyl), the removal of which from the protein solution was conveniently accomplished with Amberlite XAD-4. The detergent-free CRM197-RBD was then separated from contaminating DNA using polyethylenimine (PEI), and finally purified from PEI by salting out with ammonium sulfate. Structural (CD spectrum) and functional (DNase activity) assays revealed that the CRM197-RBD chimera featured a native and active conformation. Remarkably, we determined a yield of purified CRM197-RBD equal to 23 mg per litre of culture. CONCLUSIONS To produce CRM197-RBD, we devised the use of sarkosyl as an alternative to urea to solubilize the target protein from E. coli inclusion bodies, and the easy removal of sarkosyl by means of Amberlite XAD-4.
Collapse
Affiliation(s)
- Giulia Maltoni
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Lorenzo Scutteri
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Francesca Mensitieri
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy. .,CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
37
|
Shivatare S, Sanjiv K, Kikkeri R, Adamo R. Editorial: Glycoconjugates in vaccines and immunotherapeutics. Front Immunol 2022; 13:941474. [PMID: 35990665 PMCID: PMC9386521 DOI: 10.3389/fimmu.2022.941474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sachin Shivatare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Kumar Sanjiv
- Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Roberto Adamo
- Research Centre, GlaxoSmithKline (GSK), Siena, Italy
- *Correspondence: Roberto Adamo,
| |
Collapse
|
38
|
Kapoor N, Uchiyama S, Pill L, Bautista L, Sedra A, Yin L, Regan M, Chu E, Rabara T, Wong M, Davey P, Fairman J, Nizet V. Non-Native Amino Acid Click Chemistry-Based Technology for Site-Specific Polysaccharide Conjugation to a Bacterial Protein Serving as Both Carrier and Vaccine Antigen. ACS OMEGA 2022; 7:24111-24120. [PMID: 35874267 PMCID: PMC9301713 DOI: 10.1021/acsomega.1c07360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-expressed bacterial polysaccharides are important vaccine antigens but must be conjugated to a carrier protein for efficient antigen presentation and development of strong memory B cell and antibody responses, especially in young children. The commonly used protein carriers include tetanus toxoid (TT), diphtheria toxoid (DT), and its derivative CRM197, but carrier-induced epitopic suppression and bystander interference may limit the expanded use of the same carriers in the pediatric immunization schedule. Recent efforts to develop a vaccine against the major human pathogen group A Streptococcus (GAS) have sought to combine two promising vaccine antigens-the universally conserved group A cell wall carbohydrate (GAC) with the secreted toxin antigen streptolysin O (SLO) as a protein carrier; however, standard reductive amination procedures appeared to destroy function epitopes of the protein, markedly diminishing functional antibody responses. Here, we couple a cell-free protein synthesis (CFPS) platform, allowing the incorporation of non-natural amino acids into a C-terminally truncated SLO toxoid for the precise conjugation to the polyrhamnose backbone of GAC. The combined immunogen generated functional antibodies against both conserved GAS virulence factors and provided protection against systemic GAS challenges. CFPS may represent a scalable method for generating pathogen-specific carrier proteins for multivalent subunit vaccine development.
