1
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Ansari SS, Dillard ME, Zhang Y, Austria MA, Boatwright N, Shelton EL, Stewart DP, Johnson A, Wang CE, Young BM, Rankovic Z, Hansen BS, Pruett-Miller SM, Carisey AF, Schuetz JD, Robinson CG, Ogden SK. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol 2024; 223:e202306002. [PMID: 38856684 PMCID: PMC11166601 DOI: 10.1083/jcb.202306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Ashley Austria
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Rhodes College Summer Plus Program, Memphis, TN, USA
| | - Naoko Boatwright
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amanda Johnson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christina E. Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandon M. Young
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Refai O, Rodriguez P, Gichi Z, Blakely RD. Forward genetic screen of the C. elegans million mutation library reveals essential, cell-autonomous contributions of BBSome proteins to dopamine signaling. J Neurochem 2024; 168:2073-2091. [PMID: 39118406 DOI: 10.1111/jnc.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
The nematode Caenorhabditis elegans is well known for its ability to support forward genetic screens to identify molecules involved in neuronal viability and signaling. The proteins involved in C. elegans dopamine (DA) regulation are highly conserved across evolution, with prior work demonstrating that the model can serve as an efficient platform to identify novel genes involved in disease-associated processes. To identify novel players in DA signaling, we took advantage of a recently developed library of pre-sequenced mutant nematodes arising from the million mutation project (MMP) to identify strains that display the DA-dependent swimming-induced-paralysis phenotype (Swip). Our screen identified novel mutations in the dopamine transporter encoding gene dat-1, whose loss was previously used to identify the Swip phenotype, as well as multiple genes with previously unknown connections to DA signaling. Here, we present our isolation and characterization of one of these genes, bbs-1, previously linked to the function of primary cilia in worms and higher organisms, including humans, and where loss-of-function mutations result in a human disorder known as Bardet-Biedl syndrome. Our studies of C. elegans BBS-1 protein, as well as other proteins that are known to be assembled into a higher order complex (the BBSome) reveal that functional or structural disruption of this complex leads to exaggerated C. elegans DA signaling to produce Swip via a cell-autonomous mechanism. We provide evidence that not only does the proper function of cilia in C. elegans DA neurons support normal swimming behavior, but also that bbs-1 maintains normal levels of DAT-1 trafficking or function via a RHO-1 and SWIP-13/MAPK-15 dependent pathway where mutants may contribute to Swip independent of altered ciliary function. Together, these studies demonstrate novel contributors to DA neuron function in the worm and demonstrate the utility and efficiency of forward genetic screens using the MMP library.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Peter Rodriguez
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Zayna Gichi
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
4
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Macarelli V, Harding EC, Gershlick DC, Merkle FT. A Short Sequence Targets Transmembrane Proteins to Primary Cilia. Cells 2024; 13:1156. [PMID: 38995007 PMCID: PMC11240719 DOI: 10.3390/cells13131156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and allows the selective entry of proteins harboring a ciliary targeting sequence (CTS). However, CTSs are not stereotyped and previously reported sequences are insufficient to drive efficient ciliary localisation across diverse cell types. Here, we describe a short peptide sequence that efficiently targets transmembrane proteins to primary cilia in all tested cell types, including human neurons. We generate human-induced pluripotent stem cell (hiPSC) lines stably expressing a transmembrane construct bearing an extracellular HaloTag and intracellular fluorescent protein, which enables the bright, specific labeling of primary cilia in neurons and other cell types to facilitate studies of cilia in health and disease. We demonstrate the utility of this resource by developing an image analysis pipeline for the automated measurement of primary cilia to detect changes in their length associated with altered signaling or disease state.
Collapse
Affiliation(s)
- Viviana Macarelli
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Edward C Harding
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Florian T Merkle
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| |
Collapse
|
6
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Adamson SE, Hughes JW. Paracrine Signaling by Pancreatic Islet Cilia. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 35:100505. [PMID: 38524256 PMCID: PMC10956557 DOI: 10.1016/j.coemr.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The primary cilium is a sensory and signaling organelle present on most pancreatic islet endocrine cells, where it receives and interprets a wide range of intra-islet chemical cues including hormones, peptides, and neurotransmitters. The ciliary membrane possesses a molecular composition distinct from the plasma membrane, with enrichment of signaling mediators including G protein-coupled receptors (GPCRs), tyrosine kinase family receptors, membrane transporters and others. When activated, these membrane proteins interact with ion channels and adenylyl cyclases to trigger local Ca2+ and cAMP activity and transmit signals to the cell body. Here we review evidence supporting the emerging model in which primary cilia on pancreatic islet cells play a central role in the intra-islet communication network and discuss how changes in cilia-mediated paracrine function in islet cells might lead to diabetes.
Collapse
Affiliation(s)
- Samantha E Adamson
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing W Hughes
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Strobel M, Qiu L, Hofer A, Chen X. Temporal Ablation of Primary Cilia Impairs Brainwave Patterns Implicated in Memory Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587983. [PMID: 38617207 PMCID: PMC11014598 DOI: 10.1101/2024.04.03.587983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The primary cilium is a hair-like organelle that hosts molecular machinery for various developmental and homeostatic signaling pathways. Its alteration can cause severe ciliopathies such as the Bardet-Biedl and Joubert syndromes, but is also linked to Alzheimer's disease, clinical depression, and autism spectrum disorder. These afflictions are caused by disturbances in a variety of genes but a common phenotype amongst them is cognitive impairment. Cilia-mediated neural function has generally been examined in relation to these diseases or other developmental defects, but the role of cilia in brain function and memory consolidation is unknown. To elucidate the role of cilia in neural activity and cognitive function, we temporally ablated primary cilia in adult mice before performing electroencephalogram/electromyogram (EEG/EMG) recordings. We found that cilia deficient mice had altered sleep architecture, reduced EEG power, and attenuated phase-amplitude coupling, a process that underlies memory consolidation. These results highlight the growing significance of cilia, demonstrating that they are not only necessary in early neurodevelopment, but also regulate advanced neural functions in the adult brain.
