1
|
Alfini R, Carducci M, Massai L, De Simone D, Mariti M, Rossi O, Rondini S, Micoli F, Giannelli C. Design of a Glycoconjugate Vaccine Against Salmonella Paratyphi A. Vaccines (Basel) 2024; 12:1272. [PMID: 39591175 PMCID: PMC11599127 DOI: 10.3390/vaccines12111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Typhoid and paratyphoid fever together are responsible for millions of cases and thousands of deaths per year, most of which occur in children in South and Southeast Asia. While typhoid conjugate vaccines (TCVs) are licensed, no vaccines are currently available against S. Paratyphi A. Here we describe the design of a S. Paratyphi A conjugate. METHODS The serovar-specific O-antigen (O:2) was linked to the CRM197 carrier protein (O:2-CRM197) and a panel of conjugates differing for structural characteristics were compared in mice and rabbits. RESULTS We identified the O-antigen molecular size, polysaccharide to protein ratio, conjugate cross-linking, and O:2 O-acetylation level as critical quality attributes and identified optimal design for a more immunogenic vaccine. CONCLUSIONS This work guides the development of the O:2-CRM197 conjugate to be combined with TCV in a bivalent formulation against enteric fever.
Collapse
Affiliation(s)
- Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (M.C.); (L.M.); (D.D.S.); (O.R.); (S.R.); (F.M.); (C.G.)
| |
Collapse
|
2
|
Di Benedetto R, Massai L, Wright M, Mancini F, Cleveland M, Rossi O, Giannelli C, Berlanda Scorza F, Micoli F. Adjuvanted Modified Bacterial Antigens for Single-Dose Vaccines. Int J Mol Sci 2024; 25:11461. [PMID: 39519015 PMCID: PMC11546299 DOI: 10.3390/ijms252111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Alum is the most used vaccine adjuvant, due to its safety, low cost and adjuvanticity to various antigens. However, the mechanism of action of alum is complex and not yet fully understood, and the immune responses elicited can be weak and antigen-dependent. While several antigens rapidly desorb from alum upon exposure to serum, phosphorylated proteins remain tightly bound through a ligand-exchange reaction with surface hydroxyls on alum. Here, bacterial proteins and glycoconjugates have been modified with phosphoserines, aiming at enhancing the binding to alum and prolonging their bioavailability. Tetanus toxoid protein and Salmonella Typhi fragmented Vi-CRM conjugate were used. Both antigens rapidly and completely desorbed from alum after incubation with serum, verified via a competitive ELISA assay, and set up to rapidly evaluate in vitro antigen desorption from alum. After antigen modification with phosphoserines, desorption from alum was slowed down, and modified antigens demonstrated more prolonged retention at the injection sites through in vivo optical imaging in mice. Both modified antigens elicited stronger immune responses in mice, after a single injection only, compared to unmodified antigens. A stronger binding to alum could result in potent single-dose vaccine candidates and opens the possibility to design novel carrier proteins for glycoconjugates and improved versions of bacterial recombinant proteins.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Mark Wright
- GSK, Stevenage SG1 2NFX, Hertfordshire, UK; (M.W.); (M.C.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesco Berlanda Scorza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| |
Collapse
|
3
|
Carducci M, Massai L, Lari E, Semplici B, Aruta MG, De Simone D, Piu P, Montomoli E, Berlanda Scorza F, Grappi S, Iturriza-Gómara M, Canals R, Rondini S, Rossi O. Qualification of an enzyme-linked immunosorbent assay for quantification of anti-Vi IgG in human sera. Front Immunol 2024; 15:1466869. [PMID: 39478859 PMCID: PMC11521798 DOI: 10.3389/fimmu.2024.1466869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
Effective vaccines against Salmonella Typhi, targeting the Vi capsular polysaccharide, have been developed and are being introduced into routine immunization in endemic countries. Vi conjugated vaccines are also being tested in new multi-component vaccine formulations. Simple, high-throughput and cost-effective assays to quantify Vi-specific IgG in clinical sera are needed. In this study we present the development and qualification of a new anti-Vi ELISA with continuous readout, which expresses results as ELISA Unit/mL (EU/mL). We have qualified the assay in terms of precision, linearity and specificity, demonstrating performance in line with a commercially available anti-Vi ELISA. We have also calibrated the assay against the 16/138 anti-Vi international standard and established conversion factor between EU/mL and international units/mL, to allow comparability of results across studies. In summary, this new assay met all the suitability criteria and is being used to evaluate anti-Vi responses in clinical studies.