Collapse
Affiliation(s)
- Neeraj Kapoor
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems
and Therapeutics, Department of
Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, 9500 Gilman Drive Mail Code 0760, La Jolla, California 92093, United States
| | - Lucy Pill
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Leslie Bautista
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Angie Sedra
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Lu Yin
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Maritoni Regan
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Ellen Chu
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Taylor Rabara
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Melissa Wong
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Peter Davey
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Jeff Fairman
- Vaxcyte,
Inc., 825 Industrial
Road, Suite 300, San Carlos, California 94070, United States
| | - Victor Nizet
- Division of Host-Microbe Systems
and Therapeutics, Department of
Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, 9500 Gilman Drive Mail Code 0760, La Jolla, California 92093, United States
| |
Collapse
|
39
|
Blanas A, Karsjens H, de Ligt A, Huijbers EJ, van Loon K, Denisov SS, Durukan C, Engbersen DJ, Groen J, Hennig S, Hackeng TM, van Beijnum JR, Griffioen AW. Vaccination with a bacterial peptide conjugated to SARS-CoV-2 RBD accelerates immunity and protects against COVID-19. iScience 2022; 25:104719. [PMID: 35813877 PMCID: PMC9252865 DOI: 10.1016/j.isci.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Poor immunogenicity of critical epitopes can hamper vaccine efficacy. To boost immune recognition of non- or low-immunogenic antigens, we developed a vaccine platform based on the conjugation of a target protein to a chimeric designer peptide (CDP) of bacterial origin. Here, we exploited this immune Boost (iBoost) technology to enhance the immune response against the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. Despite its fundamental role during viral infection, RBD is only moderately immunogenic. Immunization studies in mice showed that the conjugation of CDP to RBD induced superior immune responses compared to RBD alone. CDP-RBD elicited cross-reactive antibodies against the variants of concern Delta and Omicron. Furthermore, hamsters vaccinated with CDP-RBD developed potent neutralizing antibody responses and were fully protected from lung lesion formation upon challenge with SARS-CoV-2. In sum, we show that the iBoost conjugate vaccine technology provides a valuable tool for both quantitatively and qualitatively enhancing anti-viral immunity. An iBoost-based CDP-RBD conjugate vaccine against SARS-CoV-2 Induction of potent RBD-specific humoral and cellular responses CDP-RBD vaccination protects hamsters from lung lesion formation
Collapse
Affiliation(s)
- Athanasios Blanas
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Haiko Karsjens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aafke de Ligt
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elisabeth J.M. Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Stepan S. Denisov
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Canan Durukan
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Jan Groen
- Intravacc, Institute for Translational Vaccinology, Bilthoven, the Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tilman M. Hackeng
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | | | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Corresponding author
| |
Collapse
|
40
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
41
|
Chang CM, Awanye AM, Marsay L, Dold C, Pollard AJ, Rollier CS, Feavers IM, Maiden MCJ, Derrick JP. Application of a Neisseria meningitidis antigen microarray to identify candidate vaccine proteins from a human Phase I clinical trial. Vaccine 2022; 40:3835-3842. [PMID: 35610106 PMCID: PMC7616631 DOI: 10.1016/j.vaccine.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Meningococcal meningitis is a rare but serious condition affecting mainly children and young adults. Outer membrane vesicles (OMV) from Neisseria meningitidis have been used successfully as vaccines against the disease, although they only provide protection against a limited number of the many existing variants. There have been many attempts to identify suitable protein antigens for use in defined vaccines that provide broad protection against the disease, such as that leading to the development of the four component 4CMenB vaccine. We previously reported the use of a protein antigen microarray to screen for IgG antibodies in sera derived from human recipients of an OMV-based vaccine, as part of a Phase I clinical trial. Here, we show that computational methods can be used to cluster antigens that elicit similar responses in the same individuals. Fitting of IgG antibody binding data to 4,005 linear regressions identified pairs of antigens that exhibited significant correlations. Some were from the same antigens in different quaternary states, whilst others might be correlated for functional or immunological reasons. We also conducted statistical analyses to examine correlations between individual serum bactericidal antibody (SBA) titres and IgG reactivity against specific antigens. Both Kendall's tau and Spearman's rank correlation coefficient statistics identified specific antigens that correlated with log(SBA) titre in five different isolates. The principal antigens identified were PorA and PorB, RmpM, OpcA, and the type IV pilus assembly secretin, PilQ. Other minor antigens identified included a lipoprotein, two proteins from the BAM complex and the efflux channel MtrE. Our results suggest that consideration of the entire antigen composition, and allowance for potential interaction between antigens, could be valuable in designing future meningococcal vaccines. Such an approach has the advantages that it uses data derived from human, rather than animal, immunization and that it avoids the need to screen individual antigens.
Collapse
Affiliation(s)
- Chun-Mien Chang
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Amaka M Awanye
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK; Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
42
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
43
|
van
der Put RMF, Smitsman C, de Haan A, Hamzink M, Timmermans H, Uittenbogaard J, Westdijk J, Stork M, Ophorst O, Thouron F, Guerreiro C, Sansonetti PJ, Phalipon A, Mulard LA. The First-in-Human Synthetic Glycan-Based Conjugate Vaccine Candidate against Shigella. ACS CENTRAL SCIENCE 2022; 8:449-460. [PMID: 35559427 PMCID: PMC9088300 DOI: 10.1021/acscentsci.1c01479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/12/2023]
Abstract
Shigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease.
