1
|
Cashikar AG, Toral-Rios D, Timm D, Romero J, Strickland M, Long JM, Han X, Holtzman DM, Paul SM. Regulation of astrocyte lipid metabolism and ApoE secretionby the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res 2023; 64:100350. [PMID: 36849076 PMCID: PMC10060115 DOI: 10.1016/j.jlr.2023.100350] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.
Collapse
Affiliation(s)
- Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - David Timm
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin M Long
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
2
|
Koirala D, Beranova-Giorgianni S, Giorgianni F. Early Transcriptomic Response to OxLDL in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2020; 21:E8818. [PMID: 33233417 PMCID: PMC7700619 DOI: 10.3390/ijms21228818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
In the sub-retinal pigment epithelium (sub-RPE) space of the aging macula, deposits of oxidized phospholipids, oxidized derivatives of cholesterol and associated oxidized low-density lipoproteins (OxLDL) are considered contributors to the onset and development of age-related macular degeneration (AMD). We investigated the gene expression response of a human-derived RPE cell line exposed for short periods of time to non-cytotoxic levels of OxLDL or LDL. In our cell model, treatment with OxLDL, but not LDL, generated an early gene expression response which affected more than 400 genes. Gene pathway analysis unveiled gene networks involved in the regulation of various cellular functions, including acute response to oxidative stress via up-regulation of antioxidative gene transcripts controlled by nuclear factor erythroid-2 related factor 2 (NRF2), and up-regulation of aryl hydrocarbon receptor-controlled detoxifying gene transcripts. In contrast, circadian rhythm-controlling genes and genes involved in lipid metabolism were strongly down-regulated. Treatment with low-density lipoprotein (LDL) did not induce the regulation of these pathways. These findings show that RPE cells are able to selectively respond to the oxidized forms of LDL via the up-regulation of gene pathways involved in molecular mechanisms that minimize cellular oxidative damage, and the down-regulation of the expression of genes that regulate the intracellular levels of lipids and lipid derivatives. The effect on genes that control the cellular circadian rhythm suggests that OxLDL might also disrupt the circadian clock-dependent phagocytic activity of the RPE. The data reveal a complex cellular response to a highly heterogeneous oxidative stress-causing agent such as OxLDL commonly present in drusen formations.
Collapse
Affiliation(s)
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences; The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences; The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
3
|
Xu X, Li L, Zhang Y, Lu X, Lin W, Wu S, Qin X, Xu R, Lin W. Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PLoS One 2020; 15:e0240616. [PMID: 33035272 PMCID: PMC7546448 DOI: 10.1371/journal.pone.0240616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Alisma orientale (Sam.) Juzep (A. orientale) is a traditional herb that is often used to treat disease including edema and hyperlipidemia. However, the molecular mechanism by which Alisma orientale (Sam.) Juzep exerts its hypolipidemic effects remains unclear. In this study, a diabetic rat model was established by feeding a high-fat and high-sugar diet combined with a low-dose streptozotocin injection (HFS). Then the rats were treated with an A. orientale water extract (AOW), an A. orientale ethanolic extract (AOE) or metform (MET). The gut microflora and liver transcriptome were analyzed by high-throughput next-generation sequencing. Ultra-performance liquid chromatography-triple quadrupole-mass spectrometry was employed to analyze the major compounds in the AOE. The results showed that the serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in rats of the AOE group (2.10 g/kg/day, 14 days) were significantly lower than those in the HFS group (p<0.01). Moreover, AOE treatment altered the gut microecology, particularly modulating the relative abundance of gut microflora involved in lipid metabolism compared with the HFS group. Furthermore, compared with the HFS group, the mRNA expression levels of Fam13a, Mapk7, Mpp7, Chac1, Insig1, Mcpt10, Noct, Greb1l, Fabp12 and Hba-a3 were upregulated after the administration of AOE. In contrast, the mRNA expression levels of Lox, Mybl1, Arrdc3, Cyp4a2, Krt20, Vxn, Ggt1, Nr1d1 and S100a9 were downregulated. Moreover, AOE treatment for two weeks markedly promoted the relative abundance of Lachnospiraceae (p = 0.0013). The triterpenoids contents in AOE were alisol A, alisol A 24-acetate, alisol B, alisol B 23-acetate, alisol C 23-acetate, alisol F, alisol F 24-acetate, and alisol G. Our findings above illustrated that the hypolipidemic effect of the triterpenoids of A. orientale is mediated mainly through alteration of the gut microecology and the regulation of genes involved in cholesterol metabolism, especially Insig1.
Collapse
Affiliation(s)
- Xiaomei Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Lisha Li
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Yamin Zhang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xuehua Lu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shuangshuang Wu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xia Qin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Rongqing Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
- * E-mail:
| |
Collapse
|
4
|
Webb LM, Sengupta S, Edell C, Piedra-Quintero ZL, Amici SA, Miranda JN, Bevins M, Kennemer A, Laliotis G, Tsichlis PN, Guerau-de-Arellano M. Protein arginine methyltransferase 5 promotes cholesterol biosynthesis-mediated Th17 responses and autoimmunity. J Clin Invest 2020; 130:1683-1698. [PMID: 32091410 PMCID: PMC7108896 DOI: 10.1172/jci131254] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes symmetric dimethylation (SDM) of arginine, a posttranslational modification involved in oncogenesis and embryonic development. However, the role and mechanisms by which PRMT5 modulates Th cell polarization and autoimmune disease have not yet been elucidated. Here, we found that PRMT5 promoted SREBP1 SDM and the induction of cholesterol biosynthetic pathway enzymes that produce retinoid-related orphan receptor (ROR) agonists that activate RORγt. Specific loss of PRMT5 in the CD4+ Th cell compartment suppressed Th17 differentiation and protected mice from developing experimental autoimmune encephalomyelitis (EAE). We also found that PRMT5 controlled thymic and peripheral homeostasis in the CD4+ Th cell life cycle and invariant NK (iNK) T cell development and CD8+ T cell maintenance. This work demonstrates that PRMT5 expression in recently activated T cells is necessary for the cholesterol biosynthesis metabolic gene expression program that generates RORγt agonistic activity and promotes Th17 differentiation and EAE. These results point to Th PRMT5 and its downstream cholesterol biosynthesis pathway as promising therapeutic targets in Th17-mediated diseases.
Collapse
MESH Headings
- Animals
- Autoimmunity
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cholesterol/genetics
- Cholesterol/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Mice, Transgenic
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/pathology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/immunology
- Sterol Regulatory Element Binding Protein 1/genetics
- Sterol Regulatory Element Binding Protein 1/immunology
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
- Lindsay M Webb
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
- Biomedical Sciences Graduate Program, and
| | - Shouvonik Sengupta
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
- Biomedical Sciences Graduate Program, and
| | - Claudia Edell
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
| | - Zayda L Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
| | - Stephanie A Amici
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
| | - Janiret Narvaez Miranda
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
| | | | - Austin Kennemer
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
| | - Georgios Laliotis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center
- Institute for Behavioral Medicine Research
- Department of Microbial Infection and Immunity, and
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Do DN, Schenkel FS, Miglior F, Zhao X, Ibeagha-Awemu EM. Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Sci Rep 2018; 8:13239. [PMID: 30185830 PMCID: PMC6125589 DOI: 10.1038/s41598-018-31427-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify single nucleotide polymorphisms (SNPs) associated with milk cholesterol (CHL) content via a genome wide association study (GWAS). Milk CHL content was determined by gas chromatography and expressed as mg of CHL in 100 g of fat (CHL_fat) or in 100 mg of milk (CHL_milk). GWAS was performed with 1,183 cows and 40,196 SNPs using a univariate linear mixed model. Two and 20 SNPs were significantly associated with CHL_fat and CHL_milk, respectively. The important regions for CHL_fat and CHL_milk were at 41.9 Mb on chromosome (BTA) 17 and 1.6-3.2 Mb on BTA 14, respectively. DGAT1, PTPN1, INSIG1, HEXIM1, SDS, and HTR5A genes, also known to be associated with human plasma CHL phenotypes, were identified as potential candidate genes for bovine milk CHL. Additional new potential candidate genes for milk CHL were RXFP1, FAM198B, TMEM144, CXXC4, MAML2 and CDH13. Enrichment analyses suggested that identified candidate genes participated in cell-cell signaling processes and are key members in tight junction, focal adhesion, Notch signaling and glycerolipid metabolism pathways. Furthermore, identified transcription factors such as PPARD, LXR, and NOTCH1 might be important in the regulation of bovine milk CHL content. The expression of several positional candidate genes (such as DGAT1, INSIG1 and FAM198B) and their correlation with milk CHL content were further confirmed with RNA sequence data from mammary gland tissues. This is the first GWAS on bovine milk CHL. The identified markers and candidate genes need further validation in a larger cohort for use in the selection of cows with desired milk CHL content.
