1
|
Liu H, Shi Y, Zou Y, Song Z, Tian H, Yang X, Li X. The effects of lead (Pb) and pest damage on soil enzyme activities, pakchoi and Spodoptera litura performance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:473-481. [PMID: 39295446 DOI: 10.1017/s0007485324000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.
Collapse
Affiliation(s)
- Huiyang Liu
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Yimeng Shi
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Yuxuan Zou
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Zaiya Song
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Huai Tian
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xianjun Yang
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xiaohong Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| |
Collapse
|
2
|
Luo C, Qiu J, Zhang Y, Li M, Liu P. Jasmonates Coordinate Secondary with Primary Metabolism. Metabolites 2023; 13:1008. [PMID: 37755288 PMCID: PMC10648981 DOI: 10.3390/metabo13091008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Jasmonates (JAs), including jasmonic acid (JA), its precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives jasmonoyl-isoleucine (JA-Ile), methyl jasmonate (MeJA), cis-jasmone (CJ) and other oxylipins, are important in the regulation of a range of ecological interactions of plants with their abiotic and particularly their biotic environments. Plant secondary/specialized metabolites play critical roles in implementing these ecological functions of JAs. Pathway and transcriptional regulation analyses have established a central role of JA-Ile-mediated core signaling in promoting the biosynthesis of a great diversity of secondary metabolites. Here, we summarized the advances in JAs-induced secondary metabolites, particularly in secondary metabolites induced by OPDA and volatile organic compounds (VOCs) induced by CJ through signaling independent of JA-Ile. The roles of JAs in integrating and coordinating the primary and secondary metabolism, thereby orchestrating plant growth-defense tradeoffs, were highlighted and discussed. Finally, we provided perspectives on the improvement of the adaptability and resilience of plants to changing environments and the production of valuable phytochemicals by exploiting JAs-regulated secondary metabolites.
Collapse
Affiliation(s)
- Chen Luo
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Qiu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Zhang X, Purba ER, Sun J, Zhang QH, Dong SL, Zhang YN, He P, Mang D, Zhang L. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). PEST MANAGEMENT SCIENCE 2023. [PMID: 37103977 DOI: 10.1002/ps.7515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND General odor-binding proteins (GOBPs) play critical roles in insect olfactory recognition of sex pheromones and plant volatiles. Therefore, the identification of GOBPs in Hyphantria cunea (Drury) based on their characterization to pheromone components and plant volatiles is remain unknown. RESULTS In this study, two H. cunea (HcunGOBPs) genes were cloned, and their expression profiles and odorant binding characteristics were systematically analyzed. Firstly, the tissue expression study showed that both HcunGOBP1 and HcunGOBP2 were highly expressed in the antennae of both sexes, indicating their potential involvement in the perception of sex pheromones. Secondly, these two HcunGOBPs genes were expressed in Escherichia coli and ligand binding assays were used to assess the binding affinities to its sex pheromone components including two aldehydes and two epoxides, and some plant volatiles. HcunGOBP2 showed high binding affinities to two aldehyde components (Z9, Z12, Z15-18Ald and Z9, Z12-18Ald), and showed low binding affinities to two epoxide components (1, Z3, Z6-9S, 10R-epoxy-21Hy and Z3, Z6-9S, 10R-epoxy-21Hy), whereas HcunGOBP1 showed weak but significant binding to all four sex pheromone components. Furthermore, both HcunGOBPs demonstrated variable binding affinities to the plant volatiles tested. Thirdly, in silico studies of HcunGOBPs utilized homology, structure modeling, and molecular docking revealed critical hydrophobic residues might be involved in the binding of HcunGOBPs to their sex pheromone components and plant volatiles. CONCLUSION Our study suggests that these two HcunGOBPs may serve as potential targets for future studies of HcunGOBPs ligand binding, providing insight in the mechanism of olfaction in H. cunea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Endang R Purba
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jing Sun
- College of Life Science, Hebei University, Baoding, China
| | | | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dingze Mang
- College of Life Science, Hebei University, Baoding, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
5
|
Heiling S, Li J, Halitschke R, Paetz C, Baldwin IT. The downside of metabolic diversity: Postingestive rearrangements by specialized insects. Proc Natl Acad Sci U S A 2022; 119:e2122808119. [PMID: 35666864 PMCID: PMC9214519 DOI: 10.1073/pnas.2122808119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti–herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco’s specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jiancai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
6
|
Fu T, Xu C, Li H, Wu X, Tang M, Xiao B, Lv R, Zhang Z, Gao X, Liu B, Yang C. Salinity Tolerance in a Synthetic Allotetraploid Wheat (S lS lAA) Is Similar to Its Higher Tolerant Parent Aegilops longissima (S lS l) and Linked to Flavonoids Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:835498. [PMID: 35371151 PMCID: PMC8968947 DOI: 10.3389/fpls.2022.835498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Allotetraploidization between A and S (closely related to B) genome species led to the speciation of allotetraploid wheat (genome BBAA). However, the immediate metabolic outcomes and adaptive changes caused by the allotetraploidization event are poorly understood. Here, we investigated how allotetraploidization affected salinity tolerance using a synthetic allotetraploid wheat line (genome SlSlAA, labeled as 4x), its Aegilops longissima (genome SlSl, labeled as SlSl) and Triticum urartu (AA genome, labeled as AA) parents. We found that the degree of salinity tolerance of 4x was similar to its SlSl parent, and both were substantially more tolerant to salinity stress than AA. This suggests that the SlSl subgenome exerts a dominant effect for this trait in 4x. Compared with SlSl and 4x, the salinity-stressed AA plants did not accumulate a higher concentration of Na+ in leaves, but showed severe membrane peroxidation and accumulated a higher concentration of ROS (H2O2 and O2 ⋅-) and a lesser concentration of flavonoids, indicating that ROS metabolism plays a key role in saline sensitivity. Exogenous flavonoid application to roots of AA plants significantly relieved salinity-caused injury. Our results suggest that the higher accumulation of flavonoids in SlSl may contribute to ROS scavenging and salinity tolerance, and these physiological properties were stably inherited by the nascent allotetraploid SlSlAA.
