1
|
Zhu S, Waeckel-Énée E, Oshima M, Moser A, Bessard MA, Gdoura A, Roger K, Mode N, Lipecka J, Yilmaz A, Bertocci B, Diana J, Saintpierre B, Guerrera IC, Scharfmann R, Francesconi S, Mauvais FX, van Endert P. Islet cell stress induced by insulin-degrading enzyme deficiency promotes regeneration and protection from autoimmune diabetes. iScience 2024; 27:109929. [PMID: 38799566 PMCID: PMC11126816 DOI: 10.1016/j.isci.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-βH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Masaya Oshima
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Anna Moser
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Marie-Andrée Bessard
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Abdelaziz Gdoura
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Kevin Roger
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Nina Mode
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Joanna Lipecka
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Ayse Yilmaz
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Barbara Bertocci
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Julien Diana
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Ida Chiara Guerrera
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Raphael Scharfmann
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Stefania Francesconi
- Genome Dynamics Unit, Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525, F-75015 Paris, France
| | - François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service de Physiologie – Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
2
|
Role of poly(ADP-ribose) polymerase-1 in regulating human islet cell differentiation. Sci Rep 2022; 12:21496. [PMID: 36513699 PMCID: PMC9747708 DOI: 10.1038/s41598-022-25405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1), a fundamental DNA repair enzyme, is known to regulate β cell death, replication, and insulin secretion. PARP1 knockout (KO) mice are resistant to diabetes, while PARP1 overactivation contributes to β cell death. Additionally, PARP1 inhibition (PARPi) improves diabetes complications in patients with type-2 diabetes. Despite these beneficial effects, the use of PARP1 modulating agents in diabetes treatment is largely neglected, primarily due to the poorly studied mechanistic action of PARP1 catalytic function in human β cell development. In the present study, we evaluated PARP1 regulatory action in human β cell differentiation using the human pancreatic progenitor cell line, PANC-1. We surveyed islet census and histology from PARP1 wild-type versus KO mice pancreas in a head-to-head comparison with PARP1 regulatory action for in-vitro β cell differentiation following either PARP1 depletion or its pharmacological inhibition in PANC-1-differentiated islet cells. shRNA mediated PARP1 depleted (SiP) and shRNA control (U6) PANC-1 cells were differentiated into islet-like clusters using established protocols. We observed complete abrogation of new β cell formation with absolute PARP1 depletion while its inhibition using the potent inhibitor, PJ34, promoted the endocrine β cell differentiation and maturation. Immunohistochemistry and immunoblotting for key endocrine differentiation players along with β cell maturation markers highlighted the potential regulatory action of PARP1 and augmented β cell differentiation due to direct interaction of unmodified PARP1 protein elicited p38 MAPK phosphorylation and Neurogenin-3 (Ngn3) re-activation. In summary, our study suggests that PARP1 is required for the proper development and differentiation of human islets. Selective inhibition with PARPi can be an advantage in pushing more insulin-producing cells under pathological conditions and delivers a potential for pilot clinical testing for β cell replacement cell therapies for diabetes.
Collapse
|
3
|
Sharma R, Kumari M, Mishra S, Chaudhary DK, Kumar A, Avni B, Tiwari S. Exosomes Secreted by Umbilical Cord Blood-Derived Mesenchymal Stem Cell Attenuate Diabetes in Mice. J Diabetes Res 2021; 2021:9534574. [PMID: 34926699 PMCID: PMC8683199 DOI: 10.1155/2021/9534574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an innovative approach in diabetes due to its capacity to modulate tissue microenvironment and regeneration of glucose-responsive insulin-producing cells. In this study, we investigated the role of MSC-derived exosomes in pancreatic regeneration and insulin secretion in mice with streptozotocin-induced diabetes. Mesenchymal stem cells (MSCs) were isolated and characterized from umbilical cord blood (UCB). Exosomes were isolated and characterized from these MSCs. Diabetes was induced in male C57Bl/6 mice by streptozotocin (STZ; 40 mg/kg body weight, i.p.) for five consecutive days. The diabetic mice were administered (i.v.) with MSC (1 × 105 umbilical cord blood MSC cells/mice/day), their derived exosomes (the MSC-Exo group that received exosomes derived from 1 × 105 MSC cells/mice/day), or the same volume of PBS. Before administration, the potency of MSCs and their exosomes was evaluated in vitro by T cell activation experiments. After day 7 of the treatments, blood samples and pancreatic tissues were collected. Histochemistry was performed to check cellular architecture and β cell regeneration. In body weight, blood glucose level, and insulin level, cell proliferation assay was done to confirm regeneration of cells after MSC and MSC-Exo treatments. Hyperglycemia was also attenuated in these mice with a concomitant increase in insulin production and an improved histological structure compared to mice in the PBS-treated group. We found increased expression of genes associated with tissue regeneration pathways, including Reg2, Reg3, and Amy2b in the pancreatic tissue of mice treated with MSC or MSC-Exo relative to PBS-treated mice. MicroRNA profiling of MSC-derived exosomes showed the presence of miRs that may facilitate pancreatic regeneration by regulating the Extl3-Reg-cyclinD1 pathway. These results demonstrate a potential therapeutic role of umbilical cord blood MSC-derived exosomes in attenuating insulin deficiency by activating pancreatic islets' regenerative abilities.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manju Kumari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Suman Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Dharmendra K. Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Alok Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
4
|
The Potential Role of REG Family Proteins in Inflammatory and Inflammation-Associated Diseases of the Gastrointestinal Tract. Int J Mol Sci 2021; 22:ijms22137196. [PMID: 34281249 PMCID: PMC8268738 DOI: 10.3390/ijms22137196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerating gene (REG) family proteins serve as multifunctional secretory molecules with trophic, antiapoptotic, anti-inflammatory, antimicrobial and probably immuno-regulatory effects. Since their discovery, accumulating evidence has clarified the potential roles of the REG family in the occurrence, progression and development of a wide range of inflammatory and inflammation-associated diseases of the gastrointestinal (GI) tract. However, significant gaps still exist due to the undefined nature of certain receptors, regulatory signaling pathways and possible interactions among distinct Reg members. In this narrative review, we first describe the structural features, distribution pattern and purported regulatory mechanisms of REG family proteins. Furthermore, we summarize the established and proposed roles of REG proteins in the pathogenesis of various inflammation-associated pathologies of the GI tract and the body as a whole, focusing particularly on carcinogenesis in the ulcerative colitis—colitic cancer sequence and gastric cancer. Finally, the clinical relevance of REG products in the context of diagnosis, treatment and prognostication are also discussed in detail. The current evidence suggests a need to better understanding the versatile roles of Reg family proteins in the pathogenesis of inflammatory-associated diseases, and their broadened future usage as therapeutic targets and prognostic biomarkers is anticipated.
Collapse
|
5
|
Eleazer R, Fondufe‐Mittendorf YN. The multifaceted role of PARP1 in RNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1617. [PMID: 32656996 PMCID: PMC7856298 DOI: 10.1002/wrna.1617] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are abundant nuclear proteins that synthesize ADP ribose polymers (pADPr) and catalyze the addition of (p)ADPr to target biomolecules. PARP1, the most abundant and well-studied PARP, is a multifunctional enzyme that participates in numerous critical cellular processes. A considerable amount of PARP research has focused on PARP1's role in DNA damage. However, an increasing body of evidence outlines more routine roles for PARP and PARylation in nearly every step of RNA biogenesis and metabolism. PARP1's involvement in these RNA processes is pleiotropic and has been ascribed to PARP1's unique flexible domain structures. PARP1 domains are modular self-arranged enabling it to recognize structurally diverse substrates and to act simultaneously through multiple discrete mechanisms. These mechanisms include direct PARP1-protein binding, PARP1-nucleic acid binding, covalent PARylation of target molecules, covalent autoPARylation, and induction of noncovalent interactions with PAR molecules. A combination of these mechanisms has been implicated in PARP1's context-specific regulation of RNA biogenesis and metabolism. We examine the mechanisms of PARP1 regulation in transcription initiation, elongation and termination, co-transcriptional splicing, RNA export, and post-transcriptional RNA processing. Finally, we consider promising new investigative avenues for PARP1 involvement in these processes with an emphasis on PARP1 regulation of subcellular condensates. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Rebekah Eleazer
- Department of Molecular and Cellular Biochemistry and Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Yvonne N. Fondufe‐Mittendorf
- Department of Molecular and Cellular Biochemistry and Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
6
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
7
|
Deficiency in intestinal epithelial Reg4 ameliorates intestinal inflammation and alters the colonic bacterial composition. Mucosal Immunol 2019; 12:919-929. [PMID: 30953001 PMCID: PMC7744279 DOI: 10.1038/s41385-019-0161-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/04/2023]
Abstract
The regenerating islet-derived family member 4 (Reg4) in the gastrointestinal tract is up-regulated during intestinal inflammation. However, the physiological function of Reg4 in the inflammation is largely unknown. In the current study, the functional roles and involved mechanisms of intestinal epithelial Reg4 in intestinal inflammation were studied in healthy and inflamed states using human intestinal specimens, an intestinal conditional Reg4 knockout mouse (Reg4ΔIEC) model and dextran sulfate sodium (DSS)-induced colitis model. We showed that the elevated serum Reg4 in pediatric intestinal failure (IF) patients were positively correlated with the serum concentrations of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In inflamed intestine of IF patients, the crypt base Reg4 protein was increased and highly expressed towards the luminal face. The Reg4 was indicated as a novel target of activating transcription factor 2 (ATF2) that enhanced Reg4 expression during the intestinal inflammation. In vivo, the DSS-induced colitis was significantly ameliorated in Reg4ΔIEC mice. Reg4ΔIEC mice altered the colonic bacterial composition and reduced the bacteria adhere to the colonic epithelium. In vitro, Reg4 was showed to promote the growth of colonic organoids, and that this occurs through a mechanism involving activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, our findings demonstrated intestinal-epithelial Reg4 deficiency protects against experimental colitis and mucosal injury via a mechanism involving alteration of bacterial homeostasis and STAT3 activation.
