1
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
2
|
Ball JM, Li W. Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models. Nat Protoc 2024; 19:1348-1380. [PMID: 38332306 DOI: 10.1038/s41596-023-00947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/08/2023] [Indexed: 02/10/2024]
Abstract
Finite-difference time-domain (FDTD) electromagnetic simulations are a computational method that has seen much success in the study of biological optics; however, such simulations are often hindered by the difficulty of faithfully replicating complex biological microstructures in the simulation space. Recently, we designed simulations to calculate the trajectory of electromagnetic light waves through realistically reconstructed retinal photoreceptors and found that cone photoreceptor mitochondria play a substantial role in shaping incoming light. In addition to vision research and ophthalmology, such simulations are broadly applicable to studies of the interaction of electromagnetic radiation with biological tissue. Here, we present our method for discretizing complex 3D models of cellular structures for use in FDTD simulations using MEEP, the MIT Electromagnetic Equation Propagation software, including subpixel smoothing at mesh boundaries. Such models can originate from experimental imaging or be constructed by hand. We also include sample code for use in MEEP. Implementation of this algorithm in new code requires understanding of 3D mathematics and may require several weeks of effort, whereas use of our sample code requires knowledge of MEEP and C++ and may take up to a few hours to prepare a model of interest for 3D FDTD simulation. In all cases, access to a facility supercomputer with parallel processing capabilities is recommended. This protocol offers a practical solution to a significant challenge in the field of computational electrodynamics and paves the way for future advancements in the study of light interaction with biological structures.
Collapse
Affiliation(s)
- John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Lin R, Valuckas V, Do TTH, Nemati A, Kuznetsov AI, Teng J, Ha ST. Schrödinger's Red Beyond 65,000 Pixel-Per-Inch by Multipolar Interaction in Freeform Meta-Atom through Efficient Neural Optimizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303929. [PMID: 38093513 PMCID: PMC10987134 DOI: 10.1002/advs.202303929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Indexed: 04/04/2024]
Abstract
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.
Collapse
Affiliation(s)
- Ronghui Lin
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Vytautas Valuckas
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Thi Thu Ha Do
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Arash Nemati
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Arseniy I. Kuznetsov
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Jinghua Teng
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Son Tung Ha
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| |
Collapse
|
4
|
Bauernfeind V, Ronikier A, Ronikier M, Kozlowski G, Steiner U, Wilts BD. Thin film structural color is widespread in slime molds (Myxomycetes, Amoebozoa). OPTICS EXPRESS 2024; 32:5429-5443. [PMID: 38439270 DOI: 10.1364/oe.511875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
Brilliant colors in nature arise from the interference of light with periodic nanostructures resulting in structural color. While such biological photonic structures have long attracted interest in insects and plants, they are little known in other groups of organisms. Unexpected in the kingdom of Amoebozoa, which assembles unicellular organisms, structural colors were observed in myxomycetes, an evolutionary group of amoebae forming macroscopic, fungal-like structures. Previous work related the sparkling appearance of Diachea leucopodia to thin film interference. Using optical and ultrastructural characterization, we here investigated the occurrence of structural color across 22 species representing two major evolutionary clades of myxomycetes including 14 genera. All investigated species showed thin film interference at the peridium, producing colors with hues distributed throughout the visible range that were altered by pigmentary absorption. A white reflective layer of densely packed calcium-rich shells is observed in a compound peridium in Metatrichia vesparium, whose formation and function are still unknown. These results raise interesting questions on the biological relevance of thin film structural colors in myxomycetes, suggesting they may be a by-product of their reproductive cycle.
Collapse
|
5
|
Middleton R, Tunstad SA, Knapp A, Winters S, McCallum S, Whitney H. Self-assembled, disordered structural color from fruit wax bloom. SCIENCE ADVANCES 2024; 10:eadk4219. [PMID: 38324684 PMCID: PMC10849586 DOI: 10.1126/sciadv.adk4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Many visually guided frugivores have eyes highly adapted for blue sensitivity, which makes it perhaps surprising that blue pigmented fruits are not more common. However, some fruits are blue even though they do not contain blue pigments. We investigate dark pigmented fruits with wax blooms, like blueberries, plums, and juniper cones, and find that a structural color mechanism is responsible for their appearance. The chromatic blue-ultraviolet reflectance arises from the interaction of the randomly arranged nonspherical scatterers with light. We reproduce the structural color in the laboratory by recrystallizing wax bloom, allowing it to self-assemble to produce the blue appearance. We demonstrate that blue fruits and structurally colored fruits are not constrained to those with blue subcuticular structure or pigment. Further, convergent optical properties appear across a wide phylogenetic range despite diverse morphologies. Epicuticular waxes are elements of the future bioengineering toolbox as sustainable and biocompatible, self-assembling, self-cleaning, and self-repairing optical biomaterials.