Collapse
Affiliation(s)
| | | | - Alex de Haan
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Martin Hamzink
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | | | | | - Janny Westdijk
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michiel Stork
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Olga Ophorst
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Françoise Thouron
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Catherine Guerreiro
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe J. Sansonetti
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
- Chaire
de Microbiologie et Maladies Infectieuses, Collège de France, 11, place Marcelin Berthelot, 75005 Paris, France
| | - Armelle Phalipon
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
44
|
Sun P, Li X, Pan C, Liu Z, Wu J, Wang H, Zhu L. A Short Peptide of Autotransporter Ata Is a Promising Protective Antigen for Vaccination Against Acinetobacter baumannii. Front Immunol 2022; 13:884555. [PMID: 35493470 PMCID: PMC9043751 DOI: 10.3389/fimmu.2022.884555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
With the emergence of multidrug-resistant strains, Acinetobacter baumannii infection is becoming a thorny health problem in hospitals. However, there are no licensed vaccines against A. baumannii. Acinetobacter trimeric autotransporter (Ata) is an important known virulence factor located on the outer membrane of bacteria. Herein, we carried out a series of experiments to test the immunogenicity of a short C-terminal extracellular region of Ata (Ataα, only containing 39 amino acids) in a murine model. The short peptide Ataα was fused with the cholera toxin B subunit (CTB), which has been reported to have immunoadjuvant activity. The fusion protein showed no inflammation and organ damages, and have the ability to elicit both Th1 and Th2 immune responses in mice. The bactericidal activities against A. baumannii and prophylactic effects of the fusion protein were further evidenced by a significant reduction in the bacterial load in the organs and blood. In addition, the candidate vaccine could provide broad protection against lethal challenges with a variety of A. baumannii strains. Moreover, when CpG was added on the basis of aluminum adjuvant, the immune response, especially cellular immunity, could be further strengthened. Overall, these results revealed that the Ataα is a promising vaccine target against A. baumannii infection.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Zhicheng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
45
|
Pneumococcal Immunization for Adults in 2022. Dela J Public Health 2022; 8:36-38. [PMID: 35402926 PMCID: PMC8982925 DOI: 10.32481/djph.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Kandulna AK, Uttam KG, Sharma S, Kumar MR, Prasad KS, Goyal VK, Jangid SK, Daultani P, Mittal R, Maithal K. Long-term Persistence of Immunogenicity After Primary Vaccination and Response to Booster Vaccination With Typhoid Conjugate Vaccine: Results of a Phase IV Extension Study. Indian Pediatr 2022. [DOI: 10.1007/s13312-022-2520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Carboni F, Kitowski A, Sorieul C, Veggi D, Marques MC, Oldrini D, Balducci E, Brogioni B, Del Bino L, Corrado A, Angiolini F, Dello Iacono L, Margarit I, Romano MR, Bernardes GJL, Adamo R. Retaining the structural integrity of disulfide bonds in diphtheria toxoid carrier protein is crucial for the effectiveness of glycoconjugate vaccine candidates. Chem Sci 2022; 13:2440-2449. [PMID: 35310500 PMCID: PMC8864718 DOI: 10.1039/d1sc01928g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of glycoconjugate vaccines marks an important point in the fight against various infectious diseases. The covalent conjugation of relevant polysaccharide antigens to immunogenic carrier proteins enables the induction of a long-lasting and robust IgG antibody response, which is not observed for pure polysaccharide vaccines. Although there has been remarkable progress in the development of glycoconjugate vaccines, many crucial parameters remain poorly understood. In particular, the influence of the conjugation site and strategy on the immunogenic properties of the final glycoconjugate vaccine is the focus of intense research. Here, we present a comparison of two cysteine selective conjugation strategies, elucidating the impact of both modifications on the structural integrity of the carrier protein, as well as on the immunogenic properties of the resulting glycoconjugate vaccine candidates. Our work suggests that conjugation chemistries impairing structurally relevant elements of the protein carrier, such as disulfide bonds, can have a dramatic effect on protein immunogenicity.