Collapse
|
7
|
Kallure GS, Kumari A, Shinde BA, Giri AP. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. PHYTOCHEMISTRY 2022; 193:113008. [PMID: 34768189 DOI: 10.1016/j.phytochem.2021.113008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
For more than 350 million years, there have been ongoing dynamic interactions between plants and insects. In several cases, insects cause-specific feeding damage with ensuing herbivore-associated molecular patterns that invoke characteristic defense responses. During feeding on plant tissue, insects release oral secretions (OSs) containing a repertoire of molecules affecting plant defense (effectors). Some of these OS components might elicit a defense response to combat insect attacks (elicitors), while some might curb the plant defenses (suppressors). Few reports suggest that the synthesis and function of OS components might depend on the host plant and associated microorganisms. We review these intricate plant-insect interactions, during which there is a continuous exchange of molecules between plants and feeding insects along with the associated microorganisms. We further provide a list of commonly identified inducible plant produced defensive molecules released upon insect attack as well as in response to OS treatments of the plants. Thus, we describe how plants specialized and defense-related metabolism is modulated at innumerable phases by OS during plant-insect interactions. A molecular understanding of these complex interactions will provide a means to design eco-friendly crop protection strategies.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Balkrishna A Shinde
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Heiling S, Llorca LC, Li J, Gase K, Schmidt A, Schäfer M, Schneider B, Halitschke R, Gaquerel E, Baldwin IT. Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. THE PLANT CELL 2021; 33:1748-1770. [PMID: 33561278 PMCID: PMC8254506 DOI: 10.1093/plcell/koab048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/03/2021] [Indexed: 05/30/2023]
Abstract
The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Lucas Cortes Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357 Université de Strasbourg, 67084 Strasbourg, France
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
9
|
Harkin C, Stewart AJA. Differential outcomes of novel plant-herbivore associations between an invading planthopper and native and invasive Spartina cordgrass species. Oecologia 2021; 195:983-994. [PMID: 33786707 PMCID: PMC8052223 DOI: 10.1007/s00442-021-04898-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022]
Abstract
Non-native plants may benefit, briefly or permanently, from natural enemy release in their invaded range, or may form novel interactions with native enemy species. Likewise, newly arrived herbivores may develop novel associations with native plants or, where their hosts have arrived ahead of them, re-establish interactions that existed previously in their ancestral ranges. Predicting outcomes from this diversity of novel and re-established interactions between plants and their herbivores presents a major challenge for invasion biology. We report on interactions between the recently arrived invasive planthopper Prokelisia marginata, and the multi-ploidy Spartina complex of four native and introduced species in Britain, each representing a different level of shared evolutionary history with the herbivore. As predicted, S. alterniflora, the ancestral host, was least impacted by planthopper herbivory, with the previously unexposed native S. maritima, a nationally threatened species, suffering the greatest impacts on leaf length gain, new leaf growth and relative water content. Contrary to expectations, glasshouse trials showed P. marginata to preferentially oviposit on the invasive allododecaploid S. anglica, on which it achieved earlier egg hatch, faster nymphal development, larger female body size and greatest final population size. We suggest P. marginata is in the process of rapid adaptation to maximise its performance on what is now the most abundant and widespread host in Britain. The diversity of novel and re-established interactions of the herbivore with this multi-ploidy complex makes this a highly valuable system for the study of the evolutionary ecology of plant-insect interactions and their influence on invasion dynamics.
Collapse
Affiliation(s)
- Claire Harkin
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Alan J A Stewart
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
10
|
Chen S, Lu X, Ge L, Sun X, Xin Z. Wound- and pathogen-activated de novo JA synthesis using different ACX isozymes in tea plant (Camellia sinensis). JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153047. [PMID: 31639538 DOI: 10.1016/j.jplph.2019.153047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Acyl-CoA oxidase (ACX; EC 1.3.3.6) plays a vital role in the biosynthesis of jasmonic acid (JA) in plant peroxisomes. We previously identified an herbivore-induced gene CsACX1 in tea plant (Camellia sinensis) and showed CsACX1 was involved in the wound-induced synthesis of jasmonic acid (JA). Here, another ACX gene CsACX3 was isolated from tea plant. CsACX3 was predicted to consist of 684 amino acid residues. CsACX3 can be induced by mechanical wounding, JA application, and infestation by the tea geometrid Ectropis obliqua Prout and the tea green leafhopper Empoasca (Matsumurasca) onukii Matsuda. These expression patterns are consistent with the previously reported expression pattern of CsACX1 under such treatments. Recombinant CsACX3 showed preference for medium-chain acyl-coA oxidase substrates (C8- to C14-CoA). CsACX3 expression could also be induced by the infection of a pathogen Colletotrichum gloeosporioides (Cgl), and the increased ACX activities in tea plants were correlated with the Cgl-induced CsACX3 expression. Cgl could not induce the expression of CsACX1, which showed preference for C12- to C16-CoA substrates. The constitutive expression of CsACX3 rescued wound-induced JA biosynthesis and enhanced the Cgl-induced JA biosynthesis in Arabidopsis mutant atacx1. However, constitutive expression of CsACX1 could not enhance the Cgl-induced JA biosynthesis in atacx1 plant. These results indicate that CsACX1 and CsACX3 functions overlap and have distinct roles in the wound- and pathogen-activated de novo JA synthesis via enzymatic routes that utilize different ACX isozymes in tea plant.
Collapse
Affiliation(s)
- Shenglong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China
| | - Xiaotong Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China
| | - Lingang Ge
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China.
| | - Zhaojun Xin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
11
|
Xin Z, Chen S, Ge L, Li X, Sun X. The involvement of a herbivore-induced acyl-CoA oxidase gene, CsACX1, in the synthesis of jasmonic acid and its expression in flower opening in tea plant (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:132-140. [PMID: 30529979 DOI: 10.1016/j.plaphy.2018.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/18/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The biosynthesis of jasmonic acid (JA) in plant peroxisomes requires the action of acyl-CoA oxidase (ACX; EC 1.3.3.6). Multiple isoforms of ACXs have been identified in various annual herbaceous plants, but the genes encoding these enzymes in perennial woody plants are yet to be fully investigated. In this study, an ACX gene named CsACX1 (GeneBank accession: KX650077.1) was isolated from tea plant (Camellia sinensis L.). CsACX1 was predicted to consist of 664 amino acid residues. Transcriptional analysis revealed that CsACX1 can be induced by mechanical wounding, JA application, and infestation by the tea geometrid Ectropis obliqua Prout and the tea green leafhopper Empoasca (Matsumurasca) onukii Matsuda. To further elucidate the function of CsACX1, it was heterologously expressed in a bacterial system and characterized. Recombinant CsACX1 showed preference for C12 ∼ C16-CoA substrates. The constitutive expression of CsACX1 can rescue wound-related JA biosynthesis in Arabidopsis mutant acx1. CsACX1 was expressed in different organs, predominantly in flowers. Notably, CsACX1 transcripts were detected up-regulated during flower opening, and the JA levels were correlated with CsACX1 expression. All these results enrich our knowledge of the regulatory pathway involved in the JA biosynthesis in tea, and helps further understand the defense mechanism of tea plant against insects.
Collapse
Affiliation(s)
- Zhaojun Xin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Shenglong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Lingang Ge
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
12
|
Sun YL, Dong JF, Ning C, Ding PP, Huang LQ, Sun JG, Wang CZ. An odorant receptor mediates the attractiveness of cis-jasmone to Campoletis chlorideae, the endoparasitoid of Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2019; 28:23-34. [PMID: 30058747 DOI: 10.1111/imb.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parasitic wasps rely on olfaction to locate their hosts in complex chemical environments. Odorant receptors (ORs) function together with well-conserved odorant coreceptors (ORcos) to determine the sensitivity and specificity of olfactory reception. Campoletis chlorideae (Hymenoptera: Ichneunmonidae) is a solitary larval endoparasitoid of the cotton bollworm, Helicoverpa armigera, and some other noctuid species. To understand the molecular basis of C. chlorideae's olfactory reception, we sequenced the transcriptome of adult male and female heads (including antennae) and identified 211 OR transcripts, with 95 being putatively full length. The tissue expression profiles, as assessed by reverse-transcription PCR, showed that seven ORs were expressed only or more highly in female antennae. Their functions were analysed using the Xenopu slaevis oocyte expression system and two-electrode voltage-clamp recordings. CchlOR62 was tuned to cis-jasmone, which was attractive to female C. chlorideae adults and H. armigera larvae in the subsequent behavioural assays. Further bioassays using caged plants showed that the parasitism rate of H. armigera larvae by C. chlorideae on cis-jasmone-treated tobacco plants was higher than on the control plants. Thus, cis-jasmone appears to be an important infochemical involved in the interactions of plants, H. armigera and C. chlorideae, and CchlOR62 mediates the attractiveness of cis-jasmone to C. chlorideae.