Collapse
Affiliation(s)
- Rox Middleton
- University of Bristol, Bristol, UK
- Technische Universität Dresden, Dresden, Germany
| | | | | | - Sandra Winters
- University of Bristol, Bristol, UK
- University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
6
|
Areias LRP, Farinha JPS. Waterborne Polymer Coatings with Bright Noniridescent Structural Colors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1587-1595. [PMID: 38153798 DOI: 10.1021/acsami.3c16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Structural color pigments offer an efficient, sustainable, and environmentally friendly approach to obtain waterborne polymer coatings. We developed polymer-based spherical photonic pigments to incorporate in aqueous dispersions of polymer nanoparticles used to obtain waterborne polymer films. Our spherical photonic pigments are assembled from polymer nanoparticles and are highly stable in water dispersion, maintaining their optical properties in the final polymer films. Unlike conventional dyes and pigments, which are prone to photobleaching because they are based on the absorption of light, photonic pigments rely on the selective reflection of light by their nanostructure and therefore are not photodegraded. Furthermore, different colors can be obtained from the same materials, changing only their nanostructure, in this case, the size of the polymer nanoparticles. Our novel spherical photonic pigments are noniridescent and can be incorporated in aqueous polymer nanoparticle dispersions without deteriorating their structure to produce waterborne polymer coatings with structural color. This approach for structural colored waterborne polymer coatings is efficient, simple, and environmentally friendly, offering excellent prospects for application in paints and coatings.
Collapse
Affiliation(s)
- Laurinda R P Areias
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - José Paulo S Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
7
|
Wang Z, Zhang S, Tang B. Large-Area Rewritable Paper Based on Polyurethane Inverse Photonic Glass with Durable High-Resolution Information Storage and Structural Stability. ACS NANO 2024; 18:186-198. [PMID: 38126306 DOI: 10.1021/acsnano.3c05325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
To alleviate the negative effects of resource waste and environmental pollution caused by the excessive use of paper, technologies for rewritable paper have received widespread attention and in-depth research. Despite the growing interest in rewritable paper, meeting the requirements of large-scale preparation, long-lasting information storage time, high reversibility, and good environmental stability remains a huge challenge for this technology. This study developed a solvent-responsive copolymerized polyurethane-based rewritable paper with an inverse photonic glass structure (co-PUIPG paper). Comprehensive writing modes, including handwriting, spraying, and printing, were realized by using the swelling effect of different solvents and the local force field formed by capillary force to control the deformation degree of the inverse photonic glass structure. Co-PUIPG paper can persistently store high-resolution information and has a green and environmentally friendly "write-erase" method. Meanwhile, it exhibits good rewritability, as well as high mechanical strength and exceptional resistance to environmental factors, such as friction, high temperature, and sunlight. Because the spraying method can prepare templates quickly and extensively and polyurethane materials are economical, co-PUIPG rewritable paper possesses great potential as a substitute for commercial fiber paper and its industrialization is full of great possibilities.
Collapse
Affiliation(s)
- Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, People's Republic of China
| |
Collapse
|
8
|
Wang Z, Meng F, Kong M, Guo X, Zhang S, Zhang Y, Tang B. 2D Information Security System Based on Polyurethane Inverse Photonic Glass Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305825. [PMID: 37699756 DOI: 10.1002/smll.202305825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Indexed: 09/14/2023]
Abstract
Information security has become a major global problem in recent years. Thus, people continue to exert much effort in developing new information security technologies based on encryption and storage. In this study, a 2D information security technology based on polyurethane optical devices with inverse photonic glass structure (PU-IPG) is introduced. Based on 1) the swelling and plasticizing effects of various solvents on PU-IPG and 2) the capillary force that can produce geometric deformation on micro/nanostructures when solvents evaporate, a 2D information security system with two modules of decryption (structural color information display) and anticounterfeiting (structural color transformation) is successfully constructed. The spraying method adopted can be simple and fast and can provide a large area to build photonic glass templates, which greatly improves the capacity and category of information in the encryption system. The prepared PU-IPG optical devices can produce large-area multicolor output capability of information. These devices also have excellent mechanical properties, strong cycle stability, environmental friendliness, and low price. Therefore, the preparation strategy has great reference value and application prospects in the field of information security.
Collapse
Affiliation(s)
- Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fantao Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Miao Kong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaoyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Sai T, Froufe-Pérez LS, Scheffold F, Wilts BD, Dufresne ER. Structural color from pigment-loaded nanostructures. SOFT MATTER 2023; 19:7717-7723. [PMID: 37789800 DOI: 10.1039/d3sm00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment. Here, we demonstrate that pigment can be exploited to efficiently create bright structural color at wavelengths outside its absorption band. We created pigment-enhanced Bragg reflectors by sequentially spin-coating layers of poly-vinyl alcohol (PVA) and polystyrene (PS) loaded with β-carotene (BC). With only 10 double layers, we achieved a peak reflectance over 0.8 at 550 nm and normal incidence. A pigment-free multilayer made of the same materials would require 25 double layers to achieve the same reflectance. Further, pigment loading suppressed the Bragg reflector's characteristic iridescence. Using numerical simulations, we further show that similar pigment loadings could significantly expand the gamut of non-iridescent colors addressable by photonic glasses.