Collapse
|
9
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter JF, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. Nat Struct Mol Biol 2024; 31:667-677. [PMID: 38326651 PMCID: PMC11221913 DOI: 10.1038/s41594-024-01223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Douglas F Covey
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Debora S Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ron O Dror
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
11
|
Adamson SE, Li ZA, Hughes JW. Beta cell primary cilia mediate somatostatin responsiveness via SSTR3. Islets 2023; 15:2252855. [PMID: 37660302 PMCID: PMC10478741 DOI: 10.1080/19382014.2023.2252855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Somatostatin is a paracrine modulator of insulin secretion and beta cell function with pleotropic effects on glucose homeostasis. The mechanism of somatostatin-mediated communication between delta and beta cells is not well-understood, which we address in this study via the ciliary somatostatin receptor 3 (SSTR3). Primary cilia are membrane organelles that act as signaling hubs in islets by virtue of their subcellular location and enrichment in signaling proteins such as G-protein coupled receptors (GPCRs). We show that SSTR3, a ciliary GPCR, mediates somatostatin suppression of insulin secretion in mouse islets. Quantitative analysis of calcium flux using a mouse model of genetically encoded beta cell-specific GCaMP6f calcium reporter shows that somatostatin signaling alters beta cell calcium flux after physiologic glucose stimulation, an effect that depends on endogenous SSTR3 expression and the presence of intact primary cilia on beta cells. Comparative in vitro studies using SSTR isoform antagonists demonstrate a role for SSTR3 in mediating somatostatin regulation of insulin secretion in mouse islets. Our findings support a model in which ciliary SSTR3 mediates a distinct pathway of delta-to-beta cell regulatory crosstalk and may serve as a target for paracrine modulation.
Collapse
Affiliation(s)
- Samantha E. Adamson
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, USA
| | - Zipeng A. Li
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, USA
| | - Jing W. Hughes
- Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
12
|
Atkins M, Wurmser M, Darmon M, Roche F, Nicol X, Métin C. CXCL12 targets the primary cilium cAMP/cGMP ratio to regulate cell polarity during migration. Nat Commun 2023; 14:8003. [PMID: 38049397 PMCID: PMC10695954 DOI: 10.1038/s41467-023-43645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Directed cell migration requires sustained cell polarisation. In migrating cortical interneurons, nuclear movements are directed towards the centrosome that organises the primary cilium signalling hub. Primary cilium-elicited signalling, and how it affects migration, remain however ill characterised. Here, we show that altering cAMP/cGMP levels in the primary cilium by buffering cAMP, cGMP or by locally increasing cAMP, influences the polarity and directionality of migrating interneurons, whereas buffering cAMP or cGMP in the apposed centrosome compartment alters their motility. Remarkably, we identify CXCL12 as a trigger that targets the ciliary cAMP/cGMP ratio to promote sustained polarity and directed migration. We thereby uncover cAMP/cGMP levels in the primary cilium as a major target of extrinsic cues and as the steering wheel of neuronal migration.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| | - Maud Wurmser
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Michèle Darmon
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fiona Roche
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
13
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
14
|
Macarelli V, Leventea E, Merkle FT. Regulation of the length of neuronal primary cilia and its potential effects on signalling. Trends Cell Biol 2023; 33:979-990. [PMID: 37302961 PMCID: PMC7615206 DOI: 10.1016/j.tcb.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Primary cilia protrude from most vertebrate cell bodies and act as specialized 'signalling antennae' that can substantially lengthen or retract in minutes to hours in response to specific stimuli. Here, we review the conditions and mechanisms responsible for regulating primary cilia length (PCL) in mammalian nonsensory neurons, and propose four models of how they could affect ciliary signalling and alter cell state and suggest experiments to distinguish between them. These models include (i) the passive indicator model, where changes in PCL have no consequence; (ii) the rheostat model, in which a longer cilium enhances signalling; (iii) the local concentration model, where ciliary shortening increases the local protein concentration to facilitate signalling; and (iv) the altered composition model where changes in PCL skew signalling.