Collapse
Affiliation(s)
- Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | | | | | | | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | | | - Rocio Canals
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
4
|
Alugupalli KR. A TLR4 ligand-based adjuvant for promoting the immunogenicity of typhoid subunit vaccines. Front Immunol 2024; 15:1383476. [PMID: 38799439 PMCID: PMC11116679 DOI: 10.3389/fimmu.2024.1383476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
None of the typhoid Vi Polysaccharide (ViPS) subunit vaccines incorporate adjuvants, and the immunogenicity of ViPS vaccines (e.g. Typbar TCV® and Typhim Vi®) is in part due to associated TLR4 ligands such as endotoxin present in these vaccines. Since endotoxin content in vaccines is variable and kept very low due to inherent toxicity, it was hypothesized that incorporating a defined amount of a non-toxic TLR4-ligand such as monophosphoryl lipid A in ViPS vaccines would improve their immunogenicity. To test this hypothesis, a monophosphoryl lipid A-based adjuvant formulation named Turbo was developed. Admixing Turbo with Typbar TCV® (ViPS-conjugated to tetanus toxoid) increased the levels of anti-ViPS IgM, IgG1, IgG2b, IgG2a/c, and IgG3 in inbred and outbred mice. In infant mice, a single immunization with Turbo adjuvanted Typbar TCV® resulted in a significantly increased and durable IgG response and improved the control of bacterial burden compared to mice immunized without Turbo. Similarly, when adjuvanted with Turbo, the antibody response and control of bacteremia were also improved in mice immunized with Typhim Vi®, an unconjugated vaccine. The immunogenicity of unconjugated ViPS is inefficient in young mice and is lost in adult mice when immunostimulatory ligands in ViPS are removed. Nevertheless, when adjuvanted with Turbo, poorly immunogenic ViPS induced a robust IgG response in young and adult mice, and this was observed even under antigen-limiting conditions. These data suggest that incorporation of Turbo as an adjuvant will make typhoid vaccines more immunogenic regardless of their intrinsic immunogenicity or conjugation status and maximize the efficacy across all ages.
Collapse
Affiliation(s)
- Kishore R. Alugupalli
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
- TurboVax Inc, Philadelphia, PA, United States
| |
Collapse
|
5
|
Burns K, Dorfmueller HC, Wren BW, Mawas F, Shaw HA. Progress towards a glycoconjugate vaccine against Group A Streptococcus. NPJ Vaccines 2023; 8:48. [PMID: 36977677 PMCID: PMC10043865 DOI: 10.1038/s41541-023-00639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.
Collapse
Affiliation(s)
- Keira Burns
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fatme Mawas
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
| | - Helen A Shaw
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK.