Collapse
Affiliation(s)
- Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
- Department of Animal Science, McGill University, Ste-Anne-de-, Bellevue, QC, H9X 3V9, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-, Bellevue, QC, H9X 3V9, Canada.
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada.
| |
Collapse
|
6
|
Paschkowsky S, Recinto SJ, Young JC, Bondar AN, Munter LM. Membrane cholesterol as regulator of human rhomboid protease RHBDL4. J Biol Chem 2018; 293:15556-15568. [PMID: 30143535 DOI: 10.1074/jbc.ra118.002640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
In the last decade, intramembrane proteases have gained increasing attention because of their many links to various diseases. Nevertheless, our understanding as to how they function or how they are regulated is still limited, especially when it comes to human homologues. In this regard, here we sought to unravel mechanisms of regulation of the protease rhomboid-like protein-4 (RHBDL4), one of five active human serine intramembrane proteases. In view of our recent finding that human RHBDL4 efficiently cleaves the amyloid precursor protein (APP), a key protein in the pathology of Alzheimer's disease, we used established reagents to modulate the cellular cholesterol content and analyzed the effects of this modulation on RHBDL4-mediated processing of endogenous APP. We discovered that lowering membrane cholesterol levels increased the levels of RHBDL4-specific endogenous APP fragments, whereas high cholesterol levels had the opposite effect. Direct binding of cholesterol to APP did not mediate these modulating effects of cholesterol. Instead, using homology modeling, we identified two potential cholesterol-binding motifs in the transmembrane helices 3 and 6 of RHBDL4. Substitution of the essential tyrosine residues of the potential cholesterol-binding motifs to alanine increased the levels of endogenous APP C-terminal fragments, reflecting enhanced RHBDL4 activity. In summary, we provide evidence that the activity of RHBDL4 is regulated by cholesterol likely through a direct binding of cholesterol to the enzyme.
Collapse
Affiliation(s)
- Sandra Paschkowsky
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| | | | - Jason C Young
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Ana-Nicoleta Bondar
- the Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Lisa Marie Munter
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| |
Collapse
|
7
|
Pendzialek SM, Schindler M, Plösch T, Gürke J, Haucke E, Hecht S, Fischer B, Santos AN. Cholesterol metabolism in rabbit blastocysts under maternal diabetes. Reprod Fertil Dev 2018; 29:1921-1931. [PMID: 27918728 DOI: 10.1071/rd15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/24/2016] [Indexed: 01/10/2023] Open
Abstract
In the rabbit reproductive model, maternal experimentally induced insulin-dependent diabetes mellitus (expIDD) leads to accumulation of lipid droplets in blastocysts. Cholesterol metabolism is a likely candidate to explain such metabolic changes. Therefore, in the present study we analysed maternal and embryonic cholesterol concentrations and expression of related genes in vivo (diabetic model) and in vitro (embryo culture in hyperglycaemic medium). In pregnant expIDD rabbits, the serum composition of lipoprotein subfractions was changed, with a decrease in high-density lipoprotein cholesterol and an increase in very low-density lipoprotein cholesterol; in uterine fluid, total cholesterol concentrations were elevated. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), very low-density lipoprotein receptor (VLDLR), sterol regulatory element binding transcription factor 2 (SREBF2), insulin-induced gene-1 (INSIG1) and cholesterol 7α-hydroxylase (CYP7A1) mRNA was decreased in the liver and low-density lipoprotein receptor (LDLR) mRNA expression was decreased in the adipose tissue of diabetic rabbits. In embryos from diabetic rabbits, the mean (±s.e.m.) ratio of cholesterol concentrations in trophoblasts to embryoblasts was changed from 1.27±2.34 (control) to 0.88±3.85 (expIDD). Rabbit blastocysts expressed HMGCR, LDLR, VLDLR, SREBF2 and INSIG1 but not CYP7A1, without any impairment of expression as a result of maternal diabetes. In vitro hyperglycaemia decreased embryonic HMGCR and SREBF2 transcription in rabbit blastocysts. The findings of the present study show that a diabetic pregnancy leads to distinct changes in maternal cholesterol metabolism with a minor effect on embryo cholesterol metabolism.
Collapse
Affiliation(s)
- S Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Elisa Haucke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Stefanie Hecht
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| |
Collapse
|
8
|
Fatima SS, Khalid E, Ladak AA, Ali SA. Colostrum and mature breast milk analysis of serum irisin and sterol regulatory element-binding proteins-1c in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2018; 32:2993-2999. [PMID: 29609490 DOI: 10.1080/14767058.2018.1454422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Background: We aimed to evaluate irisin and SREBP-1c levels in serum, colostrum and mature breast milk in women with and without gestational diabetes (GDM); and to relate them with maternal glucose, lipid profile and weight status of babies. Methods: GDM positive women (n = 33) and normal glucose tolerant women (NGT) (n = 33) were recruited. Maternal blood samples were collected at 28th week of gestation and later at 6-week post-partum while breast milk samples of the lactating mothers were collected within 72 hours of birth (colostrum) and at 6 weeks post-partum (mature milk). Irisin and SREBP-1c levels were analyzed by commercially available ELISA kits for all maternal samples. Results: Lower levels of irisin were seen in serum, colostrum and mature breast milk of GDM females (p < .01). SREBP-1c profile showed a similar trend of low serum levels in GDM, however, they were undetectable in colostrum and mature breast milk. Weak to moderate correlations of serum irisin with BMI (r = 0.439; p < .001), GTT 0 hours (r = 0.403; p = .01), HbA1c (r = -0.312; p = .011), Fasting blood glucose (r = 0.992; p = .008), and baby weight at birth (r = 0.486; p < .001). Colostrum and mature breast milk irisin showed positive associations with baby weight at 6 weeks (r = 0.325; p = .017; r = 0.296; p = .022, respectively). Serum SREBP-1c at 6 weeks correlated with random blood glucose (r = 0.318; p = .009), and HbA1c (r= -0.292; p = .011). All correlations were lost once we adjusted for maternal BMI. Conclusions: Low irisin and SREBP1-c levels may favor development of GDM in pregnant subjects. Further, low mature breast milk levels may act as a continued stressor from fetal to infant life as long as breast-feeding is continued. Further studies are required to identify the mechanistic relationship between these biomarkers and GDM.
Collapse
Affiliation(s)
- Syeda Sadia Fatima
- a Department of Biological and Biomedical Sciences , Aga Khan University , Karachi , Pakistan
| | - Erum Khalid
- b Department of Obstetrics and Gynecology , Hamdard University , Karachi , Pakistan
| | | | - Syed Adnan Ali
- d Department of Statistics , University of Karachi , Karachi , Pakistan
| |
Collapse
|
9
|
Binot C, Chouard CH. Neurodegenerative diseases, infectious pathologies and liquid crystals: Hypothesis of a common information vector involving a multidisciplinary approach. Rev Neurol (Paris) 2018; 174:540-554. [PMID: 29555421 DOI: 10.1016/j.neurol.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/26/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
The existence of an information vector common to very different pathologies is the hypothesis of one of us, the argumentation and discussion of which we present here. It is a mesomorphic state of material called liquid crystal. The liquid-ordered (Lo) phase, made up of membrane rafts mediated by cholesterol, lies at the center of our concept. This mesophase is either preexistent and then modified by the pathogenic process, or initiated by the latter. The most notable disorders involved are Alzheimer's, Parkinson's, Charcot and Creutzfeldt-Jakob diseases, flu-like illnesses and acquired immunodeficiency syndrome (AIDS), although this list may well be extended to include other anisotropic, birefringent amyloid proteinopathies, which have properties compatible with those of liquid crystals. Incidentally, numerous conventional infectious pathologies can also induce a mesomorphic state in cell membranes. It has already been established that mesophases contain the chemical information transmitted from the intramolecular microscopic level, where covalent bonds are applied. Information is then transmitted at the intermolecular macroscopic level, where it is made up of informed, self-organized collections. Electrostatic interactions, coordination of metallic ions, van der Waals forces and donor-acceptor interactions of hydrogen bonding all come into play. These reactions are produced notably in the nanodomains enriched by cholesterol and sphingolipids. Lipids in the cell membrane are where the phase separations favoring elastic hydrodynamic instabilities conducive to the Lo phase take place. In addition, perturbations of the mesomorphic states of membrane rafts due, for example, to lipid dysfunction-even mild ones-with an intracerebral or generalized location could bring about a displacement of thermodynamic equilibrium favoring the initiation and progression of the pathologies under consideration here. Indeed, the most recent work has rendered our hypothesis highly probable. Moreover, our hypothesis is supported by medical and biological observations arising essentially from biophysics and widely documented in the literature. Thus, these facts expand the number of diagnostic and therapeutic perspectives that could be evoked and perhaps even demand exploration.
