1
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Vanetti C, Saulle I, Artusa V, Moscheni C, Cappelletti G, Zecchini S, Strizzi S, Garziano M, Fenizia C, Tosoni A, Broggiato M, Ogno P, Nebuloni M, Clerici M, Trabattoni D, Limanaqi F, Biasin M. A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:353-367. [PMID: 39421150 PMCID: PMC11486504 DOI: 10.15698/mic2024.10.838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an in vitro co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Valentina Artusa
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
| | - Antonella Tosoni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Martina Broggiato
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Pasquale Ogno
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Manuela Nebuloni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of MilanMilanItaly
- Department of Biomedical and Clinical Sciences, Fondazione Don Carlo Gnocchi, IRCCSMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of MilanMilanItaly
| |
Collapse
|
3
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
4
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
6
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
8
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Driedonks TA, Nyberg LH, Conte A, Ma Z, Pekosz A, Duban E, Tonevitsky A, Sültmann H, Turchinovich A, Witwer KW. Viral and host small RNA transcriptome analysis of SARS-CoV-1 and SARS-CoV-2-infected human cells reveals novel viral short RNAs. Heliyon 2024; 10:e24570. [PMID: 38314306 PMCID: PMC10837498 DOI: 10.1016/j.heliyon.2024.e24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
RNA viruses have been shown to express various short RNAs, some of which have regulatory roles during replication, transcription, and translation of viral genomes. However, short viral RNAs generated from SARS-CoV-1 and SARS-CoV-2 genomic RNAs remained largely unexplored, possibly due limitations of the widely used library preparation methods for small RNA deep sequencing and corresponding data processing. By analyzing publicly available small RNA sequencing datasets, we observed that human Calu-3 cells infected by SARS-CoV-1 or SARS-CoV-2 accumulate multiple previously unreported short viral RNAs. In addition, we verified the presence of the five most abundant SARS-CoV-2 short viral RNAs in SARS-CoV-2-infected human lung adenocarcinoma cells by quantitative PCR. Interestingly, the copy number of the observed SARS-CoV-2 short viral RNAs dramatically exceeded the expression of previously reported viral microRNAs in the same cells. We hypothesize that the reported SARS-CoV-2 short viral RNAs could serve as biomarkers for early infection stages due to their high abundance. Furthermore, unlike SARS-CoV-1, the SARS-CoV-2 infection induced significant (Benjamini-Hochberg-corrected p-value <0.05) deregulation of Y-RNA, transfer RNA, vault RNA, as well as more than 300 endogenous short RNAs that aligned predominantly to human protein-coding and long noncoding RNA transcripts. In particular, more than 20-fold upregulation of reads derived from Y-RNA (and several transfer RNAs) have been documented in RNA-seq datasets from SARS-CoV-2 infected cells. Finally, a significant proportion of short RNAs derived from full-length viral genomes also aligned to various human genome (hg38) sequences, suggesting opportunities to investigate regulatory roles of short viral RNAs during infection. Further characterization of the small RNA landscape of both viral and host genomes is clearly warranted to improve our understanding of molecular events related to infection and to design more efficient strategies for therapeutic interventions as well as early diagnosis.
Collapse
Affiliation(s)
- Tom A.P. Driedonks
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyle H. Nyberg
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zexu Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Biolabs GmbH, Heidelberg, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Tucker EJ, Wong SW, Marri S, Ali S, Fedele AO, Michael MZ, Rojas-Canales D, Li JY, Lim CK, Gleadle JM. SARS-CoV-2 produces a microRNA CoV2-miR-O8 in patients with COVID-19 infection. iScience 2024; 27:108719. [PMID: 38226175 PMCID: PMC10788221 DOI: 10.1016/j.isci.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Many viruses produce microRNAs (miRNAs), termed viral miRNAs (v-miRNAs), with the capacity to target host gene expression. Bioinformatic and cell culture studies suggest that SARS-CoV-2 can also generate v-miRNAs. This patient-based study defines the SARS-CoV-2 encoded small RNAs present in nasopharyngeal swabs of patients with COVID-19 infection using small RNA-seq. A specific conserved sequence (CoV2-miR-O8) is defined that is not expressed in other coronaviruses but is preserved in all SARS-CoV-2 variants. CoV2-miR-O8 is highly represented in nasopharyngeal samples from patients with COVID-19 infection, is detected by RT-PCR assays in patients, has features consistent with Dicer and Drosha generation as well as interaction with Argonaute and targets specific human microRNAs.
Collapse
Affiliation(s)
- Elise J. Tucker
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Soon Wei Wong
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Saira Ali
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Anthony O. Fedele
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
| | - Michael Z. Michael
- College of Medicine and Public Health, Flinders University, SA, Australia
- Department of Gastroenterology, Flinders Medical Centre, SA, Australia
| | - Darling Rojas-Canales
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Jordan Y. Li
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Chuan Kok Lim
- Infectious Diseases Laboratories, SA Pathology, SA, Australia
| | - Jonathan M. Gleadle
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| |
Collapse
|
11
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
12
|
Bhargava A, Szachnowski U, Chazal M, Foretek D, Caval V, Aicher SM, Pipoli da Fonseca J, Jeannin P, Beauclair G, Monot M, Morillon A, Jouvenet N. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-κB pathway toward SARS-CoV-2. iScience 2023; 26:108449. [PMID: 38213785 PMCID: PMC10783605 DOI: 10.1016/j.isci.2023.108449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.