| |
Collapse
|
6
|
Jossi SE, Arcuri M, Alshayea A, Persaud RR, Marcial-Juárez E, Palmieri E, Di Benedetto R, Pérez-Toledo M, Pillaye J, Channell WM, Schager AE, Lamerton RE, Cook CN, Goodall M, Haneda T, Bäumler AJ, Jackson-Jones LH, Toellner KM, MacLennan CA, Henderson IR, Micoli F, Cunningham AF. Vi polysaccharide and conjugated vaccines afford similar early, IgM or IgG-independent control of infection but boosting with conjugated Vi vaccines sustains the efficacy of immune responses. Front Immunol 2023; 14:1139329. [PMID: 37033932 PMCID: PMC10076549 DOI: 10.3389/fimmu.2023.1139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Vaccination with Vi capsular polysaccharide (Vi-PS) or protein-Vi typhoid conjugate vaccine (TCV) can protect adults against Salmonella Typhi infections. TCVs offer better protection than Vi-PS in infants and may offer better protection in adults. Potential reasons for why TCV may be superior in adults are not fully understood. Methods and results Here, we immunized wild-type (WT) mice and mice deficient in IgG or IgM with Vi-PS or TCVs (Vi conjugated to tetanus toxoid or CRM197) for up to seven months, with and without subsequent challenge with Vi-expressing Salmonella Typhimurium. Unexpectedly, IgM or IgG alone were similarly able to reduce bacterial burdens in tissues, and this was observed in response to conjugated or unconjugated Vi vaccines and was independent of antibody being of high affinity. Only in the longer-term after immunization (>5 months) were differences observed in tissue bacterial burdens of mice immunized with Vi-PS or TCV. These differences related to the maintenance of antibody responses at higher levels in mice boosted with TCV, with the rate of fall in IgG titres induced to Vi-PS being greater than for TCV. Discussion Therefore, Vi-specific IgM or IgG are independently capable of protecting from infection and any superior protection from vaccination with TCV in adults may relate to responses being able to persist better rather than from differences in the antibody isotypes induced. These findings suggest that enhancing our understanding of how responses to vaccines are maintained may inform on how to maximize protection afforded by conjugate vaccines against encapsulated pathogens such as S. Typhi.
Collapse
Affiliation(s)
- Siân E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Melissa Arcuri
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- GSK Vaccines Institute for Global Health SRL, Siena, Italy
| | - Areej Alshayea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ruby R. Persaud
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health SRL, Siena, Italy
| | | | - Marisol Pérez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jamie Pillaye
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Will M. Channell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Anna E. Schager
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel E. Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte N. Cook
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, United States
| | - Lucy H. Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Bill & Melinda Gates Foundation, London, United Kingdom
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Han Y, Luo P, Zeng H, Wang P, Xu J, Chen P, Chen X, Chen Y, Cao Q, Zhai R, Xia J, Deng S, Cheng A, Cheng C, Song H. The effect of O-antigen length determinant wzz on the immunogenicity of Salmonella Typhimurium for Escherichia coli O2 O-polysaccharides delivery. Vet Res 2023; 54:15. [PMID: 36849993 PMCID: PMC9969949 DOI: 10.1186/s13567-023-01142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/15/2022] [Indexed: 03/01/2023] Open
Abstract
Attenuated Salmonella Typhimurium is a promising antigen delivery system for live vaccines such as polysaccharides. The length of polysaccharides is a well-known key factor in modulating the immune response induced by glycoconjugates. However, the relationship between the length of Lipopolysaccharide (LPS) O-antigen (OAg) and the immunogenicity of S. Typhimurium remains unclear. In this study, we assessed the effect of OAg length determined by wzzST on Salmonella colonization, cell membrane permeability, antimicrobial activity, and immunogenicity by comparing the S. Typhimurium wild-type ATCC14028 strain to those with various OAg lengths of the ΔwzzST mutant and ΔwzzST::wzzECO2. The analysis of the OAg length distribution revealed that, except for the very long OAg, the short OAg length of 2-7 repeat units (RUs) was obtained from the ΔwzzST mutant, the intermediate OAg length of 13-21 RUs was gained from ΔwzzST::wzzECO2, and the long OAg length of over 20 RUs was gained from the wild-type. In addition, we found that the OAg length affected Salmonella colonization, cell permeability, and antibiotic resistance. Immunization of mice revealed that shortening the OAg length by altering wzzST had an effect on serum bactericidal ability, complement deposition, and humoral immune response. S. Typhimurium mutant strain ΔwzzST::wzzECO2 possessed good immunogenicity and was the optimum option for delivering E. coli O2 O-polysaccharides. Furthermore, the attenuated strain ATCC14028 ΔasdΔcrpΔcyaΔrfbPΔwzzST::wzzECO2-delivered E. coli O2 OAg gene cluster outperforms the ATCC14028 ΔasdΔcrpΔcyaΔrfbP in terms of IgG eliciting, cytokine expression, and immune protection in chickens. This study sheds light on the role of OAg length in Salmonella characteristics, which may have a potential application in optimizing the efficacy of delivered polysaccharide vaccines.