Collapse
Affiliation(s)
- C Binot
- Bureau privé, rue de Terre-Neuve, 17410 Saint-Martin-de-Ré, France
| | - C-H Chouard
- Académie de médecine, 10, boulevard Flandrin, 75116 Paris, France.
| |
Collapse
|
10
|
Prakash J, Mittal B, Apurva S, Shally A, Pranjal S, Neena S. Common Genetic Variant of insig2 Gene rs7566605 Polymorphism Is Associated with Severe Obesity in North India. IRANIAN BIOMEDICAL JOURNAL 2017; 21:261-9. [PMID: 28160769 PMCID: PMC5459941 DOI: 10.18869/acadpub.ibj.21.4.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Obesity is a very common disorder resulting from an imbalance between food intake and energy expenditure, and it has a substantial impact on the development of chronic diseases. The aim of this study was to examine the association of INSIG2 (rs7566605) gene polymorphism with obesity and obesity associated phenotypes in North Indian subjects. Methods: The variants were investigated for association in 642 obese and non-obese individuals. The genotyping of INSIG2 (rs7566605) single nucleotide polymorphism was analyzed by the TaqMan allelic discrimination protocol. Results: A significant association was observed for INSIG2 (rs7566605) single nucleotide polymorphism with obesity and obesity-related phenotypes. Furthermore, a significant relationship was found between the rs7566605 and insulin, homeostasis model of assessment-insulin resistance, the percentage of body fat, fat mass, leptin, and adiponectin. Conclusion: The present study observed significant association between INSIG2 (rs7566605) single nucleotide polymorphism and obesity, as well as obesity-associated phenotypes in North Indian population.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India.,2Department of Pediatrics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Balraj Mittal
- 3Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P., India
| | - Srivastava Apurva
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Awasthi Shally
- 2Department of Pediatrics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Srivastava Pranjal
- Darbhanga Medical College and Hospital Near Karpuri Chowk Benta Laheriasarai Darbhanga Bihar 846003, India
| | - Srivastava Neena
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Kim C, Lee H, Kang H, Shin JJ, Tak H, Kim W, Gorospe M, Lee EK. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:675-85. [PMID: 26945853 DOI: 10.1016/j.bbagrm.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
12
|
Hepatic genome-wide expression of lipid metabolism in diet-induced obesity rats treated with cocoa polyphenols. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Chen K, Zhao L, He H, Wan X, Wang F, Mo Z. Silibinin protects β cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway. Int J Mol Med 2014; 34:1073-80. [PMID: 25109869 DOI: 10.3892/ijmm.2014.1883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/04/2014] [Indexed: 11/05/2022] Open
Abstract
Exposure to high glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction including cell apoptosis, impaired glucose‑stimulated insulin secretion (GSIS) and intracellular lipid accumulation. Sterol regulatory element binding protein-1c (SREBP-1c), a key nuclear transcription factor that regulates lipid metabolism, has been proven to play a role in insulin secretion. Insulin induced gene-1 (Insig-1) is an upstream regulatory factor of SREBP-1c. The overexpression of Insig-1 significantly inhibits SREBP-1c expression and thereby blocks the expression of downstream genes. It has been proven that silibinin, a natural flavanone, is involved in a variety of biological functions. In the present study, we examined whether silibinin protects high glucose-induced β cell dysfunction through the Insig-1/SREBP-1c pathway. Our data demonstrated that 30.0 µM of silibinin significantly improved cell viability (P<0.05) after rat insulinoma INS-1 cells were exposed to high glucose for 72 h. Silibinin partially attenuated GSIS following exposure to high glucose for either 24 or 72 h (both P<0.05). As shown by reverse transcription quantitative PCR, silibinin upregulated the mRNA expression of insulin secretion‑related genes [insulin receptor substrate 2 (IRS-2), pancreatic and duodenal homeobox 1 (PDX-1) and insulin], but downregulated uncoupling protein‑2 (UCP-2) expression. Silibinin inhibited intracellular lipid accumulation and free fatty acid (FFA) synthesis. Further experiments revealed that silibinin improved β cell function through the regulation of the Insig-1/SREBP-1c pathway. In conclusion, these results clearly suggest that the protection of β cells from glucotoxicity can be significantly enhanced through the regulation of the Insig-1/SREBP-1c pathway. Thus, silibinin may be a novel therapeutic agent for β cell dysfunction.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Honghui He
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Fang Wang
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
14
|
Bielska AA, Olsen BN, Gale SE, Mydock-McGrane L, Krishnan K, Baker NA, Schlesinger PH, Covey DF, Ory DS. Side-chain oxysterols modulate cholesterol accessibility through membrane remodeling. Biochemistry 2014; 53:3042-51. [PMID: 24758724 PMCID: PMC4020583 DOI: 10.1021/bi5000096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Side-chain
oxysterols, such as 25-hydroxycholesterol (25-HC), are
key regulators of cholesterol homeostasis. New evidence suggests that
the alteration of membrane structure by 25-HC contributes to its regulatory
effects. We have examined the role of oxysterol membrane effects on
cholesterol accessibility within the membrane using perfringolysin
O (PFO), a cholesterol-dependent cytolysin that selectively binds
accessible cholesterol, as a sensor of membrane cholesterol accessibility.
We show that 25-HC increases cholesterol accessibility in a manner
dependent on the membrane lipid composition. Structural analysis of
molecular dynamics simulations reveals that increased cholesterol
accessibility is associated with membrane thinning, and that the effects
of 25-HC on cholesterol accessibility are driven by these changes
in membrane thickness. Further, we find that the 25-HC antagonist
LY295427 (agisterol) abrogates the membrane effects of 25-HC in a
nonenantioselective
manner, suggesting that agisterol antagonizes the cholesterol-homeostatic
effects of 25-HC indirectly through its membrane interactions. These
studies demonstrate that oxysterols regulate cholesterol accessibility,
and thus the availability of cholesterol to be sensed
and transported throughout the cell, by modulating the membrane environment.
This work
provides new insights into how alterations in membrane structure can
be used to relay cholesterol regulatory signals.
Collapse
Affiliation(s)
- Agata A Bielska
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kalantarian S, Rimm EB, Herrington DM, Mozaffarian D. Dietary macronutrients, genetic variation, and progression of coronary atherosclerosis among women. Am Heart J 2014; 167:627-635.e1. [PMID: 24655714 DOI: 10.1016/j.ahj.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 01/06/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous studies observed the surprising finding that saturated fat was inversely associated with atherosclerosis progression in postmenopausal women, whereas polyunsaturated fat (PUFA) and carbohydrates were positively associated. Whether certain genes modify the association of diet with atherosclerotic progression is unknown. METHODS Using Haplotype-tagging single nucleotide polymorphisms, we evaluated gene-diet interactions with 3 preselected genes involved in fatty acid and carbohydrate metabolism: sterol regulatory element binding protein-1 (SREBP1), insulin-induced gene-1 (INSIG1), and SREBP cleavage-activating protein (SCAP). Diet was assessed at baseline. Quantitative coronary angiography was performed at baseline and after a mean of follow-up of 3.09 years in 2,227 coronary segments in 234 postmenopausal women. RESULTS Global effects of each gene and gene-diet interactions for different fats, total fat, and carbohydrate were evaluated. Global tests revealed no main effects between SCAP, INSIG1, and SREBP1 haplotypes and progression of atherosclerosis (P = .87, P = .58, and P = .44). After correction for 5 nutrients evaluated (Bonferroni-corrected 2-tailed α = .01), no significant gene-nutrient interactions were seen, except for a borderline global interaction between SREBP1 and PUFA intake (P interaction = .013). This interaction was specific to the G-C haplotype (frequency 35%) and was driven by n-6 rather than n-3 PUFA (P for interaction < .0001). The interaction was robust to estimated isocaloric replacement of PUFA with any other nutrient. Per each 5% energy from n-6 PUFA, a 0.21-mm greater decline in mean minimal coronary artery diameter was seen among women per each copy of the second most frequent haplotype of SREBP1. CONCLUSIONS We observed an interaction between SREBP1 and PUFA consumption that might explain the positive association of PUFA with atherosclerosis progression in this cohort.