Collapse
Affiliation(s)
- Viviana Macarelli
- Metabolic Research Laboratories, Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Eleni Leventea
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Florian T Merkle
- Metabolic Research Laboratories, Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
15
|
Jiang Y, Li Y, Fu X, Wu Y, Wang R, Zhao M, Mao C, Shi S. Interplay between G protein-coupled receptors and nanotechnology. Acta Biomater 2023; 169:1-18. [PMID: 37517621 DOI: 10.1016/j.actbio.2023.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Shim S, Goyal R, Panoutsopoulos AA, Balashova OA, Lee D, Borodinsky LN. Calcium dynamics at the neural cell primary cilium regulate Hedgehog signaling-dependent neurogenesis in the embryonic neural tube. Proc Natl Acad Sci U S A 2023; 120:e2220037120. [PMID: 37252980 PMCID: PMC10266006 DOI: 10.1073/pnas.2220037120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca2+-dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sangwoo Shim
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Raman Goyal
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Alexios A. Panoutsopoulos
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Olga A. Balashova
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - David Lee
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Laura N. Borodinsky
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| |
Collapse
|
17
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter J, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.540554. [PMID: 37292845 PMCID: PMC10245861 DOI: 10.1101/2023.05.23.540554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling1. GPR161 mutations lead to developmental defects and cancers2,3,4. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear. To elucidate GPR161 function, we determined a cryogenic-electron microscopy structure of active GPR161 bound to the heterotrimeric G protein complex Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, we identify a sterol that binds to a conserved extrahelical site adjacent to transmembrane helices 6 and 7 and stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress cAMP pathway activation. Surprisingly, these mutants retain the ability to suppress GLI2 transcription factor accumulation in cilia, a key function of ciliary GPR161 in Hedgehog pathway suppression. By contrast, a protein kinase A-binding site in the GPR161 C-terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how unique structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the broader role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R. Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P. Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck; Tyrolean Cancer Research Institute (TKFI), Innsbruck 6020, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Douglas F. Covey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck; Tyrolean Cancer Research Institute (TKFI), Innsbruck 6020, Austria
| | - Debora S. Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| | - Ron O. Dror
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
18
|
Paolocci E, Zaccolo M. Compartmentalised cAMP signalling in the primary cilium. Front Physiol 2023; 14:1187134. [PMID: 37256063 PMCID: PMC10226274 DOI: 10.3389/fphys.2023.1187134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
cAMP is a universal second messenger that relies on precise spatio-temporal regulation to control varied, and often opposing, cellular functions. This is achieved via selective activation of effectors embedded in multiprotein complexes, or signalosomes, that reside at distinct subcellular locations. cAMP is also one of many pathways known to operate within the primary cilium. Dysfunction of ciliary signaling leads to a class of diseases known as ciliopathies. In Autosomal Dominant Polycystic Kidney Disease (ADPKD), a ciliopathy characterized by the formation of fluid-filled kidney cysts, upregulation of cAMP signaling is known to drive cystogenesis. For decades it has been debated whether the primary cilium is an independent cAMP sub-compartment, or whether it shares a diffusible pool of cAMP with the cell body. Recent studies now suggest it is a specific pool of cAMP generated in the cilium that propels cyst formation in ADPKD, supporting the notion that this antenna-like organelle is a compartment within which cAMP signaling occurs independently from cAMP signaling in the bulk cytosol. Here we present examples of cAMP function in the cilium which suggest this mysterious organelle is home to more than one cAMP signalosome. We review evidence that ciliary membrane localization of G-Protein Coupled Receptors (GPCRs) determines their downstream function and discuss how optogenetic tools have contributed to establish that cAMP generated in the primary cilium can drive cystogenesis.
Collapse
|
19
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Hofer AM. Defining the Specialized Functions of cAMP Signals in an Organelle Formerly Deemed to Have No Function: The Primary Cilium. FUNCTION 2023; 4:zqad007. [PMID: 36865065 PMCID: PMC9972343 DOI: 10.1093/function/zqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Aldebaran M Hofer
- VA Boston Healthcare System and the Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, 1400 VFW PKW, West Roxbury, MA 02132, USA
| |
Collapse
|
21
|
Impact of 5-HT 6 Receptor Subcellular Localization on Its Signaling and Its Pathophysiological Roles. Cells 2023; 12:cells12030426. [PMID: 36766768 PMCID: PMC9913600 DOI: 10.3390/cells12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The serotonin (5-HT)6 receptor still raises particular interest given its unique spatio-temporal pattern of expression among the serotonin receptor subtypes. It is the only serotonin receptor specifically expressed in the central nervous system, where it is detected very early in embryonic life and modulates key neurodevelopmental processes, from neuronal migration to brain circuit refinement. Its predominant localization in the primary cilium of neurons and astrocytes is also unique among the serotonin receptor subtypes. Consistent with the high expression levels of the 5-HT6 receptor in brain regions involved in the control of cognitive processes, it is now well-established that the pharmacological inhibition of the receptor induces pro-cognitive effects in several paradigms of cognitive impairment in rodents, including models of neurodevelopmental psychiatric disorders and neurodegenerative diseases. The 5-HT6 receptor can engage several signaling pathways in addition to the canonical Gs signaling, but there is still uncertainty surrounding the signaling pathways that underly its modulation of cognition, as well as how the receptor's coupling is dependent on its cellular compartmentation. Here, we describe recent findings showing how the proper subcellular localization of the receptor is achieved, how this peculiar localization determines signaling pathways engaged by the receptor, and their pathophysiological influence.
Collapse
|
22
|
Dupuy V, Prieur M, Pizzoccaro A, Margarido C, Valjent E, Bockaert J, Bouschet T, Marin P, Chaumont-Dubel S. Spatiotemporal dynamics of 5-HT 6 receptor ciliary localization during mouse brain development. Neurobiol Dis 2023; 176:105949. [PMID: 36496200 DOI: 10.1016/j.nbd.2022.105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.