Collapse
Affiliation(s)
- Anvita Bhargava
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Ugo Szachnowski
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Dominika Foretek
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Sophie-Marie Aicher
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | | | - Patricia Jeannin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Marc Monot
- Institut Pasteur, Université de Paris, Biomics Platform, C2RT, 75015 Paris, France
| | - Antonin Morillon
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| |
Collapse
|
13
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Shi W, Chen M, Pan T, Chen M, Cheng Y, Hao Y, Chen S, Tang Y. Integration of risk variants from GWAS with SARS-CoV-2 RNA interactome prioritizes FUBP1 and RAB2A as risk genes for COVID-19. Sci Rep 2023; 13:19194. [PMID: 37932299 PMCID: PMC10628159 DOI: 10.1038/s41598-023-44705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
The role of host genetic factors in COVID-19 outcomes remains unclear despite various genome-wide association studies (GWAS). We annotate all significant variants and those variants in high LD (R2 > 0.8) from the COVID-19 host genetics initiative (HGI) and identify risk genes by recognizing genes intolerant nonsynonymous mutations in coding regions and genes associated with cis-expression quantitative trait loci (cis-eQTL) in non-coding regions. These genes are enriched in the immune response pathway and viral life cycle. It has been found that host RNA binding proteins (RBPs) participate in different phases of the SARS-CoV-2 life cycle. We collect 503 RBPs that interact with SARS-CoV-2 RNA concluded from in vitro studies. Combining risk genes from the HGI with RBPs, we identify two COVID-19 risk loci that regulate the expression levels of FUBP1 and RAB2A in the lung. Due to the risk allele, COVID-19 patients show downregulation of FUBP1 and upregulation of RAB2A. Using single-cell RNA sequencing data, we show that FUBP1 and RAB2A are expressed in SARS-CoV-2-infected upper respiratory tract epithelial cells. We further identify NC_000001.11:g.77984833C>A and NC_000008.11:g.60559280T>C as functional variants by surveying allele-specific transcription factor sites and cis-regulatory elements and performing motif analysis. To sum up, our research, which associates human genetics with expression levels of RBPs, identifies FUBP1 and RAB2A as two risk genes for COVID-19 and reveals the anti-viral role of FUBP1 and the pro-viral role of RAB2A in the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Weiwen Shi
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke Chen
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengjie Chen
- Department of Rheumatology, the First People's Hospital of Wenling, Taizhou, China
| | - Yongjun Cheng
- Department of Rheumatology, the First People's Hospital of Wenling, Taizhou, China
| | - Yimei Hao
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai, China.
| |
Collapse
|
15
|
Malvankar S, Singh A, Ravi Kumar YS, Sahu S, Shah M, Murghai Y, Seervi M, Srivastava RK, Verma B. Modulation of various host cellular machinery during COVID-19 infection. Rev Med Virol 2023; 33:e2481. [PMID: 37758688 DOI: 10.1002/rmv.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.
Collapse
Affiliation(s)
- Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Shah
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Rad SMAH, Wannigama DL, Hirankarn N, McLellan AD. The impact of non-synonymous mutations on miRNA binding sites within the SARS-CoV-2 NSP3 and NSP4 genes. Sci Rep 2023; 13:16945. [PMID: 37805621 PMCID: PMC10560223 DOI: 10.1038/s41598-023-44219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
Non-synonymous mutations in the SARS-CoV-2 spike region affect cell entry, tropism, and immune evasion, while frequent synonymous mutations may modify viral fitness. Host microRNAs, a type of non-coding RNA, play a crucial role in the viral life cycle, influencing viral replication and the host immune response directly or indirectly. Recently, we identified ten miRNAs with a high complementary capacity to target various regions of the SARS-CoV-2 genome. We filtered our candidate miRNAs to those only expressed with documented expression in SARS-CoV-2 target cells, with an additional focus on miRNAs that have been reported in other viral infections. We determined if mutations in the first SARS-CoV-2 variants of concern affected these miRNA binding sites. Out of ten miRNA binding sites, five were negatively impacted by mutations, with three recurrent synonymous mutations present in multiple SARS-CoV-2 lineages with high-frequency NSP3: C3037U and NSP4: G9802U/C9803U. These mutations were predicted to negatively affect the binding ability of miR-197-5p and miR-18b-5p, respectively. In these preliminary findings, using a dual-reporter assay system, we confirmed the ability of these miRNAs in binding to the predicted NSP3 and NSP4 regions and the loss/reduced miRNA bindings due to the recurrent mutations.
Collapse
Affiliation(s)
- S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
Naeli P, Zhang X, Snell PH, Chatterjee S, Kamran M, Ladak RJ, Orr N, Duchaine T, Sonenberg N, Jafarnejad SM. The SARS-CoV-2 protein NSP2 enhances microRNA-mediated translational repression. J Cell Sci 2023; 136:jcs261286. [PMID: 37732428 PMCID: PMC10617620 DOI: 10.1242/jcs.261286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
Viruses use microRNAs (miRNAs) to impair the host antiviral response and facilitate viral infection by expressing their own miRNAs or co-opting cellular miRNAs. miRNAs inhibit translation initiation of their target mRNAs by recruiting the GIGYF2-4EHP (or EIF4E2) translation repressor complex to the mRNA 5'-cap structure. We recently reported that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-encoded non-structural protein 2 (NSP2) interacts with GIGYF2. This interaction is critical for blocking translation of the Ifnb1 mRNA that encodes the cytokine interferon β, and thereby impairs the host antiviral response. However, it is not known whether NSP2 also affects miRNA-mediated silencing. Here, we demonstrate the pervasive augmentation of miRNA-mediated translational repression of cellular mRNAs by NSP2. We show that NSP2 interacts with argonaute 2 (AGO2), the core component of the miRNA-induced silencing complex (miRISC), via GIGYF2 and enhances the translational repression mediated by natural miRNA-binding sites in the 3' untranslated region of cellular mRNAs. Our data reveal an additional layer of the complex mechanism by which SARS-CoV-2 and likely other coronaviruses manipulate the host gene expression program by co-opting the host miRNA-mediated silencing machinery.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Xu Zhang
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Muhammad Kamran
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Reese Jalal Ladak
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Nick Orr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Thomas Duchaine
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, H3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| |
Collapse
|
18
|
Moatar AI, Chis AR, Romanescu M, Ciordas PD, Nitusca D, Marian C, Oancea C, Sirbu IO. Plasma miR-195-5p predicts the severity of Covid-19 in hospitalized patients. Sci Rep 2023; 13:13806. [PMID: 37612439 PMCID: PMC10447562 DOI: 10.1038/s41598-023-40754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Predicting the clinical course of Covid-19 is a challenging task, given the multi-systemic character of the disease and the paucity of minimally invasive biomarkers of disease severity. Here, we evaluated the early (first two days post-admission) level of circulating hsa-miR-195-5p (miR-195, a known responder to viral infections and SARS-CoV-2 interactor) in Covid-19 patients and assessed its potential as a biomarker of disease severity. We show that plasma miR-195 correlates with several clinical and paraclinical parameters, and is an excellent discriminator between the severe and mild forms of the disease. Our Gene Ontology analysis of miR-195 targets differentially expressed in Covid-19 indicates a strong impact on cardiac mitochondria homeostasis, suggesting a possible role in long Covid and chronic fatigue syndrome (CFS) syndromes.