Collapse
Affiliation(s)
- Tianqi Sai
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | | | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Department of Chemistry and Physics of Materials University of Salzburg, 5020 Salzburg, Austria
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
10
|
Wang Z, Li R, Zhang Y, Chan CLC, Haataja JS, Yu K, Parker RM, Vignolini S. Tuning the Color of Photonic Glass Pigments by Thermal Annealing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207923. [PMID: 36482805 DOI: 10.1002/adma.202207923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Thermal or solvent annealing is commonly employed to enhance phase separation and remove defects in block copolymer (BCP) films, leading to well-resolved nanostructures. Annealing is of particular importance for photonic BCP materials, where large, well-ordered lamellar domains are required to generate strong reflections at visible wavelengths. However, such strategies have not been considered for porous BCP systems, such as inverse photonic glasses, where the structure (and thus the optical response) is no longer defined solely by the chemical compatibility of the blocks, but by the size and arrangement of voids within the BCP matrix. In this study, a demonstration of how the concept of "thermal annealing" can be applied to bottlebrush block copolymer (BBCP) microparticles with a photonic glass architecture is presented, enabling their coloration to be tuned from blue to red. By comparing biocompatible BBCPs with similar composition, but different thermal behavior, it is shown that this process is driven by both a temperature-induced softening of the BBCP matrix (i.e., polymer mobility) and the absence of microphase separation (enabling diffusion-induced swelling of the pores). Last, this concept is applied toward the production of a thermochromic patterned hydrogel, exemplifying the potential of such responsive biocompatible photonic-glass pigments toward smart labeling or anticounterfeiting applications.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ruiting Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yating Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chun Lam Clement Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Johannes S Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kui Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Richard M Parker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
11
|
Shapturenka P, Isaac Zakaria N, Birkholz F, Gordon MJ. Extending the diatom's color palette: non-iridescent, disorder-mediated coloration in marine diatom-inspired nanomembranes. OPTICS EXPRESS 2023; 31:21658-21671. [PMID: 37381258 DOI: 10.1364/oe.487180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/25/2023] [Indexed: 06/30/2023]
Abstract
The intricate, siliceous exoskeleton of many marine diatoms (single-celled phytoplankton) is decorated with an array of sub-micron, quasi-ordered pores that are known to provide protective and multiple life-sustaining functions. However, the optical functionality of any given diatom valve is limited because valve geometry, composition, and ordering are genetically programmed. Nonetheless, the near- and sub-wavelength features of diatom valves provide inspiration for novel photonic surfaces and devices. Herein, we explore the optical design space for optical transmission, reflection, and scattering in diatom-like structures by computationally deconstructing the diatom frustule, assigning and nondimensionalizing Fano-resonant behavior with configurations of increasing refractive index contrast (Δn), and gauging the effects of structural disorder on the resulting optical response. Translational pore disorder, especially in higher-index materials, was found to evolve Fano resonances from near-unity reflection and transmission to modally confined, angle-independent scattering, which is key to non-iridescent coloration in the visible wavelength range. High-index, frustule-like TiO2 nanomembranes were then designed to maximize backscattering intensity and fabricated using colloidal lithography. These synthetic diatom surfaces showed saturated, non-iridescent coloration across the visible spectrum. Overall, this diatom-inspired platform could be useful in designing tailored, functional, and nanostructured surfaces for applications in optics, heterogeneous catalysis, sensing, and optoelectronics.
Collapse
|
12
|
Haataja JS, Jacucci G, Parton TG, Schertel L, Vignolini S. Topological invariance in whiteness optimisation. COMMUNICATIONS PHYSICS 2023; 6:137. [PMID: 38665411 PMCID: PMC11041678 DOI: 10.1038/s42005-023-01234-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/09/2023] [Indexed: 04/28/2024]
Abstract
Maximizing the scattering of visible light within disordered nano-structured materials is essential for commercial applications such as brighteners, while also testing our fundamental understanding of light-matter interactions. The progress in the research field has been hindered by the lack of understanding how different structural features contribute to the scattering properties. Here we undertake a systematic investigation of light scattering in correlated disordered structures. We demonstrate that the scattering efficiency of disordered systems is mainly determined by topologically invariant features, such as the filling fraction and correlation length, and residual variations are largely accounted by the surface-averaged mean curvature of the systems. Optimal scattering efficiency can thus be obtained from a broad range of disordered structures, especially when structural anisotropy is included as a parameter. These results suggest that any disordered system can be optimised for whiteness and give comparable performance, which has far-reaching consequences for the industrial use of low-index materials for optical scattering.