Collapse
|
8
|
Significance of Interleukin-6/STAT Pathway for the Gene Expression of REG Iα, a New Autoantigen in Sjögren's Syndrome Patients, in Salivary Duct Epithelial Cells. Clin Rev Allergy Immunol 2018; 52:351-363. [PMID: 27339601 DOI: 10.1007/s12016-016-8570-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regenerating gene, Reg, was originally isolated from a rat regenerating islet complementary DNA (cDNA) library, and its human homologue was named REG Iα. Recently, we reported that REG Iα messenger RNA (mRNA), as well as its product, was overexpressed in ductal epithelial cells in the salivary glands of Sjögren's syndrome patients. Furthermore, autoantibodies against REG Iα were found in the sera of Sjögren's syndrome patients, and the patients who were positive for the anti-REG Iα antibody showed significantly lower saliva secretion than antibody-negative patients. We found the mechanism of REG Iα induction in salivary ductal epithelial cells. Reporter plasmid containing REG Iα promoter (-1190/+26) upstream of a luciferase gene was introduced into human NS-SV-DC and rat A5 salivary ductal cells. The cells were treated with several cytokines (interleukin (IL)-6, IL-8, etc.), upregulated in Sjögren's syndrome salivary ducts, and the transcriptional activity was measured. IL-6 stimulation significantly enhanced the REG Iα promoter activity in both cells. Deletion analysis revealed that the -141∼-117 region of the REG Iα gene was responsible for the promoter activation by IL-6, which contains a consensus sequence for signal transducer and activator of transcription (STAT) binding. The introduction of small interfering RNA for human STAT3 abolished IL-6-induced REG Iα transcription. These results indicated that IL-6 stimulation induced REG Iα transcription through STAT3 activation and binding to the REG Iα promoter in salivary ductal cells. This dependence of REG Iα induction upon IL-6/STAT in salivary duct epithelial cells may play an important role in the pathogenesis/progression of Sjögren's syndrome.
Collapse
|
9
|
Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6. Int J Mol Sci 2017; 18:ijms18112257. [PMID: 29077068 PMCID: PMC5713227 DOI: 10.3390/ijms18112257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
The periosteum is a thin membrane that surrounds the outer surface of bones and participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it with an intramedullary inserted wire, and the expression of regenerating gene (Reg) I, which encodes a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed RegI gene expression before or after the fracture. By contrast, the periosteum showed an elevated expression after the fracture, thereby confirming the localization of Reg I expression exclusively in the periosteum around the fractured areas. Expression of the Reg family increased after the fracture, followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the osteogenic response of the periosteum, which leads to fracture repair.
Collapse
|
10
|
Tsuchida C, Sakuramoto-Tsuchida S, Taked M, Itaya-Hironaka A, Yamauchi A, Misu M, Shobatake R, Uchiyama T, Makino M, Pujol-Autonell I, Vives-Pi M, Ohbayashi C, Takasawa S. Expression of REG family genes in human inflammatory bowel diseases and its regulation. Biochem Biophys Rep 2017; 12:198-205. [PMID: 29090282 PMCID: PMC5655384 DOI: 10.1016/j.bbrep.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022] Open
Abstract
The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (- 220 to - 211, - 179 to - 156, and - 146 to - 130) in REG Iα and the region (- 274 to- 260) in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.
Collapse
Key Words
- CD, Crohn's disease
- CDX2, caudal-type homeobox transcription factor 2
- Celiac disease
- Crohn's disease
- FOXN2, forkhead box protein N2
- GATA6, GATA DNA-binding protein 6
- HLTF, helicase-like transcription factor
- IBD, inflammatory bowel disease
- IL, interleukin
- MZF1, myeloid zinc finger 1
- REG family genes
- REG, regenerating gene
- RTEF1, related transcriptional enhancer factor-1
- SOCS3, suppressors of the cytokine signaling 3
- STAT3, signal transducer and activator of transcription 3
- TEAD4, TEA Domain transcription Factor 4
- Transcription
- UC, ulcerative colitis
- Ulcerative colitis
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Chikatsugu Tsuchida
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan.,Saiseikai Nara Hospital, Nara 630-8145, Japan
| | | | - Maiko Taked
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan.,Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai 591-8025, Japan
| | | | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Masayasu Misu
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Irma Pujol-Autonell
- Immunology Division, Germans Trias i Pujol Health Sciences Research Institute, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Vives-Pi
- Immunology Division, Germans Trias i Pujol Health Sciences Research Institute, Autonomous University of Barcelona, 08916 Badalona, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
11
|
Up-regulation of selenoprotein P and HIP/PAP mRNAs in hepatocytes by intermittent hypoxia via down-regulation of miR-203. Biochem Biophys Rep 2017; 11:130-137. [PMID: 28955777 PMCID: PMC5614699 DOI: 10.1016/j.bbrep.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human hepatocytes (JHH5, JHH7, and HepG2) to experimental IH or normoxia for 24 h, measured mRNA levels by real-time reverse transcription polymerase chain reaction (RT-PCR), and found that IH significantly increased the mRNA levels of selenoprotein P (SELENOP) — a hepatokine — and hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) — one of REG (Regenerating gene) family. We next investigated promoter activities of both genes and discovered that they were not increased by IH. On the other hand, a target mRNA search of micro RNA (miRNA) revealed that both mRNAs have a potential target sequence for miR-203. The miR-203 level of IH-treated cells was significantly lower than that of normoxia-treated cells. Thus, we introduced miR-203 inhibitor and a non-specific control RNA (miR-203 inhibitor NC) into HepG2 cells and measured the mRNA levels of SELENOP and HIP/PAP. The IH-induced expression of SELENOP and HIP/PAP was abolished by the introduction of miR-203 inhibitor but not by miR-203 inhibitor NC. These results demonstrate that IH stress up-regulates the levels of SELENOP in human hepatocytes to accelerate insulin resistance and up-regulates the levels of HIP/PAP mRNAs to proliferate such hepatocytes, via the miR-203 mediated mechanism.
Collapse
Key Words
- AHSG, α2 HS-glycoprotein
- ANGPTL6, angiopoietin-related growth factor
- DICER, endoribonuclease Dicer
- DROSHA, ribonuclease type III
- ELISA, enzyme-linked immunosorbent assay
- FCS, fetal calf serum
- FGF21, fibroblast growth factor 21
- HIP/PAP
- HIP/PAP, hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein
- Hepatokine
- IH, intermittent hypoxia
- Intermittent hypoxia
- LECT2, leukocyte cell-derived chemotaxin 2
- MCPIP1, monocyte chemotactic protein-induced protein 1
- REG family gene
- Reg, regenerating gene
- Rig, rat insulinoma gene
- RpS15, ribosomal protein S15
- SAS, sleep apnea syndrome
- SELENOP
- SELENOP, selenoprotein P
- SHBG, sex hormone-binding globulin
- TP63, transformation-related protein 63
- WST-8, 2-(2-methoxy-4-nitrophenyl)−3-(4-nitrophenyl)−5-(2,4-disulfophenyl)−2H-tetrazolium monosodium salt
- miR-203
- miRNA, micro RNA
- siRNA, small interfering RNA
Collapse
|
12
|
Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLoS One 2017; 12:e0180695. [PMID: 28672010 PMCID: PMC5495486 DOI: 10.1371/journal.pone.0180695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.
