1
|
Cervigón P, Ferencova Z, Cascón Á, Romero-Morte J, Galán Díaz J, Sabariego S, Torres M, Gutiérrez-Bustillo AM, Rojo J. Importance of the quality management of aerobiological monitoring networks: The case study of Madrid Region in Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176544. [PMID: 39332720 DOI: 10.1016/j.scitotenv.2024.176544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Interest in biological air quality monitoring is rising, and updated public information is increasingly demanded by stakeholders in the case of airborne pollen, which requires maintaining high standards of data quality. The number of aerobiological stations worldwide is continuously growing, and quality management is becoming more complex with the increase in the scale of aerobiological networks. Quality control exercises are crucial for maintaining the quality of the data used in the pollen monitoring routine over time. In this study we show the results of an intercomparison test among technicians in the Madrid Region Palynological Network in central Spain in order to identify potential sources of error during the pollen analysis. The findings of this intercomparison exercise indicated very high-quality pollen data based on two different proficiency tests: i) the technicians' analysis of common samples with the light microscopes used in the routine pollen analysis; and ii) the analysis of common samples with all technicians using the same light microscope. A few specific remarkable errors were detected (i.e., those whose Absolute Error > |10| and Relative Error > |20 %|), such as confusion by four participants between Quercus vs. Acer and Quercus vs. Platanus pollen. Since the pollen analysis routine requires very experienced professionals, we believe it is essential to provide adequate training programmes for pollen analysis and the specific identification of these problematic pollen types. High-quality environmental data is crucial for sharing with regional, national and continental networks to ensure applicability, reproducibility and integration in large-scale studies.
Collapse
Affiliation(s)
- Patricia Cervigón
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | | | - Ángel Cascón
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Jorge Romero-Morte
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Javier Galán Díaz
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Silvia Sabariego
- Department of Biodiversity, Ecology and Evolution, University Complutense of Madrid, Madrid, Spain
| | - Margarita Torres
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | | | - Jesús Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Fneish Z, Becker J, Mulenge F, Fneish F, Costa B, Traidl-Hoffmann C, Gilles S, Kalinke U. Birch pollen-induced signatures in dendritic cells are maintained upon additional cytomegalovirus exposure. Gene 2024; 927:148649. [PMID: 38852697 DOI: 10.1016/j.gene.2024.148649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
During the birch pollen season an enhanced incidence of virus infections is noticed, raising the question whether pollen can affect anti-viral responses independent of allergic reactions. We previously showed that birch pollen-treatment of monocyte-derived dendritic cells (moDC) enhances human cytomegalovirus (HCMV) infection. Here we addressed how in moDC the relatively weak pollen response can affect the comparably strong response to HCMV. To this end, moDC were stimulated with aqueous birch pollen extract (APE), HCMV, and APE with HCMV, and transcriptomic signatures were determined after 6 and 24 h of incubation. Infection was monitored upon exposure of moDC to GFP expressing HCMV by flow cytometric analysis of GFP expressing cells. Principle component analysis of RNA sequencing data revealed close clustering of mock and APE treated moDC, whereas HCMV as well as APE with HCMV treated moDC clustered separately after 6 and 24 h of incubation, respectively. Communally induced genes were detected in APE, HCMV and APE with HCMV treated moDC. In APE with HCMV treated moDC, the comparably weak APE induced signatures were maintained after HCMV exposure. In particular, NF-κB/RELA and PI3K/AKT/MAPK signaling were altered upon APE with HCMV exposure. Earlier, we discovered that NF-κB inhibition alleviated APE induced enhancement of HCMV infection. Here we additionally found that impairment of PI3K signaling reduced HCMV infection in HCMV and APE with HCMV treated moDC. APE treated moDC that were exposed to HCMV show a unique host gene signature, which to a large extent is regulated by NF-κB activation and PI3K/AKT/MAPK signaling.
Collapse
Affiliation(s)
- Zeinab Fneish
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Firas Fneish
- Institute of Cell Biology and Biophysics, Department of Biostatistics, Leibniz University Hannover, 30419 Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Christine-Kühne Center for Allergy Research and Education (CK-Care), 7265 Davos, Switzerland
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
3
|
Plaza MP, Charalampopoulos A, Leier-Wirtz V, Ørby PV, Kloster M, Christiansen MD, Traidl-Hoffmann C, Damialis A, Gosewinkel U. Optimisation of bioaerosol sampling using an ultralight aircraft: A novel approach in determining the 3-D atmospheric biodiversity. Heliyon 2024; 10:e38924. [PMID: 39492886 PMCID: PMC11531622 DOI: 10.1016/j.heliyon.2024.e38924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Bioaerosols, such as pollen and fungal spores, are routinely monitored for agricultural, medical or urban greening practices, but sampling methodology is largely relying on techniques more than half a century old. Moreover, biomonitoring campaigns often take place in urban environments, although sources can be located outside cities' borders with ampler vegetation. Therefore, the question arises whether we are accurately picturing the biodiversity and abundance of regional bioaerosols and whether those locally detected might derive from long-distance transport, horizontally or vertically. To answer the above, we used novel, mobile monitoring devices, and aerial measurement units, like aircrafts, so as to explore bioaerosol concentrations at a variety of altitudes. An ultralight aircraft was equipped with a sampling device for bioaerosols. The device consisted of duplicate isokinetic impactors that match the physical functioning and the microscopic quantification method of the widely used ground-based Hirst-type impactors. Isokinetic airflow was realized by adjusting the air flux at the impactors' inlet to the airspeed of the aircraft. Three campaigns were made, where the comparability, efficiency and accuracy of different sampling devices were determined, namely of the abovementioned impactor, and of the mobile conventional Hirst-type pollen sampler. The campaigns involved measurements from ground level (0 m altitude) up to 900 m (above ground level (agl)) via flights. Our results showed that aircraft-based airborne pollen concentration measurements were consistently higher than those of all other devices, regardless of the altitude and sampling time. It is noteworthy that the pollen concentration exceeded 500 pollen grains/m3 at >900 m of altitude, this concentration being 1.77 times higher than that simultaneously measured at ground level. Likewise, the diversity of pollen was also higher at higher altitude. Our results indicate the usability and superiority of small aircraft and high-flow impactors for research, achieving higher biodiversity and abundance over a shorter sampling interval compared to conventional volumetric techniques. Higher pollen amounts at higher altitudes also point at the necessity to monitor bioaerosols across the vertical dimension, especially in densely populated areas and high-traffic air space.
Collapse
Affiliation(s)
- Maria P. Plaza
- Institute for Environmental Medicine and Integrative Health, Environmental Medicine, Faculty of Medicine, University of Augsburg and University Hospital Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Munich – German Research Center for Environmental Health, Augsburg, Germany
| | - Athanasios Charalampopoulos
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vivien Leier-Wirtz
- Institute for Environmental Medicine and Integrative Health, Environmental Medicine, Faculty of Medicine, University of Augsburg and University Hospital Augsburg, Augsburg, Germany
| | - Pia Viuf Ørby
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | | | - Claudia Traidl-Hoffmann
- Institute for Environmental Medicine and Integrative Health, Environmental Medicine, Faculty of Medicine, University of Augsburg and University Hospital Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Munich – German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
4
|
Katz DSW, Zigler CM, Bhavnani D, Balcer-Whaley S, Matsui EC. Pollen and viruses contribute to spatio-temporal variation in asthma-related emergency department visits. ENVIRONMENTAL RESEARCH 2024; 257:119346. [PMID: 38838752 PMCID: PMC11268730 DOI: 10.1016/j.envres.2024.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Asthma exacerbations are an important cause of emergency department visits but much remains unknown about the role of environmental triggers including viruses and allergenic pollen. A better understanding of spatio-temporal variation in exposure and risk posed by viruses and pollen types could help prioritize public health interventions. OBJECTIVE Here we quantify the effects of regionally important Cupressaceae pollen, tree pollen, other pollen types, rhinovirus, seasonal coronavirus, respiratory syncytial virus, and influenza on asthma-related emergency department visits for people living near eight pollen monitoring stations in Texas. METHODS We used age stratified Poisson regression analyses to quantify the effects of allergenic pollen and viruses on asthma-related emergency department visits. RESULTS Young children (<5 years of age) had high asthma-related emergency department rates (24.1 visits/1,000,000 person-days), which were mainly attributed to viruses (51.2%). School-aged children also had high rates (20.7 visits/1,000,000 person-days), which were attributed to viruses (57.0%), Cupressaceae pollen (0.7%), and tree pollen (2.8%). Adults had lower rates (8.1 visits/1,000,000 person-days) which were attributed to viruses (25.4%), Cupressaceae pollen (0.8%), and tree pollen (2.3%). This risk was spread unevenly across space and time; for example, during peak Cuppressaceae season, this pollen accounted for 8.2% of adult emergency department visits near Austin where these plants are abundant, but 0.4% in cities like Houston where they are not; results for other age groups were similar. CONCLUSIONS Although viruses are a major contributor to asthma-related emergency department visits, airborne pollen can explain a meaningful portion of visits during peak pollen season and this risk varies over both time and space because of differences in plant composition.