Collapse
Affiliation(s)
- Y-L Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J-F Dong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Forestry College, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - C Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - P-P Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L-Q Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J-G Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Biology and Food Engineering College, Anyang Institute of Technology, Anyang, Henan Province, China
| | - C-Z Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Xin Z, Cai X, Chen S, Luo Z, Bian L, Li Z, Ge L, Chen Z. A Disease Resistance Elicitor Laminarin Enhances Tea Defense against a Piercing Herbivore Empoasca (Matsumurasca) onukii Matsuda. Sci Rep 2019; 9:814. [PMID: 30692583 PMCID: PMC6349920 DOI: 10.1038/s41598-018-37424-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022] Open
Abstract
The tea plant (Camellia sinensis) suffers heavily from a harmful piercing pest, the tea green leafhopper (TLH) Empoasca (Matsumurasca) onukii Matsuda. In the present study, we studied the effect of an efficient elicitor of plant disease resistance, the β-1,3-glucan laminarin, on the induced defense against TLH in tea plants. Defense responses elicited by laminarin in tea include the activation of mitogen-activated protein kinases and WRKY, the burst of H2O2, salicylic acid, and abscisic acid, and the accumulation of direct-defense chemicals (including chitinase, phenylalanine ammonia lyase, callose, polyphenol oxidase, and flavonol synthase), as well as the production of volatile compounds. The laminarin-treated tea plants reduced the performance of TLH and enhanced the attractiveness to the egg parasitoid wasp of TLH, Stethynium empoascae Subba Rao. In the field experiment, laminarin application effectively reduced the number of TLH by attracting parasitoids. These results suggest that laminarin can induce protection against TLH by regulating signaling pathways in tea plant. Our study also proposes an environment friendly strategy for the integrated management of an economically important piercing pest.
Collapse
Affiliation(s)
- Zhaojun Xin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Shenglong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Lingang Ge
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China. .,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
14
|
Li J, Schuman MC, Halitschke R, Li X, Guo H, Grabe V, Hammer A, Baldwin IT. The decoration of specialized metabolites influences stylar development. eLife 2018; 7:e38611. [PMID: 30289384 PMCID: PMC6192696 DOI: 10.7554/elife.38611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
Plants produce many different specialized (secondary) metabolites that function in solving ecological challenges; few are known to function in growth or other primary processes. 17-Hydroxygeranylinalool diterpene glycosides (DTGs) are abundant herbivory-induced, structurally diverse and commonly malonylated defense metabolites in Nicotiana attenuata plants. By identifying and silencing a malonyltransferase, NaMaT1, involved in DTG malonylation, we found that DTG malonylation percentages are normally remarkably uniform, but when disrupted, result in DTG-dependent reduced floral style lengths, which in turn result from reduced stylar cell sizes, IAA contents, and YUC activity; phenotypes that could be restored by IAA supplementation or by silencing the DTG pathway. Moreover, the Nicotiana genus-specific JA-deficient short-style phenotype also results from alterations in DTG malonylation patterns. Decorations of plant specialized metabolites can be tuned to remarkably uniform levels, and this regulation plays a central but poorly understood role in controlling the development of specific plant parts, such as floral styles.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Rayko Halitschke
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Xiang Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Han Guo
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Veit Grabe
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Austin Hammer
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Ian T Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
15
|
Lu HP, Luo T, Fu HW, Wang L, Tan YY, Huang JZ, Wang Q, Ye GY, Gatehouse AMR, Lou YG, Shu QY. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. NATURE PLANTS 2018; 4:338-344. [PMID: 29735983 DOI: 10.1038/s41477-018-0152-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control1,2. However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals3, is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice2. Serotonin and salicylic acid derive from chorismate4. In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin5. In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ting Luo
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Wei Fu
- Jiaxing Academy of Agricultural Sciences, Zhejiang, China
| | - Long Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuan-Yuan Tan
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Huang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Qing Wang
- Wuxi Hupper Bioseed Ltd., Wuxi, Jiangsu, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Yong-Gen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China.
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei, China.
| |
Collapse
|
16
|
Jassbi AR, Zare S, Asadollahi M, Schuman MC. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem Rev 2017; 117:12227-12280. [PMID: 28960061 DOI: 10.1021/acs.chemrev.7b00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Collapse
Affiliation(s)
| | | | | | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv) , Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
17
|
Machado RAR, Zhou W, Ferrieri AP, Arce CCM, Baldwin IT, Xu S, Erb M. Species-specific regulation of herbivory-induced defoliation tolerance is associated with jasmonate inducibility. Ecol Evol 2017; 7:3703-3712. [PMID: 28616167 PMCID: PMC5468159 DOI: 10.1002/ece3.2953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 01/26/2023] Open
Abstract
Induced changes in root carbohydrate pools are commonly assumed to determine plant defoliation tolerance to herbivores. However, the regulation and species specificity of these two traits are not well understood. We determined herbivory‐induced changes in root carbohydrates and defoliation tolerance in seven different solanaceous plant species and correlated the induced changes in root carbohydrates and defoliation tolerance with jasmonate inducibility. Across species, we observed strong species‐specific variation for all measured traits. Closer inspection revealed that the different species fell into two distinct groups: Species with a strong induced jasmonic acid (JA) burst suffered from a reduction in root carbohydrate pools and reduced defoliation tolerance, while species with a weak induced JA burst maintained root carbohydrate pools and tolerated defoliation. Induced JA levels predicted carbohydrate and regrowth responses better than jasmonoyl‐L‐isoleucine (JA‐Ile) levels. Our study shows that induced JA signaling, root carbohydrate responses, and defoliation tolerance are closely linked, but highly species specific, even among closely related species. We propose that defoliation tolerance may evolve rapidly via changes in the plant's defense signaling network.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group Max Planck Institute for Chemical Ecology Jena Germany.,Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany.,Institute of Plant Sciences University of Bern Bern Switzerland
| | - Wenwu Zhou
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Abigail P Ferrieri
- Root-Herbivore Interactions Group Max Planck Institute for Chemical Ecology Jena Germany.,Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Carla C M Arce
- Departamento de Entomologia Universidade Federal de Viçosa Viçosa (MG) Brazil
| | - Ian T Baldwin
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Shuqing Xu
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Matthias Erb
- Institute of Plant Sciences University of Bern Bern Switzerland
| |
Collapse
|
18
|
A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses. Gene 2017; 615:18-24. [PMID: 28322995 DOI: 10.1016/j.gene.2017.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022]
Abstract
12-Oxophytodienoate reductase (OPR) is a key enzyme in the biosynthesis of jasmonic acid (JA), which plays an important role in plant defense responses. Although multiple isoforms of OPRs have been identified in various annual herbaceous plants, genes encoding these enzymes in perennial woody plants have yet to be fully investigated. In the tea plant, Camellia sinensis (L.), no OPR genes have been isolated, and their possible roles in tea plant development and defense mechanism remain unknown. In this study, a putative OPR gene, designated as CsOPR3, was isolated from tea plants for the first time through the rapid amplification of cDNA ends. The open reading frame of CsOPR3 is 1197bp in length, and encodes a protein of 398 amino acids. Real-time qPCR analysis revealed that CsOPR3 was expressed in different organs. In particular, CsOPR3 was highly expressed in flowers, leaves and stems but was weakly expressed in roots and seeds. CsOPR3 expression could be rapidly induced by mechanical wounding, and increased JA levels were correlated with the wound-induced CsOPR3 expression. The infestation of the tea geometrid (TG) Ectropis obliqua Prout, regurgitant derived from TG and exogenous JA application could enhance the CsOPR3 expression. Our study is the first to report that CsOPR3 plays an important role in JA biosynthesis and tea plant defense against herbivorous insects.