Collapse
Affiliation(s)
| | - Annabel Kitowski
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | | | | | - Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | | | | | | | | | | | | | | | | | | | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | |
Collapse
|
48
|
Robertson JS, Loizides U, Adisa A, López de la Rica Manjavacas A, Rodilla V, Strnadova C, Weisser K, Balocco R. International Nonproprietary Names (INN) for novel vaccine substances: A matter of safety. Vaccine 2022; 40:21-27. [PMID: 34844820 PMCID: PMC8625196 DOI: 10.1016/j.vaccine.2021.11.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
What is an International Nonproprietary Name (INN)? What type of vaccine can be assigned an INN? What is the value of having an INN for vaccines?
International Nonproprietary Names (INN) are assigned by the World Health Organization (WHO) to pharmaceutical substances to ensure global recognition by a unique name. INN facilitate safe prescribing through naming consistency, efficient communication and exchange of information, transnational access and pharmacovigilance of medicinal products. Traditional vaccines such as inactivated or live-attenuated vaccines have not been assigned INN and provision of a general name falls within the scope of the WHO Expert Committee on Biological Standardization (ECBS). However, novel vaccines that contain well-defined active ingredients such as nucleic acids or recombinant proteins fulfil the criteria to be assigned INN. In the current environment where multiple SARS-CoV-2 vaccines are being developed to combat the COVID-19 pandemic and with virus variants emerging, assigning INN to well-defined vaccine substances will strengthen pharmacovigilance and ultimately enhance the safety of vaccine recipients. This article examines the background to INN for vaccines and explains the applicability and value of assigning INN to novel well-defined vaccines.
Collapse
Affiliation(s)
| | - Ursula Loizides
- INN Programme and Classification of Medical Products, INN/HPS/MHP, World Health Organization, 1211 Geneva, Switzerland
| | - Akinola Adisa
- Therapeutic Goods Administration, Department of Health, Woden ACT 2606, Australia
| | | | - Vicente Rodilla
- Universidad CEU Cardenal Herrera, Alfara del Patriarca, 46113 Valencia, Spain
| | - Colette Strnadova
- Health Canada, Health Products and Food Branch, Ottawa, Ontario K1A 0K9, Canada
| | - Karin Weisser
- Division Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Paul-Ehrlich-Strasse 7, 63225 Langen, Germany
| | - Raffaella Balocco
- INN Programme and Classification of Medical Products, INN/HPS/MHP, World Health Organization, 1211 Geneva, Switzerland.
| |
Collapse
|
49
|
Xu Z, Ho M, Bordoloi D, Kudchodkar S, Khoshnejad M, Giron L, Zaidi F, Jeong M, Roberts CC, Park YK, Maslow J, Abdel-Mohsen M, Muthumani K. Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods Mol Biol 2022; 2410:229-263. [PMID: 34914050 DOI: 10.1007/978-1-0716-1884-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Makan Khoshnejad
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Faraz Zaidi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Joel Maslow
- GeneOne Life Science Inc., Seoul, South Korea
| | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
- GeneOne Life Science Inc., Seoul, South Korea.
| |
Collapse
|
50
|
Soleymani S, Tavassoli A, Housaindokht MR. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput Biol Med 2022; 140:105057. [PMID: 34839187 DOI: 10.1016/j.compbiomed.2021.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Vaccination remains the most effective strategy for preventing and controlling infectious diseases. Numerous conventional vaccines, especially live attenuated, inactivated (killed) microorganisms and subunit vaccines, lead to an effective induction of protective immune responses, mainly antibody-mediated responses against pathogens. However, it has become known that a wide range of highly dangerous pathogens are uncontrollable via conventional vaccination strategies. Recent advances in molecular biology, immunology, genetics, biochemistry, and bioinformatics have provided new prospects for vaccine development. As a result of these advances, several new strategies for vaccine design, development, and production have appeared. These strategies show advantages over conventional vaccines. In this review, we discuss some of the major novel approaches, including recombinant protein vaccines, live recombinant viral and bacterial vectors, DNA and RNA vaccines, reverse vaccinology and reverse genetics approaches. Moreover, we have described the recent progresses on computational tools and immunoinformatics approaches for identifying, designing, and developing new candidate vaccines.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|