Collapse
Affiliation(s)
- Daniel S W Katz
- The Department of Population Health and Data Sciences, Dell Medical School, University of Texas at Austin, United States; The School of Integrative Plant Science, Cornell University, United States.
| | - Corwin M Zigler
- The Department of Statistics and Data Sciences, Dell Medical School, University of Texas at Austin, United States
| | - Darlene Bhavnani
- The Department of Population Health and Data Sciences, Dell Medical School, University of Texas at Austin, United States
| | - Susan Balcer-Whaley
- The Department of Population Health and Data Sciences, Dell Medical School, University of Texas at Austin, United States
| | - Elizabeth C Matsui
- The Department of Population Health and Data Sciences, Dell Medical School, University of Texas at Austin, United States
| |
Collapse
|
5
|
Makra L, Coviello L, Gobbi A, Jurman G, Furlanello C, Brunato M, Ziska LH, Hess JJ, Damialis A, Garcia MPP, Tusnády G, Czibolya L, Ihász I, Deák ÁJ, Mikó E, Dorner Z, Harry SK, Bruffaerts N, Packeu A, Saarto A, Toiviainen L, Louna-Korteniemi M, Pätsi S, Thibaudon M, Oliver G, Charalampopoulos A, Vokou D, Przedpelska-Wasowicz EM, Guðjohnsen ER, Bonini M, Celenk S, Ozaslan C, Oh JW, Sullivan K, Ford L, Kelly M, Levetin E, Myszkowska D, Severova E, Gehrig R, Calderón-Ezquerro MDC, Guerra CG, Leiva-Guzmán MA, Ramón GD, Barrionuevo LB, Peter J, Berman D, Katelaris CH, Davies JM, Burton P, Beggs PJ, Vergamini SM, Valencia-Barrera RM, Traidl-Hoffmann C. Forecasting daily total pollen concentrations on a global scale. Allergy 2024. [PMID: 38995241 DOI: 10.1111/all.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
Collapse
Affiliation(s)
- László Makra
- Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Hódmezővásárhely, Hungary
| | - Luca Coviello
- University of Trento, Trento, Italy
- Enogis s.r.l., Trento, Italy
| | | | | | | | - Mauro Brunato
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Lewis H Ziska
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jeremy J Hess
- Department of Global Health, University of Washington, Seattle, State of Washington, USA
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Pilar Plaza Garcia
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, Augsburg, Germany
| | - Gábor Tusnády
- Alfréd Rényi Institute of Mathematics, Budapest, Hungary
| | - Lilit Czibolya
- Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Hódmezővásárhely, Hungary
| | - István Ihász
- Hungarian Meteorological Service, Budapest, Hungary
| | - Áron József Deák
- Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Hódmezővásárhely, Hungary
| | - Edit Mikó
- Institute of Animal Science and Wildlife Management, Faculty of Agriculture, University of Szeged, Hódmezővásárhely, Hungary
| | - Zita Dorner
- Department of Integrated Plant Protection, Hungarian University of Agriculture and Life Science (MATE) (former SZIE), Plant Protection Institute, Gödöllő, Hungary
| | - Susan K Harry
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | | - Ann Packeu
- Mycology & Aerobiology Service, Brussels, Belgium
| | - Annika Saarto
- Biodiversity Unit, University of Turku, Turku, Finland
| | | | | | - Sanna Pätsi
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Michel Thibaudon
- Réseau National de Surveillance Aérobiologique, Brussieu, France
| | - Gilles Oliver
- Réseau National de Surveillance Aérobiologique, Brussieu, France
| | - Athanasios Charalampopoulos
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Vokou
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Maira Bonini
- Department of Hygiene and Health Prevention, ATS (Agency for Health Protection of Metropolitan Area of Milan), Hygiene and Public Health Service, Milan, Italy
| | - Sevcan Celenk
- Science and Art Faculty, Biology Department, Aerobiology Laboratory, Uludag University, Bursa, Turkey
| | - Cumali Ozaslan
- Department of Plant Protection (Weed Science), Dicle University, Diyarbakir, Turkey
| | - Jae-Won Oh
- Department of Pediatrics & Adolescent, College of Medicine, Hanyang University, Medical Center, Guri Hospital, Seoul, South Korea
| | | | - Linda Ford
- Asthma and Allergy Center, Bellevue, Nebraska, USA
| | | | - Estelle Levetin
- University of Tulsa, College of Engineering & Natural Sciences, Department of Biological Science, Tulsa, Oklahoma, USA
| | - Dorota Myszkowska
- Jagiellonian University, Medical College, Department of Clinical and Environmental Allergology, Kraków, Poland
| | - Elena Severova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Regula Gehrig
- Federal Department of Home Affairs FDHA, Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland
| | - María Del Carmen Calderón-Ezquerro
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, México, Mexico
| | - César Guerrero Guerra
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, México, Mexico
| | | | | | | | - Jonny Peter
- Department of Medicine, Division of Allergy and Clinical Immunology, Groote Schuur Hospital, University of Cape Town, Groote Schuur, South Africa
| | - Dilys Berman
- Allergy Immunology Department, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Connie H Katelaris
- Western Sydney University and Campbelltown Hospital, Campbelltown, New South Wales, Australia
| | - Janet M Davies
- School of Biomedical Science, Queensland University of Technology, Herston, Queensland, Australia
- Office of Research, Metro North Hospital and Health Service, Herston, Queensland, Australia
| | - Pamela Burton
- Department of Medicine, Immunology and Allergy, Campbelltown Hospital, Campbelltown, New South Wales, Australia
| | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Sandra María Vergamini
- Centro de Ciȇncias Biológicas e da Saúde, Museu de Ciȇncias Naturais, University of Caxias do Sul, Caxias do Sul, Brazil
| | | | - Claudia Traidl-Hoffmann
- Chair of Environmental Medicine, Technical University of Munich, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Centre, Munich, Augsburg, Germany
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
6
|
Orasche J, Nadeau KC, Schuster A, Rockström J, Akdis CA, Traidl-Hoffmann C. Climate crisis paralysis: Accelerating global action for health resilience in a changing world. Allergy 2024; 79:1653-1655. [PMID: 38436208 DOI: 10.1111/all.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Jürgen Orasche
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Mountain View, California, USA
| | | | - Johan Rockström
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | | |
Collapse
|
7
|
Orasche J, Luschkova D, Traidl-Hoffmann C. [Allergies in the light of global environmental changes]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:93-103. [PMID: 38194098 DOI: 10.1007/s00105-023-05287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The increase in allergies began worldwide with the onset of the Great Acceleration. Environmental pollution and climate change now threaten to cancel out decades of success in health research. OBJECTIVE A summary of environmental influences is provided, which not only shows the significant increase in the prevalence of allergies worldwide but also that of noncommunicable diseases. The effects of the climate crisis on allergies and the multifactorial and interfunctional relationships with other environmental changes are described in detail. MATERIAL AND METHODS In order to obtain an overview of the possible effects of global environmental changes on allergies, a wide range of literature was evaluated and the study results were prepared and summarized. RESULTS A large number of allergens are influencing the human exposome on a daily basis. These allergens are triggered by environmental changes, such as air pollution in the ambient air and indoors, chemicals in everyday objects or residues in food. People are sensitized by the interaction of allergens and pollutants. CONCLUSION The prevalence of allergies is stagnating in industrialized countries. This is probably just the calm before the storm. The accelerating effects of global warming could make pollen and air pollutants even more aggressive in the future. Urgent action is therefore needed to minimize environmental pollution and mitigate climate change.
Collapse
Affiliation(s)
- Jürgen Orasche
- Medizinische Fakultät, Lehrstuhl für Umweltmedizin, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
| | - Daria Luschkova
- Medizinische Fakultät, Lehrstuhl für Umweltmedizin, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
| | - Claudia Traidl-Hoffmann
- Medizinische Fakultät, Lehrstuhl für Umweltmedizin, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland.
| |
Collapse
|
8
|
Papadopoulos NG, Akdis CA, Akdis M, Damialis A, Esposito G, Fergadiotou I, Goroncy C, Guitton P, Gotua M, Erotokritou K, Jartti T, Murray C, Nenes A, Nikoletseas S, Finotto S, Pandis SN, Ramiconi V, Simpson A, Soudunsaari A, Stårbröst A, Staiano M, Varriale A, Xepapadaki P, Zuberbier T, Annesi-Maesano I. Addressing adverse synergies between chemical and biological pollutants at schools-The 'SynAir-G' hypothesis. Allergy 2024; 79:294-301. [PMID: 37654007 DOI: 10.1111/all.15857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the 'pollutant' definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAir-G is a European Commission-funded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAir-G hypothesis, and describe its background and objectives.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | - Maia Gotua
- Center for Allergy and Immunology Research (CAIR), Tbilisi, Georgia
| | | | - Tuomas Jartti
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Pediatrics, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Clare Murray
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Swiss Institute of Technology, Lausanne, Switzerland
| | - Sotirios Nikoletseas
- Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | - Susetta Finotto
- Molecular Pneumology Department, University Hospital of Erlangen, Erlangen, Germany
| | - Spyros N Pandis
- Institute of Chemical Engineering Sciences (ICEHT), Foundation for Research and Technology Hellas (FORTH), Patras, Greece
| | - Valeria Ramiconi
- The European Federation of Allergy and Airways Diseases Patients' Association (EFA), Brussels, Belgium
| | - Angela Simpson
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | | | | | - Maria Staiano
- Institute of Food Science, CNR Italy, Avellino, Italy
| | - Antonio Varriale
- Institute of Food Science, CNR Italy, Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Torsten Zuberbier
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Global Allergy & Asthma European Network of Excellence-GA2LEN, Berlin, Germany
| | - Isabella Annesi-Maesano
- Department of Allergic and Respiratory Disease, Institut Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
9
|
Rehms R, Ellenbach N, Rehfuess E, Burns J, Mansmann U, Hoffmann S. A Bayesian hierarchical approach to account for evidence and uncertainty in the modeling of infectious diseases: An application to COVID-19. Biom J 2024; 66:e2200341. [PMID: 38285407 DOI: 10.1002/bimj.202200341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 01/30/2024]
Abstract
Infectious disease models can serve as critical tools to predict the development of cases and associated healthcare demand and to determine the set of nonpharmaceutical interventions (NPIs) that is most effective in slowing the spread of an infectious agent. Current approaches to estimate NPI effects typically focus on relatively short time periods and either on the number of reported cases, deaths, intensive care occupancy, or hospital occupancy as a single indicator of disease transmission. In this work, we propose a Bayesian hierarchical model that integrates multiple outcomes and complementary sources of information in the estimation of the true and unknown number of infections while accounting for time-varying underreporting and weekday-specific delays in reported cases and deaths, allowing us to estimate the number of infections on a daily basis rather than having to smooth the data. To address dynamic changes occurring over long periods of time, we account for the spread of new variants, seasonality, and time-varying differences in host susceptibility. We implement a Markov chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the proposed approach with data on COVID-19 from 20 European countries. The approach shows good performance on simulated data and produces posterior predictions that show a good fit to reported cases, deaths, hospital, and intensive care occupancy.