Collapse
|
19
|
Sobhy IS, Woodcock CM, Powers SJ, Caulfield JC, Pickett JA, Birkett MA. cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes. J Chem Ecol 2017; 43:39-52. [PMID: 28130741 PMCID: PMC5331074 DOI: 10.1007/s10886-016-0805-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/16/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-β-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.
Collapse
Affiliation(s)
- Islam S Sobhy
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK.,Department of Plant Protection, Public Service Center of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt.,Department of Microbial & Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Leuven, Belgium
| | | | - Stephen J Powers
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - John C Caulfield
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - John A Pickett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - Michael A Birkett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK.
| |
Collapse
|
20
|
Stutz S, Hinz HL, Konowalik K, Müller‐Schärer H, Oberprieler C, Schaffner U. Ploidy level in the genus
L
eucanthemum
correlates with resistance to a specialist herbivore. Ecosphere 2016. [DOI: 10.1002/ecs2.1460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Sonja Stutz
- CABI Rue des Grillons 1 2800 Delémont Switzerland
- Unit of Ecology and Evolution Department of Biology University of Fribourg Chemin du Musée 10 1700 Fribourg Switzerland
| | | | - Kamil Konowalik
- Evolutionary and Systematic Botany Group Institute of Plant Sciences University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
- Institute of Biology Wrocław University of Environmental and Life Sciences Kożuchowska 5b 51‐631 Wrocław Poland
| | - Heinz Müller‐Schärer
- Unit of Ecology and Evolution Department of Biology University of Fribourg Chemin du Musée 10 1700 Fribourg Switzerland
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group Institute of Plant Sciences University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | | |
Collapse
|
21
|
Segraves KA, Anneberg TJ. Species interactions and plant polyploidy. AMERICAN JOURNAL OF BOTANY 2016; 103:1326-1335. [PMID: 27370313 DOI: 10.3732/ajb.1500529] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/21/2016] [Indexed: 06/06/2023]
Abstract
Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species.
Collapse
Affiliation(s)
- Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, New York 13244 USA
| | - Thomas J Anneberg
- Department of Biology, Syracuse University, Syracuse, New York 13244 USA
| |
Collapse
|
22
|
Fasano C, Diretto G, Aversano R, D'Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. THE NEW PHYTOLOGIST 2016; 210:1382-94. [PMID: 26915816 DOI: 10.1111/nph.13878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/06/2015] [Indexed: 05/19/2023]
Abstract
Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species.
Collapse
Affiliation(s)
- Carlo Fasano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per l'orticoltura (CRA-ORT), via dei Cavalleggeri 25, Pontecagnano, Salerno, 84098, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| |
Collapse
|
23
|
Hu L, Ye M, Li R, Zhang T, Zhou G, Wang Q, Lu J, Lou Y. The Rice Transcription Factor WRKY53 Suppresses Herbivore-Induced Defenses by Acting as a Negative Feedback Modulator of Mitogen-Activated Protein Kinase Activity. PLANT PHYSIOLOGY 2015; 169:2907-21. [PMID: 26453434 PMCID: PMC4677900 DOI: 10.1104/pp.15.01090] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 05/03/2023]
Abstract
The mechanisms by which herbivore-attacked plants activate their defenses are well studied. By contrast, little is known about the regulatory mechanisms that allow them to control their defensive investment and avoid a defensive overshoot. We characterized a rice (Oryza sativa) WRKY gene, OsWRKY53, whose expression is rapidly induced upon wounding and induced in a delayed fashion upon attack by the striped stem borer (SSB) Chilo suppressalis. The transcript levels of OsWRKY53 are independent of endogenous jasmonic acid but positively regulated by the mitogen-activated protein kinases OsMPK3/OsMPK6. OsWRKY53 physically interacts with OsMPK3/OsMPK6 and suppresses their activity in vitro. By consequence, it modulates the expression of defensive, MPK-regulated WRKYs and thereby reduces jasmonic acid, jasmonoyl-isoleucine, and ethylene induction. This phytohormonal reconfiguration is associated with a reduction in trypsin protease inhibitor activity and improved SSB performance. OsWRKY53 is also shown to be a negative regulator of plant growth. Taken together, these results show that OsWRKY53 functions as a negative feedback modulator of MPK3/MPK6 and thereby acts as an early suppressor of induced defenses. OsWRKY53 therefore enables rice plants to control the magnitude of their defensive investment during early signaling.
Collapse
Affiliation(s)
- Lingfei Hu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Meng Ye
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Tongfang Zhang
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Guoxin Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Jing Lu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China (L.H., M.Y., R.L., T.Z., G.Z., Q.W., J.L., Y.L.); andDepartment of Plant Protection, Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an 311300, China (G.Z.)
| |
Collapse
|
24
|
Poreddy S, Mitra S, Schöttner M, Chandran J, Schneider B, Baldwin IT, Kumar P, Pandit SS. Detoxification of hostplant's chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counteradaptation. Nat Commun 2015; 6:8525. [PMID: 26443324 PMCID: PMC4633822 DOI: 10.1038/ncomms9525] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
The evolutionary plant-herbivore arms race sometimes gives rise to remarkably unique adaptation strategies. Here we report one such strategy in the lepidopteran herbivore Manduca sexta against its hostplant Nicotiana attenuata's major phytotoxins, 17-hydroxygeranyllinalool diterpene glycoside, lyciumoside IV and its malonylated forms. We show that alkalinity of larval regurgitant non-enzymatically demalonylates the malonylated forms to lyciumoside IV. Lyciumoside IV is then detoxified in the midgut by β-glucosidase 1-catalysed deglycosylation, which is unusual, as typically the deglycosylation of glycosylated phytochemicals by insects results in the opposite: toxin activation. Suppression of deglucosylation by silencing larval β-glucosidase 1 by plant-mediated RNAi causes moulting impairments and mortality. In the native habitat of N. attenuata, β-glucosidase 1 silencing also increases larval unpalatability to native predatory spiders, suggesting that the defensive co-option of lyciumoside IV may be ecologically advantageous. We infer that M. sexta detoxifies this allelochemical to avoid its deleterious effects, rather than co-opting it against predators.