Collapse
Affiliation(s)
- Johannes S. Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Espoo, FI-02150 Finland
| | - Gianni Jacucci
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - Thomas G. Parton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| |
Collapse
|
13
|
Heil CM, Patil A, Vanthournout B, Singla S, Bleuel M, Song JJ, Hu Z, Gianneschi NC, Shawkey MD, Sinha SK, Jayaraman A, Dhinojwala A. Mechanism of structural colors in binary mixtures of nanoparticle-based supraballs. SCIENCE ADVANCES 2023; 9:eadf2859. [PMID: 37235651 DOI: 10.1126/sciadv.adf2859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.
Collapse
Affiliation(s)
- Christian M Heil
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | - Anvay Patil
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| | - Bram Vanthournout
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Saranshu Singla
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20878, USA
- Department of Materials Science and Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20742, USA
| | - Jing-Jin Song
- Department of Materials Science & Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Ziying Hu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL 60208, USA
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| |
Collapse
|
14
|
Shavit K, Wagner A, Schertel L, Farstey V, Akkaynak D, Zhang G, Upcher A, Sagi A, Yallapragada VJ, Haataja J, Palmer BA. A tunable reflector enabling crustaceans to see but not be seen. Science 2023; 379:695-700. [PMID: 36795838 DOI: 10.1126/science.add4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Many oceanic prey animals use transparent bodies to avoid detection. However, conspicuous eye pigments, required for vision, compromise the organisms' ability to remain unseen. We report the discovery of a reflector overlying the eye pigments in larval decapod crustaceans and show how it is tuned to render the organisms inconspicuous against the background. The ultracompact reflector is constructed from a photonic glass of crystalline isoxanthopterin nanospheres. The nanospheres' size and ordering are modulated to tune the reflectance from deep blue to yellow, enabling concealment in different habitats. The reflector may also function to enhance the acuity or sensitivity of the minute eyes by acting as an optical screen between photoreceptors. This multifunctional reflector offers inspiration for constructing tunable artificial photonic materials from biocompatible organic molecules.
Collapse
Affiliation(s)
- Keshet Shavit
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Viviana Farstey
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
| | - Derya Akkaynak
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel.,Hatter Department of Marine Technologies, University of Haifa, Haifa 3498838, Israel
| | - Gan Zhang
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | | | - Johannes Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
15
|
Zhang C, Chu G, Ruan Z, Tang N, Song C, Li Q, Zhou W, Jin J, Haick H, Chen Y, Cui D. Biomimetic Self-Assembling Metal-Organic Architectures with Non-Iridescent Structural Coloration for Synergetic Antibacterial and Osteogenic Activity of Implants. ACS NANO 2022; 16:16584-16597. [PMID: 36001338 DOI: 10.1021/acsnano.2c06030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Materials in nature feature versatile and programmable interactions to render macroscopic architectures with multiscale structural arrangements. By rationally combining metal-carboxylate and metal-organophosphate coordination interactions, Au25(MHA)18 (MHA, 6-mercaptohexanoic acid) nanocluster self-assembled structural color coating films and phytic acid (PA)-metal coordination complexes are sequentially constructed on the surface of titanium implants. The Lewis acid-base coordination principle applies for these metal-organic coordination networks. The isotropic arrangement of nanoclusters with a short-range order is investigated via grazing incidence wide-angle X-ray scattering. The integration of robust M-O (M = Ti, Zr, Hf) and labile Cu-O coordination bonds with high connectivity of Au25(MHA)18 nanoclusters enables these artificial photonic structures to achieve a combination of mechanical stability and bacteriostatic activity. Moreover, the colorless and transparent PA-metal complex layer allows the viewing of the structural color and surface wettability switching to hydrophilic and makes feasible the interfacial biomineralization of hydroxyapatite. Collectively, these modular metal-organic coordination-driven assemblies are predictive and rational material design strategies with tunable hierarchy and diversity. The complete metal-organic architectures will not only help improve the physicochemical properties of the bone-implant interface with synergistic antibacterial and osseointegration activities but also can boost surface engineering of medical metal implants.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cunfeng Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qichao Li
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjie Zhou
- Department of Second Dental Clinic, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology, Institute Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Scheffold F. Metasurfaces provide the extra bling. NATURE MATERIALS 2022; 21:994-995. [PMID: 36002722 DOI: 10.1038/s41563-022-01341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Frank Scheffold
- Physics Department, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
17
|
Djeghdi K, Steiner U, Wilts BD. 3D Tomographic Analysis of the Order-Disorder Interplay in the Pachyrhynchus congestus mirabilis Weevil. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202145. [PMID: 35852001 PMCID: PMC9475527 DOI: 10.1002/advs.202202145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The bright colors of Pachyrhynchus weevils originate from complex dielectric nanostructures within their elytral scales. In contrast to previous work exhibiting highly ordered single-network diamond-type photonic crystals, here, it is shown by combining optical microscopy and spectroscopy measurements with 3D focused ion beam (FIB) tomography that the blue scales of P. congestus mirabilis differ from that of an ordered diamond structure. Through the use of FIB tomography on elytral scales filled with platinum (Pt) by electron beam-assisted deposition, it is revealed that the red scales of this weevil possess a periodic diamond structure, while the network morphology of the blue scales exhibit diamond morphology only on the single scattering unit level with disorder on longer length scales. Full wave simulations performed on the reconstructed volumes indicate that this local order is sufficient to open a partial photonic bandgap even at low dielectric constant contrast between chitin and air in the absence of long-range or translational order. The observation of disordered and ordered photonic crystals within a single organism opens up interesting questions on the cellular origin of coloration and studies on bio-inspired replication of angle-independent colors.