Collapse
|
16
|
Rodrigue‐Way A, Caron V, Bilodeau S, Keil S, Hassan M, Lévy E, Mitchell GA, Tremblay A. Scavenger receptor CD36 mediates inhibition of cholesterol synthesis viaactivation of the PPARγ/PGC‐1α pathway and Insig1/2 expression in hepatocytes. FASEB J 2014; 28:1910-1923. [DOI: 10.1096/fj.13-240168] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Amélie Rodrigue‐Way
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuébecCanada
| | | | - Stéphanie Bilodeau
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuébecCanada
| | - Sarah Keil
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuébecCanada
| | - Meryl Hassan
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
| | - Emile Lévy
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
| | - Grant A. Mitchell
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuébecCanada
- Department of PediatricsUniversity of MontrealMontréalQuébecCanada
| | - André Tremblay
- Research CenterSainte‐Justine HospitalMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuébecCanada
- Department of Obstetrics and Gynecology, Faculty of MedicineUniversity of MontrealMontréalQuébecCanada
| |
Collapse
|
17
|
Chen C, Zhang S, Zhang XS. Discovery of cell-type specific regulatory elements in the human genome using differential chromatin modification analysis. Nucleic Acids Res 2013; 41:9230-42. [PMID: 23945931 PMCID: PMC3814353 DOI: 10.1093/nar/gkt712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/13/2022] Open
Abstract
Chromatin modifications have been comprehensively illustrated to play important roles in gene regulation and cell diversity in recent years. Given the rapid accumulation of genome-wide chromatin modification maps across multiple cell types, there is an urgent need for computational methods to analyze multiple maps to reveal combinatorial modification patterns and define functional DNA elements, especially those are specific to cell types or tissues. In this current study, we developed a computational method using differential chromatin modification analysis (dCMA) to identify cell-type-specific genomic regions with distinctive chromatin modifications. We then apply this method to a public data set with modification profiles of nine marks for nine cell types to evaluate its effectiveness. We found cell-type-specific elements unique to each cell type investigated. These unique features show significant cell-type-specific biological relevance and tend to be located within functional regulatory elements. These results demonstrate the power of a differential comparative epigenomic strategy in deciphering the human genome and characterizing cell specificity.
Collapse
Affiliation(s)
| | - Shihua Zhang
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
18
|
Doi K. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 2012; 36:695-712. [PMID: 22129734 DOI: 10.2131/jts.36.695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Ome, Tokyo, Japan.
| |
Collapse
|
19
|
Mansfield CW, Carr BR, Faye-Petersen OM, Chen D, Xing Y, Rainey WE, Parker CR. Differential gene expression in the adrenals of normal and anencephalic fetuses and studies focused on the Fras-1-related extracellular matrix protein (FREM2) gene. Reprod Sci 2012; 18:1146-53. [PMID: 22031191 DOI: 10.1177/1933719111408113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PRECIS Many genes are differentially expressed in normal compared to anencephalic human fetal adrenals (HFAs), especially the Fras-1-related extracellular matrix protein (FREM2) gene. FREM2 expression appears to be regulated by adrenocorticotrophic hormone (ACTH). CONTEXT The expression profiles of genes responsible for cortical growth and zonation in the HFA gland are poorly characterized. The neural tube disorder anencephaly is associated with fetal adrenal hypoplasia with a large size reduction of the fetal zone of the HFA. OBJECTIVE To determine gene expression profile differences in the adrenals of anencephalic compared to normal HFAs to identify genes that may play important roles in adrenal development. DESIGN AND METHODS Fresh tissues were obtained at the time of autopsy from normal and anencephalic human fetuses delivered at mid-gestation. The following techniques were used: cell culture, messenger RNA (mRNA) extraction, microarray analysis, complementary DNA (cDNA) synthesis, quantitative real-time reverse transcriptase polymerase chain reaction (QT-PCR). RESULTS We identified over 40 genes expressed at levels 4-fold or greater in the normal versus anencephalic HFAs and that 28 genes were expressed at increased levels in the anencephalic HFA. The expression of FREM2 at approximately 40-fold greater levels in the normal HFA compared to the HFA of anencephalic fetuses was confirmed by QT-PCR. Expression of FREM2 in the kidney was not significantly different between normal and anencephalic fetuses. In cultured HFA cells, ACTH treatment for 48 hours increased the expression of FREM2 and a gene responsive to ACTH, CYP17, but not tyrosine hydroxylase. CONCLUSIONS Abnormal expression of many genes may be involved in the adrenal hypoplasia seen in anencephaly. FREM2 appears to be regulated by ACTH and is the most differentially expressed gene, which may be important in the development and function of the HFA, particularly the fetal zone of the HFA.
Collapse
Affiliation(s)
- Christine W Mansfield
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bielska AA, Ory DS, Covey DF. Synthesis of the enantiomer of the oxysterol-antagonist LY295427. Steroids 2011; 76:986-90. [PMID: 21470559 PMCID: PMC3139699 DOI: 10.1016/j.steroids.2011.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 11/20/2022]
Abstract
Cellular cholesterol homeostasis is regulated by oxygenated cholesterol metabolites called oxysterols. While the importance of oxysterols in the acute regulation of cholesterol homeostasis is known, the precise molecular mechanisms through which oxysterols exert their effects remain to be elucidated. LY295427 (1) is a known antagonist of the cholesterol-homeostatic effects of 25-hydroxycholesterol (25-HC), a biologically active oxysterol. In order to examine the mechanism of action of this antagonism, and to further explore recent evidence suggesting that the membrane effects of 25-HC contribute to acute cholesterol regulation, we synthesized the enantiomer of LY295427 (ent-LY295427). ent-LY295427 (2) will serve as a unique probe to provide insight into the role of transcription-independent mechanisms in regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Agata A. Bielska
- Departments of Medicine, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, United States
| | - Daniel S. Ory
- Departments of Medicine, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, United States
| | - Douglas F. Covey
- Developmental Biology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, United States
- Corresponding author. Department of Developmental Biology, Washington University School of Medicine, Box 8103, 660 S. Euclid, St. Louis, MO 63110, United States, Tel.: +1 314 362 1726; fax: +1 314 362 7058;
| |
Collapse
|
21
|
Kim EJ, Kim E, Kwon EY, Jang HS, Hur CG, Choi MS. Network analysis of hepatic genes responded to high-fat diet in C57BL/6J mice: nutrigenomics data mining from recent research findings. J Med Food 2010; 13:743-56. [PMID: 20553184 DOI: 10.1089/jmf.2009.1350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity and its associated complications, including diabetes, dyslipidemia, atherosclerosis, and some cancers, have been a global health problem with a rapid increase of the obese population. In this study, we selected 31 obesity candidate genes in the liver of high-fat-induced obese C57BL/6J mice through investigation of literature search and analyzed functional protein-protein interaction of the genes using the STRING database. Most of the obesity candidate genes were closely connected through lipid metabolism, and in particular acyl-coenzyme A oxidase 1 appeared to be a core obesity gene. Overall, genes involved in fatty acid beta-oxidation, fatty acid synthesis, and gluconeogenesis were up-regulated, and genes involved in sterol biosynthesis, insulin signaling, and oxidative stress defense system were down-regulated with a high-fat diet. Future identification of core obesity genes and their functional targets is expected to provide a new way to prevent obesity by phytochemicals or functional foods on the basis of food and nutritional genomics.
Collapse
Affiliation(s)
- Eun Jung Kim
- Department of Food Science and Nutrition, Food and Nutritional Genomics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Dong XY, Tang SQ. Insulin-induced gene: a new regulator in lipid metabolism. Peptides 2010; 31:2145-50. [PMID: 20817058 DOI: 10.1016/j.peptides.2010.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Insulin-induced genes (Insigs) including Insig-1 and Insig-2, are proteins that mediate sterol regulation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). Insigs perform distinct tasks in the regulation of these effectors: they promote the endoplasmic reticulum (ER) retention of SCAP, but ubiquitin-mediated degradation of HMG-CoA reductase. Through these activities, Insig-1 and Insig-2 influence cholesterol metabolism, lipogenesis, and glucose homeostasis in diverse tissues such as adipose tissue and liver. In this article, we focus on the functions, expression and regulation, gene polymorphisms of Insigs, and their deficiency with diseases.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Yingdong Agricultural Science and Engineering, Shaoguan University, Daxue Avenue, Zhenjiang District, Shaoguan 512005, PR China
| | | |
Collapse
|
23
|
Zavattari P, Loche A, Civolani P, Pilia S, Moi L, Casini MR, Minerba L, Loche S. An INSIG2 Polymorphism Affects Glucose Homeostasis in Sardinian Obese Children and Adolescents. Ann Hum Genet 2010; 74:381-6. [DOI: 10.1111/j.1469-1809.2010.00590.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Taylor JM, Borthwick F, Bartholomew C, Graham A. Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc Res 2010; 86:526-34. [DOI: 10.1093/cvr/cvq015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
26
|
Ribeiro CMP, Hurd H, Wu Y, Martino MEB, Jones L, Brighton B, Boucher RC, O'Neal WK. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS One 2009; 4:e5806. [PMID: 19503797 PMCID: PMC2688381 DOI: 10.1371/journal.pone.0005806] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/02/2009] [Indexed: 02/07/2023] Open
Abstract
Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT) modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation) and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent complexity may help explain the diverse immunomodulatory roles of macrolides.