Collapse
Affiliation(s)
- Spoorthi Poreddy
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sirsha Mitra
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Matthias Schöttner
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jima Chandran
- Department of Biosynthesis/NMR Research Group, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Department of Biosynthesis/NMR Research Group, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Pavan Kumar
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sagar S. Pandit
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
25
|
Massange-Sanchez JA, Palmeros-Suarez PA, Martinez-Gallardo NA, Castrillon-Arbelaez PA, Avilés-Arnaut H, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. The novel and taxonomically restricted Ah24 gene from grain amaranth (Amaranthus hypochondriacus) has a dual role in development and defense. FRONTIERS IN PLANT SCIENCE 2015; 6:602. [PMID: 26300899 PMCID: PMC4524895 DOI: 10.3389/fpls.2015.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/21/2015] [Indexed: 05/03/2023]
Abstract
Grain amaranths tolerate stress and produce highly nutritious seeds. We have identified several (a)biotic stress-responsive genes of unknown function in Amaranthus hypochondriacus, including the so-called Ah24 gene. Ah24 was expressed in young or developing tissues; it was also strongly induced by mechanical damage, insect herbivory and methyl jasmonate and in meristems and newly emerging leaves of severely defoliated plants. Interestingly, an in silico analysis of its 1304 bp promoter region showed a predominance of regulatory boxes involved in development, but not in defense. The Ah24 cDNA encodes a predicted cytosolic protein of 164 amino acids, the localization of which was confirmed by confocal microscopy. Additional in silico analysis identified several other Ah24 homologs, present almost exclusively in plants belonging to the Caryophyllales. The possible function of this gene in planta was examined in transgenic Ah24 overexpressing Arabidopsis thaliana and Nicotiana tabacum plants. Transformed Arabidopsis showed enhanced vegetative growth and increased leaf number with no penalty in one fitness component, such as seed yield, in experimental conditions. Transgenic tobacco plants, which grew and reproduced normally, had increased insect herbivory resistance. Modified vegetative growth in transgenic Arabidopsis coincided with significant changes in the expression of genes controlling phytohormone synthesis or signaling, whereas increased resistance to insect herbivory in transgenic tobacco coincided with higher jasmonic acid and proteinase inhibitor activity levels, plus the accumulation of nicotine and several other putative defense-related metabolites. It is proposed that the primary role of the Ah24 gene in A. hypochondriacus is to contribute to a rapid recovery post-wounding or defoliation, although its participation in defense against insect herbivory is also plausible.
Collapse
Affiliation(s)
- Julio A. Massange-Sanchez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Paola A. Palmeros-Suarez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Norma A. Martinez-Gallardo
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Paula A. Castrillon-Arbelaez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo LeónSan Nicolás de los Garza, México
| | | | - Axel Tiessen
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - John P. Délano-Frier
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| |
Collapse
|
26
|
Lu J, Li J, Ju H, Liu X, Erb M, Wang X, Lou Y. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. MOLECULAR PLANT 2014; 7:1670-1682. [PMID: 25064847 DOI: 10.1093/mp/ssu085] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongping Ju
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Liu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Xia Wang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Zhou G, Ren N, Qi J, Lu J, Xiang C, Ju H, Cheng J, Lou Y. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. PHYSIOLOGIA PLANTARUM 2014; 152:59-69. [PMID: 24410960 DOI: 10.1111/ppl.12148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 05/04/2023]
Abstract
Oxylipins produced by the 13-lipoxygenase (LOX) have been reported to play an important role in plant defense responses to herbivores. Yet, the role of oxylipins produced by the 9-LOX pathway in this process remains largely unknown. Here we cloned a gene encoding a chloroplast-localized 9-LOX, Osr9-LOX1, from rice. Transcriptional analysis revealed that herbivore infestation, mechanical wounding and jasmonic acid (JA) treatment either repressed or did not enhance the level of Osr9-LOX1 transcripts at early stages but did at later stages, whereas salicylic acid (SA) treatment quickly increased the transcript level of Osr9-LOX1. Antisense expression of Osr9-lox1 (as-r9lox1) decreased the amount of wound-induced (Z)-3-hexenal but increased levels of striped stem borer (SSB)-induced linolenic acid, JA, SA and trypsin protease inhibitors. These changes were associated with increased resistance in rice to the larvae of the SSB Chilo suppressalis. In contrast, although no significant differences were observed in the duration of the nymph stage or the number of eggs laid by female adults between the brown planthopper (BPH) Nilaparvata lugens that fed on as-r9lox1 lines and BPH that fed on wild-type (WT) rice plants, the survival rate of BPH nymphs that fed on as-r9lox1 lines was higher than that of nymphs that fed on WT plants, possibly because of a higher JA level. The results demonstrate that Osr9-LOX1 plays an important role in regulating an herbivore-induced JA burst and cross-talk between JA and SA, and in controlling resistance in rice to chewing and phloem-feeding herbivores.
Collapse
Affiliation(s)
- Guoxin Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Department of Plant Protection, Zhejiang Agriculture & Forestry University, Lin'an, 311300, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gottula J, Lewis R, Saito S, Fuchs M. Allopolyploidy and the evolution of plant virus resistance. BMC Evol Biol 2014; 14:149. [PMID: 24992820 PMCID: PMC4226957 DOI: 10.1186/1471-2148-14-149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The relationship between allopolyploidy and plant virus resistance is poorly understood. To determine the relationship of plant evolutionary history and basal virus resistance, a panel of Nicotiana species from diverse geographic regions and ploidy levels was assessed for resistance to non-coevolved viruses from the genus Nepovirus, family Secoviridae. The heritability of resistance was tested in a panel of synthetic allopolyploids. Leaves of different positions on each inoculated plant were tested for virus presence and a subset of plants was re-inoculated and assessed for systemic recovery. RESULTS Depending on the host-virus combination, plants displayed immunity, susceptibility or intermediate levels of resistance. Synthetic allopolyploids showed an incompletely dominant resistance phenotype and manifested systemic recovery. Plant ploidy was weakly negatively correlated with virus resistance in Nicotiana species, but this trend did not hold when synthetic allopolyploids were taken into account. Furthermore, a relationship between resistance and geographical origin was observed. CONCLUSION The gradients of resistance and virulence corresponded to a modified matching allele model of resistance. Intermediate resistance responses of allopolyploids corresponded with a model of multi-allelic additive resistance. The variable virus resistance of extant allopolyploids suggested that selection-based mechanisms surpass ploidy with respect to evolution of basal resistance to viruses.
Collapse
Affiliation(s)
- John Gottula
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Ramsey Lewis
- Department of Crop Science, North Carolina State University, 4310 Williams Hall Campus, Box 7620, Raleigh, NC 27695-7620, USA
| | - Seiya Saito
- Kearney Agricultural Research Center, University of California, Parlier, CA 93648, USA
| | - Marc Fuchs
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|
29
|
Antipredator activity and endogenous biosynthesis of defensive secretion in larval and pupal Delphastus catalinae (Horn) (Coleoptera: Coccinellidae). CHEMOECOLOGY 2014. [DOI: 10.1007/s00049-014-0156-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. PLANT CELL REPORTS 2013; 32:1075-84. [PMID: 23344857 DOI: 10.1007/s00299-013-1389-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/10/2012] [Accepted: 01/08/2013] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE : Silencing OsMPK3 decreased elicited JA levels, which subsequently reduced levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Mitogen-activated protein kinases (MPKs) are known to play an important role in plant defense by transferring biotic and abiotic signals into programmed cellular responses. However, their functions in the herbivore-induced defense response in rice remain largely unknown. Here, we identified a MPK3 gene from rice, OsMPK3, and found that its expression levels were up-regulated in response to infestation by the larvae of the striped stem borer (SSB) (Chilo suppressalis), to mechanical wounding and to treatment with jasmonic acid (JA), but not to infestation by the brown planthopper (BPH) Nilaparvata lugens or to treatment with salicylic acid. Moreover, mechanical wounding and SSB infestation induced the expression of OsMPK3 strongly and quickly, whereas JA treatment induced the gene more weakly and slowly. Silencing OsMPK3 (ir-mpk3) reduced the expression of the gene by 50-70 %, decreased elicited levels of JA and diminished the expression of a lipoxygenase gene OsHI-LOX and an allene oxide synthase gene OsAOS1. The reduced JA signaling in ir-mpk3 plants decreased the levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Our findings suggest that the gene OsMPK3 responds early in herbivore-induced defense and can be regulated by rice plants to activate a specific and appropriate defense response to different herbivores.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Biocontrol, Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | |
Collapse
|
31
|
Li R, Afsheen S, Xin Z, Han X, Lou Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. PHYSIOLOGIA PLANTARUM 2013; 147:340-51. [PMID: 22694163 DOI: 10.1111/j.1399-3054.2012.01666.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 05/23/2023]
Abstract
NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
32
|
Musser RO, Hum-Musser SM, Lee HK, DesRochers BL, Williams SA, Vogel H. Caterpillar Labial Saliva Alters Tomato Plant Gene Expression. J Chem Ecol 2012; 38:1387-401. [DOI: 10.1007/s10886-012-0198-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/07/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
|
33
|
Adler LS, Seifert MG, Wink M, Morse GE. Reliance on pollinators predicts defensive chemistry across tobacco species. Ecol Lett 2012; 15:1140-8. [PMID: 22834564 DOI: 10.1111/j.1461-0248.2012.01838.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 11/27/2022]
Abstract
Defensive traits are typically studied in the context of avoiding antagonists, but may also mediate key interactions with mutualists. Plant chemical defences occur in flowers, suggesting pollinators may be agents of selection on defence. We hypothesised that floral defences would deter pollinators, and therefore, pollinators would select for lower defences in outcrossing than self-pollinating species. We measured pollinator reliance and alkaloid levels in 32 greenhouse-grown Nicotiana species. Using a comparative phylogenetic approach, we found significantly lower nectar, floral and leaf nicotine concentrations in outcrossing than selfing species, with a 15-fold decrease in leaf nicotine levels. Nicotine concentrations were positively correlated across tissues, suggesting that selection against floral defences could constrain the evolution of leaf defences. Thus, pollinators could shape the evolution not only of floral defences but also of defences in other tissues where herbivores have traditionally been considered the dominant agent of selection.