Collapse
Affiliation(s)
- Kenza Djeghdi
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Ullrich Steiner
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Bodo D. Wilts
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
- Chemistry and Physics of MaterialsUniversity of SalzburgJakob‐Haringer‐Straße 2aSalzburg5020Austria
| |
Collapse
|
18
|
Wang Z, Chan CLC, Haataja JS, Schertel L, Li R, van de Kerkhof GT, Scherman OA, Parker RM, Vignolini S. Deconvoluting the Optical Response of Biocompatible Photonic Pigments. Angew Chem Int Ed Engl 2022; 61:e202206562. [PMID: 35723924 PMCID: PMC9542403 DOI: 10.1002/anie.202206562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/21/2022]
Abstract
To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.
Collapse
Affiliation(s)
- Zhen Wang
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Chun Lam Clement Chan
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Johannes S. Haataja
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Lukas Schertel
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of PhysicsUniversity of FribourgChemin du Musée 31700FribourgSwitzerland
| | - Ruiting Li
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Gea T. van de Kerkhof
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Richard M. Parker
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
19
|
Wang Z, Chan CLC, Haataja JS, Schertel L, Li R, van de Kerkhof GT, Scherman OA, Parker RM, Vignolini S. Deconvoluting the Optical Response of Biocompatible Photonic Pigments. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202206562. [PMID: 38504795 PMCID: PMC10946993 DOI: 10.1002/ange.202206562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/08/2022]
Abstract
To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.
Collapse
Affiliation(s)
- Zhen Wang
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Chun Lam Clement Chan
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Johannes S. Haataja
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Lukas Schertel
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of PhysicsUniversity of FribourgChemin du Musée 31700FribourgSwitzerland
| | - Ruiting Li
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Gea T. van de Kerkhof
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Richard M. Parker
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
20
|
Li Z, Ma T, Li S, Gu W, Lu L, Yang H, Dai Y, Wang R. High-Efficiency, Mass-Producible, and Colored Solar Photovoltaics Enabled by Self-Assembled Photonic Glass. ACS NANO 2022; 16:11473-11482. [PMID: 35848579 DOI: 10.1021/acsnano.2c05840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Building-integrated photovoltaics is a crucial technology for developing zero-energy buildings and sustainable cities, while great efforts are required to make photovoltaic (PV) panels aesthetically pleasing. This places an urgent demand on PV colorization technology that has a low impact on power conversion efficiency (PCE) and is simultaneously mass-producible at a low cost. To address this challenge, this study contributes a colorization strategy for solar PVs based on short-range correlated dielectric microspheres, i.e., photonic glass. Through theoretical studies, first we demonstrate that the photonic glass self-assembled by high-index microspheres could enable both colored solar cells and modules, with easily variable colors and negligible parasitic absorption. By a fast spray coating process of colloidal monodisperse ZnS microspheres, we show the photonic glass layer could be easily deposited on silicon solar cells, enabling them to have structural colors. Through varying microsphere sizes, solar cells with different colors are achieved, showing low PCE loss compared to normal black cells. These colored solar cells are also encapsulated with a general lamination process to produce PV modules with various colors and patterns at a stunning PCE approaching 21%. Moreover, the long-term stability is subsequently verified by aging tests including an outdoor exposure for 10 days and a damp-heat test for 1000 h, and the mass producibility is demonstrated by presenting a colored PV panel with an output power over 108 W. These results confirm photonic glass as a promising strategy for colored PVs possessing high efficiency and practical applicability.
Collapse
Affiliation(s)
- Zhenpeng Li
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tao Ma
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Senji Li
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenbo Gu
- School of Electrical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| | - Lin Lu
- Renewable Energy Research Group, Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Hongxing Yang
- Renewable Energy Research Group, Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yanjun Dai
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruzhu Wang
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Chen F, Huang Y, Li R, Zhang S, Jiang Q, Luo Y, Wang B, Zhang W, Wu X, Wang F, Lyu P, Zhao S, Xu W, Wei F, Zhang R. Superdurable and fire-retardant structural coloration of carbon nanotubes. SCIENCE ADVANCES 2022; 8:eabn5882. [PMID: 35767610 PMCID: PMC9242455 DOI: 10.1126/sciadv.abn5882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/11/2022] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNTs) are promising candidates for numerous cutting-edge fields because of their excellent properties. However, the inherent black color of CNTs cannot satisfy the aesthetic/fashion requirement, and the flammability of CNTs severely restricts their application in high-temperature environments with oxygen. Here, we realized a structural coloration of CNTs by coating them with amorphous TiO2 layers. By tuning the TiO2 coating thickness, both CNT fibers and membranes exhibited controllable and brilliant colors, which exhibited remarkable superdurability that could endure 2000 cycles of laundering tests and more than 10 months of high-intensity ultraviolet irradiation. The TiO2-coated CNTs exhibited a notable fire-retardant performance and could endure 8 hours of fire burning. The structural coloration of CNTs with excellent fire retardance substantially improves their performance and broadens their applications.