Collapse
|
13
|
Nagayama K, Kyotani Y, Zhao J, Ito S, Ozawa K, Bolstad FA, Yoshizumi M. Exendin-4 Prevents Vascular Smooth Muscle Cell Proliferation and Migration by Angiotensin II via the Inhibition of ERK1/2 and JNK Signaling Pathways. PLoS One 2015; 10:e0137960. [PMID: 26379274 PMCID: PMC4574935 DOI: 10.1371/journal.pone.0137960] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
Angiotensin II (Ang II) is a main pathophysiological culprit peptide for hypertension and atherosclerosis by causing vascular smooth muscle cell (VSMC) proliferation and migration. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, is currently used for the treatment of type-2 diabetes, and is believed to have beneficial effects for cardiovascular diseases. However, the vascular protective mechanisms of GLP-1 receptor agonists remain largely unexplained. In the present study, we examined the effect of exendin-4 on Ang II-induced proliferation and migration of cultured rat aortic smooth muscle cells (RASMC). The major findings of the present study are as follows: (1) Ang II caused a phenotypic switch of RASMC from contractile type to synthetic proliferative type cells; (2) Ang II caused concentration-dependent RASMC proliferation, which was significantly inhibited by the pretreatment with exendin-4; (3) Ang II caused concentration-dependent RASMC migration, which was effectively inhibited by the pretreatment with exendin-4; (4) exendin-4 inhibited Ang II-induced phosphorylation of ERK1/2 and JNK in a pre-incubation time-dependent manner; and (5) U0126 (an ERK1/2 kinase inhibitor) and SP600125 (a JNK inhibitor) also inhibited both RASMC proliferation and migration induced by Ang II stimulation. These results suggest that exendin-4 prevented Ang II-induced VSMC proliferation and migration through the inhibition of ERK1/2 and JNK phosphorylation caused by Ang II stimulation. This indicates that GLP-1 receptor agonists should be considered for use in the treatment of cardiovascular diseases in addition to their current use in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kosuke Nagayama
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Jing Zhao
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Satoyasu Ito
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kentaro Ozawa
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Francesco A. Bolstad
- Department of Clinical English, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
- * E-mail:
| |
Collapse
|
14
|
Tsujinaka H, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Ota H, Takeda M, Fujimura T, Takasawa S, Ogata N. Human retinal pigment epithelial cell proliferation by the combined stimulation of hydroquinone and advanced glycation end-products via up-regulation of VEGF gene. Biochem Biophys Rep 2015; 2:123-131. [PMID: 29124153 PMCID: PMC5668646 DOI: 10.1016/j.bbrep.2015.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 01/26/2023] Open
Abstract
Although recent research showed that advanced glycation endproduct (AGE) and hydroquinone (HQ) are related to the pathogenesis of age-related macular degeneration (AMD), the mechanism how AGE and HQ induce or accelerate AMD remains elusive. In the present study, we examined the effects of AGE and HQ on changes of human retinal pigment epithelial (RPE) cell numbers and found that the viable cell numbers were markedly reduced by HQ by apoptosis and that AGE prevented the decreases of HQ-treated cell numbers by increased replicative DNA synthesis of RPE cells without changing apoptosis. Real-time RT-PCR revealed that vascular endothelial growth factor (VEGF)-A mRNA was increased by HQ treatment and the addition of HQ+AGE resulted in a further increment. The increase of VEGF secretion was confirmed by ELISA, and inhibition of VEGF signaling by chemical inhibitors and small interfering RNA decreased the HQ+AGE-induced increases in RPE cell numbers. The deletion analysis demonstrated that -102 to -43 region was essential for the VEGF-A promoter activation. Site-directed mutaions of specificity protein 1 (SP1) binding sequences in the VEGF-A promoter and RNA interference of SP1 revealed that SP1 is an essential transcription factor for VEGF-A expression. These results indicate that HQ induces RPE cell apoptosis, leading to dry AMD, and suggest that AGE stimulation in addition to HQ enhances VEGF-A transcription via the AGE-receptor for AGE pathway in HQ-damaged cells. As a result, the secreted VEGF acts as an autocrine/paracrine growth factor for RPE and/or adjacent vascular cells, causing wet AMD.
Collapse
Key Words
- AGE, advanced glycation endproduct
- AMD, age-related macular degeneration
- Advanced glycation endproduct(s)
- Age-related macular degeneration
- BSA, bovine serum albumin
- ELISA, enzyme-linked immunosorbent assay
- FCS, fetal calf serum
- HQ, hydroquinone
- Hydroquinone
- IdU, 5ʹ-Indo-2ʹ-deoxyuridine
- RAGE, receptor for advanced glycation endproduct
- RPE, retinal pigment epithelial
- RT-PCR, reverse transcription polymerase chain reaction;
- Retinal pigment epithelial cells
- SP1, specificity protein 1
- SR, scavenger receptor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- VEGF, vascular endothelial growth factor
- Vascular endothelial growth factor
- WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Hiroki Tsujinaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
- Department of Ophthalmology, Nara Medical University, Kashihara, 634-8522 Nara, Japan
| | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
| | | | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
| | - Maiko Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
| | - Takanori Fujimura
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University, Kashihara, 634-8522 Nara, Japan
| |
Collapse
|
15
|
Interleukin-6/STAT pathway is responsible for the induction of gene expression of REG Iα, a new auto-antigen in Sjögren׳s syndrome patients, in salivary duct epithelial cells. Biochem Biophys Rep 2015; 2:69-74. [PMID: 29124146 PMCID: PMC5668644 DOI: 10.1016/j.bbrep.2015.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023] Open
Abstract
The regenerating gene, Reg, was originally isolated from a rat regenerating islet cDNA library, and its human homolog was named REG Iα. Recently, we reported that REG Iα mRNA as well as its product were overexpressed in ductal epithelial cells in the minor salivary glands of Sjögren׳s syndrome (SS) patients. This study was undertaken to elucidate the role of cytokines and the subsequent intracellular mechanism for induction of REG Iα in the salivary glands of SS patients. We prepared a reporter plasmid containing REG Iα promoter (−1190/+26) upstream of a luciferase reporter gene. The promoter plasmid was introduced by lipofection into human NS-SV-DC and rat A5 salivary ductal cells. The cells were treated with interleukin (IL)-6, IL-8, and a combination of the two. Thereafter transcriptional activity of REG Iα was measured by luciferase assay. We found that IL-6 stimulation, but not IL-8, significantly enhanced the REG Iα promoter activity in salivary ductal cells. Deletion analysis revealed that the region of −141 to −117 of the REG Iα gene was responsible for the promoter activation by IL-6, which contains a consensus sequence for signal transduction and activation of transcription (STAT). The introduction of siRNA for human STAT3 abolished IL-6-induced REG Iα transcription. These results showed that IL-6 stimulation induced REG Iα transcription through STAT3 activation and binding to the consensus sequence of REG Iα promoter in salivary ductal cells. This IL-6/STAT dependent REG Iα induction might play a role in the pathogenesis of SS. REG Iα was overexpressed in salivary ductal cells of patients with Sjögren׳s syndrome. IL-6 stimulation enhanced the REG Iα gene transcription in salivary ductal cells. STAT3 mediated IL-6-induced REG Iα transcription in salivary ductal cells.
Collapse
|
16
|
Yamauchi A, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Takeda M, Yoshimoto K, Miyaoka T, Fujimura T, Tsujinaka H, Tsuchida C, Ota H, Takasawa S. Synergistic activations of REG I α and REG I β promoters by IL-6 and Glucocorticoids through JAK/STAT pathway in human pancreatic β cells. J Diabetes Res 2015; 2015:173058. [PMID: 25767811 PMCID: PMC4342170 DOI: 10.1155/2015/173058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Reg (Regenerating gene) gene was originally isolated from rat regenerating islets and its encoding protein was revealed as an autocrine/paracrine growth factor for β cells. Rat Reg gene is activated in inflammatory conditions for β cell regeneration. In human, although five functional REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) were isolated, their expressions in β cells under inflammatory conditions remained unclear. In this study, we found that combined addition of IL-6 and dexamethasone (Dx) induced REG Iα and REG Iβ expression in human 1.1B4 β cells. Promoter assay revealed that a signal transducer and activator of transcription- (STAT-) binding site in each promoter of REG Iα (TGCCGGGAA) and REG Iβ (TGCCAGGAA) was essential for the IL-6+Dx-induced promoter activation. A Janus kinase 2 (JAK2) inhibitor significantly inhibited the IL-6+Dx-induced REG Iα and REG Iβ transcription. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that IL-6+Dx stimulation increased STAT3 binding to the REG Iα promoter. Furthermore, small interfering RNA-mediated targeting of STAT3 blocked the IL-6+Dx-induced expression of REG Iα and REG Iβ. These results indicate that the expression of REG Iα and REG Iβ should be upregulated in human β cells under inflammatory conditions through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | | | | | - Maiko Takeda
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Kiyomi Yoshimoto
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Tomoko Miyaoka
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Takanori Fujimura
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroki Tsujinaka
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Chikatsugu Tsuchida
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
17
|
Uppal SS, Naveed AK, Baig S, Chaudhry B. Expression of REG Iα gene in type 2 diabetics in Pakistan. Diabetol Metab Syndr 2015; 7:96. [PMID: 26568772 PMCID: PMC4643495 DOI: 10.1186/s13098-015-0092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The escalating rate of diabetes' has prompted researchers around the world to explore for early markers. A deficit of functional β-cell mass plays a central role in the pathophysiology of type 2 diabetes. The REG (Regenerating) gene, encoding a 166 amino acid REG protein was discovered in rats and humans which is released in response to β-cells damage and play a role in their regeneration. The objective of this study was to characterize serum levels of REG Iα proteins in type 2 diabetic patients as indicator of β-cell apoptosis as well as regeneration. METHODS Unrelated type 2 diabetic patients (n = 55) of different age groups and disease duration were recruited from the Medical OPD of PNS Shifa Hospital. Age and sex matched non diabetic controls (n = 20) without family history of diabetes were selected from the same setting. Demographical details were recorded on a structured questionnaire. Biochemical parameters like FBG, HbA1c, TC and TG levels were measured. Serum levels of REG Iα protein were determined by ELISA. RESULTS Levels of REG Iα protein were found significantly raised in type 2 diabetic patients compared to controls (p < 001). Patients with short duration of the disease had higher levels of REG Iα as compared to patients with longer duration of the disease. Although the patients were on anti hyperglycemic agents, a positive correlation was found between REG Iα serum levels, FBG and HbA1c levels. Patients with higher BMI had higher levels of serum REG Iα levels. Serum TC, TG and Hb levels showed no correlation. CONCLUSION REG Iα may be used as a marker/predictor of type 2 diabetes especially in the early stages of the disease.
Collapse
Affiliation(s)
- Sadaf Saleem Uppal
- />Department of Biochemistry and Molecular Biology, Army Medical College, Rawalpindi and National University of Science and Technology, Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- />Department of Biochemistry, Islamic International Medical College, Riphah International University, Islamabad, Pakistan
| | - Saeeda Baig
- />Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Bushra Chaudhry
- />Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
18
|
Aida K, Saitoh S, Nishida Y, Yokota S, Ohno S, Mao X, Akiyama D, Tanaka S, Awata T, Shimada A, Oikawa Y, Shimura H, Furuya F, Takizawa S, Ichijo M, Ichijo S, Itakura J, Fujii H, Hashiguchi A, Takasawa S, Endo T, Kobayashi T. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG) protein in fulminant type 1 diabetes. PLoS One 2014; 9:e95110. [PMID: 24759849 PMCID: PMC3997392 DOI: 10.1371/journal.pone.0095110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/23/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs), extracellular matrix (ECM), and possible cell clusters, are unclear. PROCEDURES The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG) Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.