Collapse
Affiliation(s)
- Raphael Rehms
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicole Ellenbach
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eva Rehfuess
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jacob Burns
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ulrich Mansmann
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine Hoffmann
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
10
|
Picornell A, Hurtado S, Antequera-Gómez ML, Barba-González C, Ruiz-Mata R, de Gálvez-Montañez E, Recio M, Trigo MDM, Aldana-Montes JF, Navas-Delgado I. A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study. Comput Biol Med 2024; 168:107706. [PMID: 37989073 DOI: 10.1016/j.compbiomed.2023.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Airborne pollen can trigger allergic rhinitis and other respiratory diseases in the synthesised population, which makes it one of the most relevant biological contaminants. Therefore, implementing accurate forecast systems is a priority for public health. The current forecast models are generally useful, but they falter when long time series of data are managed. The emergence of new computational techniques such as the LSTM algorithms could constitute a significant improvement for the pollen risk assessment. In this study, several LSTM variants were applied to forecast monthly pollen integrals in Málaga (southern Spain) using meteorological variables as predictors. Olea and Urticaceae pollen types were modelled as proxies of different annual pollen curves, using data from the period 1992-2022. The aims of this study were to determine the LSTM variants with the highest accuracy when forecasting monthly pollen integrals as well as to compare their performance with the traditional pollen forecast methods. The results showed that the CNN-LSTM were the most accurate when forecasting the monthly pollen integrals for both pollen types. Moreover, the traditional forecast methods were outperformed by all the LSTM variants. These findings highlight the importance of implementing LSTM models in pollen forecasting for public health and research applications.
Collapse
Affiliation(s)
- Antonio Picornell
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29071, Spain.
| | - Sandro Hurtado
- Dept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga 29071, Spain.
| | | | - Cristóbal Barba-González
- Dept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga 29071, Spain.
| | - Rocío Ruiz-Mata
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29071, Spain.
| | | | - Marta Recio
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29071, Spain.
| | - María Del Mar Trigo
- Department of Botany and Plant Physiology, University of Malaga, Malaga 29071, Spain.
| | - José F Aldana-Montes
- Dept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga 29071, Spain.
| | - Ismael Navas-Delgado
- Dept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga 29071, Spain.
| |
Collapse
|
11
|
Pyrri I, Stamatelopoulou A, Pardali D, Maggos T. The air and dust invisible mycobiome of urban domestic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166228. [PMID: 37591388 DOI: 10.1016/j.scitotenv.2023.166228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Air and dust harbor a dynamic fungal biome that interacts with residential environment inhabitants usually with negative implications for human health. Fungal air and dust synthesis were investigated in houses across the Athens Metropolitan area. Active and passive culture dependent methods were employed to sample airborne and dustborne fungi for two sampling periods, one in winter and the other in summer. A core mycobiome was revealed both in air and dust constituted of the dominant Penicillium, Cladosporium, Aspergillus, Alternaria and yeasts and accompanied by several common and rare components. Penicillium and Aspergillus diversity included 22 cosmopolitan species, except the rarely found Penicillium citreonigrum, P. corylophilum, P. pagulum and Talaromyces albobiverticillius which are reported for the first time from Greece. Fungal concentrations were significantly higher during summer for both air and dust. Excessive levels of inhalable aerosol constituted mainly by certain Penicillium species were associated with indoor emission sources as these species are household molds related to food commodities rot. The ambient air fungal profile is a determinant factor of indoor fungal aerosol which subsequently shapes dustborne mycobiota. Indoor fungi can be useful bioindicators for indoor environment quality and at the same time provide insight to indoor fungal ecology.
Collapse
Affiliation(s)
- Ioanna Pyrri
- National and Kapodistrian University of Athens, Department of Biology, Section of Ecology and Systematics, Panepistimioupoli, 15784 Athens, Greece.
| | - Asimina Stamatelopoulou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, Atmospheric Chemistry and Innovative Technology Laboratory, NCSR Demokritos, Athens, Greece
| | - Dimitra Pardali
- National and Kapodistrian University of Athens, Department of Physics, Section of Applied Physics, Panepistimioupoli, 15784 Athens, Greece
| | - Thomas Maggos
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, Atmospheric Chemistry and Innovative Technology Laboratory, NCSR Demokritos, Athens, Greece
| |
Collapse
|
12
|
Tossavainen T, Martikainen MV, Loukola H, Roponen M. Common Pollen Modulate Immune Responses against Viral-Like Challenges in Airway Coculture Model. J Immunol Res 2023; 2023:6639092. [PMID: 37965270 PMCID: PMC10643028 DOI: 10.1155/2023/6639092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Recent research indicates that exposure to pollen increases the risk and severity of respiratory infections, while studies also suggest that it may possess a protective function. Our aim was to investigate how exposure to common pollen modifies airway cells' responses to viral- or bacterial-like challenges and vice versa. Cocultured A549 and THP-1 cells were exposed to three doses of four different pollens (Alnus glutinosa, Betula pendula, Phleum pratense, or Ambrosia artemisiifolia) and subsequently to Toll-like receptor (TLR) ligands mimicking bacterial and viral challenges (TLR3, TLR4, TLR7/8). The stimulation experiment was replicated in reverse order. Toxicological and immunological end points were analyzed. When cells were primed with pollen, especially with grass (P. pratense) or weed (A. artemisiifolia), the ability of cells to secrete cytokines in response to bacterial- and viral-like exposure was decreased. In contrast, cells primed with viral ligand TLR7/8 showed greater cytokine responses against pollen than cells exposed to ligands or pollen alone. Our results suggest that pollen exposure potentially weakens immune reactions to bacterial- or viral-like challenges by modulating cytokine production. They also indicate that TLR7/8-mediated viral challenges could elicit exaggerated immune responses against pollen. Both mechanisms could contribute to the acceleration and complication of infections during the pollen season.
Collapse
Affiliation(s)
- Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna Loukola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Mosnaim G, Carrasquel M, Wolfson AR, Peters J, Lang D, Rathkopf M. Social Determinants of Health and COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3347-3355. [PMID: 37507069 DOI: 10.1016/j.jaip.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has disproportionately affected disadvantaged populations. Many of the factors related to the disproportionate impact on underserved communities are related to social determinants of health, defined by the World Health Organization as the nonmedical factors that influence health outcomes. They include the wider set of forces and systems shaping the conditions of daily life. This work explores the interrelationships between social determinants of health and access to care, health care professional and supply shortages, social and environmental factors, health behaviors, vaccine uptake, and treatment options on COVID-19 health outcomes. Increased awareness of inequities, learning from failures, and leveraging new opportunities to partner with key stakeholders in underserved communities create empowerment and preparedness to face new challenges.
Collapse
Affiliation(s)
- Giselle Mosnaim
- Division of Allergy and Immunology, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois.
| | - Michelle Carrasquel
- Division of Allergy and Immunology, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | - Anna R Wolfson
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jonny Peters
- Division of Allergy and Clinical Immunology at Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - David Lang
- Division of Allergy and Clinical Immunology, Department of Medicine, Cleveland Clinic., Milwaukee, Wis
| | - Melinda Rathkopf
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| |
Collapse
|
14
|
Idrose NS, Zhang J, Lodge CJ, Erbas B, Douglass JA, Bui DS, Dharmage SC. A Review of the Role of Pollen in COVID-19 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105805. [PMID: 37239533 DOI: 10.3390/ijerph20105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
There is current interest in the role of ambient pollen in the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 or COVID-19) infection risk. The aim of this review is to summarise studies published up until January 2023 investigating the relationship between airborne pollen and the risk of COVID-19 infection. We found conflicting evidence, with some studies showing that pollen may increase the risk of COVID-19 infection by acting as a carrier, while others showed that pollen may reduce the risk by acting as an inhibiting factor. A few studies reported no evidence of an association between pollen and the risk of infection. A major limiting factor of this research is not being able to determine whether pollen contributed to the susceptibility to infection or just the expression of symptoms. Hence, more research is needed to better understand this highly complex relationship. Future investigations should consider individual and sociodemographic factors as potential effect modifiers when investigating these associations. This knowledge will help to identify targeted interventions.
Collapse
Affiliation(s)
- Nur Sabrina Idrose
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Jingwen Zhang
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Jo A Douglass
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Melbourne, VIC 3050, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Melbourne, VIC 3053, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| |
Collapse
|
15
|
Shi H, Wang J, Cheng J, Qi X, Ji H, Struchiner CJ, Villela DAM, Karamov EV, Turgiev AS. Big data technology in infectious diseases modeling, simulation, and prediction after the COVID-19 outbreak. INTELLIGENT MEDICINE 2023; 3:85-96. [PMID: 36694623 PMCID: PMC9851724 DOI: 10.1016/j.imed.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
After the outbreak of COVID-19, the interaction of infectious disease systems and social systems has challenged traditional infectious disease modeling methods. Starting from the research purpose and data, researchers improved the structure and data of the compartment model or used agents and artificial intelligence based models to solve epidemiological problems. In terms of modeling methods, the researchers use compartment subdivision, dynamic parameters, agent-based model methods, and artificial intelligence related methods. In terms of factors studied, the researchers studied 6 categories: human mobility, nonpharmaceutical interventions (NPIs), ages, medical resources, human response, and vaccine. The researchers completed the study of factors through modeling methods to quantitatively analyze the impact of social systems and put forward their suggestions for the future transmission status of infectious diseases and prevention and control strategies. This review started with a research structure of research purpose, factor, data, model, and conclusion. Focusing on the post-COVID-19 infectious disease prediction simulation research, this study summarized various improvement methods and analyzes matching improvements for various specific research purposes.