Collapse
Affiliation(s)
- Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Matthieu Prieur
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Clara Margarido
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
23
|
Melena I, Hughes JW. Islet cilia and glucose homeostasis. Front Cell Dev Biol 2022; 10:1082193. [PMID: 36531945 PMCID: PMC9751591 DOI: 10.3389/fcell.2022.1082193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 09/05/2023] Open
Abstract
Diabetes is a growing pandemic affecting over ten percent of the U.S. population. Individuals with all types of diabetes exhibit glucose dysregulation due to altered function and coordination of pancreatic islets. Within the critical intercellular space in pancreatic islets, the primary cilium emerges as an important physical structure mediating cell-cell crosstalk and signal transduction. Many events leading to hormone secretion, including GPCR and second-messenger signaling, are spatiotemporally regulated at the level of the cilium. In this review, we summarize current knowledge of cilia action in islet hormone regulation and glucose homeostasis, focusing on newly implicated ciliary pathways that regulate insulin exocytosis and intercellular communication. We present evidence of key signaling proteins on islet cilia and discuss ways in which cilia might functionally connect islet endocrine cells with the non-endocrine compartments. These discussions aim to stimulate conversations regarding the extent of cilia-controlled glucose homeostasis in health and in metabolic diseases.
Collapse
Affiliation(s)
| | - Jing W. Hughes
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
24
|
Clupper M, Gill R, Elsayyid M, Touroutine D, Caplan JL, Tanis JE. Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. iScience 2022; 25:105262. [PMID: 36304122 PMCID: PMC9593189 DOI: 10.1016/j.isci.2022.105262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium. Here, we discover the conserved ion channel CLHM-1 as a ciliary EV cargo. Imaging of EVs released from sensory neuron cilia of Caenorhabditis elegans expressing fluorescently tagged CLHM-1 and TRP polycystin-2 channel PKD-2 shows enrichment of these cargoes in distinct EV subpopulations that are differentially shed in response to mating partner availability. PKD-2 alone is present in EVs shed from the cilium distal tip, whereas CLHM-1 EVs bud from a secondary site(s), including the ciliary base. Heterotrimeric and homodimeric kinesin-2 motors have discrete impacts on PKD-2 and CLHM-1 colocalization in both cilia and EVs. Total loss of kinesin-2 activity decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde intraflagellar transport is required for selective enrichment of protein cargoes into heterogeneous EVs with different signaling potentials.
Collapse
Affiliation(s)
- Michael Clupper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rachael Gill
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Denis Touroutine
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
25
|
Stoufflet J, Caillé I. The Primary Cilium and Neuronal Migration. Cells 2022; 11:3384. [PMID: 36359777 PMCID: PMC9658458 DOI: 10.3390/cells11213384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
The primary cilium (PC) is a microtubule-based tiny sensory organelle emanating from the centrosome and protruding from the surface of most eukaryotic cells, including neurons. The extremely severe phenotypes of ciliopathies have suggested their paramount importance for multiple developmental events, including brain formation. Neuronal migration is an essential step of neural development, with all neurons traveling from their site of birth to their site of integration. Neurons perform a unique type of cellular migration called cyclic saltatory migration, where their soma periodically jumps along with the stereotyped movement of their centrosome. We will review here how the role of the PC on cell motility was first described in non-neuronal cells as a guide pointing to the direction of migration. We will see then how these findings are extended to neuronal migration. In neurons, the PC appears to regulate the rhythm of cyclic saltatory neuronal migration in multiple systems. Finally, we will review recent findings starting to elucidate how extracellular cues sensed by the PC could be intracellularly transduced to regulate the machinery of neuronal migration. The PC of migrating neurons was unexpectedly discovered to display a rhythmic extracellular emergence during each cycle of migration, with this transient exposure to the external environment associated with periodic transduction of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. The PC in migrating neurons thus uniquely appears as a beat maker, regulating the tempo of cyclic saltatory migration.
Collapse
Affiliation(s)
- Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Isabelle Caillé
- Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Sorbonne University, CNRS UMR8246, 75005 Paris, France
- University of Paris Cité, 75020 Paris, France
| |
Collapse
|
26
|
Park S, Ma Z, Zarkada G, Papangeli I, Paluri S, Nazo N, Rivera‐Molina F, Toomre D, Rajagopal S, Chun HJ. Endothelial β-arrestins regulate mechanotransduction by the type II bone morphogenetic protein receptor in primary cilia. Pulm Circ 2022; 12:e12167. [PMID: 36532314 PMCID: PMC9751664 DOI: 10.1002/pul2.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction by endothelial cells are inadequately defined. Here we sought to better understand how β-arrestins, intracellular proteins that regulate agonist-mediated desensitization and integration of signaling by transmembrane receptors, may be involved in the endothelial cell response to shear stress. We performed both in vitro studies with primary endothelial cells subjected to β-arrestin knockdown, and in vivo studies using mice with endothelial specific deletion of β-arrestin 1 and β-arrestin 2. We found that β-arrestins are localized to primary cilia in endothelial cells, which are present in subpopulations of endothelial cells in relatively low shear states. Recruitment of β-arrestins to cilia involved its interaction with IFT81, a component of the flagellar transport protein complex in the cilia. β-arrestin knockdown led to marked reduction in shear stress response, including induction of NOS3 expression. Within the cilia, β-arrestins were found to associate with the type II bone morphogenetic protein receptor (BMPR-II), whose disruption similarly led to an impaired endothelial shear response. β-arrestins also regulated Smad transcription factor phosphorylation by BMPR-II. Mice with endothelial specific deletion of β-arrestin 1 and β-arrestin 2 were found to have impaired retinal angiogenesis. In conclusion, we have identified a novel role for endothelial β-arrestins as key transducers of ciliary mechanotransduction that play a central role in shear signaling by BMPR-II and contribute to vascular development.