Collapse
Affiliation(s)
- Carla Maria P Ribeiro
- Cystic Fibrosis Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Willmann M, Wacheck V, Buckley J, Nagy K, Thalhammer J, Paschke R, Triche T, Jansen B, Selzer E. Characterization of NVX-207, a novel betulinic acid-derived anti-cancer compound. Eur J Clin Invest 2009; 39:384-94. [PMID: 19309323 DOI: 10.1111/j.1365-2362.2009.02105.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Development of betulinic acid derivatives for clinical use has been hampered by adverse pharmacological and physico-chemical characteristics of this class of compounds. We here present a novel semi-synthetic betulinic acid-derived drug candidate well suited for further clinical development. MATERIALS AND METHODS In vitro activity and mode of action of NVX-207 were determined using normal as well as cancer cell lines. Gene expression profiling was performed with Affymetrix U133 microarrays. NVX-207 binding partners were identified using a heterobifunctional chemical crosslinker system. Potential binding proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Clinical studies were conducted in canine cancer patients suffering from spontaneously arising pre-treated tumours. RESULTS NVX-207 showed anti-tumour activity (mean IC(50) = 3.5 microM) against various human and canine cell lines. NVX-207-induced apoptosis was associated with activation of the intrinsic apoptotic pathway via cleavage of caspases -9, -3, -7 and of poly (ADP-ribose) polymerase (PARP). Global gene expression profiling demonstrated regulation of genes associated with lipid metabolism, most notably an upregulation of genes coding for insulin-induced gene 1 (Insig-1), low-density lipoprotein receptor (LDL-R) and of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). NVX-207 bound to apolipoprotein A-I, a major regulator of lipid metabolism and cholesterol transport. A phase I/II study in dogs suffering from naturally occurring cancer receiving local treatment of NVX-207 (10 mg mL(-1)) showed excellent clinical responses including a complete remission in so far 5/5 treated animals. CONCLUSIONS NVX-207 is well tolerated and has significant anti-cancer activity in vitro and in vivo in dogs with treatment-resistant malignancies.
Collapse
Affiliation(s)
- M Willmann
- Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chatterjee S, Szustakowski JD, Nanguneri NR, Mickanin C, Labow MA, Nohturfft A, Dev KK, Sivasankaran R. Identification of novel genes and pathways regulating SREBP transcriptional activity. PLoS One 2009; 4:e5197. [PMID: 19381295 PMCID: PMC2668173 DOI: 10.1371/journal.pone.0005197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/05/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders.
Collapse
Affiliation(s)
- Sandipan Chatterjee
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Joseph D. Szustakowski
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Nirmala R. Nanguneri
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Craig Mickanin
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Mark A. Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Axel Nohturfft
- Division of Basic Medical Sciences, St. George's University of London, London, United Kingdom
| | - Kumlesh K. Dev
- Department of Anatomy, University College Cork, Cork, Ireland
- * E-mail: (KKD); (RS)
| | - Rajeev Sivasankaran
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- * E-mail: (KKD); (RS)
| |
Collapse
|
29
|
Palaniappan M, Menon KMJ. Regulation of sterol regulatory element-binding transcription factor 1a by human chorionic gonadotropin and insulin in cultured rat theca-interstitial cells. Biol Reprod 2009; 81:284-92. [PMID: 19299314 DOI: 10.1095/biolreprod.108.074351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Theca-interstitial (T-I) cells of the ovary synthesize androgens in response to luteinizing hormone (LH). In pathological conditions such as polycystic ovarian syndrome, T-I cells are hyperactive in androgen production in response to LH and insulin. Because cholesterol is an essential substrate for androgen production, we examined the effect of human chorionic gonadotropin (hCG) and insulin on signaling pathways that are known to increase cholesterol accumulation in steroidogenic cells. Specifically, the effect of hCG and insulin on sterol regulatory element-binding transcription factor 1a (SREBF1a) required for cholesterol biosynthesis and uptake was examined. Primary cultures of T-I cells isolated from 25-day-old rat ovaries responded to hCG and insulin to increase the active/processed form of SREBF1a. The hCG and insulin significantly reduced insulin-induced gene 1 (INSIG1) protein, a negative regulator of SREBF processing. Furthermore, an increase in the expression of selected SREBF target genes, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) and mevalonate kinase (Mvk), was also observed. Protein kinase A (PRKA) inhibitor completely abolished the hCG-induced increase in SREBF1a, while increasing INSIG1. Although the hCG-induced depletion of total and free cholesterol was abolished by aminoglutethimide, the stimulatory effect on SREBF1a was not totally suppressed. Treatment with 25-hydroxycholesterol abrogated the effect of hCG on SREBF1a. Inhibition of the phosphatidylinositol 3-kinase pathway did not block the insulin-induced increase in SREBF1a, whereas mitogen-activated protein kinase inhibition reduced the insulin response. These results suggest that the increased androgen biosynthesis by T-I cells in response to hCG and insulin is regulated, at least in part, by increasing the expression of sterol response element-responsive genes by increasing SREBF1a.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
30
|
Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J, Torosyan G, Majid S, Falkard B, Kleinhanz RR, Karlsson J, Castellani LW, Mumick S, Wang K, Xie T, Coon M, Zhang C, Estrada-Smith D, Farber CR, Wang SS, van Nas A, Ghazalpour A, Zhang B, Macneil DJ, Lamb JR, Dipple KM, Reitman ML, Mehrabian M, Lum PY, Schadt EE, Lusis AJ, Drake TA. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 2009; 41:415-23. [PMID: 19270708 PMCID: PMC2837947 DOI: 10.1038/ng.325] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/13/2009] [Indexed: 02/06/2023]
Abstract
A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes and identification of involved pathways and networks.
Collapse
Affiliation(s)
- Xia Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pezacki JP, Sagan SM, Tonary AM, Rouleau Y, Bélanger S, Supekova L, Su AI. Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. BMC CHEMICAL BIOLOGY 2009; 9:2. [PMID: 19149867 PMCID: PMC2651120 DOI: 10.1186/1472-6769-9-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/16/2009] [Indexed: 01/31/2023]
Abstract
Background Hepatitis C virus (HCV) infection is a global health problem. A number of studies have implicated a direct role of cellular lipid metabolism in the HCV life cycle and inhibitors of the mevalonate pathway have been demonstrated to result in an antiviral state within the host cell. Transcriptome profiling was conducted on Huh-7 human hepatoma cells bearing subgenomic HCV replicons with and without treatment with 25-hydroxycholesterol (25-HC), an inhibitor of the mevalonate pathway that alters lipid metabolism, to assess metabolic determinants of pro- and antiviral states within the host cell. These data were compared with gene expression profiles from HCV-infected chimpanzees. Results Transcriptome profiling of Huh-7 cells treated with 25-HC gave 47 downregulated genes, 16 of which are clearly related to the mevalonate pathway. Fewer genes were observed to be upregulated (22) in the presence of 25-HC and 5 genes were uniquely upregulated in the HCV replicon bearing cells. Comparison of these gene expression profiles with data collected during the initial rise in viremia in 4 previously characterized HCV-infected chimpanzees yielded 54 overlapping genes, 4 of which showed interesting differential regulation at the mRNA level in both systems. These genes are PROX1, INSIG-1, NK4, and UBD. The expression of these genes was perturbed with siRNAs and with overexpression vectors in HCV replicon cells, and the effect on HCV replication and translation was assessed. Both PROX1 and NK4 regulated HCV replication in conjunction with an antiviral state induced by 25-hydroxycholesterol. Conclusion Treatment of Huh-7 cells bearing HCV replicons with 25-HC leads to the downregulation of many key genes involved in the mevalonate pathway leading to an antiviral state within the host cell. Furthermore, dysregulation of a larger subset of genes not directly related to the mevalonate pathway occurs both in 25-HC-treated HCV replicon harbouring cells as well as during the initial rise in viremia in infected chimpanzees. Functional studies of 3 of these genes demonstrates that they do not directly act as antiviral gene products but that they indirectly contribute to the antiviral state in the host cell. These genes may also represent novel biomarkers for HCV infection, since they demonstrate an outcome-specific expression profile.