Collapse
Affiliation(s)
- Honghao Shi
- School of Computer Science and Engineering, Beihang University, Beijing 100191, China
| | - Jingyuan Wang
- School of Computer Science and Engineering, Beihang University, Beijing 100191, China
| | - Jiawei Cheng
- School of Computer Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaopeng Qi
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Hanran Ji
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Claudio J Struchiner
- Fundação Getúlio Vargas, Rio de Janeiro, Brazil
- Instituto de Medicina Social Hesio Cordeiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel AM Villela
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eduard V Karamov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health, Russia
| | - Ali S Turgiev
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health, Russia
| |
Collapse
|
16
|
Yang X, Zha Ng J, Sima Y, Zhao J, Wang X, Zhang L. A Multicenter Time Series Study on Pollen Exposure and COVID-19 Infection in Five Cities in China. Allergy 2023. [PMID: 37185872 DOI: 10.1111/all.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Xiaozhe Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing
| | - Jing Zha Ng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing
| | - Yutong Sima
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing
| | - Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing
| |
Collapse
|
17
|
Radzikowska U, Eljaszewicz A, Tan G, Stocker N, Heider A, Westermann P, Steiner S, Dreher A, Wawrzyniak P, Rückert B, Rodriguez-Coira J, Zhakparov D, Huang M, Jakiela B, Sanak M, Moniuszko M, O'Mahony L, Jutel M, Kebadze T, Jackson JD, Edwards RM, Thiel V, Johnston LS, Akdis AC, Sokolowska M. Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19. Nat Commun 2023; 14:2329. [PMID: 37087523 PMCID: PMC10122208 DOI: 10.1038/s41467-023-37470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/16/2023] [Indexed: 04/24/2023] Open
Abstract
Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Str., 15-269, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Str., 15-269, Bialystok, Poland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology (IVI), Laenggassstrasse 122, 3012, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, 3012, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Anita Dreher
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Juan Rodriguez-Coira
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- IMMA, Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities Madrid, C. de Julian Romea 23, 28003, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Madrid, Urb. Monteprincipe 28925, Alcorcon, Madrid, Spain
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Bogdan Jakiela
- Department of Internal Medicine, Jagiellonian University Medical College, M. Skawinska 8 Str., 31-066, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, M. Skawinska 8 Str., 31-066, Krakow, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Str., 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Str., 15-276, Bialystok, Poland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, College Rd, T12 E138, Cork, Ireland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, wyb. Lidwika Pasteura 1 Str, 50-367, Wroclaw, Poland
- ALL-MED Medical Research Institute, Gen. Jozefa Hallera 95 Str., 53-201, Wroclaw, Poland
| | - Tatiana Kebadze
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
- Department of Infectious Diseases, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London, W21NY, UK
| | - J David Jackson
- Guy's Severe Asthma Centre, School of Immunology & Microbial Sciences, King's College London, Strand, London, WC2R 2LS, UK
- Guy's & St Thomas' NHS Trust, St Thomas' Hospital, Westminster Bridge Rd, London, SE1 7EH, UK
| | - R Michael Edwards
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London, W2 1PG, UK
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Laenggassstrasse 122, 3012, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Hallerstrasse 6, 3012, Bern, Switzerland
| | - L Sebastian Johnston
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London, W2 1PG, UK
- Imperial College Healthcare HNS Trust, The Bays, S Wharf Rd, London, W2 1NY, UK
| | - A Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland.
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland.
| |
Collapse
|
18
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Luschkova D, Traidl-Hoffmann C, Ludwig A. [Not Available]. HNO-NACHRICHTEN 2023; 53:38-47. [PMID: 36811074 PMCID: PMC9934942 DOI: 10.1007/s00060-023-8490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Daria Luschkova
- Lehrstuhl und Hochschulambulanz für Umweltmedizin, Medizinische Fakultät, Universität Augsburg, Neusässer Straße 47, 86156 Augsburg, Deutschland
| | | | - Alika Ludwig
- Umweltmedizin, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Deutschland
| |
Collapse
|
20
|
Martikainen MV, Tossavainen T, Hannukka N, Roponen M. Pollen, respiratory viruses, and climate change: Synergistic effects on human health. ENVIRONMENTAL RESEARCH 2023; 219:115149. [PMID: 36566960 DOI: 10.1016/j.envres.2022.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, evidence of the synergistic effects of pollen and viruses on respiratory health has begun to accumulate. Pollen exposure is a known risk factor for the incidence and severity of respiratory viral infections. However, recent evidence suggests that pollen exposure may also inhibit or weaken viral infections. A comprehensive summary has not been made and a consensus on the synergistic health effects has not been reached. It is highly possible that climate change will increase the significance of pollen exposure as a cause of respiratory problems and, at the same time, affect the risk of infectious disease outbreaks. It is important to accurately assess how these two factors affect human health separately and concurrently. In this review article, for the first time, the data from previous studies are combined and reviewed and potential research gaps concerning the synergistic effects of pollen and viral exposure are identified.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Hannukka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Derk RC, Coyle JP, Lindsley WG, Blachere FM, Lemons AR, Service SK, Martin SB, Mead KR, Fotta SA, Reynolds JS, McKinney WG, Sinsel EW, Beezhold DH, Noti JD. Efficacy of Do-It-Yourself air filtration units in reducing exposure to simulated respiratory aerosols. BUILDING AND ENVIRONMENT 2023; 229:109920. [PMID: 36569517 PMCID: PMC9759459 DOI: 10.1016/j.buildenv.2022.109920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 05/20/2023]
Abstract
Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 μm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.
Collapse
Affiliation(s)
- Raymond C Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Jayme P Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - William G Lindsley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Francoise M Blachere
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Angela R Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Samantha K Service
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Stephen B Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26505, USA
| | - Kenneth R Mead
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, 45226, USA
| | - Steven A Fotta
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Jeffrey S Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Erik W Sinsel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Donald H Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - John D Noti
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| |
Collapse
|
22
|
Stocker N, Radzikowska U, Wawrzyniak P, Tan G, Huang M, Ding M, Akdis CA, Sokolowska M. Regulation of angiotensin-converting enzyme 2 isoforms by type 2 inflammation and viral infection in human airway epithelium. Mucosal Immunol 2023; 16:5-16. [PMID: 36642382 PMCID: PMC9836991 DOI: 10.1016/j.mucimm.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 messenger RNA (mRNA) and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full-length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that interleukin-13 and rhinovirus significantly regulated mRNA, but not protein of transmembrane serine protease 2 and neuropilin 1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining the lack of intrinsic differences but dependence on the inflammatory milieu in the airways.
Collapse
Affiliation(s)
- Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
23
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Fneish Z, Becker J, Mulenge F, Costa B, Krajewski L, Duran V, Ziegler A, Sommer V, Traidl-Hoffmann C, Gilles S, Kalinke U. Birch pollen extract enhances human cytomegalovirus replication in monocyte-derived dendritic cells. Allergy 2023; 78:543-546. [PMID: 36038150 DOI: 10.1111/all.15497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Zeinab Fneish
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Luise Krajewski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Veronica Duran
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Annett Ziegler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Vivien Sommer
- AYOXXA Biosystems GmbH, BioCampus Cologne, Köln, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Christine-Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Shoshanim O, Baratz A. A new fluorescence-based methodology for studying bioaerosol scavenging processes using a hyperspectral LIF-LIDAR remote sensing system. ENVIRONMENTAL RESEARCH 2023; 217:114859. [PMID: 36427632 DOI: 10.1016/j.envres.2022.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
This paper presents a novel experimental approach to in-situ study of atmospheric phenomena such as nucleation scavenging by biological seeds, bio-droplet dehydration, and bioaerosol's particle scavenging by raindrops. Our methodology is based on the analysis of the dynamical changes of fluorescence signal. We use a remote sensing system based on a homebuilt hyperspectral laser induced fluorescence (LIF) Lidar to measure the transient back-fluorescence and backscattering signals. The spectral line shape of the transient fluorescence associated with an aerosolized tryptophan solution was first analyzed in the laboratory. It then used to study bioaerosol phase transitions between wet and dry conditions. The experiments were first conducted in a dynamic aerosol cell where we repetitively create and monitor the droplets containing bioaerosol cloud starting from its early formation till its total evaporation. The LIF-Lidar was used to simultaneously measure back-fluorescence, scattering and transmission. These measurements were synchronized with the generation of droplets containing bioaerosol and with the monitoring of aerosol's size distribution and ambient conditions. A novel optical receiver design was used to simultaneously detect both back-fluorescence polarization components. Results showed that along with droplet's evaporation process, bioaerosol's fluorescence spectrum exhibit a blue shift, known as the dynamic Stokes-shifts, of ∼2000 cm-1 and an increase in its fluorescence anisotropy. To the best of our knowledge, this is the first report of fluorescence Stokes-shifts and anisotropy within microdroplets containing a biological solution due to wet-dry phase transitions. This method was also used to quantify scavenging of biological particle by raindrops from 100 m. It shows that valuable information can be derived from analyzing the fluorescence spectrum of bioaerosol within a cloud and demonstrate the potential of a LIF-LIDAR remote system to perform in-situ studies of scavenging processes.
Collapse
Affiliation(s)
- Ofir Shoshanim
- Department of Environmental Physics, Israel Institute for Biological Research (IIBR), Ness-Ziona, 74100, Israel.
| | - Adva Baratz
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona, 74100, Israel
| |
Collapse
|
26
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
27
|
Dbouk T, Visez N, Ali S, Shahrour I, Drikakis D. Risk assessment of pollen allergy in urban environments. Sci Rep 2022; 12:21076. [PMID: 36473878 PMCID: PMC9727162 DOI: 10.1038/s41598-022-24819-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
According to WHO, by 2050, at least one person out of two will suffer from an allergy disorder resulting from the accelerating air pollution associated with toxic gas emissions and climate change. Airborne pollen, and associated allergies, are major public health topics during the pollination season, and their effects are further strengthened due to climate change. Therefore, assessing the airborne pollen allergy risk is essential for improving public health. This study presents a new computational fluid dynamics methodology for risk assessment of local airborne pollen transport in an urban environment. Specifically, we investigate the local airborne pollen transport from trees on a university campus in the north of France. We produce risk assessment maps for pollen allergy for five consecutive days during the pollination season. The proposed methodology could be extended to larger built-up areas for different weather conditions. The risk assessment maps may also be integrated with smart devices, thus leading to decision-aid tools to better guide and protect the public against airborne pollen allergy.
Collapse
Affiliation(s)
- Talib Dbouk
- grid.462587.a0000 0004 0452 3263CORIA, UMR 6614, CNRS, Normandy University, UNIROUEN, 76000 Rouen, France
| | - Nicolas Visez
- grid.503422.20000 0001 2242 6780Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, 59000 Lille, France
| | - Samer Ali
- grid.503422.20000 0001 2242 6780Université de Lille, Institut Mines-Télécom, Université d’Artois, Junia, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 59000 Lille, France
| | - Isam Shahrour
- grid.410463.40000 0004 0471 8845Laboratoire de Génie Civil et géo-Environnement, Lille University, 59000 Lille, France
| | - Dimitris Drikakis
- grid.413056.50000 0004 0383 4764University of Nicosia, 2417 Nicosia, Cyprus
| |
Collapse
|
28
|
Levetin E, Pityn PJ, Ramon GD, Pityn E, Anderson J, Bielory L, Dalan D, Codina R, Rivera-Mariani FE, Bolanos B. Aeroallergen Monitoring by the National Allergy Bureau: A Review of the Past and a Look Into the Future. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 11:1394-1400. [PMID: 36473626 DOI: 10.1016/j.jaip.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Monitoring aeroallergens has a long history within the American Academy of Allergy, Asthma & Immunology. The Aeroallergen Network of the National Allergy Bureau is composed mainly of members of the American Academy of Allergy, Asthma & Immunology, whose objectives are to enhance the knowledge of aerobiology and its relationship to allergy, increase the number of certified stations, maintain the standardization and quality of aerobiology data, improve the alert and forecast reporting system, and increase ties with other scientific entities inside and outside the United States. The public has a keen interest in pollen counts and pollen forecasts, as do many health professionals in the allergy community. In this review, we explore the past, present, and future of allergen monitoring with a focus on methods used for sampling, the training of those performing the analysis, and emerging technologies in the field. Although the development of automated samplers with machine intelligence offers great promise for meeting the goal of a fully automated system, there is still progress to be made regarding reliability and affordability.