Collapse
Affiliation(s)
- Alexandra Ioana Moatar
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Aimee Rodica Chis
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Mirabela Romanescu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Paula-Diana Ciordas
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Cristian Oancea
- Department of Infectious Diseases, Discipline of Pulmonology, University of Medicine and Pharmacy "Victor Babes", E. Murgu Square no.2, 300041, Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, E. Murgu Square 2, 300041, Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Timisoara Institute of Complex Systems, 18 Vasile Lucaciu Str, 300044, Timisoara, Romania.
| |
Collapse
|
19
|
Lopez-Orozco J, Fayad N, Khan JQ, Felix-Lopez A, Elaish M, Rohamare M, Sharma M, Falzarano D, Pelletier J, Wilson J, Hobman TC, Kumar A. The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2. J Mol Biol 2023; 435:168170. [PMID: 37271493 PMCID: PMC10238125 DOI: 10.1016/j.jmb.2023.168170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.
Collapse
Affiliation(s)
- Joaquin Lopez-Orozco
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nawell Fayad
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Juveriya Qamar Khan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Mohamed Elaish
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Megha Rohamare
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Maansi Sharma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Joyce Wilson
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Tom C Hobman
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| | - Anil Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
20
|
Rojas-Cruz AF, Bermúdez-Santana CI. Computational Prediction of RNA-RNA Interactions between Small RNA Tracks from Betacoronavirus Nonstructural Protein 3 and Neurotrophin Genes during Infection of an Epithelial Lung Cancer Cell Line: Potential Role of Novel Small Regulatory RNA. Viruses 2023; 15:1647. [PMID: 37631989 PMCID: PMC10458423 DOI: 10.3390/v15081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Whether RNA-RNA interactions of cytoplasmic RNA viruses, such as Betacoronavirus, might end in the biogenesis of putative virus-derived small RNAs as miRNA-like molecules has been controversial. Even more, whether RNA-RNA interactions of wild animal viruses may act as virus-derived small RNAs is unknown. Here, we address these issues in four ways. First, we use conserved RNA structures undergoing negative selection in the genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 circulating in different bat species, intermediate animals, and human hosts. Second, a systematic literature review was conducted to identify Betacoronavirus-targeting hsa-miRNAs involved in lung cell infection. Third, we employed sophisticated long-range RNA-RNA interactions to refine the seed sequence homology of hsa-miRNAs with conserved RNA structures. Fourth, we used high-throughput RNA sequencing of a Betacoronavirus-infected epithelial lung cancer cell line (Calu-3) to validate the results. We proposed nine potential virus-derived small RNAs: two vsRNAs in SARS-CoV (Bats: SB-vsRNA-ORF1a-3p; SB-vsRNA-S-5p), one vsRNA in MERS-CoV (Bats: MB-vsRNA-ORF1b-3p), and six vsRNAs in SARS-CoV-2 (Bats: S2B-vsRNA-ORF1a-5p; intermediate animals: S2I-vsRNA-ORF1a-5p; and humans: S2H-vsRNA-ORF1a-5p, S2H-vsRNA-ORF1a-3p, S2H-vsRNA-ORF1b-3p, S2H-vsRNA-ORF3a-3p), mainly encoded by nonstructural protein 3. Notably, Betacoronavirus-derived small RNAs targeted 74 differentially expressed genes in infected human cells, of which 55 upregulate the molecular mechanisms underlying acute respiratory distress syndrome (ARDS), and the 19 downregulated genes might be implicated in neurotrophin signaling impairment. These results reveal a novel small RNA-based regulatory mechanism involved in neuropathogenesis that must be further studied to validate its therapeutic use.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Clara Isabel Bermúdez-Santana
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
21
|
Hoang HD, Naeli P, Alain T, Jafarnejad SM. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem Soc Trans 2023; 51:1047-1056. [PMID: 37199495 PMCID: PMC10317165 DOI: 10.1042/bst20221037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Interferons (IFNs) are crucial components of the cellular innate immune response to viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a remarkable capacity to suppress the host IFN production to benefit viral replication and spread. Thus far, of the 28 known virus-encoded proteins, 16 have been found to impair the host's innate immune system at various levels ranging from detection and signaling to transcriptional and post-transcriptional regulation of expression of the components of the cellular antiviral response. Additionally, there is evidence that the viral genome encodes non-protein-coding microRNA-like elements that could also target IFN-stimulated genes. In this brief review, we summarise the current state of knowledge regarding the factors and mechanisms by which SARS-CoV-2 impairs the production of IFNs and thereby dampens the host's innate antiviral immune response.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Parisa Naeli
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| |
Collapse
|
22
|
Ruivinho C, Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic. Front Genet 2023; 14:1216890. [PMID: 37415603 PMCID: PMC10322155 DOI: 10.3389/fgene.2023.1216890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.
Collapse
|
23
|
Greco F, Lorefice E, Carissimi C, Laudadio I, Ciccosanti F, Di Rienzo M, Colavita F, Meschi S, Maggi F, Fimia GM, Fulci V. A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity. Noncoding RNA 2023; 9:33. [PMID: 37368333 DOI: 10.3390/ncrna9030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Virus-encoded microRNAs were first reported in the Epstein-Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells.