Collapse
Affiliation(s)
- Lynn S Adler
- Department of Plant, Soil and Insect Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
34
|
Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:763-75. [PMID: 22519706 DOI: 10.1111/j.1365-313x.2012.05027.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant-specific defense responses. The loss-of-function mutant hpl3-1 produced disease-resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3-1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)-3-hexen-1-ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stål)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3-1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild-type, most likely as a result of increased release of BPH-induced volatiles. Interestingly, hpl3-1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice-specific defense responses against different invaders.
Collapse
Affiliation(s)
- Xiaohong Tong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xin Z, Yu Z, Erb M, Turlings TCJ, Wang B, Qi J, Liu S, Lou Y. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. THE NEW PHYTOLOGIST 2012; 194:498-510. [PMID: 22313362 DOI: 10.1111/j.1469-8137.2012.04057.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.
Collapse
Affiliation(s)
- Zhaojun Xin
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | - Zhaonan Yu
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | - Matthias Erb
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CP158, CH-2009, Neuchâtel, Switzerland
| | - Baohui Wang
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | - Jinfeng Qi
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | - Shengning Liu
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | - Yonggen Lou
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
36
|
Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X, Cheng J, Lou Y. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice. PLANT PHYSIOLOGY 2011; 157:1987-99. [PMID: 21984727 PMCID: PMC3327179 DOI: 10.1104/pp.111.183749] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
Collapse
|
37
|
Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:583-96. [PMID: 21831212 DOI: 10.1111/j.1365-313x.2011.04709.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H(2)O(2) biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H(2)O(2) pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects.
Collapse
Affiliation(s)
- Jing Lu
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou G, Wang X, Yan F, Wang X, Li R, Cheng J, Lou Y. Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis. PHYSIOLOGIA PLANTARUM 2011; 143:21-40. [PMID: 21534978 DOI: 10.1111/j.1399-3054.2011.01483.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
How rice defends itself against pathogen infection is well documented, but little is known about how it defends itself against herbivore attack. We measured changes in the transcriptome and chemical profile of rice when the plant is infested by the striped stem borer (SSB) Chilo suppressalis. Infestation by SSBs resulted in changes in the expression levels of 4545 rice genes; this number accounts for about 8% of the genome and is made up of 18 functional groups with broad functions. The largest group comprised genes involved in metabolism, followed by cellular transport, transcription and cellular signaling. Infestation by SSBs modulated many genes responsible for the biosynthesis of plant hormones and plant signaling. Jasmonic acid (JA), salicylic acid (SA) and ethylene were the major hormones that shaped the SSB-induced defence responses of rice. Many secondary signal transduction components, such as those involved in Ca²⁺ signaling and G-protein signaling, receptor and non-receptor protein kinases, and transcription factors were involved in the SSB-induced responses of rice. Photosynthesis and ATP synthesis from photophosphorylation were restricted by SSB feeding. In addition, SSB infestation induced the accumulation of defence compounds, including trypsin proteinase inhibitors (TrypPIs) and volatile organic compounds. These results demonstrate that SSB-induced defences required rice to reconfigure a wide variety of its metabolic, physiological and biochemical processes.
Collapse
Affiliation(s)
- Guoxin Zhou
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang X, Hu L, Zhou G, Cheng J, Lou Y. Salicylic acid and ethylene signaling pathways are involved in production of rice trypsin proteinase inhibitors induced by the leaf folder Cnaphalocrocis medinalis (Guenée). ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4568-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Whiteman NK, Groen SC, Chevasco D, Bear A, Beckwith N, Gregory TR, Denoux C, Mammarella N, Ausubel FM, Pierce NE. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis. Mol Ecol 2011; 20:995-1014. [PMID: 21073583 PMCID: PMC3062943 DOI: 10.1111/j.1365-294x.2010.04901.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here, we describe the life cycle of S. flava on Arabidopsis and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defence-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with jasmonate or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis jasmonate signalling mutants and increased in plants pretreated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyse insect-plant interactions.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Matthes MC, Bruce TJA, Ton J, Verrier PJ, Pickett JA, Napier JA. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. PLANTA 2010; 232:1163-80. [PMID: 20711606 DOI: 10.1007/s00425-010-1244-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/29/2010] [Indexed: 05/08/2023]
Abstract
cis-jasmone (CJ) is a plant-derived chemical that enhances direct and indirect plant defence against herbivorous insects. To study the signalling pathway behind this defence response, we performed microarray-based transcriptome analysis of CJ-treated Arabidopsis plants. CJ influenced a different set of genes from the structurally related oxylipin methyl jasmonate (MeJA), suggesting that CJ triggers a distinct signalling pathway. CJ is postulated to be biosynthetically derived from jasmonic acid, which can boost its own production through transcriptional up-regulation of the octadecanoid biosynthesis genes LOX2, AOS and OPR3. However, no effect on these genes was detected by treatment with CJ. Furthermore, CJ-responsive genes were not affected by mutations in COI1 or JAR1, which are critical signalling components in MeJA response pathway. Conversely, a significant proportion of CJ-inducible genes required the three transcription factors TGA2, TGA5 and TGA6, as well as the GRAS regulatory protein SCARECROW-like 14 (SCL14), indicating regulation by a different pathway from the classical MeJA response. Moreover, the biological importance was demonstrated in that mutations in TGA2, 5, 6, SCL14 and the CJ-inducible gene CYP81D11 blocked CJ-induced attraction of the aphid parasitoid Aphidius ervi, demonstrating that these components play a key role in CJ-induced indirect defence. Collectively, our results identify CJ as a member of the jasmonates that controls indirect plant defence through a distinct signalling pathway.