Collapse
Affiliation(s)
- Kaoru Aida
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yoriko Nishida
- Department of Nursing, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sadanori Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Saseho, Nagasaki, Japan
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiayang Mao
- Department of Computer Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Daiichiro Akiyama
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shoichiro Tanaka
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takuya Awata
- Division of Endocrinology and Diabetes, Department of Medicine, Saitama Medical School, Moroyama, Saitama, Japan
| | - Akira Shimada
- Department of Internal Medicine, Saiseikai Central Hospital, Tokyo, Japan
| | - Youichi Oikawa
- Department of Internal Medicine, Saiseikai Central Hospital, Tokyo, Japan
| | - Hiroki Shimura
- Department of Laboratory Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Fumihiko Furuya
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Soichi Takizawa
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masashi Ichijo
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sayaka Ichijo
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jun Itakura
- Department of Surgery I, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hideki Fujii
- Department of Surgery I, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Wakayama, Japan
| | - Toyoshi Endo
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tetsuro Kobayashi
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- * E-mail:
| |
Collapse
|
19
|
Li B, Bi CL, Lang N, Li YZ, Xu C, Zhang YQ, Zhai AX, Cheng ZF. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines. Mol Biol Rep 2014; 41:1917-25. [PMID: 24619356 DOI: 10.1007/s11033-013-3016-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu T, Wang XJ, Tian W, Jaramillo MC, Lau A, Zhang DD. Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription. Free Radic Biol Med 2014; 67:69-80. [PMID: 24140708 PMCID: PMC3945083 DOI: 10.1016/j.freeradbiomed.2013.10.806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/29/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Abstract
The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiao-Jun Wang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Wang Tian
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Melba C Jaramillo
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Alexandria Lau
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
21
|
Yoshimoto K, Fujimoto T, Itaya-Hironaka A, Miyaoka T, Sakuramoto-Tsuchida S, Yamauchi A, Takeda M, Kasai T, Nakagawara K, Nonomura A, Takasawa S. Involvement of autoimmunity to REG, a regeneration factor, in patients with primary Sjögren's syndrome. Clin Exp Immunol 2013; 174:1-9. [PMID: 23701206 DOI: 10.1111/cei.12142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 12/21/2022] Open
Abstract
The regenerating gene (Reg) was isolated originally as a gene specifically over-expressed in regenerating pancreatic islets and constitute a growth factor family. Reg gene product (Reg) is important in the pathophysiology of various human inflammatory diseases. Recently, the possible involvement of human REG in the regeneration of salivary ductal epithelial cells of patients with primary Sjögren's syndrome (SS) was reported. However, the expression of the REG family genes in minor salivary glands (MSG) and the occurrence of anti-REG Iα autoantibodies in SS patients were obscured. In this study, we examined the expression of REG family genes in the MSG of SS and screened anti-REG Iα autoantibodies in SS. The mRNA levels of REG family genes in MSG were quantified using real-time reverse transcription-polymerase chain reaction (RT-PCR) and REG Iα expression in the MSG was analysed by immunohistochemistry. The mRNA level of REG Iα in the MSG of SS patients was significantly higher than that of control. REG Iα protein was expressed highly in SS ductal epithelial cells. Anti-REG Iα autoantibodies in the sera were found in 11% of SS. All the MSG in the anti-REG Iα autoantibody-positive group showed REG Iα expression, whereas only 40% showed REG Iα expression in the anti-REG Iα autoantibody-negative group. The anti-REG Iα autoantibody-positive group showed significantly lower saliva secretion and a higher ratio of grade 4 (by Rubin-Holt) in sialography. These data suggest strongly that autoimmunity to REG Iα might play a role in the degeneration of MSG ductal epithelial cells in primary SS.
Collapse
Affiliation(s)
- K Yoshimoto
- Department of Biochemistry, Nara Medical University, Kashihara, Japan; Department of General Medicine, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jia J, Liu X, Chen Y, Zheng X, Tu L, Huang X, Wang X. Establishment of a pancreatic β cell proliferation model in vitro and a platform for diabetes drug screening. Cytotechnology 2013; 66:687-97. [PMID: 23979319 DOI: 10.1007/s10616-013-9622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/19/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetes, a disease resulting from loss of functional β cells, is globally an increasingly important condition. Based on the islet-differentiation ability of ductal epithelial cells and stimulating β cell proliferation ability of the Reg Iα gene, we aimed to establish an in vitro pancreatic β cell proliferation model for screening therapeutic drugs of diabetes in the future. Pancreatic ductal epithelial cells were isolated from male Wistar rats, and induced to differentiate into pancreatic β cells. Immunofluorescence staining assay, western blot, RT-PCR analysis, and dithizone staining were used to characterize the cells. Rat Reg Iα protein was transiently expressed in vitro by transfection of HEK 293 cells with the PCMV6-entry-REG Ia plasmid, and expression was verified by RT-PCR analysis, proliferation assay, and apoptosis assay. The pancreatic β cell proliferation model was further validated by a proliferation assay using differentiated pancreatic β cells treated with transfection supernatant. Finally, we have successfully established an in vitro pancreatic β cells proliferation model using transiently expressed rat Reg Iα protein and differentiated pancreatic β cells from pancreatic ductal epithelial cells. This model could be used as a platform to screen new drugs for islet neogenesis to cure diabetes, especially Chinese herbal drugs in the future.
Collapse
Affiliation(s)
- Jing Jia
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Marković J, Grdović N, Dinić S, Karan-Djurašević T, Uskoković A, Arambašić J, Mihailović M, Pavlović S, Poznanović G, Vidaković M. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells. PLoS One 2013; 8:e59679. [PMID: 23555743 PMCID: PMC3608566 DOI: 10.1371/journal.pone.0059679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/16/2013] [Indexed: 12/20/2022] Open
Abstract
Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription.
Collapse
Affiliation(s)
- Jelena Marković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurašević
- Laboratory for Molecular Hematology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Arambašić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Hematology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
24
|
G-Protein-Coupled Receptor (GPCR)-Dependent ADAM-17 Regulated Ectodomain Shedding. Cancer Biomark 2012. [DOI: 10.1201/b14318-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Ko HL, Ren EC. Functional Aspects of PARP1 in DNA Repair and Transcription. Biomolecules 2012; 2:524-48. [PMID: 24970148 PMCID: PMC4030864 DOI: 10.3390/biom2040524] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating enzyme essential for initiating various forms of DNA repair. Inhibiting its enzyme activity with small molecules thus achieves synthetic lethality by preventing unwanted DNA repair in the treatment of cancers. Through enzyme-dependent chromatin remodeling and enzyme-independent motif recognition, PARP1 also plays important roles in regulating gene expression. Besides presenting current findings on how each process is individually controlled by PARP1, we shall discuss how transcription and DNA repair are so intricately linked that disturbance by PARP1 enzymatic inhibition, enzyme hyperactivation in diseases, and viral replication can favor one function while suppressing the other.
Collapse
Affiliation(s)
- Hui Ling Ko
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| | - Ee Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| |
Collapse
|
26
|
Petropavlovskaia M, Daoud J, Zhu J, Moosavi M, Ding J, Makhlin J, Assouline-Thomas B, Rosenberg L. Mechanisms of action of islet neogenesis-associated protein: comparison of the full-length recombinant protein and a bioactive peptide. Am J Physiol Endocrinol Metab 2012; 303:E917-27. [PMID: 22850686 PMCID: PMC3469614 DOI: 10.1152/ajpendo.00670.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Islet neogenesis-associated protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas as a factor inducing formation of new duct-associated islets. A bioactive portion of INGAP, INGAP(104-118) peptide (INGAP-P), has been shown to have neogenic and insulin-potentiating activity in numerous studies, including recent phase 2 clinical trials that demonstrated improved glucose homeostasis in both type 1 and type 2 diabetic patients. Aiming to improve INGAP-P efficacy and to understand its mechanism of action, we cloned the full-length protein (rINGAP) and compared the signaling events induced by the protein and the peptide in RIN-m5F cells that respond to INGAP with an increase in proliferation. Here, we show that, although both rINGAP and INGAP-P signal via the Ras/Raf/ERK pathway, rINGAP is at least 100 times more efficient on a molar basis than INGAP-P. For either ligand, ERK1/2 activation appears to be pertussis toxin sensitive, suggesting involvement of a G protein-coupled receptor(s). However, there are clear differences between the peptide and the protein in interactions with the cell surface and in the downstream signaling. We demonstrate that fluorescent-labeled rINGAP is characterized by clustering on the membrane and by slow internalization (≤5 h), whereas INGAP-P does not cluster and is internalized within minutes. Signaling by rINGAP appears to involve Src, in contrast to INGAP-P, which appears to activate Akt in addition to the Ras/Raf/ERK1/2 pathway. Thus our data suggest that interactions of INGAP with the cell surface are important to consider for further development of INGAP as a pharmacotherapy for diabetes.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Department of Surgery, the Research Institute of the McGill University Health Center, McGill University, Montreal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Beneke S. Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 2012; 3:169. [PMID: 22969794 PMCID: PMC3432497 DOI: 10.3389/fgene.2012.00169] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 12/23/2022] Open
Abstract
The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose) has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose), the zinc-finger protein poly(ADP-ribose) polymerase-1 (PARP1), was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.