Collapse
Affiliation(s)
- Saejeong Park
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| | - Zhiyuan Ma
- Department of MedicineDivision of Cardiology, Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Georgia Zarkada
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| | - Irinna Papangeli
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| | - Sarin Paluri
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Nour Nazo
- Department of MedicineDivision of Cardiology, Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Felix Rivera‐Molina
- Department of Cell BiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Derek Toomre
- Department of Cell BiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Sudarshan Rajagopal
- Department of MedicineDivision of Cardiology, Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Hyung J. Chun
- Department of Internal MedicineSection of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
27
|
Sheu SH, Upadhyayula S, Dupuy V, Pang S, Deng F, Wan J, Walpita D, Pasolli HA, Houser J, Sanchez-Martinez S, Brauchi SE, Banala S, Freeman M, Xu CS, Kirchhausen T, Hess HF, Lavis L, Li Y, Chaumont-Dubel S, Clapham DE. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell 2022; 185:3390-3407.e18. [PMID: 36055200 PMCID: PMC9789380 DOI: 10.1016/j.cell.2022.07.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 12/27/2022]
Abstract
Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.
Collapse
Affiliation(s)
- Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Department of Pathology, Boston, MA, USA; Howard Huges Medical Institute, Boston Children's Hospital, Department of Cardiology, Boston, MA, USA.
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fei Deng
- School of Life Sciences, Peking University, Beijing, China
| | - Jinxia Wan
- School of Life Sciences, Peking University, Beijing, China
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Justin Houser
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Sebastian E Brauchi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Sambashiva Banala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing, China
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - David E Clapham
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Harvard Medical School, Boston, MA, USA; Howard Huges Medical Institute, Boston Children's Hospital, Department of Cardiology, Boston, MA, USA.
| |
Collapse
|
28
|
Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause J, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB, Kraut M, Theis H, Drews A, De‐Domenico E, Händler K, Pazour GJ, Henderson DJP, Mick DU, Wachten D. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 2022; 23:e54315. [PMID: 35695071 PMCID: PMC9346484 DOI: 10.15252/embr.202154315] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | - Birthe Stüven
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | | | | | - Tommy J Sroka
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Kenley M Preval
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Paurav B Desai
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Michael Kraut
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Heidi Theis
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Anna‐Dorothee Drews
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Elena De‐Domenico
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Kristian Händler
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Gregory J Pazour
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | | | - David U Mick
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
29
|
Kawata S, Mukai Y, Nishimura Y, Takahashi T, Saitoh N. Green fluorescent cAMP indicator of high speed and specificity suitable for neuronal live-cell imaging. Proc Natl Acad Sci U S A 2022; 119:e2122618119. [PMID: 35867738 PMCID: PMC9282276 DOI: 10.1073/pnas.2122618119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.
Collapse
Affiliation(s)
- Seiko Kawata
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuki Mukai
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yumi Nishimura
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Naoto Saitoh
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| |
Collapse
|
30
|
Tereshko L, Turrigiano GG, Sengupta P. Primary cilia in the postnatal brain: Subcellular compartments for organizing neuromodulatory signaling. Curr Opin Neurobiol 2022; 74:102533. [PMID: 35405626 PMCID: PMC9167775 DOI: 10.1016/j.conb.2022.102533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Primary cilia have well characterized roles in early brain development, relaying signals critical for neurogenesis and brain formation during embryonic stages. Less understood are the contributions of cilia-mediated signaling to postnatal brain function. Several cilia-localized receptors that bind neuropeptides and neurotransmitters endogenous to the brain have been identified in adult neurons, but the functional significance of signaling through these cilia-localized receptors is largely unexplored. Ciliopathic disorders in humans often manifest with neurodevelopmental abnormalities and cognitive deficits. Intriguingly, recent research has also linked several neuropsychiatric disorders and neurodegenerative diseases to ciliary dysfunction. This review summarizes recent evidence suggesting that cilia signaling may dynamically regulate postnatal neuronal physiology and connectivity, and highlights possible links among cilia, neuronal circuitry, neuron survival, and neurological disorders.
Collapse
Affiliation(s)
- Lauren Tereshko
- Department of Biology, Brandeis University, Waltham, MA 02454, USA; Biogen, Cambridge, MA 02142, USA
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
31
|
Shimada IS, Kato Y. Ciliary signaling in stem cells in health and disease: Hedgehog pathway and beyond. Semin Cell Dev Biol 2022; 129:115-125. [PMID: 35466055 DOI: 10.1016/j.semcdb.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The primary cilium is a hair-like sensory compartment that protrudes from the cellular surface. The primary cilium is enriched in a variety of signaling molecules that regulate cellular activities. Stem cells have primary cilia. They reside in a specialized environment, called the stem cell niche. This niche contains a variety of secreted factors, and some of their receptors are localized in the primary cilia of stem cells. Here, we summarize the current understanding of the function of cilia in compartmentalized signaling in stem cells. We describe how ciliary signaling regulates stem cells and progenitor cells during development, tissue homeostasis and tumorigenesis. We summarize our understanding of cilia regulated signaling -primary involving the hedgehog pathway- in stem cells in diverse settings that include neuroepithelial cells, radial glia, cerebellar granule neuron precursors, hematopoietic stem cells, hair follicle stem cells, bone marrow mesenchymal stem cells and mammary gland stem cells. Overall, our review highlights a variety of roles that ciliary signaling plays in regulating stem cells throughout life.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| | - Yoichi Kato
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| |
Collapse
|
32
|
Arena DT, Hofer AM. Imaging the cAMP Signaling Microdomain of the Primary Cilium Using Targeted FRET-Based Biosensors. Methods Mol Biol 2022; 2483:77-92. [PMID: 35286670 DOI: 10.1007/978-1-0716-2245-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical approaches have revolutionized our view of second messenger signaling in organelles, allowing precise time-resolved assessment of soluble signaling molecules in situ. Among the most challenging of subcellular signaling microdomains to assay is the primary cilium. A petite but visually arresting organelle, the primary cilium extends from the cell surface of most non-dividing cells. Recently, the concept of the primary cilium as an independent cAMP signaling organelle has attracted substantial interest. The cilium sequesters a very specific subset of ciliary cAMP-linked GPCRs in its membrane (e.g., 5-HT6, D1R, MCR4, FFAR4, TGR5), as well as other key components of the cAMP signaling machinery that include adenylyl cyclases, GNAS, phosphodiesterases, PKA holoenzyme, and biologically important PKA targets. Here we provide a practical guide to assessing ciliary cAMP signals in live cells using targeted genetically encoded FRET biosensors. Key experimental difficulties include gathering sufficient signal from such a small, photon-limited volume, and the susceptibility of cilia to movement artifacts. Other challenges are associated with the fidelity of sensor targeting and the difficulties in distinguishing between cAMP signals produced exclusively within the cilium vs. those that emanate from the cell body. Here we describe ratio imaging approaches used in our lab for time-resolved visualization of ciliary cAMP in cultured renal cells. These methods can be readily adapted to other cell types and microscopy platforms according to the needs of the user.