Collapse
Affiliation(s)
- Yue Han
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China ,grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Luo
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Huan Zeng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pu Wang
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jiali Xu
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pengju Chen
- Henan Institute of Morden Chinese Veterinary Medicine, Zhengzhou, 450002 China ,Shangdong Xindehui Biotechnology Co., Ltd, Yunchengxian, 274700 China
| | - Xindan Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Yuji Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Qiyu Cao
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Ruidong Zhai
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jing Xia
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Simin Deng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Anchun Cheng
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changyong Cheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Bjarnarson SP, Brynjolfsson SF. The role of antigen availability during B cell induction and its effect on sustained memory and antibody production after infection and vaccination-lessons learned from the SARS-CoV-2 pandemic. Clin Exp Immunol 2022; 210:273-282. [PMID: 36480298 PMCID: PMC9985164 DOI: 10.1093/cei/uxac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The importance of antibodies, particularly neutralizing antibodies, has been known for decades. When examining the immune responses against a pathogen after a vaccination or infection it is easier to measure the levels of antigen-specific antibodies than the T-cell response, but it does not give the whole picture. The levels of neutralizing antibodies are harder to determine but give a better indication of the quality of the antibody response. The induction of long-lived antibody-secreting plasma cells is crucial for a persistent humoral immune response, which has been shown for example after vaccination with the vaccinia vaccine, where antibody levels have been shown to persist for decades. With the SARS-CoV-2 pandemic ravaging the world for the past years and the monumental effort in designing and releasing novel vaccines against the virus, much effort has been put into analysing the quantity, quality, and persistence of antibody responses.
Collapse
Affiliation(s)
- Stefania P Bjarnarson
- Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Siggeir F Brynjolfsson
- Correspondence: Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
9
|
Berlanda Scorza F, Martin LB, Podda A, Rappuoli R. A strategic model for developing vaccines against neglected diseases: An example of industry collaboration for sustainable development. Hum Vaccin Immunother 2022; 18:2136451. [PMID: 36495000 PMCID: PMC9746511 DOI: 10.1080/21645515.2022.2136451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases continue to disproportionately affect low- and middle-income countries (LMICs) and children aged <5 y. Developing vaccines against diseases endemic in LMICs relies mainly on strong public-private collaborations, but several challenges remain. We review the operating model of the GSK Vaccines Institute for Global Health (GVGH), which aims to address these challenges. The model involves i) selection of vaccine targets based on priority ranking for impact on global health; ii) development from design to clinical proof-of-concept; iii) transfer to an industrial partner, for further technical/clinical development, licensing, manufacturing, and distribution. Cost and risks associated with pre-clinical and early clinical development are assumed by GVGH, increasing the probability to make the vaccine more affordable in LMICs. A conjugate vaccine against typhoid fever, Vi-CRM197, has recently obtained WHO prequalification, within a year from licensure in India, demonstrating the success of the GVGH model for development and delivery of global health vaccines.