Collapse
Affiliation(s)
- Estelle Levetin
- Department of Biological Science, University of Tulsa, Tulsa, Okla
| | | | - German D Ramon
- Instituto de Alergia e Inmunología del Sur, Hospital Italiano Regional del Sur, Bahía Blanca, Argentina.
| | | | | | - Leonard Bielory
- Medicine, Allergy, Immunology and Ophthalmology Department, Hackensack Meridian School of Medicine, Nutley, NJ; Rutgers University Center for Environmental Prediction, New Brunswick, NJ; Department of Medicine, Thomas Jefferson University Sidney Kimmel School of Medicine, Philadelphia, Pa
| | - Dan Dalan
- MercyOne Health Care, Allergy and Immunology, Waterloo, Iowa
| | - Rosa Codina
- Allergen Science & Consulting, Lenoir, NC; Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Felix E Rivera-Mariani
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, Fla
| | - Benjamin Bolanos
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
29
|
Traidl-Hoffmann C. Pollen on their way astray - First contact via cross-kingdom signaling leading to far-reaching consequences for the atopic march. Allergy 2022; 77:3496-3497. [PMID: 36029177 DOI: 10.1111/all.15496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany.,CK-CARE, Christine Kühne-Center for Allergy Research and Education, Davos Wolfgang, Switzerland
| |
Collapse
|
30
|
Gisler A, Eeftens M, de Hoogh K, Vienneau D, Salem Y, Yammine S, Jakob J, Gorlanova O, Decrue F, Gehrig R, Frey U, Latzin P, Fuchs O, Usemann J, Decrue F, Frey U, Fuchs O, Gisler A, Gorlanova O, Kentgens A, Korten I, Kurz J, Latzin P, Nissen A, Oestreich M, Röösli M, Salem Y, Usemann J, Vienneau D. Pollen exposure is associated with risk of respiratory symptoms during the first year of life. Allergy 2022; 77:3606-3616. [PMID: 35302662 PMCID: PMC10078730 DOI: 10.1111/all.15284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and whether maternal atopy, infant's sex or air pollution modifies this association. METHODS We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMMs). Effect modification by maternal atopy, infant's sex, and air pollution (NO2 , PM2.5 ) was assessed with interaction terms. RESULTS Per infant, 37 ± 2 (mean ± SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3 : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5 was found (p-value 0.003). CONCLUSION Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yasmin Salem
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julian Jakob
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Primary Health Care (BIHAM), Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Regula Gehrig
- Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver Fuchs
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Batra M, Dharmage SC, Newbigin E, Tang M, Abramson MJ, Erbas B, Vicendese D. Grass pollen exposure is associated with higher readmission rates for pediatric asthma. Pediatr Allergy Immunol 2022; 33:e13880. [PMID: 36433858 DOI: 10.1111/pai.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pediatric asthma hospital readmission is a burden on the individual and costly for Australian hospitals. Grass pollen's role, a known trigger for asthma admissions, is unexamined in readmissions. We examined the association between grass pollen and pediatric asthma readmission. METHODS The Victorian Admitted Episodes Dataset was used to identify all primary admissions with a principal diagnosis of asthma in children aged 2-18 years between 1997 and 2009. Readmissions were defined as subsequent admissions within 28 days of index admission discharge. Generalized additive models were used to assess associations between readmission, grass pollen season, and daily grass pollen counts, lagged and cumulative. Models were further stratified by sex and age group. RESULTS Mean daily readmission was higher during grass pollen season than other times of the year, incidence rate ratio (IRR) 1.44 (95% CI, 1.03, 2.02) and for children aged 2-5 years, IRR 1.99 (1.26, 3.14). Same day grass pollen was nonlinearly associated with daily readmission for the 13-18 age group between 110 and 256 grains/m3 , p < .01. Lag 2 grass pollen was nonlinearly associated with daily readmissions overall (p = .03), boys (p = .01), and younger age groups 2-5 (p = .02) and 6-12 (p < .001). CONCLUSIONS Grass pollen exposure was associated with higher readmission rates for pediatric asthma. Treatment plans prior to discharge could be implemented to reduce the likelihood of readmission by younger children during the pollen season.
Collapse
Affiliation(s)
- Mehak Batra
- Department of Public Health, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Edward Newbigin
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mimi Tang
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital Victoria, Melbourne, Victoria, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bircan Erbas
- Department of Public Health, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.,Violet Vines Marshman Centre for Rural Health Research, La Trobe University, Bendigo, Victoria, Australia
| | - Don Vicendese
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.,School of Engineering & Mathematical Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
32
|
Ren X, Cai T, Mi Z, Bielory L, Nolte CG, Georgopoulos PG. Modeling past and future spatiotemporal distributions of airborne allergenic pollen across the contiguous United States. FRONTIERS IN ALLERGY 2022; 3:959594. [PMID: 36389037 PMCID: PMC9640548 DOI: 10.3389/falgy.2022.959594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Exposures to airborne allergenic pollen have been increasing under the influence of changing climate. A modeling system incorporating pollen emissions and atmospheric transport and fate processes has been developed and applied to simulate spatiotemporal distributions of two major aeroallergens, oak and ragweed pollens, across the contiguous United States (CONUS) for both historical (year 2004) and future (year 2047) conditions. The transport and fate of pollen presented here is simulated using our adapted version of the Community Multiscale Air Quality (CMAQ) model. Model performance was evaluated using observed pollen counts at monitor stations across the CONUS for 2004. Our analysis shows that there is encouraging consistency between observed seasonal mean concentrations and corresponding simulated seasonal mean concentrations (oak: Pearson = 0.35, ragweed: Pearson = 0.40), and that the model was able to capture the statistical patterns of observed pollen concentration distributions in 2004 for most of the pollen monitoring stations. Simulation of pollen levels for a future year (2047) considered conditions corresponding to the RCP8.5 scenario. Modeling results show substantial regional variability both in the magnitude and directionality of changes in pollen metrics. Ragweed pollen season is estimated to start earlier and last longer for all nine climate regions of the CONUS, with increasing average pollen concentrations in most regions. The timing and magnitude of oak pollen season vary across the nine climate regions, with the largest increases in pollen concentrations expected in the Northeast region.
Collapse
Affiliation(s)
- Xiang Ren
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, United States
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Ting Cai
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, United States
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Zhongyuan Mi
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, United States
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Bielory
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Christopher G. Nolte
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Panos G. Georgopoulos
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, United States
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Piscataway, NJ, United States
- Correspondence: Panos G. Georgopoulos
| |
Collapse
|
33
|
Haga L, Ruuhela R, Auranen K, Lakkala K, Heikkilä A, Gregow H. Impact of Selected Meteorological Factors on COVID-19 Incidence in Southern Finland during 2020-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13398. [PMID: 36293991 PMCID: PMC9603127 DOI: 10.3390/ijerph192013398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
We modelled the impact of selected meteorological factors on the daily number of new cases of the coronavirus disease 2019 (COVID-19) at the Hospital District of Helsinki and Uusimaa in southern Finland from August 2020 until May 2021. We applied a DLNM (distributed lag non-linear model) with and without various environmental and non-environmental confounding factors. The relationship between the daily mean temperature or absolute humidity and COVID-19 morbidity shows a non-linear dependency, with increased incidence of COVID-19 at low temperatures between 0 to -10 °C or at low absolute humidity (AH) values below 6 g/m3. However, the outcomes need to be interpreted with caution, because the associations found may be valid only for the study period in 2020-2021. Longer study periods are needed to investigate whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a seasonal pattern similar such as influenza and other viral respiratory infections. The influence of other non-environmental factors such as various mitigation measures are important to consider in future studies. Knowledge about associations between meteorological factors and COVID-19 can be useful information for policy makers and the education and health sector to predict and prepare for epidemic waves in the coming winters.