Collapse
Affiliation(s)
- Sascha Beneke
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
28
|
Tang DQ, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang LJ. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. AMERICAN JOURNAL OF STEM CELLS 2012; 1:114-127. [PMID: 22833839 PMCID: PMC3402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Efforts involving therapeutic islet cell transplantation have been hampered by limited islet availability and immune rejection. In vitro transdifferentiation of human bone marrow-derived stem (hBMDS) cells into functional insulin-producing cells promises to provide a tissue source for autologous cell transplantation. In this study, we isolated hBMDS cells, developed a single-cell-derived stem cell line, and induced the cells to differentiate into islet-like clusters. These islet-like cells expressed multiple genes related to islet development and beta cell function (e.g., Pdx-1, Ngn-3, Islet-1, Neuro-D, Pax4, IAPP, and insulin) and produced insulin and C-peptide within these cells. These islet-like cells demonstrated time-dependent glucose-stimulated insulin release, and the ability to ameliorate hyperglycemia in chemically induced diabetic mice. However, these transplanted differentiated cells became tumorigenic in diabetic immunocompromised mice and their spontaneous transformation was confirmed by a marked increase in growth rate and inactivation of tumor suppressor genes (P21 and P16) by promoter hypermethylation. In conclusion, while hBMDS cells can be transdifferentiated into competent insulin-producing cells, and while such cell might be a potential source for autologous cell therapy for type 1 diabetes, caution is strongly advised in view of the neoplastic propensity of hBMDS cells, especially after a long-term culture in vitro.
Collapse
Affiliation(s)
- Dong-Qi Tang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| | - Qiwei Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| | - Brant R. Burkhardt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South FloridaFlorida
| | | | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| |
Collapse
|
29
|
Parikh A, Stephan AF, Tzanakakis ES. Regenerating proteins and their expression, regulation and signaling. Biomol Concepts 2011; 3:57-70. [PMID: 22582090 DOI: 10.1515/bmc.2011.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The regenerating (Reg) protein family comprises C-type lectin-like proteins discovered independently during pancreatitis and pancreatic islet regeneration. However, an increasing number of studies provide evidence of participation of Reg proteins in the proliferation and differentiation of diverse cell types. Moreover, Reg family members are associated with various pathologies, including diabetes and forms of gastrointestinal cancer. These findings have led to the emergence of key roles for Reg proteins as anti-inflammatory, antiapoptotic and mitogenic agents in multiple physiologic and disease contexts. Yet, there are significant gaps in our knowledge regarding the regulation of expression of different Reg genes. In addition, the pathways relaying Reg-triggered signals, their targets and potential cross-talk with other cascades are still largely unknown. In this review, the expression patterns of different Reg members in the pancreas and extrapancreatic tissues are described. Moreover, factors known to modulate Reg levels in different cell types are discussed. Several signaling pathways, which have been implicated in conferring the effects of Reg ligands to date, are also delineated. Further efforts are necessary for elucidating the biological processes underlying the action of Reg proteins and their involvement in various maladies. Better understanding of the function of Reg genes and proteins will be beneficial in the design and development of therapies utilizing or targeting this protein group.
Collapse
Affiliation(s)
- Abhirath Parikh
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260
| | | | | |
Collapse
|
30
|
Zhang Y, Kim HJ, Yamamoto S, Kang X, Ma X. Regulation of interleukin-10 gene expression in macrophages engulfing apoptotic cells. J Interferon Cytokine Res 2010; 30:113-22. [PMID: 20187777 DOI: 10.1089/jir.2010.0004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apoptosis and the rapid clearance of apoptotic cells (ACs) by professional or nonprofessional phagocytes are normal and coordinated processes that ensure controlled cell growth and stress response with nonpathological outcomes. Uptake of ACs by phagocytes is thought to suppress autoimmune responses through the release of anti-inflammatory cytokines such as interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), and inhibition of proinflammatory cytokines. The production of pro- and anti-inflammatory cytokines by phagocytes is highly regulated as part of an intrinsic mechanism to prevent inflammatory and autoimmune reactions in a physiological state. Production of IL-10 by phagocytes during clearance of ACs is critical to ensuring cellular homeostasis and suppression of autoimmunity. The molecular mechanism whereby IL-10 production is induced by ACs is only beginning to be understood. This review summarizes our recent work in this aspect of an essential physiological and homeostatic process.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065-4805, USA
| | | | | | | | | |
Collapse
|
31
|
Hanley S. Pancreatic β-Cell Mass as a Pharmacologic Target in Diabetes. Mcgill J Med 2009; 12:51. [PMID: 21264047 PMCID: PMC2997247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
While the prevalence of maternal While the prevalence of diabetes mellitus reaches epidemic proportions, most available treatments still focus on the symptoms of the disease, rather than the underlying pathology. Types 1 and 2 diabetes have in common a deficit in β-cell mass. In type 1 diabetes, auto-immune β-cell destruction leads to an absolute deficit in β-cells, while in type 2 diabetes, insulin resistance and β-cell dysfunction cause a functional deficit. More recently, however, it has been suggested that type 2 diabetes is also marked by an absolute deficit in β-cell mass, although a causal relationship has not yet been established. Overall β-cell mass reflects the balance between the dynamic processes of β-cell expansion, through proliferation and neogenesis, and β-cell loss via apoptosis. Given that β-cell mass can be modified significantly by altering the rate of any of these mechanisms, therapies that modulate β-cell expansion and loss have garnered recent interest. We review herein the current therapeutics under investigation as modulators of β-cell mass dynamics, and the basic research that supports these novel therapeutic targets.
Collapse
Affiliation(s)
- Stephen Hanley
- To whom correspondence should be addressed:
Stephen Hanley
Montreal General Hospital, C9-133
1650 Cedar avenue
Montréal, Québec, H3G 1A4, Canada
| |
Collapse
|
32
|
Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, Oliver FJ. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 2009; 47:13-26. [PMID: 19362586 DOI: 10.1016/j.freeradbiomed.2009.04.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+) to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, which currently comprises 18 members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress. PARP is involved in DNA repair and transcriptional regulation and is now recognized as a key regulator of cell survival and cell death as well as a master component of a number of transcription factors involved in tumor development and inflammation. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. Inhibitors of PARP-1 have been shown to enhance the cytotoxic effects of ionizing radiation and DNA-damaging chemotherapy agents, such as the methylating agents and topoisomerase I inhibitors. There are currently at least five PARP inhibitors in clinical trial development. Recent in vitro and in vivo evidence suggests that PARP inhibitors could be used not only as chemo/radiotherapy sensitizers, but also as single agents to selectively kill cancers defective in DNA repair, specifically cancers with mutations in the breast cancer-associated genes (BRCA1 and BRCA2). PARP becomes activated in response to oxidative DNA damage and depletes cellular energy pools, thus leading to cellular dysfunction in various tissues. The activation of PARP may also induce various cell death processes and promotes an inflammatory response associated with multiple organ failure. Inhibition of PARP activity is protective in a wide range of inflammatory and ischemia-reperfusion-associated diseases, including cardiovascular diseases, diabetes, rheumatoid arthritis, endotoxic shock, and stroke. The aim of this review is to overview the emerging data in the literature showing the role of PARP in the pathogenesis of cancer and inflammatory diseases and unravel the solid body of literature that supports the view that PARP is an important target for therapeutic intervention in critical illness.
Collapse
Affiliation(s)
- Andreína Peralta-Leal
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Cientificas (CSIC), Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Vidaković M, Gluch A, Qiao J, Oumard A, Frisch M, Poznanović G, Bode J. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription. J Mol Biol 2009; 388:730-50. [PMID: 19303024 DOI: 10.1016/j.jmb.2009.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/26/2009] [Accepted: 03/09/2009] [Indexed: 11/16/2022]
Abstract
This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.
Collapse
Affiliation(s)
- Melita Vidaković
- Helmholtz Centre for Infection Research, Epigenetic Regulation, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Subash-Babu P, Ignacimuthu S, Agastian P, Varghese B. Partial regeneration of beta-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg Med Chem 2009; 17:2864-70. [PMID: 19272781 DOI: 10.1016/j.bmc.2009.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
Reduction of the beta-cell mass is critical in the pathogenesis of diabetes mellitus. The discovery of agents which induce regeneration of pancreatic beta-cells would be useful to develop new therapeutic approaches to treat diabetes. The present study was aimed at identifying a new agent for the control of diabetes through regeneration of pancreatic beta cells and insulin secretory potential. Nymphaea stellata flower chloroform extract (NSFCExt) showed significant plasma glucose lowering effect. Further NSFCExt was utilized to isolate and identify the lead compound based on bioassay guided fractionation; we found Nymphayol (25,26-dinorcholest-5-en-3beta-ol) a new crystal [space group P2(1) (No. 4), a=9.618(5), b=7.518(5), c=37.491(5)]. It was purified by repeat column. The structure was determined on the basis of X-ray crystallography and spectral data. Oral administration of Nymphayol for 45 days significantly (p<0.05) lowered the blood glucose level and more importantly it effectively increased the insulin content in diabetic rats. In addition, Nymphayol increased the number of beta cell mass enormously. Islet-like cell clusters in the islets of Langerhans were clearly observed based on histochemical and immunohistochemical study.