Collapse
Affiliation(s)
- Danielle T Arena
- VA Boston Healthcare System and the Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aldebaran M Hofer
- VA Boston Healthcare System and the Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Zhou M, Jiang J. Gli Phosphorylation Code in Hedgehog Signal Transduction. Front Cell Dev Biol 2022; 10:846927. [PMID: 35186941 PMCID: PMC8855225 DOI: 10.3389/fcell.2022.846927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) family of secreted proteins governs many key processes in embryonic development and adult tissue homeostasis in species ranging from insects to human. Deregulation of Hh signaling has been implicated in a wide range of human diseases including birth defect and cancer. Hh signaling pathway culminates in the conversion of the latent transcription factor Cubitus interruptus (Ci)/Gli from a repressor form (CiR/GliR) into an activator form (CiA/GliA). Both the production of CiR/GliR in the absence of Hh and the formation of CiA/GliA in response to Hh are regulated by phosphorylation. Whereas previous studies demonstrated that sequential phosphorylation by protein kinase A (PKA), glycogen synthase kinase 3 (GSK3), and casein kinase 1 (CK1) at multiple Ser/Thr clusters in the C-terminal region of Ci/Gli targets it for proteolytic processing to generate CiR/GliR, recent studies revealed that phosphorylation of Ci/Gli by the Fused (Fu)/Unc-51 like kinase (Ulk) family kinases Fu/Ulk3/Stk36 and other kinases contributes to Ci/Gli activation. Fu/Ulk3/Stk36-mediated phosphorylation of Ci/Gli is stimulated by Hh, leading to altered interaction between Ci/Gli and the Hh pathway repressor Sufu. Here we review our current understanding of how various Ci/Gli phosphorylation events are regulated and how they influence Hh signal transduction.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Jin D, Zhong TP. Prostaglandin signaling in ciliogenesis and development. J Cell Physiol 2021; 237:2632-2643. [PMID: 34927727 DOI: 10.1002/jcp.30659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Prostaglandin (PG) signaling regulates a wide variety of physiological and pathological processes, including body temperature, cardiovascular homeostasis, reproduction, and inflammation. Recent studies have revealed that PGs play pivotal roles in embryo development, ciliogenesis, and organ formation. Prostaglandin E2 (PGE2) and its receptor EP4 modulate ciliogenesis by increasing the anterograde intraflagellar transport. Many G-protein-coupled receptors (GPCRs) including EP4 are localized in cilia for modulating cAMP signaling under various conditions. During development, PGE2 signaling regulates embryogenesis, hepatocyte differentiation, hematopoiesis, and kidney formation. Prostaglandins are also essential for skeletal muscle repair. This review outlines recent advances in understanding the functions and mechanisms of prostaglandin signaling in ciliogenesis, embryo development, and organ formation.
Collapse
Affiliation(s)
- Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
36
|
Hilgendorf KI. Primary Cilia Are Critical Regulators of White Adipose Tissue Expansion. Front Physiol 2021; 12:769367. [PMID: 34759842 PMCID: PMC8573240 DOI: 10.3389/fphys.2021.769367] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is a microtubule-based cellular protrusion found on most mammalian cell types in diverse tissues. It functions as a cellular antenna to sense and transduce a broad range of signals, including odorants, light, mechanical stimuli, and chemical ligands. This diversity in signals requires cilia to display a context and cell type-specific repertoire of receptors. Recently, primary cilia have emerged as critical regulators of metabolism. The importance of primary cilia in metabolic disease is highlighted by the clinical features of human genetic disorders with dysfunctional ciliary signaling, which include obesity and diabetes. This review summarizes the current literature on the role of primary cilia in metabolic disease, focusing on the importance of primary cilia in directing white adipose tissue expansion during obesity.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
37
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
38
|
Wu CT, Hilgendorf KI, Bevacqua RJ, Hang Y, Demeter J, Kim SK, Jackson PK. Discovery of ciliary G protein-coupled receptors regulating pancreatic islet insulin and glucagon secretion. Genes Dev 2021; 35:1243-1255. [PMID: 34385262 PMCID: PMC8415323 DOI: 10.1101/gad.348261.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/02/2021] [Indexed: 01/17/2023]
Abstract
Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and β cells. Loss of cilia disrupts β-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and β cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and β-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and β cells is controlled by ciliary GPCRs providing new targets for diabetes.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Keren I Hilgendorf
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
39
|
Mustafa R, Rawas C, Mannal N, Kreiner G, Spittau B, Kamińska K, Yilmaz R, Pötschke C, Kirsch J, Liss B, Tucker KL, Parlato R. Targeted Ablation of Primary Cilia in Differentiated Dopaminergic Neurons Reduces Striatal Dopamine and Responsiveness to Metabolic Stress. Antioxidants (Basel) 2021; 10:antiox10081284. [PMID: 34439532 PMCID: PMC8389284 DOI: 10.3390/antiox10081284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.