Collapse
Affiliation(s)
- Francesco Greco
- Dipartimento di Medicina Molecolare, Università di Roma "La Sapienza", 00161 Rome, Italy
| | - Elisa Lorefice
- Dipartimento di Medicina Molecolare, Università di Roma "La Sapienza", 00161 Rome, Italy
| | - Claudia Carissimi
- Dipartimento di Medicina Molecolare, Università di Roma "La Sapienza", 00161 Rome, Italy
| | - Ilaria Laudadio
- Dipartimento di Medicina Molecolare, Università di Roma "La Sapienza", 00161 Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', 00149 Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', 00149 Rome, Italy
| | - Francesca Colavita
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', 00149 Rome, Italy
| | - Silvia Meschi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', 00149 Rome, Italy
| | - Fabrizio Maggi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', 00149 Rome, Italy
| | - Gian Maria Fimia
- Dipartimento di Medicina Molecolare, Università di Roma "La Sapienza", 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', 00149 Rome, Italy
| | - Valerio Fulci
- Dipartimento di Medicina Molecolare, Università di Roma "La Sapienza", 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
24
|
Fossat N, Lundsgaard EA, Costa R, Rivera-Rangel LR, Nielsen L, Mikkelsen LS, Ramirez S, Bukh J, Scheel TKH. Identification of the viral and cellular microRNA interactomes during SARS-CoV-2 infection. Cell Rep 2023; 42:112282. [PMID: 36961814 PMCID: PMC9995319 DOI: 10.1016/j.celrep.2023.112282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had a tremendous impact worldwide. Mapping virus-host interactions is critical to understand disease progression. MicroRNAs (miRNAs) are important RNA regulators, but their interaction with SARS-CoV-2 RNA was not experimentally investigated. Here, using Argonaute (AGO) cross-linking immunoprecipitation combined with RNA proximity ligation (CLEAR-CLIP), we provide unbiased mapping of SARS-CoV-2/miRNA interactions. We identified six main regions on the viral RNA bound primarily by one specific miRNA. Targeted mutagenesis and AGO1-3 knockdown demonstrated that these interactions are not critical for virus production. Moreover, we identified perturbed regulation of cellular miRNA interactions during infection, including non-compensated viral sequestration of the miR-15 family. Transcriptome analysis further showed that mRNAs targeted by this miRNA family are derepressed. This work delineates the interphase between miRNA regulation and SARS-CoV-2 infection and further contributes to deciphering the full molecular interactome of this virus.
Collapse
Affiliation(s)
- Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Emma A Lundsgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA.
| |
Collapse
|
25
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
26
|
Saini S, Khurana S, Saini D, Rajput S, Thakur CJ, Singh J, Jaswal A, Kapoor Y, Kumar V, Saini A. In silico analysis of genomic landscape of SARS-CoV-2 and its variant of concerns (Delta and Omicron) reveals changes in the coding potential of miRNAs and their target genes. Gene 2023; 853:147097. [PMID: 36470485 PMCID: PMC9721428 DOI: 10.1016/j.gene.2022.147097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 related morbidities and mortalities are still continued due to the emergence of new variants of SARS-CoV-2. In the last few years, viral miRNAs have been the centre of study to understand the disease pathophysiology. In this work, we aimed to predict the change in coding potential of the viral miRNAs in SARS-CoV-2's VOCs, Delta and Omicron compared to the Reference (Wuhan origin) strain using bioinformatics tools. After ab-intio based screening by the Vmir tool and validation, we retrieved 22, 6, and 6 pre-miRNAs for Reference, Delta, and Omicron. Most of the predicted unique pre-miRNAs of Delta and Omicron were found to be encoded from the terminal and origin of the genomic sequence, respectively. Mature miRNAs identified by MatureBayes from the unique pre-miRNAs were used for target identification using miRDB. A total of 1786, 216, and 143 high-confidence target genes were captured for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The GO and KEGG pathways terms analysis revealed the involvement of Delta miRNAs targeted genes in the pathways such as Human cytomegalovirus infection, Breast cancer, Apoptosis, Neurotrophin signaling, and Axon guidance whereas the Sphingolipid signaling pathway was found for the Omicron. Furthermore, we focussed our analysis on target genes that were validated through GEO's (Gene Expression Omnibus) DEGs (Differentially Expressed Genes) dataset, in which FGL2, TNSF12, OGN, GDF11, and BMP11 target genes were found to be down-regulated by Reference miRNAs and YAE1 and RSU1 by Delta. Few genes were also observed to be validated among in up-regulated gene set of the GEO dataset, in which MMP14, TNFRSF21, SGMS1, and TMEM192 were related to Reference whereas ZEB2 was detected in all three strains. This study thus provides an in-silico based analysis that deciphered the unique pre-miRNAs in Delta and Omicron compared to Reference. However, the findings need future wet lab studies for validation.
Collapse
Affiliation(s)
- Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India; Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Savi Khurana
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Dikshant Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Saru Rajput
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Jeevisha Singh
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Akanksha Jaswal
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Yogesh Kapoor
- Department of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Varinder Kumar
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
27
|
Novazzi F, Giombini E, Rueca M, Baj A, Fabeni L, Genoni A, Ferrante FD, Gramigna G, Gruber CEM, Boutahar S, Minosse C, Butera O, Pasciuta R, Focosi D, Colombo A, Antinori A, Girardi E, Vaia F, Maggi F. Genomic surveillance of SARS-CoV-2 positive passengers on flights from China to Italy, December 2022. Euro Surveill 2023; 28:2300008. [PMID: 36695479 PMCID: PMC9837854 DOI: 10.2807/1560-7917.es.2023.28.2.2300008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023] Open
Abstract
With numbers of COVID-19 cases having substantially increased at the end of 2022 in China, some countries have started or expanded testing and genomic surveillance of travellers. We report screening results in Italy in late December 2022 of 556 flight passengers in provenance from two Chinese provinces. Among these passengers, 126 (22.7%) tested SARS-CoV-2 positive. Whole genome sequencing of 61 passengers' positive samples revealed Omicron variants, notably sub-lineages BA.5.2.48, BF.7.14 and BQ.1.1, in line with data released from China.