Collapse
Affiliation(s)
- Fengxiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shiliang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Pei Lyu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Corresponding author.
| |
Collapse
|
22
|
Wang Z, Chan CLC, Parker RM, Vignolini S. The Limited Palette for Photonic Block-Copolymer Materials: A Historical Problem or a Practical Limitation? Angew Chem Int Ed Engl 2022; 61:e202117275. [PMID: 35446459 PMCID: PMC9325480 DOI: 10.1002/anie.202117275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
23
|
Wang Z, Chan CLC, Parker RM, Vignolini S. The Limited Palette for Photonic Block-Copolymer Materials: A Historical Problem or a Practical Limitation? ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117275. [PMID: 38528985 PMCID: PMC10962576 DOI: 10.1002/ange.202117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
24
|
Loke JJ, Hoon S, Miserez A. Cephalopod-Mimetic Tunable Photonic Coatings Assembled from Quasi-Monodispersed Reflectin Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21436-21452. [PMID: 35476418 DOI: 10.1021/acsami.2c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The remarkable dynamic camouflage ability of cephalopods arises from precisely orchestrated structural changes within their chromatophores and iridophores photonic cells. This mesmerizing color display remains unmatched in synthetic coatings and is regulated by swelling/deswelling of reflectin protein nanoparticles, which alters platelet dimensions in iridophores to control photonic patterns according to Bragg's law. Toward mimicking the photonic response of squid's skin, reflectin proteins from Sepioteuthis lessioniana were sequenced, recombinantly expressed, and self-assembled into spherical nanoparticles by conjugating reflectin B1 with a click chemistry ligand. These quasi-monodisperse nanoparticles can be tuned to any desired size in the 170-1000 nm range. Using Langmuir-Schaefer and drop-cast deposition methods, ligand-conjugated reflectin B1 nanoparticles were immobilized onto azide-functionalized substrates via click chemistry to produce monolayer amorphous photonic structures with tunable structural colors based on average particle size, paving the way for the fabrication of eco-friendly, bioinspired color-changing coatings that mimic cephalopods' dynamic camouflage.
Collapse
Affiliation(s)
- Jun Jie Loke
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| |
Collapse
|
25
|
Parisotto A, Steiner U, Cabras AA, Van Dam MH, Wilts BD. Pachyrhynchus Weevils Use 3D Photonic Crystals with Varying Degrees of Order to Create Diverse and Brilliant Displays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200592. [PMID: 35426236 DOI: 10.1002/smll.202200592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The brilliant appearance of Easter Egg weevils, genus Pachyrhynchus (Coleoptera, Curculionidae), originates from complex dielectric nanostructures within their elytral scales and elytra. Previous work, investigating singular members of the Pachyrhynchus showed the presence of either quasi-ordered or ordered 3D photonic crystals based on the single diamond ( Fd3¯m ) symmetry in their scales. However, little is known about the diversity of the structural coloration mechanisms within the family. Here, the optical properties within Pachyrhynchus are investigated by systematically identifying their spectral and structural characteristics. Four principal traits that vary their appearance are identified and the evolutionary history of these traits to identify ecological trends are reconstructed. The results indicate that the coloration mechanisms across the Easter Egg weevils are diverse and highly plastic across closely related species with features appearing at multiple independent times across their phylogeny. This work lays a foundation for a better understanding of the various forms of quasi-ordered and ordered diamond photonic crystal within arthropods.
Collapse
Affiliation(s)
- Alessandro Parisotto
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Analyn Anzano Cabras
- Coleoptera Research Center, Institute for Biodiversity and Environment, University of Mindanao, Matina, Davao City, 8000, Philippines
| | - Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA, 94118, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, Salzburg, 5020, Austria
| |
Collapse
|
26
|
Tavakoli N, Spalding R, Lambertz A, Koppejan P, Gkantzounis G, Wan C, Röhrich R, Kontoleta E, Koenderink AF, Sapienza R, Florescu M, Alarcon-Llado E. Over 65% Sunlight Absorption in a 1 μm Si Slab with Hyperuniform Texture. ACS PHOTONICS 2022; 9:1206-1217. [PMID: 35480493 PMCID: PMC9026274 DOI: 10.1021/acsphotonics.1c01668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Thin, flexible, and invisible solar cells will be a ubiquitous technology in the near future. Ultrathin crystalline silicon (c-Si) cells capitalize on the success of bulk silicon cells while being lightweight and mechanically flexible, but suffer from poor absorption and efficiency. Here we present a new family of surface texturing, based on correlated disordered hyperuniform patterns, capable of efficiently coupling the incident spectrum into the silicon slab optical modes. We experimentally demonstrate 66.5% solar light absorption in free-standing 1 μm c-Si layers by hyperuniform nanostructuring for the spectral range of 400 to 1050 nm. The absorption equivalent photocurrent derived from our measurements is 26.3 mA/cm2, which is far above the highest found in literature for Si of similar thickness. Considering state-of-the-art Si PV technologies, we estimate that the enhanced light trapping can result in a cell efficiency above 15%. The light absorption can potentially be increased up to 33.8 mA/cm2 by incorporating a back-reflector and improved antireflection, for which we estimate a photovoltaic efficiency above 21% for 1 μm thick Si cells.