Collapse
Affiliation(s)
- Lisa Haga
- Finnish Meteorological Institute, Meteorological and Marine Research Programme, Weather and Climate Change Impact Research, P.O. Box 503, 00101 Helsinki, Finland
| | - Reija Ruuhela
- Finnish Meteorological Institute, Meteorological and Marine Research Programme, Weather and Climate Change Impact Research, P.O. Box 503, 00101 Helsinki, Finland
| | - Kari Auranen
- The Center of Statistics, University of Turku, 20500 Turku, Finland
| | - Kaisa Lakkala
- Finnish Meteorological Institute, Space and Earth Observation Centre, Earth Observation Research, P.O. Box 503, 00101 Helsinki, Finland
- Finnish Meteorological Institute, Climate Research Programme, Atmospheric Research Center of Eastern Finland, P.O. Box 503, 00101 Helsinki, Finland
| | - Anu Heikkilä
- Finnish Meteorological Institute, Climate Research Programme, Atmospheric Research Center of Eastern Finland, P.O. Box 503, 00101 Helsinki, Finland
| | - Hilppa Gregow
- Finnish Meteorological Institute, Meteorological and Marine Research Programme, Weather and Climate Change Impact Research, P.O. Box 503, 00101 Helsinki, Finland
| |
Collapse
|
34
|
Tong S, Beggs PJ, Davies JM, Jiang F, Kinney PL, Liu S, Yin Y, Ebi KL. Compound impacts of climate change, urbanization and biodiversity loss on allergic disease. Int J Epidemiol 2022:6760684. [PMID: 36228124 DOI: 10.1093/ije/dyac197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Janet M Davies
- School of Biomedical Sciences, Centre Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Fan Jiang
- Department of Child Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, USA
| |
Collapse
|
35
|
Hu Y, Cheng J, Liu S, Tan J, Yan C, Yu G, Yin Y, Tong S. Evaluation of climate change adaptation measures for childhood asthma: A systematic review of epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156291. [PMID: 35644404 DOI: 10.1016/j.scitotenv.2022.156291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Global climate change (GCC) is widely accepted as the biggest threat to human health of the 21st century. Children are particularly vulnerable to GCC due to developing organ systems, psychological immaturity, nature of daily activities, and higher level of per-body-unit exposure. There is a rising trend in the disease burden of childhood asthma and allergies in many parts of the world. The associations of CC, air pollution and other environmental exposures with childhood asthma are attracting more research attention, but relatively few studies have focused on CC adaptation measures and childhood asthma. This study aimed to bridge this knowledge gap and conducted the first systematic review on CC adaptation measures and childhood asthma. We searched electronic databases including PubMed, Embase, and Web of Science using a set of MeSH terms and related synonyms, and identified 20 eligible studies included for review. We found that there were a number of adaptation measures proposed for childhood asthma in response to GCC, including vulnerability assessment, improving ventilation and heating, enhancing community education, and developing forecast models and early warning systems. Several randomized controlled trials show that improving ventilation and installing heating in the homes appear to be an effective way to relieve childhood asthma symptoms, especially in winter. However, the effectiveness of most adaptation measures, except for improving ventilation and heating, have not been explored and quantified. Given more extreme weather events (e.g., cold spells and heatwaves) may occur as climate change progresses, this finding may have important implications. Evidently, further research is urgently warranted to evaluate the impacts of CC adaptation measures on childhood asthma. These adaptation measures, if proven to be effective, should be integrated in childhood asthma control and prevention programs as GCC continues.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health (Shanghai Meteorological Service), Shanghai, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
36
|
Keetels GH, Godderis L, van de Wiel BJH. Associative evidence for the potential of humidification as a non-pharmaceutical intervention for influenza and SARS-CoV-2 transmission. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:720-726. [PMID: 36104526 PMCID: PMC9472723 DOI: 10.1038/s41370-022-00472-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Both influenza and SARS-CoV-2 viruses show a strong seasonal spreading in temperate regions. Several studies indicated that changes in indoor humidity could be one of the key factors explaining this. OBJECTIVE The purpose of this study is to quantify the association between relevant epidemiological metrics and humidity in both influenza and SARS-CoV-2 epidemic periods. METHODS The atmospheric dew point temperature serves as a proxy for indoor relative humidity. This study considered the weekly mortality rate in the Netherlands between 1995 and 2019 to determine the correlation between the dew point and the spread of influenza. During influenza epidemic periods in the Netherlands, governmental restrictions were absent; therefore, there is no need to control this confounder. During the SARS-CoV-2 pandemic, governmental restrictions strongly varied over time. To control this effect, periods with a relatively constant governmental intervention level were selected to analyze the reproduction rate. We also examine SARS-CoV-2 deaths in the nursing home setting, where health policy and social factors were less variable. Viral transmissibility was measured by computing the ratio between the estimated daily number of infectious persons in the Netherlands and the lagged mortality figures in the nursing homes. RESULTS For both influenza and SARS-CoV-2, a significant correlation was found between the dew point temperature and the aforementioned epidemiological metrics. The findings are consistent with the anticipated mechanisms related to droplet evaporation, stability of virus in the indoor environment, and impairment of the natural defenses of the respiratory tract in dry air. SIGNIFICANCE This information is helpful to understand the seasonal pattern of respiratory viruses and motivate further study to what extent it is possible to alter the seasonal pattern by actively intervening in the adverse role of low humidity during fall and winter in temperate regions. IMPACT A solid understanding and quantification of the role of humidity on the transmission of respiratory viruses is imperative for epidemiological modeling and the installation of non-pharmaceutical interventions. The results of this study indicate that improving the indoor humidity by humidifiers could be a promising technology for reducing the spread of both influenza and SARS-CoV-2 during winter and fall in the temperate zone. The identification of this potential should be seen as a strong motivation to invest in further prospective testing of this non-pharmaceutical intervention.
Collapse
Affiliation(s)
- G H Keetels
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - L Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - B J H van de Wiel
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
37
|
Urrutia-Pereira M, Chong-Neto HJ, Annesi Maesano I, Ansotegui IJ, Caraballo L, Cecchi L, Galán C, López JF, Aguttes MM, Peden D, Pomés A, Zakzuk J, Rosário Filho NA, D'Amato G. Environmental contributions to the interactions of COVID-19 and asthma: A secondary publication and update. World Allergy Organ J 2022; 15:100686. [PMID: 35966894 PMCID: PMC9359502 DOI: 10.1016/j.waojou.2022.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) started in Wuhan, Hubei Province, China and quickly spread around the world. Current evidence is contradictory on the association of asthma with COVID-19 and associated severe outcomes. Type 2 inflammation may reduce the risk for severe COVID-19. Whether asthma diagnosis may be a risk factor for severe COVID-19, especially for those with severe disease or non-allergic phenotypes, deserves further attention and clarification. In addition, COVID-19 does not appear to provoke asthma exacerbations, and asthma therapeutics should be continued for patients with exposure to COVID-19. Changes in the intensity of pollinization, an earlier start and extension of the pollinating season, and the increase in production and allergenicity of pollen are known direct effects that air pollution has on physical, chemical, and biological properties of the pollen grains. They are influenced and triggered by meteorological variables that could partially explain the effect on COVID-19. SARS-CoV-2 is capable of persisting in the environment and can be transported by bioaerosols which can further influence its transmission rate and seasonality. The COVID-19 pandemic has changed the behavior of adults and children globally. A general trend during the pandemic has been human isolation indoors due to school lockdowns and loss of job or implementation of virtual work at home. A consequence of this behavior change would presumably be changes in indoor allergen exposures and reduction of inhaled outdoor allergens. Therefore, lockdowns during the pandemic might have improved some specific allergies, while worsening others, depending on the housing conditions.
Collapse
Affiliation(s)
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isabella Annesi Maesano
- French NIH (INSERM), and EPAR Department, IPLESP, INSERM and Sorbonne University, Paris, France
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| |
Collapse
|
38
|
Hoogeveen MJ, Kroes ACM, Hoogeveen EK. Environmental factors and mobility predict COVID-19 seasonality in the Netherlands. ENVIRONMENTAL RESEARCH 2022; 211:113030. [PMID: 35257688 PMCID: PMC8895708 DOI: 10.1016/j.envres.2022.113030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. We hypothesize that in The Netherlands the same environmental factors and mobility trends that are associated with the seasonality of flu-like illnesses are predictors of COVID-19 seasonality as well. METHODS We used meteorological, pollen/hay fever and mobility data from the Netherlands. For the reproduction number of COVID-19 (Rt), we used daily estimates from the Dutch State Institute for Public Health. For all datasets, we selected the overlapping period of COVID-19 and the first allergy season: from February 17, 2020 till September 21, 2020 (n = 218). Backward stepwise multiple linear regression was used to develop an environmental prediction model of the Rt of COVID-19. Next, we studied whether adding mobility trends to an environmental model improved the predictive power. RESULTS Through stepwise backward multiple linear regression four highly significant (p < 0.01) predictive factors are selected in our combined model: temperature, solar radiation, hay fever incidence, and mobility to indoor recreation locations. Our combined model explains 87.5% of the variance of Rt of COVID-19 and has a good and highly significant fit: F(4, 213) = 374.2, p < 0.00001. This model had a better overall predictive performance than a solely environmental model, which explains 77.3% of the variance of Rt (F(4, 213) = 181.3, p < 0.00001). CONCLUSIONS We conclude that the combined mobility and environmental model can adequately predict the seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In this model higher solar radiation, higher temperature and hay fever are related to lower COVID-19 reproduction, and higher mobility to indoor recreation locations is related to an increased COVID-19 spread.
Collapse
Affiliation(s)
- Martijn J Hoogeveen
- Department Technical Sciences & Environment, Open University, the Netherlands.
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen K Hoogeveen
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, the Netherlands
| |
Collapse
|
39
|
Pollen Exposure and Cardiopulmonary Health Impacts in Adelaide, South Australia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159093. [PMID: 35897462 PMCID: PMC9331296 DOI: 10.3390/ijerph19159093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
(1) Background: Limited research has suggested that cardiopulmonary health outcomes should be considered in relation to pollen exposure. This study sets out to test the relationship between pollen types (grasses, trees, weeds) and cardiovascular, lower respiratory and COPD health outcomes using 15 years (2003–2017) of data gathered in Adelaide, South Australia; (2) Methods: A time-series analysis by months was conducted using cardiopulmonary data from hospital admissions, emergency presentations and ambulance callouts in relation to daily pollen concentrations in children (0–17) for lower respiratory outcomes and for adults (18+). Incidence rate ratios (IRR) were calculated over lags from 0 to 7 days; (3) Results: IRR increases in cardiovascular outcomes in March, May, and October were related to grass pollen, while increases in July, November, and December were related to tree pollen. IRRs ranged from IRR 1.05 (95% confidence interval (CI) 1.00–1.10) to 1.25 (95% CI 1.12–1.40). COPD increases related to grass pollen occurred only in May. Pollen-related increases were observed for lower respiratory outcomes in adults and in children; (4) Conclusion: Notable increases in pollen-related associations with cardiopulmonary outcomes were not restricted to any one season. Prevention measures for pollen-related health effects should be widened to consider cardiopulmonary outcomes.
Collapse
|
40
|
Hanson MC, Petch GM, Ottosen TB, Skjøth CA. Climate change impact on fungi in the atmospheric microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154491. [PMID: 35283127 DOI: 10.1016/j.scitotenv.2022.154491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The atmospheric microbiome is one of the least studied microbiomes of our planet. One of the most abundant, diverse and impactful parts of this microbiome is arguably fungal spores. They can be very potent outdoor aeroallergens and pathogens, causing an enormous socio-economic burden on health services and annual damages to crops costing billions of Euros. We find through hypothesis testing that an expected warmer and drier climate has a dramatic impact on the atmospheric microbiome, conceivably through alteration of the hydrological cycle impacting agricultural systems, with significant differences in leaf wetness between years (p-value <0.05). The data were measured via high-throughput sequencing analysis using the DNA barcode marker, ITS2. This was complemented by remote sensing analysis of land cover and dry matter productivity based on the Sentinel satellites, on-site detection of atmospheric and vegetation variables, GIS analysis, harvesting analysis and footprint modelling on trajectory clusters using the atmospheric transport model HYSPLIT. We find the seasonal spore composition varies between rural and urban zones reflecting both human activities (e.g. harvest), type and status of the vegetation and the prevailing climate rather than mesoscale atmospheric transport. We find that crop harvesting governs the composition of the atmospheric microbiome through a clear distinction between harvest and post-harvest beta-diversity by PERMANOVA on Bray-Curtis dissimilarity (p-value <0.05). Land cover impacted significantly by two-way ANOVA (p-value <0.05), while there was minimal impact from air mass transport over the 3 years. The hypothesis suggests that the fungal spore composition will change dramatically due to climate change, an until now unforeseen effect affecting both food security, human health and the atmospheric hydrological cycle. Consequently the management of crop diseases and impact on human health through aeroallergen exposure need to consider the timing of crop treatments and land management, including post harvest, to minimize exposure of aeroallergens and pathogens.