Collapse
Affiliation(s)
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Rino Rappuoli
- GSK Vaccines Institute for Global Health, Siena, Italy
- GSK, Siena, Italy
| |
Collapse
|
10
|
Stefanetti G, MacLennan CA, Micoli F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022; 27:molecules27196432. [PMID: 36234967 PMCID: PMC9572008 DOI: 10.3390/molecules27196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoconjugate vaccines have contributed enormously to reducing and controlling encapsulated bacterial infections for over thirty years. Glycoconjugate vaccines are based on a carbohydrate antigen that is covalently linked to a carrier protein; this is necessary to cause T cell responses for optimal immunogenicity, and to protect young children. Many interdependent parameters affect the immunogenicity of glycoconjugate vaccines, including the size of the saccharide antigen. Here, we examine and discuss the impact of glycan chain length on the efficacy of glycoconjugate vaccines and report the methods employed to size polysaccharide antigens, while highlighting the underlying reaction mechanisms. A better understanding of the impact of key parameters on the immunogenicity of glycoconjugates is critical to developing a new generation of highly effective vaccines.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Calman Alexander MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
11
|
Liston SD, Ovchinnikova OG, Kimber MS, Whitfield C. A dedicated C-6 β-hydroxyacyltransferase required for biosynthesis of the glycolipid anchor for Vi antigen capsule in typhoidal Salmonella. J Biol Chem 2022; 298:102520. [PMID: 36152747 DOI: 10.1016/j.jbc.2022.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vi antigen is an extracellular polysaccharide produced by Salmonella enterica Typhi, Citrobacter freundii, and some soil bacteria belonging to the Burkholderiales. In Salmonella Typhi, Vi-antigen capsule protects the bacterium against host defenses, and the glycan is used in a current glycoconjugate vaccine to protect against typhoid. Vi antigen is a glycolipid assembled in the cytoplasm and translocated to the cell surface by an export complex driven by an ABC transporter. In Salmonella Typhi, efficient export and cell-surface retention of the capsule layer depend on a reducing terminal acylated-HexNAc moiety. Although the precise structure and biosynthesis of the acylated terminus has not been resolved, it distinguishes Vi antigen from other known glycolipid substrates for bacterial ABC transporters. The genetic locus for Vi antigen-biosynthesis encodes a single acyltransferase candidate (VexE), which is implicated in the acylation process. Here, we determined the structure of the VexE in vitro reaction product by mass spectrometry and nuclear magnetic resonance spectroscopy, to reveal that VexE catalyzes β-hydroxyacyl-ACP dependent acylation of the activated sugar precursor, uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), at C-6 to form UDP-6-O-[β-hydroxymyristoyl]-α-d-GlcNAc. VexE belongs to the lysophosphatidyl acyltransferase (LPLAT) family, and comparison of an Alphafold VexE model to solved LPLAT structures, together with modeling enzyme:substrate complexes, led us to predict an enzyme mechanism. This study provides new insight into Vi terminal structure, offers a new model substrate to investigate the mechanism of glycolipid ABC transporters, and adds biochemical understanding for a novel reaction used in synthesis of an important bacterial virulence factor.
Collapse
Affiliation(s)
- S D Liston
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - O G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - M S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - C Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
12
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
13
|
Rashidijahanabad Z, Kelly M, Kamruzzaman M, Qadri F, Bhuiyan TR, McFall-Boegeman H, Wu D, Piszczek G, Xu P, Ryan ET, Huang X. Virus-like Particle Display of Vibrio choleraeO-Specific Polysaccharide as a Potential Vaccine against Cholera. ACS Infect Dis 2022; 8:574-583. [PMID: 35170309 PMCID: PMC9119010 DOI: 10.1021/acsinfecdis.1c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vibrio cholerae, a noninvasive mucosal pathogen, is endemic in more than 50 countries. Oral cholera vaccines, based on killed whole-cell strains of Vibrio cholerae, can provide significant protection in adults and children for 2-5 years. However, they have relatively limited direct protection in young children. To overcome current challenges, in this study, a potential conjugate vaccine was developed by linking O-specific polysaccharide (OSP) antigen purified from V. cholerae O1 El Tor Inaba strain PIC018 with Qβ virus-like particles efficiently via squarate chemistry. The Qβ-OSP conjugate was characterized with mass photometry (MP) on the whole particle level. Pertinent immunologic display of OSP was confirmed by immunoreactivity of the conjugate with convalescent phase samples from humans with cholera. Mouse immunization with the Qβ-OSP conjugate showed that the construct generated prominent and long-lasting IgG antibody responses against OSP, and the resulting antibodies could recognize the native lipopolysaccharide from Vibrio cholerae O1 Inaba. This was the first time that Qβ was conjugated with a bacterial polysaccharide for vaccine development, broadening the scope of this powerful carrier.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Mohammad Kamruzzaman