Collapse
Affiliation(s)
- Nasim Tavakoli
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Richard Spalding
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Alexander Lambertz
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Pepijn Koppejan
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Georgios Gkantzounis
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Chenglong Wan
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Ruslan Röhrich
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
- Advanced
Research Center for Nanolithography, Science Park 106, 1098XG Amsterdam, The Netherlands
| | - Evgenia Kontoleta
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - A. Femius Koenderink
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| | - Riccardo Sapienza
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, United Kingdom
| | - Marian Florescu
- Department
of Physics, Advanced Technology Institute, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Esther Alarcon-Llado
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands
| |
Collapse
|
27
|
Tran VT, Kim J, Oh S, Jeong KJ, Lee J. Rapid Assembly of Magnetoplasmonic Photonic Arrays for Brilliant, Noniridescent, and Stimuli-Responsive Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200317. [PMID: 35344276 DOI: 10.1002/smll.202200317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
There are usually trade-offs between maximizing the color saturation and brightness and minimizing the angle-dependent effect in structural colors. Here, a magnetic field-induced assembly for the rapid formation of scalable, uniform amorphous photonic arrays (APAs) featuring unique structural colors is demonstrated. The magnetic field plays a fundamental role in photonic film formation, making this assembly technology versatile for developing structural color patterns on arbitrary substrates. The synergistic combination of surface plasmonic resonance of the Ag core and broadband light absorption of high refractive index (RI) Fe3 O4 shell in hybrid magnetoplasmonic nanoparticles (MagPlas NPs) enables breaking the trade-offs to produce brilliant, noniridescent structural colors with high tunability and responsiveness. These features enable the fabrication of various types of highly sensitive and reliable colorimetric sensors for naked-eye detection without sophisticated instruments. Furthermore, large-scale structural color patterns are effortlessly achieved, demonstrating the high potential of the present approach for full-spectrum displays, active coatings, and rewritable papers.
Collapse
Affiliation(s)
- Van Tan Tran
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 10000, Vietnam
| | - Jeonghyo Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sangjin Oh
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ki-Jae Jeong
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
28
|
Xiao M, Stephenson AB, Neophytou A, Hwang V, Chakrabarti D, Manoharan VN. Investigating the trade-off between color saturation and angle-independence in photonic glasses. OPTICS EXPRESS 2021; 29:21212-21224. [PMID: 34265912 DOI: 10.1364/oe.425399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Photonic glasses-isotropic structures with short-range correlations-can produce structural colors with little angle-dependence, making them an alternative to dyes in applications such as cosmetics, coatings, and displays. However, the low angle-dependence is often accompanied by low color saturation. To investigate how the short-range correlations affect the trade-off between saturation and angle-independence, we vary the structure factor and use a Monte Carlo model of multiple scattering to investigate the resulting optical properties. We use structure factors derived from analytical models and calculated from simulations of disordered sphere packings. We show that the trade-off is controlled by the first peak of the structure factor. It is possible to break the trade-off by tuning the width of this peak and controlling the sample thickness. Practically, this result shows that the protocol used to pack particles into a photonic glass is important to the optical properties.
Collapse
|
29
|
Dong Y, Ma Z, Song DP, Ma G, Li Y. Rapid Responsive Mechanochromic Photonic Pigments with Alternating Glassy-Rubbery Concentric Lamellar Nanostructures. ACS NANO 2021; 15:8770-8779. [PMID: 33913333 DOI: 10.1021/acsnano.1c01147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photonic pigment particles prepared via self-assembly have been suffering from their poor mechanical performances; i.e., they can easily be damaged and lose structural color under a compression force. This greatly limits their uses as mechanochromic pigments. Here, a nanoscale concentric lamellar structure of alternating glassy-rubbery microdomains is successfully created within photonic microparticles through a confined self-assembly and photo-cross-linking strategy. The glassy domain is composed of polystyrene, and cross-linked bottlebrush polydimethylsiloxane served as the supersoft elastic domain. The obtained photonic structure not only shows large deformation and visible color changes under a loaded compression force but also rapidly recovers to its original state in less than 1 s (∼0.16 s) upon unloading. Continuously loading-unloading micro compression test indicates that no obvious damage can be identified after 250 cycles, indicating the high durability of the pigments against deformation. These pigments with different reflected colors are simply obtained using bottlebrush block copolymer formulations with tunable weight percentages of polymer additives. The mechanical robust photonic pigments may be useful in many important applications.