Collapse
Affiliation(s)
- M C Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK.
| | - G M Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - T-B Ottosen
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK; Department of Air and Sensor Technology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark
| | - C A Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK.
| |
Collapse
|
41
|
Abstract
The climate crisis poses a major challenge to human health as well as the healthcare system and threatens to jeopardize the medical progress made in recent decades. However, addressing climate change may also be the greatest opportunity for global health in the 21st century. The climate crisis and its consequences, such as rising temperatures, forest fires, floods, droughts, and changes in the quality and quantity of food and water, directly and indirectly affect human physical and mental health. More intense and frequent heat waves and declining air quality have been shown to increase all-cause mortality, especially among the most vulnerable. Climate warming alters existing ecosystems and favors biological invasions by species that better tolerate heat and drought. Pathogen profiles are changing, and the transmission and spread of vector-borne diseases are increasing. The spread of neophytes in Europe, such as ragweed, is creating new pollen sources that increase allergen exposure for allergy sufferers. In addition, the overall milder weather, especially in combination with air pollution and increased CO2 levels, is changing the production and allergenicity of pollen. The phenomenon of thunderstorm asthma is also occurring more frequently. In view of the increasing prevalence of allergic diseases due to climate change, early causal immunomodulatory therapy is therefore all the more important. During a climate consultation, patients can receive individual advice on climate adaptation and resilience and the benefits of CO2 reduction-for their own and the planet's health. Almost 5% of all greenhouse gas emissions in Europe come from the healthcare sector. It thus has a central responsibility for a climate-neutral and sustainable transformation.
Collapse
|
42
|
Mohapatra S, Menon NG. Factors responsible for the emergence of novel viruses: An emphasis on SARS-CoV-2. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 27:100358. [PMID: 35369608 PMCID: PMC8958772 DOI: 10.1016/j.coesh.2022.100358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Structural and genetic differences among various viruses play a significant factor in host infectivity and vulnerability to environmental stressors. Zoonoses of viruses require several recombinations and mutations in their genetic material and among several viruses allowing them to switch hosts and infect new species. Additionally, the host genetics play a significant role in successful viral transmission among various hosts. For example, human immunodeficiency virus (HIV), Ebola virus and influenza viruses. In efficient zoonotic events, selective stresses in the host milieu-interieur are critical during viral infection of the first human host. The genetic rearrangement of the virus and the selective environmental pressure of the host immune system dominate the emergence of new viral disease outbreaks.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore
| | - N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India
| |
Collapse
|
43
|
Asif Z, Chen Z, Stranges S, Zhao X, Sadiq R, Olea-Popelka F, Peng C, Haghighat F, Yu T. Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. SUSTAINABLE CITIES AND SOCIETY 2022; 81:103840. [PMID: 35317188 PMCID: PMC8925199 DOI: 10.1016/j.scs.2022.103840] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/05/2023]
Abstract
COVID-19 is deemed as the most critical world health calamity of the 21st century, leading to dramatic life loss. There is a pressing need to understand the multi-stage dynamics, including transmission routes of the virus and environmental conditions due to the possibility of multiple waves of COVID-19 in the future. In this paper, a systematic examination of the literature is conducted associating the virus-laden-aerosol and transmission of these microparticles into the multimedia environment, including built environments. Particularly, this paper provides a critical review of state-of-the-art modelling tools apt for COVID-19 spread and transmission pathways. GIS-based, risk-based, and artificial intelligence-based tools are discussed for their application in the surveillance and forecasting of COVID-19. Primary environmental factors that act as simulators for the spread of the virus include meteorological variation, low air quality, pollen abundance, and spatial-temporal variation. However, the influence of these environmental factors on COVID-19 spread is still equivocal because of other non-pharmaceutical factors. The limitations of different modelling methods suggest the need for a multidisciplinary approach, including the 'One-Health' concept. Extended One-Health-based decision tools would assist policymakers in making informed decisions such as social gatherings, indoor environment improvement, and COVID-19 risk mitigation by adapting the control measurements.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Western University, Ontario, Canada
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Canada
| | - Rehan Sadiq
- School of Engineering (Okanagan Campus), University of British Columbia, Kelowna, BC, Canada
| | | | - Changhui Peng
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| |
Collapse
|
44
|
Tao Y, Zhang X, Qiu G, Spillmann M, Ji Z, Wang J. SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities before and during the first wave of the COVID-19 pandemic. ENVIRONMENT INTERNATIONAL 2022; 164:107266. [PMID: 35512527 PMCID: PMC9060371 DOI: 10.1016/j.envint.2022.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
Caused by the SARS-CoV-2 virus, Coronavirus disease 2019 (COVID-19) has been affecting the world since the end of 2019. While virus-laden particles have been commonly detected and studied in the aerosol samples from indoor healthcare settings, studies are scarce on air surveillance of the virus in outdoor non-healthcare environments, including the correlations between SARS-CoV-2 and other respiratory viruses, between viruses and environmental factors, and between viruses and human behavior changes due to the public health measures against COVID-19. Therefore, in this study, we collected airborne particulate matter (PM) samples from November 2019 to April 2020 in Bern, Lugano, and Zurich. Among 14 detected viruses, influenza A, HCoV-NL63, HCoV-HKU1, and HCoV-229E were abundant in air. SARS-CoV-2 and enterovirus were moderately common, while the remaining viruses occurred only in low concentrations. SARS-CoV-2 was detected in PM10 (PM below 10 µm) samples of Bern and Zurich, and PM2.5 (PM below 2.5 µm) samples of Bern which exhibited a concentration positively correlated with the local COVID-19 case number. The concentration was also correlated with the concentration of enterovirus which raised the concern of coinfection. The estimated COVID-19 infection risks of an hour exposure at these two sites were generally low but still cannot be neglected. Our study demonstrated the potential functionality of outdoor air surveillance of airborne respiratory viruses, especially at transportation hubs and traffic arteries.
Collapse
Affiliation(s)
- Yile Tao
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Martin Spillmann
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
45
|
Choi YJ, Lee KS, Lee YS, Kim KR, Oh JW. Analysis of the Association Among Air Pollutants, Allergenic Pollen, and Respiratory Virus Infection of Children in Guri, Korea During Recent 5 Years. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:289-299. [PMID: 35557494 PMCID: PMC9110915 DOI: 10.4168/aair.2022.14.3.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Concerns about the spread of infectious diseases have increased due to the coronavirus disease pandemic. Knowing the factors that exacerbate or increase the contagiousness of a virus could be a key to pandemic prevention. Therefore, we investigated whether the pandemic potential of infectious diseases correlates with the concentration of atmospheric substances. We also investigated whether environmental deterioration causes an increase in viral infections. METHODS Pediatric patients (0-18 years old; n = 6,223) were recruited from those hospitalized for aggravated respiratory symptoms at Hanyang University Guri Hospital between January 1, 2015 and December 31, 2019. The number of viral infections was defined as the total number of virus-infected patients hospitalized for respiratory symptoms. We analyzed the association between the number of viral infections/week and the average concentrations of atmospheric substances including particulate matter (PM)10, PM2.5, O₃, NO₂, CO, SO₂, and allergenic pollen) for that week. The cross-correlation coefficient between the weekly measures of pollens and viral infections was checked to determine which time point had the most influence. The association of atmospheric substances in that time, with the number of viral infections/week was investigated using multiple linear regression analysis to identify factors with the greatest influence. RESULTS In spring the tree pollen average concentration one week earlier (t-1) had the greatest correlation with the average virus infection of a given week (t) (ρXY (h) =0.5210). The number of viral infections showed a statistically significant correlation with especially tree pollen concentration of 1 week prior (adj R²=0.2280). O₃ concentration was correlated to the number of viral infections within that week (adj R²=0.2552) in spring, and weed pollen and CO concentration correlated (adj R²=0.1327) in autumn. CONCLUSIONS Seasonal co-exposure to air pollutants and allergenic pollens may enhance respiratory viral infection susceptibility in children. Therefore, reducing the concentrations of air pollutants and pollens may help prevent future epidemics.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Korea
| | - Kyung Suk Lee
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Korea
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| | - Young-Seop Lee
- Department of Statistics, College of Science, Dongguk University, Seoul, Korea
| | - Kyu Rang Kim
- Impact-based Forecast Research Team, High Impact Weather Research Department, National Institute of Meteorological Sciences, Gangneung, Korea
| | - Jae-Won Oh
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Korea
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
46
|
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, Yilmaz I, Nadeau K, Ozdemir C, Mungan D, Akdis CA. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022; 77:1418-1449. [PMID: 35108405 PMCID: PMC9306534 DOI: 10.1111/all.15240] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
Environmental exposure plays a major role in the development of allergic diseases. The exposome can be classified into internal (e.g., aging, hormones, and metabolic processes), specific external (e.g., chemical pollutants or lifestyle factors), and general external (e.g., broader socioeconomic and psychological contexts) domains, all of which are interrelated. All the factors we are exposed to, from the moment of conception to death, are part of the external exposome. Several hundreds of thousands of new chemicals have been introduced in modern life without our having a full understanding of their toxic health effects and ways to mitigate these effects. Climate change, air pollution, microplastics, tobacco smoke, changes and loss of biodiversity, alterations in dietary habits, and the microbiome due to modernization, urbanization, and globalization constitute our surrounding environment and external exposome. Some of these factors disrupt the epithelial barriers of the skin and mucosal surfaces, and these disruptions have been linked in the last few decades to the increasing prevalence and severity of allergic and inflammatory diseases such as atopic dermatitis, food allergy, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, and asthma. The epithelial barrier hypothesis provides a mechanistic explanation of how these factors can explain the rapid increase in allergic and autoimmune diseases. In this review, we discuss factors affecting the planet's health in the context of the 'epithelial barrier hypothesis,' including climate change, pollution, changes and loss of biodiversity, and emphasize the changes in the external exposome in the last few decades and their effects on allergic diseases. In addition, the roles of increased dietary fatty acid consumption and environmental substances (detergents, airborne pollen, ozone, microplastics, nanoparticles, and tobacco) affecting epithelial barriers are discussed. Considering the emerging data from recent studies, we suggest stringent governmental regulations, global policy adjustments, patient education, and the establishment of individualized control measures to mitigate environmental threats and decrease allergic disease.