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Taufiqur R Bhuiyan
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Hunter McFall-Boegeman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Aw R, Ashik MR, Islam AAZM, Khan I, Mainuddin M, Islam MA, Ahasan MM, Polizzi KM. Production and purification of an active CRM197 in Pichia pastoris and its immunological characterization using a Vi-typhoid antigen vaccine. Vaccine 2021; 39:7379-7386. [PMID: 34774362 DOI: 10.1016/j.vaccine.2021.10.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
CRM197 is a commonly used glycoconjugate carrier that improves the immunogenicity of vaccines, particularly in infants. Despite the advantages of this diphtheria toxoid mutant, low yields, production in inclusion bodies, and the requirement for specific growth conditions have limited the breadth of successful recombinant protein expression platforms available for its expression. We evaluated Pichia pastoris as a production host, using the methanol inducible AOX1 promoter and a modified α-mating factor signal peptide for secretion into the supernatant. Final purified yields >100 mg L-1 culture were achieved when produced in a bioreactor, which is equivalent to the productivity obtained from bioprocesses using the native Corynebacterium diphtheriae host. Recombinant CRM197 was purified to ≥95% homogeneity and showed the expected endonuclease activity. Furthermore, mice immunized with a Salmonella enterica serovar Typhi capsular Vi antigen conjugated to our recombinant CRM197 showed greater than 5-fold increase in immune response. Overall, the results demonstrate that Pichia pastoris is a suitable expression host for the production of high quality CRM197 for vaccine applications.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, SW7 2AZ, UK
| | | | | | - Imran Khan
- Incepta Vaccine Ltd, Savar, Dhaka 1341, Bangladesh
| | | | | | | | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Anish C, Beurret M, Poolman J. Combined effects of glycan chain length and linkage type on the immunogenicity of glycoconjugate vaccines. NPJ Vaccines 2021; 6:150. [PMID: 34893630 PMCID: PMC8664855 DOI: 10.1038/s41541-021-00409-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
The development and use of antibacterial glycoconjugate vaccines have significantly reduced the occurrence of potentially fatal childhood and adult diseases such as bacteremia, bacterial meningitis, and pneumonia. In these vaccines, the covalent linkage of bacterial glycans to carrier proteins augments the immunogenicity of saccharide antigens by triggering T cell-dependent B cell responses, leading to high-affinity antibodies and durable protection. Licensed glycoconjugate vaccines either contain long-chain bacterial polysaccharides, medium-sized oligosaccharides, or short synthetic glycans. Here, we discuss factors that affect the glycan chain length in vaccines and review the available literature discussing the impact of glycan chain length on vaccine efficacy. Furthermore, we evaluate the available clinical data on licensed glycoconjugate vaccine preparations with varying chain lengths against two bacterial pathogens, Haemophilus influenzae type b and Neisseria meningitidis group C, regarding a possible correlation of glycan chain length with their efficacy. We find that long-chain glycans cross-linked to carrier proteins and medium-sized oligosaccharides end-linked to carriers both achieve high immunogenicity and efficacy. However, end-linked glycoconjugates that contain long untethered stretches of native glycan chains may induce hyporesponsiveness by T cell-independent activation of B cells, while cross-linked medium-sized oligosaccharides may suffer from suboptimal saccharide epitope accessibility.
Collapse
Affiliation(s)
- Chakkumkal Anish
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands.
| | - Jan Poolman
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| |
Collapse
|
18
|
Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine. Sci Rep 2021; 11:22037. [PMID: 34764353 PMCID: PMC8586335 DOI: 10.1038/s41598-021-01549-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*. ΔVP8* was covalently conjugated to Vi capsular polysaccharide (Vi) of Salmonella Typhi to develop a bivalent vaccine, termed Vi-ΔVP8*. Our results demonstrated that the Vi-ΔVP8* vaccine can induce specific immune responses against both antigens in immunized mice. The conjugate vaccine elicits high antibody titers and functional antibodies against S. Typhi and Rotavirus (RV) when compared to immunization with a single antigen. Together, these results indicate that Vi-ΔVP8* is a potent and immunogenic vaccine candidate, thus strengthening the potential of conjugate vaccine platform with enhanced immune responses to carrier protein, including ΔVP8*.