Collapse
Affiliation(s)
- P Subash-Babu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | | | | | | |
Collapse
|
35
|
Geng J, Fan J, Wang P, Fang ZJ, Xia GW, Jiang HW, Chen G, Ding Q. REG1A predicts recurrence in stage Ta/T1 bladder cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2009; 35:852-7. [PMID: 19167858 DOI: 10.1016/j.ejso.2008.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 11/29/2022]
Abstract
AIMS Stage Ta/T1 urothelial carcinoma of the bladder (Ta/T1 BC) has a marked tendency to recur. Regenerating protein 1 A (REG1A) has been reported to be expressed in human cancers, and it may be positively correlated with patient's prognosis. The aim of the present study was to evaluate the prognostic value of REG1A in Ta/T1 BC. METHODS Immunohistochemistry was done on 110 paraffin-embedded specimens of human Ta/T1 BC to detect the proteins REG1A, PCNA and MMP2. The relationships between REG1A expression and the clinical-pathological characteristics of Ta/T1 BC patients were evaluated. RESULTS Sixty-five out of 110 specimens were REG1A-positive. Grade and expression levels of MMP2 and REG1A were significantly correlated with the recurrence rate. REG1A expression (Hazard ratio: 3.1; 95% CI: 1.1-8.5; P=0.030) was an independent predictor of recurrence rate in multivariate Cox regression analysis. A significant association between REG1A expression and MMP2 expression (P=0.023) was also observed. CONCLUSION Expression of REG1A is an independent predictor of recurrence in Ta/T1 BC.
Collapse
Affiliation(s)
- J Geng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Beneke S, Cohausz O, Malanga M, Boukamp P, Althaus F, Bürkle A. Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res 2008; 36:6309-17. [PMID: 18835851 PMCID: PMC2577345 DOI: 10.1093/nar/gkn615] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shelterin/telosome is a multi-protein complex at mammalian telomeres, anchored to the double-stranded region by the telomeric-repeat binding factors-1 and -2. In vitro modification of these proteins by poly(ADP-ribosyl)ation through poly(ADP-ribose) polymerases-5 (tankyrases) and -1/-2, respectively, impairs binding. Thereafter, at least telomeric-repeat binding factor-1 is degraded by the proteasome. We show that pharmacological inhibition of poly(ADP-ribose) polymerase activity in cells from two different species leads to rapid decrease in median telomere length and stabilization at a lower setting. Specific knockdown of poly(ADP-ribose) polymerase-1 by RNA interference had the same effect. The length of the single-stranded telomeric overhang as well as telomerase activity were not affected. Release of inhibition led to a fast re-gain in telomere length to control levels in cells expressing active telomerase. We conclude that poly(ADP-ribose) polymerase-1 activity and probably its interplay with telomeric-repeat binding factor-2 is an important determinant in telomere regulation. Our findings reinforce the link between poly(ADP-ribosyl)ation and aging/longevity and also impact on the use of poly(ADP-ribose) polymerase inhibitors in tumor therapy.
Collapse
Affiliation(s)
- Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Cogoi S, Paramasivam M, Spolaore B, Xodo LE. Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res 2008; 36:3765-80. [PMID: 18490377 PMCID: PMC2441797 DOI: 10.1093/nar/gkn120] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The human KRAS proto-oncogene contains a critical nuclease hypersensitive element (NHE) upstream of the major transcription initiation site. In this article, we demonstrate by primer-extension experiments, PAGE, chemical footprinting, CD, UV and FRET experiments that the G-rich strand of NHE (32R) folds into intra-molecular G-quadruplex structures. Fluorescence data show that 32R in 100 mM KCl melts with a biphasic profile, showing the formation of two distinct G-quadruplexes with Tm of ∼55°C (Q1) and ∼72°C (Q2). DMS-footprinting and CD suggest that Q1 can be a parallel and Q2 a mixed parallel/antiparallel G-quadruplex. When dsNHE (32R hybridized to its complementary) is incubated with a nuclear extract from Panc-1 cells, three DNA–protein complexes are observed by EMSA. The complex of slower mobility is competed by quadruplex 32R, but not by mutant oligonucleotides, which cannot form a quadruplex structure. Using paramagnetic beads coupled with 32R, we pulled down from the Panc-1 extract proteins with affinity for quadruplex 32R. One of these is the heterogeneous nuclear ribonucleoprotein A1, which was previously reported to unfold quadruplex DNA. Our study suggests a role of quadruplex DNA in KRAS transcription and provides the basis for the rationale design of molecular strategies to inhibit the expression of KRAS.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Biomedical Science and Technology, School of Medicine, Ple. Kolbe 4, 33100 Udine and CRIBI Biotechnology Centre, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | |
Collapse
|
38
|
Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 2008; 20:294-302. [PMID: 18450439 DOI: 10.1016/j.ceb.2008.03.006] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
The regulation of gene expression requires a wide array of protein factors that can modulate chromatin structure, act at enhancers, function as transcriptional coregulators, or regulate insulator function. Poly(ADP-ribose) polymerase-1 (PARP-1), an abundant and ubiquitous nuclear enzyme that catalyzes the NAD(+)-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been implicated in all of these functions. Recent biochemical, genomic, proteomic, and cell-based studies have highlighted the role of PARP-1 in each of these processes and provided new insights about the molecular mechanisms governing PARP-1-dependent regulation of gene expression. In addition, these studies have demonstrated how PARP-1 functions as an integral part of cellular signaling pathways that culminate in gene-regulatory outcomes.
Collapse
Affiliation(s)
- W Lee Kraus
- Department of Molecular Biology and Genetics, Cornell University, 465 Biotechnology Building, Ithaca, NY 14853, United States.
| |
Collapse
|
39
|
Okada H, Inoue T, Kikuta T, Kato N, Kanno Y, Hirosawa N, Sakamoto Y, Sugaya T, Suzuki H. Poly(ADP-ribose) polymerase-1 enhances transcription of the profibrotic CCN2 gene. J Am Soc Nephrol 2008; 19:933-42. [PMID: 18287562 DOI: 10.1681/asn.2007060648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the fibrotic kidney, tubular epithelial cells express CCN2, formerly known as connective tissue growth factor. Because little is known about the transcriptional regulation of this profibrotic protein, this study investigated the mechanism underlying epithelial cell-selective upregulation of CCN2 in fibrosis. It was found that a previously unidentified cis-regulatory element located in the promoter of the murine CCN2 gene plays an essential role in basal and TGF-beta1-induced gene transcription in tubular epithelial cells; this element acts in conjunction with the Smad-binding element and the basal control element-1. By protein mass fingerprint analysis and de novo sequencing, poly(ADP-ribose) polymerase-1 (PARP-1) was identified as a trans-acting protein factor that binds to this promoter region, which we termed the PARP-1-binding element. In vivo, knockdown of PARP-1 in proximal tubular epithelial cells significantly reduced CCN2 mRNA levels and attenuated interstitial fibrosis in the obstructed kidney. Thus, the PARP-1/PARP-1 binding element complex functions as a nonspecific, fundamental enhancer of both basal and induced CCN2 gene transcription in tubular epithelial cells. This regulatory complex may be a promising target for antifibrotic therapy.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Nephrology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Irumagun, Saitama 350-0451, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Loh HH, Wei LN. Transcriptional regulation of mouse mu opioid receptor gene in neuronal cells by poly(ADP-ribose) polymerase-1. J Cell Mol Med 2008; 12:2319-33. [PMID: 18266974 PMCID: PMC4514111 DOI: 10.1111/j.1582-4934.2008.00259.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin mediate primarily through the mu opioid receptor (MOR). It represents the target of the most valuable painkiller in contemporary medicine. Here we report that poly(ADP-ribose) polymerase 1 (PARP-1) binds to the double-stranded poly(C) element essential for the MOR promoter and represses promoter activity at the transcriptional level. We identified PARP-1 by affinity column chromatography using the double-stranded poly(C) element, followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. PARP-1 binding to the poly(C) sequence of the MOR gene was sequence-specific as confirmed by the supershift assay. In cotransfection studies, PARP-1 repressed the MOR promoter only when the poly(C) sequence was intact. When PARP-1 was disrupted in NS20Y cells using siRNA, transcription of the endogenous target MOR gene increased significantly. Chromatin immunoprecipitation assays showed specific binding of PARP-1 to the double-stranded poly(C) element essential for the MOR promoter. Inhibition of PARP-1's catalytic domain with 3-aminobenzamide increased endogenous MOR mRNA levels in cultured NS20Y cells, suggesting that automodification of PARP-1 regulates MOR transcription. Our data suggest that PARP-1 can function as a repressor of MOR transcription dependent on the MOR poly(C) sequence. We demonstrate for the first time a role of PARP-1 as a transcriptional repressor in MOR gene regulation.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zaniolo K, Desnoyers S, Leclerc S, Guérin SL. Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Mol Biol 2007; 8:96. [PMID: 17961220 PMCID: PMC2175517 DOI: 10.1186/1471-2199-8-96] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 10/25/2007] [Indexed: 01/09/2023] Open
Abstract
Background Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that plays critical functions in many biological processes, including DNA repair and gene transcription. The main function of PARP-1 is to catalyze the transfer of ADP-ribose units from nicotinamide adenine dinucleotide (NAD+) to a large array of acceptor proteins, which comprises histones, transcription factors, as well as PARP-1 itself. We have previously demonstrated that transcription of the PARP-1 gene essentially rely on the opposite regulatory actions of two distinct transcription factors, Sp1 and NFI. In the present study, we examined whether suppression of PARP-1 expression in embryonic fibroblasts derived from PARP-1 knockout mice (PARP-1-/-) might alter the expression and/or DNA binding properties of Sp1 and NFI. We also explored the possibility that Sp1 or NFI (or both) may represent target proteins of PARP-1 activity. Results Expression of both Sp1 and NFI was found to be considerably reduced in PARP-1-/- cells. Co-immunoprecipitation assays revealed that PARP-1 physically interacts with Sp1 in a DNA-independent manner, but neither with Sp3 nor NFI, in PARP-1+/+ cells. In addition, in vitro PARP assays indicated that PARP-1 could catalyze the addition of polymer of ADP-ribose to Sp1, which also translated into a reduction of Sp1 binding to its consensus DNA target site. Transfection of the PARP-1 promoter into both PARP-1+/+ and PARP-1-/- cells revealed that the lack of PARP-1 expression in PARP-1-/- cells also results in a strong increase in PARP-1 promoter activity. This influence of PARP-1 was found to rely on the presence of the Sp1 sites present on the basal PARP-1 promoter as their mutation entirely abolished the increased promoter activity observed in PARP-1-/- cells. Subjecting PARP-1+/+ cells to an oxidative challenge with hydrogen peroxide to increase PARP-1 activity translated into a dramatic reduction in the DNA binding properties of Sp1. However, its suppression by the inhibitor PJ34 improved DNA binding of Sp1 and led to a dramatic increase in PARP-1 promoter function. Conclusion Our results therefore recognized Sp1 as a target protein of PARP-1 activity, the addition of polymer of ADP-ribose to this transcription factor restricting its positive regulatory influence on gene transcription.