Collapse
Affiliation(s)
- Rasem Mustafa
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Chahinaz Rawas
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Nadja Mannal
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland;
| | - Björn Spittau
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Katarzyna Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland;
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Kraków, Poland
| | - Rüstem Yilmaz
- Mannheim Center for Translational Neuroscience, Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany;
| | - Christina Pötschke
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
| | - Birgit Liss
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
- Linacre College and New College, University of Oxford, Oxford OX1 2JD, UK
| | - Kerry L. Tucker
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Department of Biomedical Sciences, College of Osteopathic Medicine, Biddeford, ME 04005, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Rosanna Parlato
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
- Mannheim Center for Translational Neuroscience, Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-621-3835-611
| |
Collapse
|
40
|
Hwang SH, Somatilaka BN, White K, Mukhopadhyay S. Ciliary and extraciliary Gpr161 pools repress hedgehog signaling in a tissue-specific manner. eLife 2021; 10:67121. [PMID: 34346313 PMCID: PMC8378848 DOI: 10.7554/elife.67121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The role of compartmentalized signaling in primary cilia during tissue morphogenesis is not well understood. The cilia localized G protein-coupled receptor, Gpr161, represses hedgehog pathway via cAMP signaling. We engineered a knock-in at the Gpr161 locus in mice to generate a variant (Gpr161mut1), which was ciliary localization defective but cAMP signaling competent. Tissue phenotypes from hedgehog signaling depend on downstream bifunctional Gli transcriptional factors functioning as activators or repressors. Compared to knockout (ko), Gpr161mut1/ko had delayed embryonic lethality, moderately increased hedgehog targets, and partially down-regulated Gli3 repressor. Unlike ko, the Gpr161mut1/ko neural tube did not show Gli2 activator-dependent expansion of ventral-most progenitors. Instead, the intermediate neural tube showed progenitor expansion that depends on loss of Gli3 repressor. Increased extraciliary receptor levels in Gpr161mut1/mut1 prevented ventralization. Morphogenesis in limb buds and midface requires Gli repressor; these tissues in Gpr161mut1/mut1 manifested hedgehog hyperactivation phenotypes—polydactyly and midfacial widening. Thus, ciliary and extraciliary Gpr161 pools likely establish tissue-specific Gli repressor thresholds in determining morpho-phenotypic outcomes.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bandarigoda N Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
41
|
Arena DT, Hofer AM. Cyclic AMP does double duty to support parallel signaling in primary cilium and cytosol. Cell Calcium 2021; 97:102436. [PMID: 34214760 DOI: 10.1016/j.ceca.2021.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
The primary cilium maintains all of the necessary machinery to generate and interpret cAMP signals within its tiny volume, leading to the supposition that ciliary cAMP provides unique biological instructions separate from those derived from the rest of the cell body. A new paper by Truong et al. has used optogenetic and chemogenetic tricks to selectively manipulate cAMP signaling within the primary cilium. Their data show that ciliary but not cytosolic message preferentially regulates transcriptional activity via the hedgehog pathway leading to actions on zebrafish development. Computer modeling provides a rational explanation as to how the geometry of this organelle enables it to tune out cAMP signals from the cell body in order to pick up messages generated in the cilium.
Collapse
Affiliation(s)
- Danielle T Arena
- VA Boston Healthcare System and the Dept. of Surgery, Brigham & Women's Hospital and Harvard Medical School, 1400 VFW PKW, West Roxbury (Boston), MA 02132, United States
| | - Aldebaran M Hofer
- VA Boston Healthcare System and the Dept. of Surgery, Brigham & Women's Hospital and Harvard Medical School, 1400 VFW PKW, West Roxbury (Boston), MA 02132, United States.
| |
Collapse
|
42
|
Bockaert J, Bécamel C, Chaumont-Dubel S, Claeysen S, Vandermoere F, Marin P. Novel and atypical pathways for serotonin signaling. Fac Rev 2021; 10:52. [PMID: 34195691 PMCID: PMC8204760 DOI: 10.12703/r/10-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor β-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Collapse
Affiliation(s)
- Joël Bockaert
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carine Bécamel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Claeysen
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
43
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
44
|
Arveseth CD, Happ JT, Hedeen DS, Zhu JF, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL, Nelson IB, Walker MF, Kawakami K, Inoue A, Krogan NJ, Grunwald DJ, Hüttenhain R, Manglik A, Myers BR. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol 2021; 19:e3001191. [PMID: 33886552 PMCID: PMC8096101 DOI: 10.1371/journal.pbio.3001191] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.