Collapse
|
19
|
Increasing the High Throughput of a Luminescence-Based Serum Bactericidal Assay (L-SBA). BIOTECH 2021; 10:biotech10030019. [PMID: 35822773 PMCID: PMC9245470 DOI: 10.3390/biotech10030019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Serum bactericidal assay (SBA) is the method to investigate in vitro complement-mediated bactericidal activity of sera raised upon vaccination. The assay is based on incubating the target bacteria and exogenous complement with sera at different dilutions and the result of the assay is represented by the sera dilution being able to kill 50% of bacteria present in the inoculum. The traditional readout of the assay is based on measurement of colony-forming units (CFU) obtained after plating different reaction mixes on agar. This readout is at low throughput and time consuming, even when automated counting is used. We previously described a novel assay with a luminescence readout (L-SBA) based on measurement of ATP released by live bacteria, which allowed to substantially increase the throughput as well as to reduce the time necessary to perform the assay when compared to traditional methods. Here we present a further improvement of the assay by moving from a 96-well to a 384-well format, which allowed us to further increase the throughput and substantially reduce costs while maintaining the high performance of the previously described L-SBA method. The method has been successfully applied to a variety of different pathogens.
Collapse
|
20
|
Micoli F, Alfini R, Di Benedetto R, Necchi F, Schiavo F, Mancini F, Carducci M, Oldrini D, Pitirollo O, Gasperini G, Balocchi C, Bechi N, Brunelli B, Piccioli D, Adamo R. Generalized Modules for Membrane Antigens as Carrier for Polysaccharides: Impact of Sugar Length, Density, and Attachment Site on the Immune Response Elicited in Animal Models. Front Immunol 2021; 12:719315. [PMID: 34594333 PMCID: PMC8477636 DOI: 10.3389/fimmu.2021.719315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.
Collapse
Affiliation(s)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Polysaccharides are often the most abundant antigens found on the extracellular surfaces of bacterial cells. These polysaccharides play key roles in interactions with the outside world, and for many bacterial pathogens, they represent what is presented to the human immune system. As a result, many vaccines have been or currently are being developed against carbohydrate antigens. In this review, we explore the diversity of capsular polysaccharides (CPS) in Salmonella and other selected bacterial species and explain the classification and function of CPS as vaccine antigens. Despite many vaccines being developed using carbohydrate antigens, the low immunogenicity and the diversity of infecting strains and serovars present an antigen formulation challenge to manufacturers. Vaccines tend to focus on common serovars or have changing formulations over time, reflecting the trends in human infection, which can be costly and time-consuming. We summarize the approaches to generate carbohydrate-based vaccines for Salmonella, describe vaccines that are in development and emphasize the need for an effective vaccine against non-typhoidal Salmonella strains.