Collapse
Affiliation(s)
- Karine Zaniolo
- Oncology and Molecular Endocrinology Research Center, Centre de Recherche du CHUL-CHUQ and Département d'Anatomie-Physiologie, Université Laval, Québec, G1V 4G2, Canada.
| | | | | | | |
Collapse
|
42
|
Castellarin ML, Petropavlovskaia M, Lipsett MA, Rosenberg L. The identification and sequence analysis of a new Reg3gamma and Reg2 in the Syrian golden hamster. ACTA ACUST UNITED AC 2007; 1769:579-85. [PMID: 17673309 DOI: 10.1016/j.bbaexp.2007.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 06/04/2007] [Accepted: 06/15/2007] [Indexed: 11/16/2022]
Abstract
The regenerating (Reg) genes are associated with tissue repair and have been directly implicated in pancreatic beta-cell regeneration. A hamster Reg3, Islet neogenesis associated protein (INGAP), has been shown to possess anti-diabetic properties in rodent models. Although several Reg3 proteins have been identified in other species, INGAP is the only Reg3 found in hamsters. To identify new Reg3 genes in the hamster pancreas we employed homology reverse transcription polymerase chain reaction (RT-PCR) using degenerate Reg3 primers, followed by rapid amplification of cDNA ends (RACE). We report here the discovery of a new hamster Reg3 gene of 765 nucleotides (nt) that encodes a 174-amino acid (aa) protein. This protein sequence was identified as a novel hamster Reg3gamma with 78% and 75% identity to the rat Reg3gamma and mouse Reg3gamma protein, respectively. We also fully sequenced the previously reported partial sequence of the hamster Reg1 gene coding region using RACE to yield a 756-nt transcript that encodes a deduced 173 aa protein. This protein was identified as hamster Reg2, rather than Reg1 as was initially reported, with an 81% identity to mouse Reg2. The spatial gene expression patterns of the hamster Reg genes, analyzed by RT-PCR, were similarly distributed with low level expression being found globally throughout the body. Mice and hamsters are the only species known to carry either of the functional INGAP or Reg2 genes. It remains to be determined whether these genes bestow mice and hamsters with special regenerative abilities in the pancreas.
Collapse
Affiliation(s)
- Mauro L Castellarin
- Research Institute of The McGill University Health Centre and The Department of Surgery, McGill University, C9-128 The Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
43
|
Fossati S, Formentini L, Wang ZQ, Moroni F, Chiarugi A. Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts. Biochem Cell Biol 2007; 84:703-12. [PMID: 17167533 DOI: 10.1139/o06-083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1)-dependent poly(ADP-ribose) formation is emerging as a key regulator of transcriptional regulation, even though the targets and underlying molecular mechanisms have not yet been clearly identified. In this study, we gathered information on the role of PARP-1 activity in the heat shock response of mouse fibroblasts. We show that DNA binding of heat shock factor (HSF)-1 was impaired by PARP-1 activity in cellular extracts, and was higher in PARP-1(-/-) than in PARP-1+/+ cells. No evidence for HSF-1 poly(ADP-ribosyl)ation or PARP-1 interaction was found, but a poly(ADP-ribose) binding motif was identified in the transcription factor amino acid sequence. Consistent with data on HSF-1, the expression of heat-shock protein (HSP)-70 and HSP-27 was facilitated in cells lacking PARP-1. Thermosensitivity, however, was higher in PARP-1(-/-) than in PARP-1+/+ cells. Accordingly, we report that heat-shocked PARP-1 null fibroblasts showed an increased activation of proapoptotic JNK and decreased transcriptional efficiency of prosurvival NF-kappaB compared with wild-type counterparts. The data indicate that poly(ADP-ribosyl)ation finely regulates HSF-1 activity, and emphasize the complex role of PARP-1 in the heat-shock response of mammalian cells.
Collapse
Affiliation(s)
- Silvia Fossati
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | |
Collapse
|
44
|
Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells. BMC Genomics 2007; 8:41. [PMID: 17286852 PMCID: PMC1810537 DOI: 10.1186/1471-2164-8-41] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 02/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many lines of evidence suggest that poly(ADP-ribose) polymerase-1 (Parp-1) is involved in transcriptional regulation of various genes as a coactivator or a corepressor by modulating chromatin structure. However, the impact of Parp-1-deficiency on the regulation of genome-wide gene expression has not been fully studied yet. RESULTS We employed a microarray analysis covering 12,488 genes and ESTs using mouse Parp-1-deficient (Parp-1-/-) embryonic stem (ES) cell lines and the livers of Parp-1-/- mice and their wild-type (Parp-1+/+) counterparts. Here, we demonstrate that of the 9,907 genes analyzed, in Parp-1-/- ES cells, 9.6% showed altered gene expression. Of these, 6.3% and 3.3% of the genes were down- or up-regulated by 2-fold or greater, respectively, compared with Parp-1+/+ ES cells (p < 0.05). In the livers of Parp-1-/- mice, of the 12,353 genes that were analyzed, 2.0% or 1.3% were down- and up-regulated, respectively (p < 0.05). Notably, the number of down-regulated genes was higher in both ES cells and livers, than that of the up-regulated genes. The genes that showed altered expression in ES cells or in the livers are ascribed to various cellular processes, including metabolism, signal transduction, cell cycle control and transcription. We also observed expression of the genes involved in the pathway of extraembryonic tissue development is augmented in Parp-1-/- ES cells, including H19. After withdrawal of leukemia inhibitory factor, expression of H19 as well as other trophoblast marker genes were further up-regulated in Parp-1-/- ES cells compared to Parp-1+/+ ES cells. CONCLUSION These results suggest that Parp-1 is required to maintain transcriptional regulation of a wide variety of genes on a genome-wide scale. The gene expression profiles in Parp-1-deficient cells may be useful to delineate the functional role of Parp-1 in epigenetic regulation of the genomes involved in various biological phenomena.
Collapse
|
45
|
Blondheim NR, Levy YS, Ben-Zur T, Burshtein A, Cherlow T, Kan I, Barzilai R, Bahat-Stromza M, Barhum Y, Bulvik S, Melamed E, Offen D. Human Mesenchymal Stem Cells Express Neural Genes, Suggesting a Neural Predisposition. Stem Cells Dev 2006; 15:141-64. [PMID: 16646662 DOI: 10.1089/scd.2006.15.141] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Because of their unique attributes of plasticity and accessibility, bone marrow-derived mesenchymal stem cells (MSCs) may find use for therapy of neurodegenerative disorders. Our previous studies of adult human MSCs demonstrated that these cells express an extensive assortment of neural genes at a low but clearly detectable level. Here, we report expression of 12 neural genes, 8 genes related to the neuro-dopaminergic system, and 11 transcription factors with neural significance by human MSCs. Our results suggest that, as opposed to cells that do not express neural genes, human MSCs are predisposed to differentiate to neuronal and glial lineages, given the proper conditions. Our findings add a new dimension in which to view adult stem cell plasticity, and may explain the relative ease with which MSCs, transplanted into the central nervous system (CNS) differentiate to a variety of functional neural cell types. Our results further promote the possibility that adult human MSCs are promising candidates for cell-based therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Netta R Blondheim
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva 49100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sekikawa A, Fukui H, Fujii S, Nanakin A, Kanda N, Uenoyama Y, Sawabu T, Hisatsune H, Kusaka T, Ueno S, Nakase H, Seno H, Fujimori T, Chiba T. Possible role of REG Ialpha protein in ulcerative colitis and colitic cancer. Gut 2005; 54:1437-44. [PMID: 15914572 PMCID: PMC1774701 DOI: 10.1136/gut.2004.053587] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Although regenerating gene (REG) Ialpha protein may be involved in the inflammation and carcinogenesis in the gastrointestinal tract, its pathophysiological role in ulcerative colitis (UC) and the resulting colitic cancer remains unclear. We investigated expression of the REG Ialpha gene and its protein in UC and colitic cancer tissues. We examined whether cytokines are responsible for REG Ialpha gene expression and whether REG Ialpha protein has a trophic and/or an antiapoptotic effect on colon cancer cells. METHODS Expression of REG Ialpha mRNA and its gene product in UC tissues was analysed by real time reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. The effects of cytokines on REG Ialpha promoter activity were examined in LoVo cells by luciferase reporter assay. The effects of REG Ialpha protein on growth and H(2)O(2) induced apoptosis were examined in LoVo cells by MTT and TUNEL assays, respectively. RESULTS REG Ialpha protein was strongly expressed in inflamed epithelium and in dysplasias and cancerous lesions in UC tissues. The level of REG Ialpha mRNA expression in UC tissues correlated significantly with severity of inflammation and disease duration. REG Ialpha promoter activity was enhanced by stimulation with interferon gamma or interleukin 6. REG Ialpha protein promoted cell growth and conferred resistance to H(2)O(2) induced apoptosis in LoVo cells. REG Ialpha protein promoted Akt phosphorylation and enhanced Bcl-xL and Bcl-2 expression in LoVo cells. CONCLUSIONS The REG Ialpha gene is inducible by cytokines and its gene product may function as a mitogenic and/or an antiapoptotic factor in the UC-colitic cancer sequence.