Collapse
Affiliation(s)
| | - Betul Ozdel Ozturk
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Pamir Cerci
- Clinic of Immunology and Allergic DiseasesEskisehir City HospitalEskisehirTurkey
| | - Murat Turk
- Clinic of Immunology and Allergic DiseasesKayseri City HospitalKayseriTurkey
| | - Begum Gorgulu Akin
- Clinic of Immunology and Allergic DiseasesAnkara City HospitalAnkaraTurkey
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Seda Altiner
- Clinic of Internal Medicine Division of Immunology and Allergic DiseasesKahramanmaras Necip Fazil City HospitalKahramanmarasTurkey
| | - Umus Ozbey
- Department of Nutrition and DietAnkara UniversityAnkaraTurkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Insu Yilmaz
- Department of Chest DiseasesDivision of Immunology and Allergic DiseasesErciyes UniversityKayseriTurkey
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University School of MedicineDivision of Pulmonary and Critical Care MedicineDepartment of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Cevdet Ozdemir
- Institute of Child HealthDepartment of Pediatric Basic SciencesIstanbul UniversityIstanbulTurkey
- Istanbul Faculty of MedicineDepartment of PediatricsDivision of Pediatric Allergy and ImmunologyIstanbul UniversityIstanbulTurkey
| | - Dilsad Mungan
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| |
Collapse
|
47
|
Agache I, Sampath V, Aguilera J, Akdis CA, Akdis M, Barry M, Bouagnon A, Chinthrajah S, Collins W, Dulitzki C, Erny B, Gomez J, Goshua A, Jutel M, Kizer KW, Kline O, LaBeaud AD, Pali-Schöll I, Perrett KP, Peters RL, Plaza MP, Prunicki M, Sack T, Salas RN, Sindher SB, Sokolow SH, Thiel C, Veidis E, Wray BD, Traidl-Hoffmann C, Witt C, Nadeau KC. Climate change and global health: A call to more research and more action. Allergy 2022; 77:1389-1407. [PMID: 35073410 DOI: 10.1111/all.15229] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
There is increasing understanding, globally, that climate change and increased pollution will have a profound and mostly harmful effect on human health. This review brings together international experts to describe both the direct (such as heat waves) and indirect (such as vector-borne disease incidence) health impacts of climate change. These impacts vary depending on vulnerability (i.e., existing diseases) and the international, economic, political, and environmental context. This unique review also expands on these issues to address a third category of potential longer-term impacts on global health: famine, population dislocation, and environmental justice and education. This scholarly resource explores these issues fully, linking them to global health in urban and rural settings in developed and developing countries. The review finishes with a practical discussion of action that health professionals around the world in our field can yet take.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Michele Barry
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| | - Aude Bouagnon
- Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - William Collins
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
- Division of Hospital Medicine, Stanford University, Stanford, California, USA
| | - Coby Dulitzki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Barbara Erny
- Department of Internal Medicine, Division of Med/Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Jason Gomez
- Stanford School of Medicine, Stanford, California, USA
- Stanford Graduate School of Business, Stanford, California, USA
| | - Anna Goshua
- Stanford School of Medicine, Stanford, California, USA
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- "ALL-MED" Medical Research Institute, Wroclaw, Poland
| | | | - Olivia Kline
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University, Stanford, California, USA
| | - Isabella Pali-Schöll
- Comparative Medicine, Interuniversity Messerli Research Institute, University of Veterinary Medicine/Medical University/University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital, Parkville, Victoria, Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Maria Pilar Plaza
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Todd Sack
- My Green Doctor Foundation, Jacksonville, Florida, USA
| | - Renee N Salas
- Harvard Global Health Institute, Cambridge, Massachusetts, USA
- Center for Climate, Health, and the Global Environment, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Cassandra Thiel
- Department of Population Health, NYU Grossman School of Medicine, NY, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| | - Brittany Delmoro Wray
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
- London School of Hygiene and Tropical Medicine Centre on Climate Change and Planetary Health, London, UK
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Christian Witt
- Institute of Physiology, Division of Pneumology, Charité-Universitätsmedizin, Berlin, Germany
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
48
|
Alarcón M, Periago C, Pino D, Mazón J, Casas-Castillo MDC, Ho-Zhang JJ, De Linares C, Rodríguez-Solà R, Belmonte J. Potential contribution of distant sources to airborne Betula pollen levels in Northeastern Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151827. [PMID: 34813812 DOI: 10.1016/j.scitotenv.2021.151827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Betula (birch) pollen is one of the most important causes of respiratory allergy in Northern and Central Europe. While birch trees are abundant in Central, Northern, and Eastern Europe, they are scarce in the Mediterranean territories, especially in the Iberian Peninsula (IP), where they grow only in the northern regions and as ornamental trees in urban areas. However, the airborne birch pollen patterns in Catalonia (Northeastern IP) show abrupt high concentrations in areas with usually low local influence. The intensity of the derived health problems can be increased by outbreaks due to long-range pollen transport. The present work evaluates the different potential contributions to Catalonia from the main source regions: Pyrenees, Cantabria, and the forests of France and Central Europe. To this end, we computed the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectories of air masses associated with the main Betula pollen peaks occurring simultaneously over different Catalan monitoring stations, and we studied their provenance over a 15-year period. The Vielha aerobiological station on the northern slopes of the Central Pyrenees was used to identify the dates of the pollen season in the Pyrenean region. In order to better understand the role of the Pyrenees, which is the nearest of the four birch forested regions, we classified the pollen peaks in the other Catalan stations into three groups based on the relationship between the peak and the pollen season in the Pyrenees. Our analysis of back-trajectory residence time, combined with the associated pollen concentration, reveals that two principal routes other than the Pyrenean forest sustain the northerly fluxes that enter Catalonia and carry significant concentrations of Betula pollen. This study has also allowed quantifying the differentiated contributions of the potential source regions. In addition, the Weather Research Forecast (WRF) mesoscale model has been used to study three specific episodes. Both models, HYSPLIT and WRF, complement each other and have allowed for better understanding of the main mechanisms governing the entry of birch pollen to the region.
Collapse
Affiliation(s)
- Marta Alarcón
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| | - Cristina Periago
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - David Pino
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Jordi Mazón
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | | | - Jiang Ji Ho-Zhang
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Concepción De Linares
- Department of Botany, University of Granada, Granada, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raül Rodríguez-Solà
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Jordina Belmonte
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
49
|
Henriques A, Mounet N, Aleixo L, Elson P, Devine J, Azzopardi G, Andreini M, Rognlien M, Tarocco N, Tang J. Modelling airborne transmission of SARS-CoV-2 using CARA: risk assessment for enclosed spaces. Interface Focus 2022; 12:20210076. [PMID: 35261732 PMCID: PMC8831086 DOI: 10.1098/rsfs.2021.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for a proper risk assessment of respiratory pathogens in indoor settings. This paper documents the COVID Airborne Risk Assessment methodology, to assess the potential exposure of airborne SARS-CoV-2 viruses, with an emphasis on virological and immunological factors in the quantification of the risk. The model results from a multidisciplinary approach linking physical, mechanical and biological domains, enabling decision makers or facility managers to assess their indoor setting. The model was benchmarked against clinical data, as well as two real-life outbreaks, showing good agreement. A probability of infection is computed in several everyday-life settings and with various mitigation measures. The importance of super-emitters in airborne transmission is confirmed: 20% of infected hosts can emit approximately two orders of magnitude more viral-containing particles. The use of masks provides a fivefold reduction in viral emissions. Natural ventilation strategies are very effective to decrease the concentration of virions, although periodic venting strategies are not ideal in certain settings. Although vaccination is an effective measure against hospitalization, their effectiveness against transmission is not optimal, hence non-pharmaceutical interventions (ventilation, masks) should be actively supported. We also propose a critical threshold to define an acceptable risk level.
Collapse
Affiliation(s)
- Andre Henriques
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Nicolas Mounet
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Luis Aleixo
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Philip Elson
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - James Devine
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | | | - Marco Andreini
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Markus Rognlien
- NTNU (Norwegian University of Science and Technology), Torgarden, Norway
| | - Nicola Tarocco
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Julian Tang
- Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
50
|
Martinez-Boubeta C, Simeonidis K. Airborne magnetic nanoparticles may contribute to COVID-19 outbreak: Relationships in Greece and Iran. ENVIRONMENTAL RESEARCH 2022; 204:112054. [PMID: 34547249 PMCID: PMC8450134 DOI: 10.1016/j.envres.2021.112054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 05/22/2023]
Abstract
This work attempts to shed light on whether the COVID-19 pandemic rides on airborne pollution. In particular, a two-city study provides evidence that PM2.5 contributes to the timing and severity of the epidemic, without adjustment for confounders. The publicly available data of deaths between March and October 2020, updated it on May 30, 2021, and the average seasonal concentrations of PM2.5 pollution over the previous years in Thessaloniki, the second-largest city of Greece, were investigated. It was found that changes in coronavirus-related deaths follow changes in air pollution and that the correlation between the two data sets is maximized at the lag time of one month. Similar data from Tehran were gathered for comparison. The results of this study underscore that it is possible, if not likely, that pollution nanoparticles are related to COVID-19 fatalities (Granger causality, p < 0.05), contributing to the understanding of the environmental impact on pandemics.
Collapse
Affiliation(s)
- C Martinez-Boubeta
- Ecoresources P.C, Giannitson-Santaroza Str. 15-17, 54627, Thessaloniki, Greece.
| | - K Simeonidis
- Ecoresources P.C, Giannitson-Santaroza Str. 15-17, 54627, Thessaloniki, Greece; Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|