Collapse
Affiliation(s)
- Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Laboratory of Microbiology, ASST SetteLaghi, Varese, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Martina Rueca
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Laboratory of Microbiology, ASST SetteLaghi, Varese, Italy
| | - Lavinia Fabeni
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Angelo Genoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Laboratory of Microbiology, ASST SetteLaghi, Varese, Italy
| | | | - Giulia Gramigna
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | | | - Sara Boutahar
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Claudia Minosse
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Ornella Butera
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Renee Pasciuta
- Laboratory of Microbiology, ASST SetteLaghi, Varese, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | | | - Andrea Antinori
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Francesco Vaia
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
28
|
Meseguer S, Rubio MP, Lainez B, Pérez-Benavente B, Pérez-Moraga R, Romera-Giner S, García-García F, Martinez-Macias O, Cremades A, Iborra FJ, Candelas-Rivera O, Almazan F, Esplugues E. SARS-CoV-2-encoded small RNAs are able to repress the host expression of SERINC5 to facilitate viral replication. Front Microbiol 2023; 14:1066493. [PMID: 36876111 PMCID: PMC9978209 DOI: 10.3389/fmicb.2023.1066493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Begoña Lainez
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Beatriz Pérez-Benavente
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Sergio Romera-Giner
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | | - Francisco J Iborra
- Biological Noise and Cell Plasticity Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Associated Unit to Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain
| | - Oscar Candelas-Rivera
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Fernando Almazan
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Enric Esplugues
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Iuchi H, Kawasaki J, Kubo K, Fukunaga T, Hokao K, Yokoyama G, Ichinose A, Suga K, Hamada M. Bioinformatics approaches for unveiling virus-host interactions. Comput Struct Biotechnol J 2023; 21:1774-1784. [PMID: 36874163 PMCID: PMC9969756 DOI: 10.1016/j.csbj.2023.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Nishi Waseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Koki Hokao
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Gentaro Yokoyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akiko Ichinose
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kanta Suga
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
30
|
Neeb ZT, Ritter AJ, Chauhan LV, Katzman S, Lipkin WI, Mishra N, Sanford JR. A potential role for SARS-CoV-2 small viral RNAs in targeting host microRNAs and modulating gene expression. Sci Rep 2022; 12:21694. [PMID: 36522444 PMCID: PMC9753033 DOI: 10.1038/s41598-022-26135-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19) in humans, with symptoms ranging from mild to severe, including fatality. The molecular mechanisms surrounding the effects of viral infection on the host RNA machinery remain poorly characterized. We used a comparative transcriptomics approach to investigate the effects of SARS-CoV-2 infection on the host mRNA and sRNA expression machinery in a human lung epithelial cell line (Calu-3) and an African green monkey kidney cell line (Vero-E6). Upon infection, we observed global changes in host gene expression and differential expression of dozens of host miRNAs, many with known links to viral infection and immune response. Additionally, we discovered an expanded landscape of more than a hundred SARS-CoV-2-derived small viral RNAs (svRNAs) predicted to interact with differentially expressed host mRNAs and miRNAs. svRNAs are derived from distinct regions of the viral genome and sequence signatures suggest they are produced by a non-canonical biogenesis pathway. 52 of the 67 svRNAs identified in Calu-3 cells are predicted to interact with differentially expressed miRNAs, with many svRNAs having multiple targets. Accordingly, we speculate that these svRNAs may play a role in SARS-CoV-2 propagation by modulating post-transcriptional gene regulation, and that methods for antagonizing them may have therapeutic value.
Collapse
Affiliation(s)
- Zachary T Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Alexander J Ritter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lokendra V Chauhan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sol Katzman
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
31
|
Kim IS, Lee SG, Shin SG, Jeong H, Sohn KM, Park KS, Silwal P, Cheon S, Kim J, Kym S, Kim YS, Jo EK, Park C. Dysregulated thrombospondin 1 and miRNA-29a-3p in severe COVID-19. Sci Rep 2022; 12:21227. [PMID: 36481664 PMCID: PMC9732043 DOI: 10.1038/s41598-022-23533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Although nearly a fifth of symptomatic COVID-19 patients suffers from severe pulmonary inflammation, the mechanism of developing severe illness is not yet fully understood. To identify significantly altered genes in severe COVID-19, we generated messenger RNA and micro-RNA profiling data of peripheral blood mononuclear cells (PBMCs) from five COVID-19 patients (2 severe and 3 mild patients) and three healthy controls (HC). For further evaluation, two publicly available RNA-Seq datasets (GSE157103 and GSE152418) and one single-cell RNA-Seq dataset (GSE174072) were employed. Based on RNA-Seq datasets, thrombospondin 1 (THBS1) and interleukin-17 receptor A (IL17RA) were significantly upregulated in severe COVID-19 patients' blood. From single-cell RNA-sequencing data, IL17RA level is increased in monocytes and neutrophils, whereas THBS1 level is mainly increased in the platelets. Moreover, we identified three differentially expressed microRNAs in severe COVID-19 using micro-RNA sequencings. Intriguingly, hsa-miR-29a-3p significantly downregulated in severe COVID-19 was predicted to bind the 3'-untranslated regions of both IL17RA and THBS1 mRNAs. Further validation analysis of our cohort (8 HC, 7 severe and 8 mild patients) showed that THBS1, but not IL17RA, was significantly upregulated, whereas hsa-miR-29a-3p was downregulated, in PBMCs from severe patients. These findings strongly suggest that dysregulated expression of THBS1, IL17RA, and hsa-miR-29a-3p involves severe COVID-19.