Collapse
Affiliation(s)
- Michaela C Matthes
- Biological Chemistry Department, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | | | | | | | | | | |
Collapse
|
42
|
Halpern SL, Adler LS, Wink M. Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia 2010; 163:961-71. [PMID: 20461411 DOI: 10.1007/s00442-010-1651-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Adaptive phenotypic plasticity allows sessile organisms such as plants to match trait expression to the particular environment they experience. Plasticity may be limited, however, by resources in the environment, by responses to prior environmental cues, or by previous interactions with other species, such as competition or herbivory. Thus, understanding the expression of plastic traits and their effects on plant performance requires evaluating trait expression in complex environments, rather than across levels of a single variable. In this study, we tested the independent and combined effects of two components of a plant's environment, herbivory and water availability, on the expression of attractive and defensive traits in Nicotiana quadrivalvis in the greenhouse. Damage and drought did not affect leaf nicotine concentrations but had additive and non-additive effects on floral attractive and defensive traits. Plants in the high water treatment produced larger flowers with more nectar than in the low water treatment. Leaf damage induced greater nectar volumes in the high water treatment only, suggesting that low water limited plastic responses to herbivore damage. Leaf damage also tended to induce higher nicotine concentrations in nectar, consistent with other studies showing that leaf damage can induce floral defenses. Our results suggest that there are separate and synergistic effects of leaf herbivory and drought on floral trait expression, and thus plasticity in response to complex environments may influence plant fitness via effects on floral visitation and defense.
Collapse
Affiliation(s)
- Stacey L Halpern
- Biology Department, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA.
| | | | | |
Collapse
|
43
|
Anssour S, Baldwin IT. Variation in antiherbivore defense responses in synthetic Nicotiana allopolyploids correlates with changes in uniparental patterns of gene expression. PLANT PHYSIOLOGY 2010; 153:1907-18. [PMID: 20525855 PMCID: PMC2923876 DOI: 10.1104/pp.110.156786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/01/2010] [Indexed: 05/21/2023]
Abstract
We examined the expression of Nicotiana attenuata (Na) and Nicotiana obtusifolia (No) herbivore-induced genes in synthetic autopolyploids (NaT and NoT) and five independent allopolyploid Nicotiana x obtusiata (Nxo) lines to understand how the expression of genes regulating complex polygenetic defense traits is altered in the early stages of allopolyploid hybridization. In Na, applying Manduca sexta oral secretions (OS) to wounds rapidly increased the transcript accumulation of wound-induced protein kinase (WIPK), lipoxygenase 3 (LOX3), nonexpressor of pathogenesis-related 1 (NPR1), and jasmonate-resistant 4 (JAR4) genes; these were correlated with increases in accumulation of jasmonic acid (JA), jasmonate-isoleucine, and trypsin protease inhibitors (TPIs). In No, OS elicitation reduced NPR1 transcripts and increased the level of salicylic acid (SA) that appeared to antagonize JA and JA-mediated defenses. OS elicited Nxo lines, accumulated high levels of the uniparental transcript of WIPK, LOX3, JAR4, and TPI, but low levels of both parental NPR1 transcripts that in turn were correlated with an increase in SA and a decrease in JA levels, suggesting SA/JA antagonism in the allopolyploid crosses. Methyl jasmonate treatment of Nxo lines elicited transcripts of both parental LOX3, JAR4, and TPIs, demonstrating that the uniparental pattern observed after OS elicitation was not due to gene inactivation. TPIs were induced at different levels among Nxo lines; some lines expressed high levels comparable to Na, others low levels similar to No, suggesting that synthetic neoallopolyploids rapidly readjust the expression of their parental defensive genes to generate diverse antiherbivore responses. Changes in the expression of key genes and posttranscriptional events likely facilitate adaptive radiations during allopolyploid speciation events.
Collapse
Affiliation(s)
- Samir Anssour
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, D-07745 Jena, Germany
| | | |
Collapse
|
44
|
Jassbi AR, Zamanizadehnajari S, Baldwin IT. 17-Hydroxygeranyllinalool glycosides are major resistance traits of Nicotiana obtusifolia against attack from tobacco hornworm larvae. PHYTOCHEMISTRY 2010; 71:1115-21. [PMID: 20452633 DOI: 10.1016/j.phytochem.2010.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 05/08/2023]
Abstract
In the Great Basin Desert, Nicotiana obtusifolia (synonymous with Nicotiana trigonophylla) and Nicotiana attenuata co-occur, but the former is frequently less attacked by larvae of the tobacco hornworm than the latter, despite having lower nicotine and trypsin protease inhibitor defenses. Glycosides of the diterpene, 17-hydroxygeranyllinalool (HGL-DTGs) have recently been found to be important defenses of N. attenuata. Total HGL-DTG levels are 5-fold higher in N. obtusifolia than in N. attenuata, and we characterize the three major HGL-DTGs purified from N. obtusifolia leaves as: 3-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-17-hydroxygeranyllinalool-17-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranoside; nicotinoside III and its malonic acid conjugates. Using APCI- and ESI-LC-MS, we also identified mono- and diacetyl-nicotinoside III and quercetin glycosides. To evaluate the defensive value of these HGL-DTGs, we used virus-induced-gene silencing to reduce the transcript levels of geranylgeranyl diphosphate synthase and total HGL-DTG levels in both species. When fed on silenced plants, larvae gained up to about two times more mass than those that fed on empty vector control plants of both species. We conclude that HGL-DTGs function as the most important direct defenses for both N. attenuata and N. obtusifolia.
Collapse
Affiliation(s)
- Amir Reza Jassbi
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
45
|
Vandenborre G, Groten K, Smagghe G, Lannoo N, Baldwin IT, Van Damme EJM. Nicotiana tabacum agglutinin is active against Lepidopteran pest insects. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1003-14. [PMID: 20018900 DOI: 10.1093/jxb/erp365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A jasmonate-inducible lectin called Nicotiana tabacum agglutinin or NICTABA was found in tobacco (Nicotiana tabacum cv Samsun) leaves. Since NICTABA expression is also induced after insect herbivory, a role in the defence response of tobacco was suggested. In this report, a detailed analysis was made of the entomotoxic properties of NICTABA using different transgenic approaches. First, purified NICTABA was shown to be strongly resistant to proteolytic degradation by enzymes present in the Lepidopteran midgut. To address the question of whether NICTABA is also active against Lepidopteran larvae, transgenic N. tabacum plants that silence endogenous NICTABA expression were constructed using RNA interference. Feeding experiments with these transgenic N. tabacum plants demonstrated that silencing of NICTABA expression enhances the larval performance of the generalist pest insect Spodoptera littoralis. In a second transgenic approach, NICTABA was ectopically expressed in the wild diploid tobacco Nicotiana attenuata, a species that lacks a functional NICTABA gene. When these transgenic N. attenuata plants were used in feeding experiments with S. littoralis larvae, a clear reduction in mass gain and significantly slower development were observed. In addition, feeding experiments with the Solanaceae specialist, Manduca sexta, provided further evidence that NICTABA exerts clear entomotoxic effects on Lepidopteran larvae.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Demkura PV, Abdala G, Baldwin IT, Ballaré CL. Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. PLANT PHYSIOLOGY 2010; 152:1084-95. [PMID: 20007446 PMCID: PMC2815854 DOI: 10.1104/pp.109.148999] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
Ultraviolet B (UV-B) radiation, a very small fraction of the daylight spectrum, elicits changes in plant secondary metabolism that have large effects on plant-insect interactions. The signal transduction pathways that mediate these specific effects of solar UV-B are not known. We examined the role of jasmonate signaling by measuring responses to UV-B in wild-type and transgenic jasmonate-deficient Nicotiana attenuata plants in which a lipoxygenase gene (NaLOX3) was silenced (as-lox). In wild-type plants, UV-B failed to elicit the accumulation of jasmonic acid (JA) or the bioactive JA-isoleucine conjugate but amplified the response of jasmonate-inducible genes, such as trypsin proteinase inhibitor (TPI), to wounding and methyl jasmonate, and increased the accumulation of several phenylpropanoid derivatives. Some of these phenolic responses (accumulation of caffeoyl-polyamine conjugates) were completely lacking in as-lox plants, whereas others (accumulation of rutin and chlorogenic acid) were similar in both genotypes. In open field conditions, as-lox plants received more insect damage than wild-type plants, as expected, but the dramatic increase in resistance to herbivory elicited by UV-B exposure, which was highly significant in wild-type plants, did not occur in as-lox plants. We conclude that solar UV-B (1) uses jasmonate-dependent and -independent pathways in the elicitation of phenolic compounds, and (2) increases sensitivity to jasmonates, leading to enhanced expression of wound-response genes (TPI). The lack of UV-B-induced antiherbivore protection in as-lox plants suggests that jasmonate signaling plays a central role in the mechanisms by which solar UV-B increases resistance to insect herbivores in the field.