Collapse
Affiliation(s)
- John Paul Pezacki
- Steacie Institute for Molecular Sciences, The National Research Council of Canada, Ottawa, K1A 0R6 Canada .
| | | | | | | | | | | | | |
Collapse
|
32
|
Kovacs WJ, Tape KN, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem 2008; 284:7232-45. [PMID: 19110480 DOI: 10.1074/jbc.m809064200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of hepatic cholesterol biosynthesis, lipogenesis, and insulin signaling intersect at the transcriptional level by control of SREBP and Insig genes. We previously demonstrated that peroxisome-deficient PEX2-/- mice activate SREBP-2 pathways but are unable to maintain normal cholesterol homeostasis. In this study, we demonstrate that oral bile acid treatment normalized hepatic and plasma cholesterol levels and hepatic cholesterol synthesis in early postnatal PEX2 mutants, but SREBP-2 and its target gene expressions remained increased. SREBP-2 pathway induction was also observed in neonatal and longer surviving PEX2 mutants, where hepatic cholesterol levels were normal. Abnormal expression patterns for SREBP-1c and Insig-2a, and novel regulation of Insig-2b, further demonstrate that peroxisome deficiency widely affects the regulation of related metabolic pathways. We have provided the first demonstration that peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, especially the integrated stress response mediated by PERK and ATF4 signaling. Our studies suggest a mechanism whereby ER stress leads to dysregulation of the endogenous sterol response mechanism and concordantly activates oxidative stress pathways. Several metabolic derangements in peroxisome-deficient PEX2-/- liver are likely to trigger ER stress, including perturbed flux of mevalonate metabolites, altered bile acid homeostasis, changes in fatty acid levels and composition, and oxidative stress.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Mounier C, Lafond J. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev 2008; 75:1054-62. [DOI: 10.1002/mrd.20842] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Raghow R, Yellaturu C, Deng X, Park EA, Elam MB. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 2008; 19:65-73. [PMID: 18291668 DOI: 10.1016/j.tem.2007.10.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 12/14/2022]
Abstract
The uptake, biosynthesis and metabolism of cholesterol and other lipids are exquisitely regulated by feedback and feed-forward pathways in organisms ranging from Caenorhabditis elegans to humans. As endoplasmic reticulum (ER) membrane-embedded transcription factors that are activated in the Golgi apparatus, sterol regulatory element-binding proteins (SREBPs) are central to the intracellular surveillance of lipid catabolism and de novo biogenesis. The biosynthesis of SREBP proteins, their migration from the ER to the Golgi compartment, intra-membrane proteolysis, nuclear translocation and trans-activation potential are tightly controlled in vivo. Here we summarize recent studies elucidating the transcriptional and post-transcriptional regulation of SREBP-1c through nutrition and the action of hormones, particularly insulin, and the resulting implications for dyslipidemia of obesity, metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Rajendra Raghow
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
35
|
Zhao Y, Chan MY, Zhou S, Heng CK. Effects of atherogenic diet and atorvastatin treatment on gene expression profiles in the C57BL/6J mouse liver. Gene Expr 2008; 14:149-158. [PMID: 18590051 PMCID: PMC6042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigated the early and long-term effects of atherogenic diet on hepatic gene expression, and the restorative effects of atorvastatin in treating hypercholesterolemia. Two groups of female C57BL/6J mice were fed standard chow or atherogenic diet for 1-week early phase study and two other groups for 10 weeks. The fifth group had daily 10 mg/kg atorvastatin injections for 3 weeks from week 8 of the atherogenic diet. Gene expression profiling was carried out with Affymetrix GeneChips. One-week atherogenic diet elevated 38 and inhibited 127 gene expressions, while 10-week atherogenic diet elevated 165 and inhibited 281 genes by more than twofold. Atorvastatin could restore 78.2% and 68%, respectively, of the genes to normal levels. Genes in the Insig (insulin-induced gene)-SREBP (sterol regulatory element binding proteins) pathway were mostly inhibited by atherogenic diet at week 1 but elevated at week 10. Of these, 65.2% were restored by atorvastatin. In conclusion, lipid homeostatic mechanism coped well with short-term atherogenic diet. However, when such a diet was prolonged, the mechanism was no longer effective but entered into a pathological state in which lipogenic genes, especially those in the Insig-SREBP pathway, were upregulated. Atorvastatin could restore changes in the Insig-SREBP pathway that were induced by the atherogenic diet.
Collapse
Affiliation(s)
- Yulan Zhao
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei-Yen Chan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuli Zhou
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
36
|
Martini C, Pallottini V. Cholesterol: from feeding to gene regulation. GENES & NUTRITION 2007; 2:181-93. [PMID: 18850174 PMCID: PMC2474947 DOI: 10.1007/s12263-007-0049-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/16/2006] [Indexed: 01/20/2023]
Abstract
We present here a brief description of the path that cholesterol covers from its intestinal absorption to its effects exerted on gene regulation. In particular, the relationship between cholesterol and the protein complexes involved in the intricate gene regulation mechanism implicated in cholesterol homeostasis will be discussed. In addition, a new target role for the pharmacological interventions of one of these factors, the insulin-induced gene (Insig) protein, will be introduced.
Collapse
Affiliation(s)
- C. Martini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| | - V. Pallottini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| |
Collapse
|
37
|
Fon Tacer K, Kuzman D, Seliskar M, Pompon D, Rozman D. TNF-alpha interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol Genomics 2007; 31:216-27. [PMID: 17566076 DOI: 10.1152/physiolgenomics.00264.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction between disrupted lipid homeostasis and immune response is implicated in the pathogenesis of several diseases, but the molecular bridges between the major players are still a matter of controversy. Our systemic study of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the livers of mice exposed to 20-h cytokine/fasting for the first time shows that TNF-alpha interferes with adaptation to fasting and activates harmful proatherogenic pathways, partially through interaction with the insulin-Insig-sterol regulatory element binding protein (Srebp) signaling pathway. In addition to the increased expression of acute-phase inflammatory genes, the most prominent alterations represent modified lipid homeostasis observed on the gene expression and metabolite levels. These include reduction of HDL-cholesterol, increase of LDL-cholesterol, and elevated expression of cholesterogenic genes, accompanied by increase of potentially harmful precholesterol metabolites and suppression of cholesterol elimination through bile acids, likely by farnesoid X receptor-independent mechanisms. On the transcriptional level, a shift from fatty oxidation toward fatty acid synthesis is observed. The concept of the influence of TNF-alpha on the Srebp regulatory network, followed by downstream effects on sterol metabolism, is novel. Observed acute alterations in lipid metabolism are in agreement with chronic disturbances found in patients.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Center for Functional Genomics and Biochips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
38
|
Martini C, Pallottini V, Cavallini G, Donati A, Bergamini E, Trentalance A. Caloric restrictions affect some factors involved in age-related hypercholesterolemia. J Cell Biochem 2007; 101:235-43. [PMID: 17203467 DOI: 10.1002/jcb.21158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ageing has been defined as a progressive decrease in physiological capacity and a reduced ability to respond to environmental stresses. It has been observed that diet-restricted animals show a minor morbidity in age-related disease. Among these age-related diseases, hypercholesterolemia is the most recurring one and it is often associated with cardiac failure. Several studies have been published indicating age-dependent changes in circulating levels of cholesterol in both humans and in rodents; recently changes have also been reported in the proteins involved in cholesterol homeostasis, that is, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), Insig-induced gene (Insig) protein, SREBP cleavage activating protein (SCAP), sterol regulatory element binding protein (SREBP), and low density lipoprotein receptor (LDLr). Most age-related modifications of biochemical parameters are normalized or very improved in food-restricted animals, so the aim of this work is to examine whether or not alterations of the factors involved in cholesterol homeostasis which occur during ageing could be counteracted by caloric restriction (CR). The data show that the diet restrictions used attenuate the age-related effects on the factors involved in the synthesis and the degradation rate of HMG-CoAR; in spite of this, CRs have a good effect on the age-related hypercholesterolemia whose reduction seems to depend both on the correct membrane LDLr localization and on the proper restored HMG-CoAR activity.