Collapse
Affiliation(s)
- In Soo Kim
- grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sung-Gwon Lee
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Seul Gi Shin
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyeongseok Jeong
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyung Mok Sohn
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ki-Sun Park
- grid.418980.c0000 0000 8749 5149KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Prashanta Silwal
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinhye Cheon
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jungok Kim
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sungmin Kym
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yeon-Sook Kim
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chungoo Park
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
32
|
Lucaci AG, Zehr JD, Shank SD, Bouvier D, Ostrovsky A, Mei H, Nekrutenko A, Martin DP, Kosakovsky Pond SL. RASCL: Rapid Assessment of Selection in CLades through molecular sequence analysis. PLoS One 2022; 17:e0275623. [PMID: 36322581 PMCID: PMC9629619 DOI: 10.1371/journal.pone.0275623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
An important unmet need revealed by the COVID-19 pandemic is the near-real-time identification of potentially fitness-altering mutations within rapidly growing SARS-CoV-2 lineages. Although powerful molecular sequence analysis methods are available to detect and characterize patterns of natural selection within modestly sized gene-sequence datasets, the computational complexity of these methods and their sensitivity to sequencing errors render them effectively inapplicable in large-scale genomic surveillance contexts. Motivated by the need to analyze new lineage evolution in near-real time using large numbers of genomes, we developed the Rapid Assessment of Selection within CLades (RASCL) pipeline. RASCL applies state of the art phylogenetic comparative methods to evaluate selective processes acting at individual codon sites and across whole genes. RASCL is scalable and produces automatically updated regular lineage-specific selection analysis reports: even for lineages that include tens or hundreds of thousands of sampled genome sequences. Key to this performance is (i) generation of automatically subsampled high quality datasets of gene/ORF sequences drawn from a selected "query" viral lineage; (ii) contextualization of these query sequences in codon alignments that include high-quality "background" sequences representative of global SARS-CoV-2 diversity; and (iii) the extensive parallelization of a suite of computationally intensive selection analysis tests. Within hours of being deployed to analyze a novel rapidly growing lineage of interest, RASCL will begin yielding JavaScript Object Notation (JSON)-formatted reports that can be either imported into third-party analysis software or explored in standard web-browsers using the premade RASCL interactive data visualization dashboard. By enabling the rapid detection of genome sites evolving under different selective regimes, RASCL is well-suited for near-real-time monitoring of the population-level selective processes that will likely underlie the emergence of future variants of concern in measurably evolving pathogens with extensive genomic surveillance.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dave Bouvier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Alexander Ostrovsky
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
34
|
Liu Y, Rao J, Mi Y, Chen L, Feng L, Li Q, Geng J, Yang X, Zhan X, Ren L, Chen J, Zhang X. SARS-CoV-2 RNAs are processed into 22-nt vsRNAs in Vero cells. Front Immunol 2022; 13:1008084. [DOI: 10.3389/fimmu.2022.1008084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic, resulting in great fatalities around the world. Although the antiviral roles of RNA interference (RNAi) have been well studied in plants, nematodes and insects, the antiviral roles of RNAi in mammalians are still debating as RNAi effect is suspected to be suppressed by interferon (IFN) signaling pathways in most cell types. To determine the role of RNAi in mammalian resistance to SARS-CoV-2, we studied the profiling of host small RNAs and SARS-CoV-2 virus-derived small RNAs (vsRNAs) in the early infection stages of Vero cells, an IFN-deficient cell line. We found that host microRNAs (miRNAs) were dysregulated upon SARS-CoV-2 infection, resulting in downregulation of microRNAs playing antiviral functions and upregulation of microRNAs facilitating viral proliferations. Moreover, vsRNA peaked at 22 nt at negative strand but not the positive strand of SARS-CoV-2 and formed successive Dicer-spliced pattern at both strands. Similar characteristics of vsRNAs were observed in IFN-deficient cell lines infected with Sindbis and Zika viruses. Together, these findings indicate that host cell may deploy RNAi pathway to combat SARS-CoV-2 infection in IFN-deficient cells, informing the alternative antiviral strategies to be developed for patients or tissues with IFN deficiency.
Collapse
|
35
|
Viral and Host Small RNA Response to SARS-CoV-2 Infection. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
After two years into the pandemic of the coronavirus disease 2019 (COVID-19), it remains unclear how the host RNA interference (RNAi) pathway and host miRNAs regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and impact the development of COVID-19. In this study, we profiled small RNAs in SARS-CoV-2-infected human ACE2-expressing HEK293T cells and observed dysregulated host small RNA groups, including specific host miRNAs that are altered in response to SARS-CoV-2 infection. By comparing dysregulated miRNAs in different SARS-CoV-2-infected samples, we identified miRNA-210-3p, miRNA-30-5p, and miR-146a/b as key host miRNAs that may be involved in SARS-CoV-2 infection. Furthermore, by comparing virally derived small RNAs (vsmRNAs) in different SARS-CoV-2-infected samples, we observed multiple hot spots in the viral genome that are prone to generating vsmRNAs, and their biogenesis can be dependent on the antiviral isoform of Dicer. Moreover, we investigated the biogenesis of a recently identified SARS-CoV-2 viral miRNA encoded by ORF7a and found that it is differentially expressed in different infected cell lines or in the same cell line with different viral doses. Our results demonstrate the involvement of both host small RNAs and vsmRNAs in SARS-CoV-2 infection and identify these small RNAs as potential targets for anti-COVID-19 therapeutic development.
Collapse
|
36
|
Panda M, Kalita E, Singh S, Kumar K, Rao A, Prajapati VK. MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies. Life Sci 2022; 305:120761. [PMID: 35787998 PMCID: PMC9249409 DOI: 10.1016/j.lfs.2022.120761] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is a highly transmissible disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), affects 226 countries and continents, and has resulted in >6.2 million deaths worldwide. Despite the efforts of all scientific institutions worldwide to identify potential therapeutics, no specific drug has been approved by the FDA to treat the COVID-19 patient. SARS-CoV-2 variants of concerns make the potential of publicly known therapeutics to respond to and detect disease onset highly improbable. The quest for universal therapeutics pointed to the ability of RNA-based molecules to shield and detect the adverse effects of the COVID-19 illness. One such candidate, miRNA (microRNA), works on regulating the differential expression of the target gene post-transcriptionally. The prime focus of this review is to report the critical miRNA molecule and their regular expression in patients with COVID-19 infection and associated comorbidities. Viral and host miRNAs control the etiology of COVID-19 infection throughout the life cycle and host inflammatory response, where host miRNAs are identified as a double-edged showing as a proviral and antiviral response. The review also covered the role of viral miRNAs in mediating host cell signaling expression during disease pathology. Studying molecular interactions between the host and the SARS-CoV-2 virus during COVID-19 pathogenesis offers the chance to use miRNA-based therapeutics to reduce the severity of the illness. By utilizing an appropriate delivery vehicle, these small non-coding RNA could be envisioned as a promising biomarker in designing a practical RNAi-based treatment approach of clinical significance.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ketan Kumar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
37
|
SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proc Natl Acad Sci U S A 2022; 119:e2204539119. [PMID: 35878012 PMCID: PMC9371684 DOI: 10.1073/pnas.2204539119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A robust antiviral innate immune response is indispensable for combating infections. However, an exacerbated response can result in pathological inflammation and tissue damage. mRNA translational control mechanisms play a crucial role in maintaining the appropriate magnitude and duration of the immune response. We show that the GIGYF2/4EHP translational repressor complex represses translation of Ifnb1 mRNA, which encodes type I interferon β (IFN-β). We also demonstrate that the NSP2 protein encoded by SARS-CoV-2 virus further impedes translation of Ifnb1 mRNA through coopting the GIGYF2/4EHP complex, leading to evasion of a cellular innate immune response. The knowledge of the mechanism of action of NSP2-mediated IFN-β suppression provides valuable information for development of treatments for infections of SARS-CoV-2 and other coronaviruses. Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-β. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-β production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.