Collapse
Affiliation(s)
| | | | | | - Carlos L. Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina (P.V.D., C.L.B.); Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina (G.A.); and Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany (I.T.B.)
| |
Collapse
|
47
|
Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT. Jasmonate and ppHsystemin regulate key Malonylation steps in the biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. THE PLANT CELL 2010; 22:273-92. [PMID: 20081114 PMCID: PMC2828710 DOI: 10.1105/tpc.109.071449] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/11/2009] [Accepted: 12/20/2009] [Indexed: 05/18/2023]
Abstract
We identified 11 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) that occur in concentrations equivalent to starch (mg/g fresh mass) in aboveground tissues of coyote tobacco (Nicotiana attenuata) and differ in their sugar moieties and malonyl sugar esters (0-2). Concentrations of HGL-DTGs, particularly malonylated compounds, are highest in young and reproductive tissues. Within a tissue, herbivore elicitation changes concentrations and biosynthetic kinetics of individual compounds. Using stably transformed N. attenuata plants silenced in jasmonate production and perception, or production of N. attenuata Hyp-rich glycopeptide systemin precursor by RNA interference, we identified malonylation as the key biosynthetic step regulated by herbivory and jasmonate signaling. We stably silenced N. attenuata geranylgeranyl diphosphate synthase (ggpps) to reduce precursors for the HGL-DTG skeleton, resulting in reduced total HGL-DTGs and greater vulnerability to native herbivores in the field. Larvae of the specialist tobacco hornworm (Manduca sexta) grew up to 10 times as large on ggpps silenced plants, and silenced plants suffered significantly more damage from herbivores in N. attenuata's native habitat than did wild-type plants. We propose that high concentrations of HGL-DTGs effectively defend valuable tissues against herbivores and that malonylation may play an important role in regulating the distribution and storage of HGL-DTGs in plants.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Matthias Schoettner
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Purba Mukerjee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Beatrice Berger
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Bernd Schneider
- Department of Biosynthesis/Nuclear Magnetic Resonance, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Amir R. Jassbi
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| |
Collapse
|
48
|
Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Weisser WW. Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J Chem Ecol 2009; 35:1335-48. [PMID: 20013039 PMCID: PMC2797619 DOI: 10.1007/s10886-009-9716-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 10/31/2022]
Abstract
Plants emit a wide range of volatile organic compounds in response to damage by herbivores, and many of the compounds have been shown to attract the natural enemies of insect herbivores or serve for inter- and intra-plant communication. Most studies have focused on volatile emission in the laboratory while little is known about emission patterns in the field. We studied the emission of volatiles by Trifolium pratense (red clover) under both laboratory and field conditions. The emission of 24 compounds was quantified in the laboratory, of which eight showed increased emission rates after herbivory by Spodoptera littoralis caterpillars, including (E)-beta-ocimene, the most abundant compound, (Z)-beta-ocimene, linalool, (E)-beta-caryophyllene, (E,E)-alpha-farnesene, 4,8-dimethyl-1,3,7-nonatriene (DMNT), 1-octen-3-ol, and methyl salicylate (MeSA). While most of these compounds have been reported as herbivore-induced volatiles from a wide range of plant taxa, 1-octen-3-ol seems to be a characteristic volatile of legumes. In the field, T. pratense plants with varying herbivore damage growing in established grassland communities emitted only 13 detectable compounds, and the correlation between herbivore damage and volatile release was more variable than in the laboratory. For example, the emission of (E)-beta-ocimene, (Z)-beta-ocimene, and DMNT actually declined with damage, while decanal exhibited increased emission with increasing herbivory. Elevated light and temperature increased the emission of many compounds, but the differences in light and temperature conditions between the laboratory and the field could not account for the differences in emission profiles. Our results indicate that the release of volatiles from T. pratense plants in the field is likely to be influenced by additional biotic and abiotic factors not measured in this study. The elucidation of these factors may be important in understanding the physiological and ecological functions of volatiles in plants.
Collapse
Affiliation(s)
- Rose N Kigathi
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:638-48. [PMID: 19656341 DOI: 10.1111/j.1365-313x.2009.03988.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The jasmonic acid (JA) pathway plays a central role in plant defense responses against insects. Some phloem-feeding insects also induce the salicylic acid (SA) pathway, thereby suppressing the plant's JA response. These phenomena have been well studied in dicotyledonous plants, but little is known about them in monocotyledons. We cloned a chloroplast-localized type 2 13-lipoxygenase gene of rice, OsHI-LOX, whose transcripts were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis and the rice brown planthopper (BPH) Niaparvata lugens, as well as by mechanical wounding and treatment with JA. Antisense expression of OsHI-LOX (as-lox) reduced SSB- or BPH-induced JA and trypsin protease inhibitor (TrypPI) levels, improved the larval performance of SBB as well as that of the rice leaf folder (LF) Cnaphalocrocis medinalis, and increased the damage caused by SSB and LF larvae. In contrast, BPH, a phloem-feeding herbivore, showed a preference for settling and ovipositing on WT plants, on which they consumed more and survived better than on as-lox plants. The enhanced resistance of as-lox plants to BPH infestation correlated with higher levels of BPH-induced H(2)O(2) and SA, as well as with increased hypersensitive response-like cell death. These results imply that OsHI-LOX is involved in herbivore-induced JA biosynthesis, and plays contrasting roles in controlling rice resistance to chewing and phloem-feeding herbivores. The observation that suppression of JA activity results in increased resistance to an insect indicates that revision of the generalized plant defense models in monocotyledons is required, and may help develop novel strategies to protect rice against insect pests.
Collapse
Affiliation(s)
- Guoxin Zhou
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Vandenborre G, Miersch O, Hause B, Smagghe G, Wasternack C, Van Damme EJM. Spodoptera littoralis-induced lectin expression in tobacco. PLANT & CELL PHYSIOLOGY 2009; 50:1142-55. [PMID: 19416954 DOI: 10.1093/pcp/pcp065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quantified after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|