Collapse
Affiliation(s)
- Chiara Martini
- Department of Biology, University of Rome Roma Tre, 446 Viale Marconi, 00146 Rome, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Klopotek A, Hirche F, Eder K. PPAR gamma ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp Biol Med (Maywood) 2006; 231:1365-72. [PMID: 16946405 DOI: 10.1177/153537020623100810] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cholesterol synthesis in animal cells is regulated by sterol regulatory element-binding protein (SREBP)-2. The objective of this study was to investigate whether activation of peroxisome proliferator-activatedreceptor (PPAR)-gamma influences the SREBP-2 dependent cholesterol synthesis in liver and intestinal cells. Therefore, HepG2 and Caco-2 cells were incubated with and without 10 or 30 microM of troglitazone, a synthetic PPAR gamma agonist, for 4 hrs. Incubation with 10 or 30 microM of troglitazone caused a significant, dose-dependent reduction of cholesterol synthesis in both HepG2 and Caco-2 cells (P < 0.05). HepG2 and Caco-2 cells incubated with 10 or 30 microM of troglitazone had also lower mRNA concentrations and lower nuclear protein concentrations of SREBP-2 than untreated control cells (P < 0.05). mRNA concentrations of the SREBP-2 target genes HMG-CoA reductase and LDL receptor were also reduced in HepG2 and Caco-2 cells treated with 30 microM of troglitazone compared to control cells (P < 0.05). In conclusion, this study shows that PPAR gamma activation by troglitazone lowers the cholesterol synthesis in HepG2 and Caco-2 cells by reducing the concentration of nuclear SREBP-2 and successive downregulation of its target genes involved in cholesterol synthesis.
Collapse
Affiliation(s)
- Anett Klopotek
- Institute of Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, D-06108 Halle/Saale, Germany
| | | | | |
Collapse
|
40
|
Coulouarn C, Gomez-Quiroz LE, Lee JS, Kaposi-Novak P, Conner EA, Goldina TA, Onishchenko GE, Factor VM, Thorgeirsson SS. Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology 2006; 44:1003-11. [PMID: 17006931 DOI: 10.1002/hep.21293] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We applied a genome-wide microarray analysis to three transgenic mouse models of liver cancer in which targeted overexpression of c-Myc, E2f1, and a combination of the two was driven by the albumin promoter. Although gene expression profiles in HCC derived in all three transgenic lines were highly similar, oncogene-specific gene expression signatures were identified at an early dysplastic stage of hepatocarcinogenesis. Overexpression of E2f1 was associated with a strong alteration in lipid metabolism, and Srebp1 was identified as a candidate transcription factor responsible for lipogenic enzyme induction. The molecular signature of c-Myc overexpression included the induction of more than 60 genes involved in the translational machinery that correlated with an increase in liver mass. In contrast, the combined activity of c-Myc and E2f1 specifically enhanced the expression of genes involved in mitochondrial metabolism--particularly the components of the respiratory chain--and correlated with an increased ATP synthesis. Thus, the results suggest that E2f1, c-Myc, and their combination may promote liver tumor development by distinct mechanisms. In conclusion, determination of tissue-specific oncogene expression signatures might be useful to identify conserved expression modules in human cancers.
Collapse
Affiliation(s)
- Cédric Coulouarn
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Issandou M. Pharmacological regulation of low density lipoprotein receptor expression: Current status and future developments. Pharmacol Ther 2006; 111:424-33. [PMID: 16423404 DOI: 10.1016/j.pharmthera.2005.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 01/22/2023]
Abstract
Plasma levels of low-density lipoprotein (LDL) cholesterol are considered to be a major risk factor for the development of cardiovascular diseases. The LDL receptor is the key component in the maintenance of cholesterol homeostasis in the body, playing a pivotal role by regulating the hepatic catabolism of LDL cholesterol. Many clinical studies using statins, which up-regulate the LDL receptor expression via a feedback mechanism, have demonstrated that the reduction of LDL cholesterol levels lowers the incidence of cardiovascular events in both primary and secondary prevention. In this context, new strategies designed to increase hepatic LDL receptor activity can be considered as attractive opportunities for future therapy. Several potential new drugs have been described in the last decade to up-regulate LDL receptor expression in vitro and in vivo, thus allowing the identification of new transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Marc Issandou
- GlaxoSmithKline, 25 Avenue du Quebec, 91951 Les Ulis Cedex, France.
| |
Collapse
|
42
|
Abstract
Cholesterol is an essential component of animal cell membranes, and its concentration is tightly controlled by a feedback system that operates at transcriptional and posttranscriptional levels. Here, we discuss recent advances that explain how cells employ an ensemble of membrane-embedded proteins to monitor sterol concentrations and adjust sterol synthesis and uptake.
Collapse
Affiliation(s)
- Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
43
|
Katayama KI, Ueno M, Yamauchi H, Nakayama H, Doi K. Microarray analysis of genes in fetal central nervous system after ethylnitrosourea administration. ACTA ACUST UNITED AC 2005; 74:255-60. [PMID: 15954086 DOI: 10.1002/bdrb.20045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Ethylnitrosourea (ENU), a monofunctional alkylating agent, induces apoptosis and cell cycle arrest in neuroepithelial cells, neural stem cells in the fetal central nervous system (CNS). These effects occur immediately after the administration of ENU to pregnant animals resulting in fetal brain anomalies and long-term effects include brain tumors in the offspring. METHODS Changes in gene expression were investigated in the fetal CNS after ENU administration to pregnant rats using microarray to identify the genes involved in the injury and recovery of the fetal CNS. RESULTS The up-regulation of 21 genes in injury and 15 genes in recovery phases and down-regulation of 5 genes in injury and 3 genes in recovery phases were identified. The genes up-regulated in the injury phase contained p53-target genes that mediate apoptosis and cell cycle arrest, and those in the recovery phase contained cell proliferation-promoting genes. The genes down-regulated in the injury phase contained cholesterol biosynthesis-related genes. In addition, there were some genes that have not been identified to be involved in the CNS injury and recovery. CONCLUSIONS The present study will provide a better understanding of the mechanisms of development, regeneration and carcinogenesis of the CNS as well as the mechanisms of ENU-induced fetal CNS injury and recovery.
Collapse
Affiliation(s)
- Kei-ichi Katayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
44
|
Sathishkumar K, Haque M, Perumal TE, Francis J, Uppu RM. A major ozonation product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al, induces apoptosis in H9c2 cardiomyoblasts. FEBS Lett 2005; 579:6444-50. [PMID: 16288747 DOI: 10.1016/j.febslet.2005.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 10/23/2005] [Indexed: 10/25/2022]
Abstract
Cholesterol, a major neutral lipid component of biological membranes and the lung epithelial lining fluids, is susceptible to oxidation by reactive oxygen and nitrogen species including ozone. The oxidation by ozone in biological environments results in the formation of 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (cholesterol secoaldehyde or CSeco, major product) along with some other minor products. Recently, CSeco has been implicated in the pathogenesis of atherosclerosis and Alzheimer's disease. In this communication, we report that CSeco induces cytotoxicity in H9c2 cardiomyoblasts with an IC(50) of 8.9+/-1.29 microM (n=6). The observed effect of CSeco at low micromolar concentrations retained several key features of apoptosis, such as changes in nuclear morphology, phosphatidylserine externalization, DNA fragmentation, and caspase 3/7 activity. Treatment of cardiomyocytes with 5 microM CSeco for 24h, for instance, resulted in 30.8+/-3.28% apoptotic and 1.8+/-1.11% of necrotic cells as against DMSO controls that only showed 1.3+/-0.33% of apoptosis and 1.6+/-0.67% of necrosis. In general, the loss of cellular viability paralleled the increased occurrence of apoptotic cells in various CSeco treatments. This study, for the first time, demonstrates the induction of apoptotic cell death in cardiomyocytes by a cholesterol ozonation product, implying a role for ozone in myocardial injury.
Collapse
Affiliation(s)
- K Sathishkumar
- Department of Environmental Toxicology and The Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | | | | | | | | |
Collapse
|
45
|
Flegentov GI, Tkachev IV, Piĭr EA, Pleshkova AP, Timofeev VP, Misharin AI. 22,23-Epoxides of Sitosterol and Related 7-Oxygenated Δ5-Sterols. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005; 31:528-34. [PMID: 16245696 DOI: 10.1007/s11171-005-0065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
(22S,23S)-22,23-Epoxysitosterol, (22R,23R)-22,23-epoxysitosterol, (22S,23S)-22,23-epoxy-7-ketositosterol, (22R,23R)-22,23-epoxy-7-ketositosterol, (22S,23S)-22,23-epoxy-7alpha-hydroxysitosterol, (22R,23R)-22,23-epoxy-7alpha-hydroxysitosterol, (22S,23S)-22,23-epoxy-7beta-hydroxysitosterol, and (22R,23R)-22,23-epoxy-7beta-hydroxysitosterol were synthesized. Their 1H and 13C NMR and the mass spectra of their trimethylsilyl derivatives were studied.