Collapse
|
38
|
Sansone C, Pistelli L, Del Mondo A, Calabrone L, Fontana A, Noonan DM, Albini A, Brunet C. The Microalgal Diatoxanthin Inflects the Cytokine Storm in SARS-CoV-2 Stimulated ACE2 Overexpressing Lung Cells. Antioxidants (Basel) 2022; 11:antiox11081515. [PMID: 36009234 PMCID: PMC9405469 DOI: 10.3390/antiox11081515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Contact between SARS-CoV-2 and human lung cells involves the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor on epithelial cells, the latter being strongly involved in the regulation of inflammation as well as blood pressure homeostasis. SARS-CoV-2 infection is characterized by a strong inflammatory response defined as a “cytokine storm”. Among recent therapeutic approaches against SARS-CoV-2 targeting the dramatic inflammatory reaction, some natural products are promising. Diatoms are microalgae able to produce bioactive secondary metabolites, such as the xanthophyll diatoxanthin (Dt). The aim of this study is to demonstrate the anti-inflammatory effects of Dt on the A549-hACE2 lung cell line, exploring its interaction with the ACE2 receptor, as well as depicting its role in inhibiting a cytokine storm induced by the SARS-CoV-2 spike glycoprotein. Results showed that Dt enhanced the cell metabolism, e.g., the percent of metabolically active cells, as well as the ACE2 enzymatic activity. Moreover, Dt strongly affected the response of the SARS-CoV-2 spike glycoprotein-exposed A549-hACE2 cells in decreasing the interleukin-6 production and increasing the interleukin-10 release. Moreover, Dt upregulated genes encoding for the interferon pathway related to antiviral defense and enhanced proteins belonging to the innate immunity response. The potential interest of Dt as a new therapeutic agent in the treatment and/or prevention of the severe inflammatory syndrome related to SARS-CoV-2 infection is postulated.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Luana Calabrone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Department of Biology, University of Naples “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS European Institute of Oncology, IEO, 20141 Milan, Italy;
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| |
Collapse
|
39
|
Kannan A, Suomalainen M, Volle R, Bauer M, Amsler M, Trinh HV, Vavassori S, Schmid JP, Vilhena G, Marín-González A, Perez R, Franceschini A, von Mering C, Hemmi S, Greber UF. Sequence-Specific Features of Short Double-Strand, Blunt-End RNAs Have RIG-I- and Type 1 Interferon-Dependent or -Independent Anti-Viral Effects. Viruses 2022; 14:v14071407. [PMID: 35891387 PMCID: PMC9322957 DOI: 10.3390/v14071407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023] Open
Abstract
Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAs.
Collapse
Affiliation(s)
- Abhilash Kannan
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
- Neurimmune AG, Wagistrasse 18, 8952 Schlieren, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Marco Amsler
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
| | - Hung V. Trinh
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
- Genezen, 9900 Westpoint Dr, Suite 128, Indianapolis, IN 46256, USA
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zürich, 8032 Zürich, Switzerland; (S.V.); (J.P.S.)
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zürich, 8032 Zürich, Switzerland; (S.V.); (J.P.S.)
- Faculty of Medicine, University of Zürich, 8006 Zürich, Switzerland
| | - Guilherme Vilhena
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; (G.V.); (R.P.)
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Alberto Marín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain;
| | - Ruben Perez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; (G.V.); (R.P.)
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Andrea Franceschini
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; (A.K.); (M.S.); (R.V.); (M.B.); (M.A.); (H.V.T.); (A.F.); (C.v.M.); (S.H.)
- Correspondence:
| |
Collapse
|
40
|
Zou L, Moch C, Graille M, Chapat C. The SARS-CoV-2 protein NSP2 impairs the silencing capacity of the human 4EHP-GIGYF2 complex. iScience 2022; 25:104646. [PMID: 35756894 PMCID: PMC9213009 DOI: 10.1016/j.isci.2022.104646] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 01/20/2023] Open
Abstract
There is an urgent need for a molecular understanding of how SARS-CoV-2 influences the machineries of the host cell. Herein, we focused our attention on the capacity of the SARS-CoV-2 protein NSP2 to bind the human 4EHP-GIGYF2 complex, a key factor involved in microRNA-mediated silencing of gene expression. Using in vitro interaction assays, our data demonstrate that NSP2 physically associates with both 4EHP and a central segment in GIGYF2 in the cytoplasm. We also provide functional evidence showing that NSP2 impairs the function of GIGYF2 in mediating translation repression using reporter-based assays. Collectively, these data reveal the potential impact of NSP2 on the post-transcriptional silencing of gene expression in human cells, pointing out 4EHP-GIGYF2 targeting as a possible strategy of SARS-CoV-2 to take over the silencing machinery and to suppress host defenses.