Collapse
|
22
|
Bazhenova A, Gao F, Bolgiano B, Harding SE. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys Rev 2021; 13:221-246. [PMID: 33868505 PMCID: PMC8035613 DOI: 10.1007/s12551-021-00791-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although the need for product-specific approaches will apply, especially for the more complex vaccines. An overview of current and emerging analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper. This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
Collapse
Affiliation(s)
- Aleksandra Bazhenova
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
- Museum of Cultural History, University of Oslo, Postboks 6762 St. Olavs plass, 0130 Oslo, Norway
| |
Collapse
|
23
|
Salmonella Paratyphi A Outer Membrane Vesicles Displaying Vi Polysaccharide as a Multivalent Vaccine against Enteric Fever. Infect Immun 2021; 89:IAI.00699-20. [PMID: 33318138 DOI: 10.1128/iai.00699-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Typhoid and paratyphoid fevers have a high incidence worldwide and coexist in many geographical areas, especially in low-middle-income countries (LMIC) in South and Southeast Asia. There is extensive consensus on the urgent need for better and affordable vaccines against systemic Salmonella infections. Generalized modules for membrane antigens (GMMA), outer membrane exosomes shed by Salmonella bacteria genetically manipulated to increase blebbing, resemble the bacterial surface where protective antigens are displayed in their native environment. Here, we engineered S Paratyphi A using the pDC5-viaB plasmid to generate GMMA displaying the heterologous S Typhi Vi antigen together with the homologous O:2 O antigen. The presence of both Vi and O:2 was confirmed by flow cytometry on bacterial cells, and their amount was quantified on the resulting vesicles through a panel of analytical methods. When tested in mice, such GMMA induced a strong antibody response against both Vi and O:2, and these antibodies were functional in a serum bactericidal assay. Our approach yielded a bivalent vaccine candidate able to induce immune responses against different Salmonella serovars, which could benefit LMIC residents and travelers.
Collapse
|
24
|
Gasperini G, Raso MM, Arato V, Aruta MG, Cescutti P, Necchi F, Micoli F. Effect of O-Antigen Chain Length Regulation on the Immunogenicity of Shigella and Salmonella Generalized Modules for Membrane Antigens (GMMA). Int J Mol Sci 2021; 22:ijms22031309. [PMID: 33525644 PMCID: PMC7865430 DOI: 10.3390/ijms22031309] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
Recently, generalized modules for membrane antigens (GMMA) technology has been proposed as an alternative approach to traditional glycoconjugate vaccines for O-antigen delivery. Saccharide length is a well-known parameter that can impact the immune response induced by glycoconjugates both in terms of magnitude and quality. However, the criticality of O-antigen length on the immune response induced by GMMA-based vaccines has not been fully elucidated. Here, Shigella and Salmonella GMMA-producing strains were further mutated in order to display homogeneous polysaccharide populations of different sizes on a GMMA surface. Resulting GMMA were compared in mice immunization studies. Athymic nude mice were also used to investigate the involvement of T-cells in the immune response elicited. In contrast with what has been reported for traditional glycoconjugate vaccines and independent of the pathogen and the sugar structural characteristics, O-antigen length did not result in being a critical parameter for GMMA immunogenicity. This work supports the identification of critical quality attributes to optimize GMMA vaccine design and improve vaccine efficacy and gives insights on the nature of the immune response induced by GMMA.
Collapse
Affiliation(s)
- Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH) s.r.l, Via Fiorentina 1, 53100 Siena, Italy; (G.G.); (M.M.R.); (V.A.); (M.G.A.); (F.N.)
| | - Maria Michelina Raso
- GSK Vaccines Institute for Global Health (GVGH) s.r.l, Via Fiorentina 1, 53100 Siena, Italy; (G.G.); (M.M.R.); (V.A.); (M.G.A.); (F.N.)
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg C11, 34127 Trieste, Italy;
| | - Vanessa Arato
- GSK Vaccines Institute for Global Health (GVGH) s.r.l, Via Fiorentina 1, 53100 Siena, Italy; (G.G.); (M.M.R.); (V.A.); (M.G.A.); (F.N.)
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health (GVGH) s.r.l, Via Fiorentina 1, 53100 Siena, Italy; (G.G.); (M.M.R.); (V.A.); (M.G.A.); (F.N.)
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg C11, 34127 Trieste, Italy;
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) s.r.l, Via Fiorentina 1, 53100 Siena, Italy; (G.G.); (M.M.R.); (V.A.); (M.G.A.); (F.N.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) s.r.l, Via Fiorentina 1, 53100 Siena, Italy; (G.G.); (M.M.R.); (V.A.); (M.G.A.); (F.N.)
- Correspondence: ; Tel.: +39-0577-539087
| |
Collapse
|