Collapse
Affiliation(s)
- Yun Dong
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Guiqiu Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
30
|
Yazhgur P, Aubry GJ, Froufe-Pérez LS, Scheffold F. Light scattering from colloidal aggregates on a hierarchy of length scales. OPTICS EXPRESS 2021; 29:14367-14383. [PMID: 33985161 DOI: 10.1364/oe.418735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Disordered dielectrics with structural correlations on length scales comparable to visible light wavelengths exhibit interesting optical properties. Such materials exist in nature, leading to beautiful structural non-iridescent color, and they are also increasingly used as building blocks for optical materials and coatings. In this article, we explore the angular resolved single-scattering properties of micron-sized, disordered colloidal assemblies. The aggregates act as structurally colored supraparticles or as building blocks for macroscopic photonic glasses. We obtain first experimental data for the differential scattering and transport cross-section. Based on existing macroscopic models, we develop a theoretical framework to describe the scattering from densely packed colloidal assemblies on a hierarchy of length scales.
Collapse
|
31
|
Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. Proc Natl Acad Sci U S A 2021; 118:2015551118. [PMID: 33472972 DOI: 10.1073/pnas.2015551118] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disordered nanostructures with correlations on the scale of visible wavelengths can show angle-independent structural colors. These materials could replace dyes in some applications because the color is tunable and resists photobleaching. However, designing nanostructures with a prescribed color is difficult, especially when the application-cosmetics or displays, for example-requires specific component materials. A general approach to solving this constrained design problem is modeling and optimization: Using a model that predicts the color of a given system, one optimizes the model parameters under constraints to achieve a target color. For this approach to work, the model must make accurate predictions, which is challenging because disordered nanostructures have multiple scattering. To address this challenge, we develop a Monte Carlo model that simulates multiple scattering of light in disordered arrangements of spherical particles or voids. The model produces quantitative agreement with measurements when we account for roughness on the surface of the film, particle polydispersity, and wavelength-dependent absorption in the components. Unlike discrete numerical simulations, our model is parameterized in terms of experimental variables, simplifying the connection between simulation and fabrication. To demonstrate this approach, we reproduce the color of the male mountain bluebird (Sialia currucoides) in an experimental system, using prescribed components and a microstructure that is easy to fabricate. Finally, we use the model to find the limits of angle-independent structural colors for a given system. These results enable an engineering design approach to structural color for many different applications.
Collapse
|
32
|
Li Y, Chen X, Geng H, Dong Y, Wang B, Ma Z, Pan L, Ma G, Song D, Li Y. Oxidation Control of Bottlebrush Molecular Conformation for Producing Libraries of Photonic Structures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Lian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xi Chen
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Yun Dong
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Bin Wang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Zhe Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Li Pan
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Gui‐Qiu Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yue‐Sheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
33
|
Li Y, Chen X, Geng H, Dong Y, Wang B, Ma Z, Pan L, Ma G, Song D, Li Y. Oxidation Control of Bottlebrush Molecular Conformation for Producing Libraries of Photonic Structures. Angew Chem Int Ed Engl 2020; 60:3647-3653. [DOI: 10.1002/anie.202011702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Yu‐Lian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xi Chen
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Yun Dong
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Bin Wang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Zhe Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Li Pan
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Gui‐Qiu Ma
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yue‐Sheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
34
|
Zhao TH, Jacucci G, Chen X, Song DP, Vignolini S, Parker RM. Angular-Independent Photonic Pigments via the Controlled Micellization of Amphiphilic Bottlebrush Block Copolymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002681. [PMID: 33064337 DOI: 10.1002/adma.202002681] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Photonic materials with angular-independent structural color are highly desirable because they offer the broad viewing angles required for application as colorants in paints, cosmetics, textiles, or displays. However, they are challenging to fabricate as they require isotropic nanoscale architectures with only short-range correlation. Here, porous microparticles with such a structure are produced in a single, scalable step from an amphiphilic bottlebrush block copolymer. This is achieved by exploiting a novel "controlled micellization" self-assembly mechanism within an emulsified toluene-in-water droplet. By restricting water permeation through the droplet interface, the size of the pores can be precisely addressed, resulting in structurally colored pigments. Furthermore, the reflected color can be tuned to reflect across the full visible spectrum using only a single polymer (Mn = 290 kDa) by altering the initial emulsification conditions. Such "photonic pigments" have several key advantages over their crystalline analogues, as they provide isotropic structural coloration that suppresses iridescence and improves color purity without the need for either refractive index matching or the inclusion of a broadband absorber.
Collapse
Affiliation(s)
- Tianheng H Zhao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Gianni Jacucci
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Xi Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Richard M Parker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|