Collapse
Affiliation(s)
- Limei Zou
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| | - Clara Moch
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| | - Clément Chapat
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris. F-91128 Palaiseau, France
| |
Collapse
|
41
|
SARS CoV-2 (Delta Variant) Infection Kinetics and Immunopathogenesis in Domestic Cats. Viruses 2022; 14:v14061207. [PMID: 35746678 PMCID: PMC9230585 DOI: 10.3390/v14061207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Continued emergence of SARS-CoV-2 variants highlights the critical need for adaptable and translational animal models for acute COVID-19. Limitations to current animal models for SARS CoV-2 (e.g., transgenic mice, non-human primates, ferrets) include subclinical to mild lower respiratory disease, divergence from clinical COVID-19 disease course, and/or the need for host genetic modifications to permit infection. We therefore established a feline model to study COVID-19 disease progression and utilized this model to evaluate infection kinetics and immunopathology of the rapidly circulating Delta variant (B.1.617.2) of SARS-CoV-2. In this study, specific-pathogen-free domestic cats (n = 24) were inoculated intranasally and/or intratracheally with SARS CoV-2 (B.1.617.2). Infected cats developed severe clinical respiratory disease and pulmonary lesions at 4- and 12-days post-infection (dpi), even at 1/10 the dose of previously studied wild-type SARS-CoV-2. Infectious virus was isolated from nasal secretions of delta-variant infected cats in high amounts at multiple timepoints, and viral antigen was co-localized in ACE2-expressing cells of the lungs (pneumocytes, vascular endothelium, peribronchial glandular epithelium) and strongly associated with severe pulmonary inflammation and vasculitis that were more pronounced than in wild-type SARS-CoV-2 infection. RNA sequencing of infected feline lung tissues identified upregulation of multiple gene pathways associated with cytokine receptor interactions, chemokine signaling, and viral protein–cytokine interactions during acute infection with SARS-CoV-2. Weighted correlation network analysis (WGCNA) of differentially expressed genes identified several distinct clusters of dysregulated hub genes that are significantly correlated with both clinical signs and lesions during acute infection. Collectively, the results of these studies help to delineate the role of domestic cats in disease transmission and response to variant emergence, establish a flexible translational model to develop strategies to prevent the spread of SARS-CoV-2, and identify potential targets for downstream therapeutic development.
Collapse
|
42
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
43
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had an enormous impact on the world, affecting people's lifestyle, economy, and livelihood. Recently, with the development of vaccines, the number of infected cases has decreased. Many case reports have revealed that COVID-19 may induce other serious comorbidities such as anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis. Anti-NMDA receptor encephalitis is an acute autoimmune disease that occurs more commonly in women than in men. To explore the association between COVID-19 and anti-NMDA receptor encephalitis, the microRNA (miRNA) biomarkers of COVID-19, anti-NMDA receptor encephalitis, and other related diseases from the literature are reviewed; then on the basis of these miRNA biomarkers, the relationship between COVID-19 and anti-NMDA receptor encephalitis is discussed. miRNAs are small non-coding RNAs that play important roles in cell differentiation, development, cell-cycle regulation, and apoptosis. miRNAs have been used as biological biomarkers for many diseases. The results in this study reveal that the relationship between anti-NMDA receptor encephalitis and COVID-19 infection or COVID-19 vaccination cannot be excluded; however, the risk that COVID-19 triggers the anti-NMDA receptor encephalitis is not high.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
45
|
Levanova AA, Lampi M, Kalke K, Hukkanen V, Poranen MM, Eskelin K. Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation. Pharmaceuticals (Basel) 2022; 15:261. [PMID: 35215370 PMCID: PMC8876226 DOI: 10.3390/ph15020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Mirka Lampi
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| |
Collapse
|
46
|
Pinzon Cortes JA, El-Osta A, Fontemaggi G, Delihas N, Miyazaki K, Goel A, Brazane M, Carré C, Dama P, Bayraktar S, Castellano L, Enguita FJ, Mitic T, Caporali A, Gerber AP, Amodio N. The Non-Coding RNA Journal Club: Highlights on Recent Papers-10. Noncoding RNA 2022; 8:3. [PMID: 35076559 PMCID: PMC8788465 DOI: 10.3390/ncrna8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/05/2022] Open
Abstract
We are delighted to share with you our seventh Journal Club and highlight some of the most interesting papers published recently [...].
Collapse
Affiliation(s)
- Jairo A. Pinzon Cortes
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY 11794, USA
| | - Katsuki Miyazaki
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA;
- Department of Surgery, Tokushima University, Tokushima 7708503, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France
| | - Paola Dama
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Salih Bayraktar
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Leandro Castellano
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London W12 0NN, UK
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Tijana Mitic
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
47
|
Shyfrin SR, Ferren M, Perrin-Cocon L, Espi M, Charmetant X, Brailly M, Decimo D, Iampietro M, Canus L, Horvat B, Lotteau V, Vidalain PO, Thaunat O, Mathieu C. Hamster organotypic kidney culture model of early-stage SARS-CoV-2 infection highlights a two-step renal susceptibility. J Tissue Eng 2022; 13:20417314221122130. [PMID: 36093433 PMCID: PMC9452794 DOI: 10.1177/20417314221122130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022] Open
Abstract
Kidney pathology is frequently reported in patients hospitalized with COVID-19, the pandemic disease caused by the Severe acute respiratory coronavirus 2 (SARS-CoV-2). However, due to a lack of suitable study models, the events occurring in the kidney during the earliest stages of infection remain unknown. We have developed hamster organotypic kidney cultures (OKCs) to study the early stages of direct renal infection. OKCs maintained key renal structures in their native three-dimensional arrangement. SARS-CoV-2 productively replicated in hamster OKCs, initially targeting endothelial cells and later disseminating into proximal tubules. We observed a delayed interferon response, markers of necroptosis and pyroptosis, and an early repression of pro-inflammatory cytokines transcription followed by a strong later upregulation. While it remains an open question whether an active replication of SARS-CoV-2 takes place in the kidneys of COVID-19 patients with AKI, our model provides new insights into the kinetics of SARS-CoV-2 kidney infection and can serve as a powerful tool for studying kidney infection by other pathogens and testing the renal toxicity of drugs.
Collapse
Affiliation(s)
- Sophie R Shyfrin
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Maxime Espi
- CIRI, Centre International de Recherche en Infectiologie, Team Normal and pathogenic B cell responses, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Team Normal and pathogenic B cell responses, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manon Brailly
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Didier Decimo
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Lola Canus
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Team Normal and pathogenic B cell responses, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|