Collapse
Affiliation(s)
- A Sekikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakazawa T, Takasawa S, Noguchi N, Nata K, Tohgo A, Mori M, Nakagawara KI, Akiyama T, Ikeda T, Yamauchi A, Takahashi I, Yoshikawa T, Okamoto H. Genomic organization, chromosomal localization, and promoter of human gene for FK506-binding protein 12.6. Gene 2005; 360:55-64. [PMID: 16122887 DOI: 10.1016/j.gene.2005.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Cyclic ADP-ribose (cADPR) induces the release of Ca2+ from microsomes of pancreatic islets for insulin secretion. It has been demonstrated that cADPR binds to FK506-binding protein 12.6 (FKBP 12.6) on rat islet ryanodine receptor and that the binding of cADPR to FKBP12.6 frees the ryanodine receptor from FKBP12.6, causing it to release Ca2+ [Noguchi, N., Takasawa, S., Nata, K., Tohgo, A., Kato, I., Ikehata, F., Yonekura, H., Okamoto, H., 1997. Cyclic ADP-ribose binds to FK506-binding protein to release Ca2+ from islet microsomes. J. Biol. Chem. 272, 3133-3136.]. In this study, we cloned, characterized the structural organization of the human FKBP12.6, which is highly homologous to human FKBP12, and analyzed the promoters for FKBP12.6 and FKBP12. Human FKBP12.6 gene spanned about 16 kb in length and consisted of four exons and three introns. The positions of exon-intron junction of the FKBP12.6 gene were perfectly matched with those of FKBP12 gene except that FKBP12 has an additional exon, exon V, to code exclusively for 3'-UTR. Fluorescence in situ hybridization revealed that the FKBP12.6 gene was located on chromosome 2 p21-23, which is different from the locus (chromosome 20 p13) of the FKBP12 gene. Reporter gene analyses revealed that the regions of -58 approximately -24 of FKBP12.6 and -106 approximately -79 of FKBP12 are important for promoter activities. The promoters contain a consensus transcription factor binding sequence for Sp family in FKBP12.6 and Ets-1 in FKBP12. Electrophoretic mobility shift assays showed that nuclear proteins bind to the promoters. The DNA/protein complex on FKBP12.6 promoter was competed out by Sp1 consensus probe and the complex was supershifted by anti-Sp3 antibodies. On the other hand, the DNA/protein complex on FKBP12 promoter was competed out by Ets-1 consensus probe but not by its mutant probe, indicating that Sp3 and Ets-1 play an essential role in transcription of FKBP12.6 and FKBP12, respectively.
Collapse
Affiliation(s)
- Tetsuya Nakazawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bosco D, Meda P, Morel P, Matthey-Doret D, Caille D, Toso C, Bühler LH, Berney T. Expression and secretion of alpha1-proteinase inhibitor are regulated by proinflammatory cytokines in human pancreatic islet cells. Diabetologia 2005; 48:1523-33. [PMID: 16001235 DOI: 10.1007/s00125-005-1816-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 03/06/2005] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Alpha1-proteinase inhibitor (alpha1-PI) has been considered a key player in inflammatory processes. In humans, the main production site of alpha1-PI is the liver, but other tissues, including pancreatic islets, also synthesise this molecule. The aims of this study were to assess the islet cell types that produce alpha1-PI, to determine whether alpha1-PI is actually secreted by islet cells, and to assess how its production and/or secretion are regulated. METHODS Expression of alpha1-PI in human islet cells was assessed by immunofluorescence, electron microscopy and western blotting. Release of alpha1-PI was analysed by reverse haemolytic plaque assay and ELISA. The effects of cytokines on alpha1-PI synthesis and secretion were tested. RESULTS Immunofluorescence showed that alpha and delta cells do express alpha1-PI, whereas beta cells do not. By electron microscopy, we demonstrated a colocalisation of alpha1-PI with glucagon and somatostatin within secretory granules. Immunolabelling also revealed localisation of alpha1-PI within the Golgi apparatus, related vesicles and lysosomal structures. The expression of alpha1-PI in islet cells was also demonstrated by western blotting and ELISA of protein extracts. ELISA and reverse haemolytic plaque assay showed that alpha1-PI is secreted into the culture medium. Treatment of islet cells with IL-1beta and oncostatin M for 4 days increased the production and release of alpha1-PI. CONCLUSIONS/INTERPRETATION Our results demonstrate that alpha1-PI is expressed by the alpha and delta cells of human islets, and that proinflammatory cytokines enhance the production and release of this inhibitor.
Collapse
Affiliation(s)
- Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shanmukhappa K, Mourya R, Sabla GE, Degen JL, Bezerra JA. Hepatic to pancreatic switch defines a role for hemostatic factors in cellular plasticity in mice. Proc Natl Acad Sci U S A 2005; 102:10182-7. [PMID: 16006527 PMCID: PMC1177369 DOI: 10.1073/pnas.0501691102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Indexed: 12/16/2022] Open
Abstract
In multiple systems, impaired proteolysis associated with the loss of the hemostatic factor plasminogen (Plg) results in fibrin-dependent defects in tissue repair. However, repair within the liver is known to be defective in Plg-deficient (Plg(o)) mice independent of fibrin clearance and appears to be compromised in part by the poor clearance of necrotic cells. Based on these findings, we examined the hepatic transcriptome after injury in search of transcriptional programs that are sensitive to the Plg/fibrinogen system. To this end, we generated biotinylated cRNA pools from livers of Plg(o) mice and controls before and after a single dose of the hepatotoxin carbon tetrachloride and hybridized them against high-density oligonucleotide arrays. Analysis of the gene expression platform identified an unexpected transcriptional signature within challenged livers of Plg(o) mice for pancreatic gene products, including trypsinogen-2, amylase-2, elastase-1, elastase-2, and cholesteryl-ester lipase. Validation studies found that this transcriptional program also contained products of the endocrine pancreas (Reg-1 and insulin genes) and the expression of the pancreatic transcription factors p48 and PDX-1. By using a LacZ transgene to trace the cellular source of pancreatic gene expression, we found that PDX-1 was expressed in albumin-positive cells that were morphologically indistinguishable from hepatocytes, and in albumin-negative epithelioid cells within zones of pericentral injury. More detailed studies revealed that the mechanisms of heterotopic gene expression in Plg(o) mice required fibrin(ogen). Collectively, these data reveal a regulatory role for the hemostatic factors plasmin(ogen) and fibrin(ogen) in cellular plasticity within adult tissues of the digestive system.
Collapse
Affiliation(s)
- Kumar Shanmukhappa
- Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
50
|
Di Paola R, Mazzon E, Muià C, Genovese T, Menegazzi M, Zaffini R, Suzuki H, Cuzzocrea S. Green tea polyphenol extract attenuates lung injury in experimental model of carrageenan-induced pleurisy in mice. Respir Res 2005; 6:66. [PMID: 15987519 PMCID: PMC1177993 DOI: 10.1186/1465-9921-6-66] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/29/2005] [Indexed: 11/29/2022] Open
Abstract
Here we investigate the effects of the green tea extract in an animal model of acute inflammation, carrageenan-induced pleurisy. We report here that green tea extract (given at 25 mg/kg i.p. bolus 1 h prior to carrageenan), exerts potent anti-inflammatory effects in an animal model of acute inflammation in vivo. Injection of carrageenan (2%) into the pleural cavity of mice elicited an acute inflammatory response characterized by fluid accumulation in the pleural cavity that contained many neutrophils (PMNs), an infiltration of PMNs in lung tissues and increased production of nitrite/nitrate, tumour necrosis factor alpha. All parameters of inflammation were attenuated by green tea extract treatment. Furthermore, carrageenan induced an up-regulation of the adhesion molecule ICAM-1, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) formation, as determined by immunohistochemical analysis of lung tissues. Staining for the ICAM-1, nitrotyrosine, and PARS was reduced by green tea extract. Our results clearly demonstrate that treatment with green tea extract exerts a protective effect and offers a novel therapeutic approach for the management of lung injury.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Messina, Italy
| | - Emanuela Mazzon
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Messina, Italy
| | - Carmelo Muià
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Messina, Italy
| | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Messina, Italy
| | - Marta Menegazzi
- Biochemistry Division, Department of Neuroscience and Vision, University of Verona, Verona, Italy
| | - Raffaela Zaffini
- Biochemistry Division, Department of Neuroscience and Vision, University of Verona, Verona, Italy
| | - Hisanory Suzuki
- Biochemistry Division, Department of Neuroscience and Vision, University of Verona, Verona, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Messina, Italy
| |
Collapse
|