Collapse
|
46
|
Keeton AB, Bortoff KD, Franklin JL, Messina JL. Blockade of rapid versus prolonged extracellularly regulated kinase 1/2 activation has differential effects on insulin-induced gene expression. Endocrinology 2005; 146:2716-25. [PMID: 15731359 DOI: 10.1210/en.2004-1662] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work, insulin's regulation of expression of activating transcription factor 3 (ATF-3), the putative transcription factor proline-rich induced protein (Pip)92, and insulin-inducible gene-1 (Insig-1) (an ER resident protein involved in regulation of sterol-responsive element-binding protein 1 activation) have been examined in a liver-derived cell line (rat H4IIE hepatoma cells). We report that: 1) insulin-induced transcription of ATF-3, Pip92, and Insig-1 required MEK-ERK activation; 2) insulin-induced transcription of ATF-3 and Pip92 reached maximum levels within 15 min and was blocked by wortmannin but not LY294002; 3) in contrast, the maximum level of insulin-induced transcription of Insig-1 was delayed and was not blocked by either wortmannin or LY294002; 4) insulin activated ERK1/2 in two distinct phases, a rapid peak and a later plateau; 5) the delayed plateau phase of insulin-induced ERK1/2 activation was partially phosphatidylinositol 3-OH-kinase dependent; and 6) however, the rapid, insulin-induced peak of ERK1/2 activation was blocked by wortmannin but not LY294002.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Boulevard, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
47
|
Kim S, Sohn I, Lee YS, Lee YS. Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 2005; 135:33-41. [PMID: 15623829 DOI: 10.1093/jn/135.1.33] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We reported previously that genistein enhances the expression of genes involved in fatty acid catabolism through activation of peroxisome proliferator-activated receptor (PPAR) alpha in HepG2 cells, suggesting that genistein holds great promise for therapeutic applications to lipid abnormalities such as obesity and hyperlipidemia in humans. In this study, we examined the changes in hepatic transcriptional profiles using cDNA microarrays in mice with high-fat diet (HFD)-induced obesity supplemented with genistein. C57BL/6J male mice (n = 10/group) were fed a low-fat diet (LFD), a HFD, or a HFD supplemented with 2 g/kg genistein (HFD+GEN) for 12 wk. Mice fed the HFD had abnormal lipid profiles and significantly greater body weight and visceral fat accumulation than the LFD-fed group. Genistein supplementation improved lipid profiles and hepatic steatosis and attenuated the increases in body weight and visceral fat in HFD-fed mice. The cDNA microarrays revealed marked alterations in the expression of 107 genes in the mice fed the HFD and/or the HFD+GEN. Of 97 transcripts altered in the HFD-fed group, 84 genes were normalized by genistein supplementation. However, several genes involved in fatty acid catabolism were not normalized but were still upregulated in the HFD+GEN-fed group, relative to the LFD-fed group. Furthermore, carnitine O-octanoyltransferase, which accelerates fatty acid oxidation, was not affected by the HFD, but was induced by genistein supplementation. These results are consistent with our previous study showing that genistein is an activator of PPAR alpha in vitro. This study showed beneficial effects of genistein supplementation in preventing the development of obesity and metabolic abnormalities in mice with diet-induced obesity. Our results also provide interesting information about the genes associated with the beneficial effects of genistein as well as the mechanisms underlying the development and maintenance of the obesity phenotype in vivo.
Collapse
Affiliation(s)
- Sujong Kim
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | |
Collapse
|
48
|
Lee S, Lee DK, Choi E, Lee JW. Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes. Mol Endocrinol 2004; 19:399-408. [PMID: 15528275 DOI: 10.1210/me.2004-0324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin-induced gene-1 (Insig-1) and its homolog Insig-2 encode closely related proteins of the endoplasmic reticulum that block proteolytic activation of sterol regulatory element binding proteins, membrane-bound transcription factors that activate synthesis of cholesterol and fatty acids in animal cells. These proteins also restrict lipogenesis in mature adipocytes and block differentiation of preadipocytes. Herein, we identified a novel 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] response element in the promoter region of Insig-2 gene, which specifically binds to the heterodimer of retinoid X receptor and vitamin D receptor (VDR) and directs VDR-mediated transcriptional activation in a 1,25-(OH)2D3-dependent manner. Interestingly, 1,25-(OH)2D3 is known to directly suppress the expression of peroxisome proliferator-activated receptor gamma2 protein and inhibits adipocyte differentiation of 3T3-L1 preadipocytes and murine bone marrow stromal cells. Consistent with an idea that the antiadipogenic action of 1,25-(OH)2D3 may also involve up-regulation of Insig-2, we found that 1,25-(OH)2D3 transiently but strongly induces Insig-2 expression in 3T3-L1 cells. This novel regulatory circuit may also play important roles in other lipogenic cell types that express VDR, and collectively our results suggest an intriguing, new linkage between 1,25-(OH)2D3 and lipogenesis.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
49
|
Du X, Pham YH, Brown AJ. Effects of 25-Hydroxycholesterol on Cholesterol Esterification and Sterol Regulatory Element-binding Protein Processing Are Dissociable. J Biol Chem 2004; 279:47010-6. [PMID: 15317807 DOI: 10.1074/jbc.m408690200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The regulatory pool of cholesterol is located in the endoplasmic reticulum (ER) and is key to how mammalian cells sense and respond to changes in cellular cholesterol levels. The extent of cholesterol esterification by the ER-resident protein, acyl-coenzyme A:cholesterol acyl-transferase (ACAT), has become the standard method for monitoring cholesterol transport to the ER and is assumed to reflect the regulatory pool of ER cholesterol. The oxysterol, 25-hydroxycholesterol (25HC), is thought to trigger intracellular cholesterol transport to the ER. In support of this contention, we confirmed previous reports that 25HC activates cholesterol esterification and is a potent suppressor of the sterol regulatory element-binding protein (SREBP) pathway. Processing of the ER membrane-bound SREBP into a soluble transcription factor is controlled by cholesterol levels in the ER. In this study, we addressed whether or not cholesterol esterification necessarily reflects cholesterol movement to the cholesterol homeostatic machinery in the ER as determined by SREBP processing. We found that three agents that inhibited the ability of 25HC to induce cholesterol esterification (progesterone, nigericin, and monensin) did not have a corresponding effect on 25HC suppression of SREBP processing. Moreover, ACAT inhibition did not alter the sensitivity of SREBP processing to 25HC. Therefore, cholesterol esterification by the ER-resident protein ACAT is dissociable from cholesterol transport to the cholesterol homeostatic machinery in the ER. In light of our results, we question the security of previous work that has inferred cholesterol transport to the ER regulatory pool based solely on cholesterol esterification.
Collapse
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences, Biological Sciences Building D26, University of New South Wales, Sydney, 2052, Australia
| | | | | |
Collapse
|
50
|
Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 2004; 340:99-109. [PMID: 15556298 DOI: 10.1016/j.gene.2004.06.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/17/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
To understand the molecular mechanisms underlying alterations in the pathophysiologic status of dietary obesity, we examined hepatic genes differentially expressed in a long-term high-fat intake-induced obesity mouse model. C57BL/6J male mice were fed with two kinds of diets for 12 weeks; a low-fat diet (LFD), a high-fat diet (HFD; n=8), and the expression levels of approximately 10,000 transcripts in liver tissues from the two groups were assessed using cDNA microarray analysis. Twelve-week feeding with the HFD resulted in significant increase in body weight, visceral fat accumulation and circulating cholesterol concentration, compared with the LFD group. The cDNA microarray analysis revealed marked differences in the expressions of 97 hepatic genes. These genes were categorized into seven groups:metabolism; defense, stress, and inflammation responses; signal transduction, apoptosis, and cell cycle; transcription regulation; protein synthesis and modification; transport; and cellular adhesion, cytoskeleton and trafficking. The expression of genes involved in fatty acid catabolism and ketone body synthesis, such as acyl-CoA oxidase1 (Acox1) and HMG-CoA lyase (Hmgcl), was significantly increased, and expression of genes involved in lipogenesis and cholesterol synthesis, such as acetyl-CoA synthetase2 (Acs2), fatty acid synthase (Fasn), and squalene epoxidase (Sqle), was drastically decreased in the HFD group. Interestingly, the genes implicated in defense and stress responses, such as glutathione S-transferases (GSTs) and heat shock proteins (Hsps), were also highly represented in the HFD group. Besides, a number of previously unappreciated regulatory molecules were changed by the HFD. These results revealed a transcriptional adaptation to long-term HFD and provided interesting information about the molecules involved in the development and maintenance of the obesity phenotype in vivo.
Collapse
Affiliation(s)
- Sujong Kim
- Department of Biochemistry, College of Medicine, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea.
| | | | | | | | | | | |
Collapse
|