Collapse
Affiliation(s)
- Corvin D. Arveseth
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John T. Happ
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Danielle S. Hedeen
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jacob L. Capener
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiahao Liang
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Sara L. Stubben
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Madison F. Walker
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David J. Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
45
|
Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:18. [PMID: 33683488 PMCID: PMC7940315 DOI: 10.1140/epje/s10189-021-00031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 05/16/2023]
Abstract
Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
46
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
47
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Barbeito P, Tachibana Y, Martin-Morales R, Moreno P, Mykytyn K, Kobayashi T, Garcia-Gonzalo FR. HTR6 and SSTR3 ciliary targeting relies on both IC3 loops and C-terminal tails. Life Sci Alliance 2020; 4:4/3/e202000746. [PMID: 33372037 PMCID: PMC7772773 DOI: 10.26508/lsa.202000746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Ciliary accumulation of G protein–coupled receptors HTR6 and SSTR3 depends on redundant ciliary targeting sequences acting via ciliary trafficking adapters TULP3 and RABL2. G protein-coupled receptors (GPCRs) are the most common pharmacological target in human clinical practice. To perform their functions, many GPCRs must accumulate inside primary cilia, microtubule-based plasma membrane protrusions working as cellular antennae. Nevertheless, the molecular mechanisms underlying GPCR ciliary targeting remain poorly understood. Serotonin receptor 6 (HTR6) and somatostatin receptor 3 (SSTR3) are two brain-enriched ciliary GPCRs involved in cognition and pathologies such as Alzheimer’s disease and cancer. Although the third intracellular loops (IC3) of HTR6 and SSTR3 suffice to target non-ciliary GPCRs to cilia, these IC3s are dispensable for ciliary targeting of HTR6 and SSTR3 themselves, suggesting these GPCRs contain additional ciliary targeting sequences (CTSs). Herein, we discover and characterize novel CTSs in HTR6 and SSTR3 C-terminal tails (CT). These CT-CTSs (CTS2) act redundantly with IC3-CTSs (CTS1), each being sufficient for ciliary targeting. In HTR6, RKQ and LPG motifs are critical for CTS1 and CTS2 function, respectively, whereas in SSTR3 these roles are mostly fulfilled by AP[AS]CQ motifs in IC3 and juxtamembrane residues in CT. Furthermore, we shed light on how these CTSs promote ciliary targeting by modulating binding to ciliary trafficking adapters TULP3 and RABL2.
Collapse
Affiliation(s)
- Pablo Barbeito
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain.,Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Yuki Tachibana
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Raquel Martin-Morales
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain.,Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Paula Moreno
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.,Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Francesc R Garcia-Gonzalo
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain .,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain.,Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
49
|
Stoufflet J, Chaulet M, Doulazmi M, Fouquet C, Dubacq C, Métin C, Schneider-Maunoury S, Trembleau A, Vincent P, Caillé I. Primary cilium-dependent cAMP/PKA signaling at the centrosome regulates neuronal migration. SCIENCE ADVANCES 2020; 6:6/36/eaba3992. [PMID: 32917588 PMCID: PMC7467704 DOI: 10.1126/sciadv.aba3992] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
The primary cilium (PC) is a small centrosome-assembled organelle, protruding from the surface of most eukaryotic cells. It plays a key role in cell migration, but the underlying mechanisms are unknown. Here, we show that the PC regulates neuronal migration via cyclic adenosine 3'-5' monosphosphate (cAMP) production activating centrosomal protein kinase A (PKA). Biosensor live imaging revealed a periodic cAMP hotspot at the centrosome of embryonic, postnatal, and adult migrating neurons. Genetic ablation of the PC, or knockdown of ciliary adenylate cyclase 3, caused hotspot disappearance and migratory defects, with defective centrosome dynamics and altered nucleokinesis. Delocalization of PKA from the centrosome phenocopied the migratory defects. Our results show that the PC and centrosome form a single cAMP signaling unit dynamically regulating migration, further highlighting the centrosome as a signaling hub.
Collapse
Affiliation(s)
- Julie Stoufflet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
- Sorbonne Université, CNRS UMR8256, Institut Biologie Paris Seine (IBPS), Biological Adaptation and Ageing (B2A), F-75005 Paris, France
| | - Maxime Chaulet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, CNRS UMR8256, Institut Biologie Paris Seine (IBPS), Biological Adaptation and Ageing (B2A), F-75005 Paris, France
| | - Coralie Fouquet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Caroline Dubacq
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Christine Métin
- Inserm UMR-S839, Institut du Fer à Moulin, Sorbonne Université, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, Inserm ERL U1156, Institut Biologie Paris Seine (IBPS), Developmental Biology Laboratory (LBD), F-75005 Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS UMR8256, Institut Biologie Paris Seine (IBPS), Biological Adaptation and Ageing (B2A), F-75005 Paris, France.
| | - Isabelle Caillé
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), F-75005 Paris, France.
- Université de Paris, Paris, France
| |
Collapse
|
50
|
Hansen JN, Kaiser F, Klausen C, Stüven B, Chong R, Bönigk W, Mick DU, Möglich A, Jurisch-Yaksi N, Schmidt FI, Wachten D. Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium. eLife 2020; 9:e57907. [PMID: 32579112 PMCID: PMC7338050 DOI: 10.7554/elife.57907] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools to investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylyl cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Christina Klausen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Raymond Chong
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Wolfgang Bönigk
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar)BonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB), Saarland University, School of MedicineHomburgGermany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Universität BayreuthBayreuthGermany
- Research Center for Bio-Macromolecules, Universität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität BayreuthBayreuthGermany
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University HospitalTrondheimNorway
| | - Florian I Schmidt
- Institute of Innate Immunity, Emmy Noether research group, Medical Faculty, University of BonnBonnGermany
- Core Facility Nanobodies, University of BonnBonnGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
- Research Group Molecular Physiology, Center of Advanced European Studies and Research (caesar)BonnGermany
| |
Collapse
|