1
|
Sumaily KM. The Roles and Pathogenesis Mechanisms of a Number of Micronutrients in the Prevention and/or Treatment of Chronic Hepatitis, COVID-19 and Type-2 Diabetes Mellitus. Nutrients 2022; 14:2632. [PMID: 35807813 PMCID: PMC9268086 DOI: 10.3390/nu14132632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
A trace element is a chemical element with a concentration (or other measures of an amount) that is very low. The essential TEs, such as copper (Cu), selenium (Se), zinc (Zn), iron (Fe) and the electrolyte magnesium (Mg) are among the most commonly studied micronutrients. Each element has been shown to play a distinctive role in human health, and TEs, such as iron (Fe), zinc (Zn) and copper (Cu), are among the essential elements required for the organisms' well-being as they play crucial roles in several metabolic pathways where they act as enzyme co-factors, anti-inflammatory and antioxidant agents. Epidemics of infectious diseases are becoming more frequent and spread at a faster pace around the world, which has resulted in major impacts on the economy and health systems. Different trace elements have been reported to have substantial roles in the pathogenesis of viral infections. Micronutrients have been proposed in various studies as determinants of liver disorders, COVID-19 and T2DM risks. This review article sheds light on the roles and mechanisms of micronutrients in the pathogenesis and prevention of chronic hepatitis B, C and E, as well as Coronavirus-19 infection and type-2 diabetes mellitus. An update on the status of the aforementioned micronutrients in pre-clinical and clinical settings is also briefly summarized.
Collapse
Affiliation(s)
- Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
2
|
B-Catenin Signaling Regulates the In Vivo Distribution of Hepatitis B Virus Biosynthesis across the Liver Lobule. J Virol 2021; 95:e0078021. [PMID: 34319157 DOI: 10.1128/jvi.00780-21] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-catenin (Ctnnb1) supports high levels of liver gene expression in hepatocytes in proximity to the central vein functionally defining zone 3 of the liver lobule. This region of the liver lobule supports the highest levels of viral biosynthesis in wildtype HBV transgenic mice. Liver-specific β-catenin-null HBV transgenic mice exhibit a stark loss of high levels of pericentral viral biosynthesis. Additionally, viral replication that does not depend directly on β-catenin activity appears to expand to include hepatocytes of zone 1 of the liver lobule in proximity to the portal vein, a region of the liver that typically lacks significant HBV biosynthesis in wildtype HBV transgenic mice. While the average amount of viral RNA transcripts does not change, viral DNA replication is reduced approximately three-fold. Together, these observations demonstrate that β-catenin signaling represents a major determinant of HBV biosynthesis governing the magnitude and distribution of viral replication across the liver lobule in vivo. Additionally, these findings reveal a novel mechanism for the regulation of HBV biosynthesis that is potentially relevant to the expression of additional liver-specific genes. IMPORTANCE Viral biosynthesis is highest around the central vein in the HBV transgenic mouse model of chronic infection. The associated HBV biosynthetic gradient across the liver lobule is primarily dependent upon β-catenin. In the absence of β-catenin, the gradient of viral gene expression spanning the liver lobule is absent and HBV replication is reduced. Therefore, therapeutically manipulating β-catenin activity in the liver of chronic HBV carriers may reduce circulating infectious virions without greatly modulating viral protein production. Together, these change in viral biosynthesis might limit infection of additional hepatocytes while permitting immunological clearance of previously infected cells, potentially limiting disease persistence.
Collapse
|
3
|
Stadler D, Kächele M, Jones AN, Hess J, Urban C, Schneider J, Xia Y, Oswald A, Nebioglu F, Bester R, Lasitschka F, Ringelhan M, Ko C, Chou W, Geerlof A, van de Klundert MA, Wettengel JM, Schirmacher P, Heikenwälder M, Schreiner S, Bartenschlager R, Pichlmair A, Sattler M, Unger K, Protzer U. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 2021; 22:e49568. [PMID: 33969602 PMCID: PMC8183418 DOI: 10.15252/embr.201949568] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.
Collapse
|
4
|
Chiale C, Marchese AM, Robek MD. Innate immunity and HBV persistence. Curr Opin Virol 2021; 49:13-20. [PMID: 33992859 DOI: 10.1016/j.coviro.2021.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) causes chronic infections that are associated with immune dysfunction. Though T cell impairment is perhaps the most prominent immune change contributing to viral persistence, HBV interaction with the innate immune system is also likely key, as the lack of effective innate immunity has functional consequences that promote chronic infection. In addition to an intrinsic ability to fight viral infections, the innate immune system also impacts T cell responses and other adaptive immune mechanisms critical for HBV control. Therefore, it is essential to understand the relationships between HBV and innate immunity, as these interactions may be useful immunotherapeutic targets to manage the infection.
Collapse
Affiliation(s)
- Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Anthony M Marchese
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
5
|
Xu J, Zhan Q, Fan Y, Yu Y, Zeng Z. Human genetic susceptibility to hepatitis B virus infection. INFECTION GENETICS AND EVOLUTION 2020; 87:104663. [PMID: 33278635 DOI: 10.1016/j.meegid.2020.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection is still a serious health threat worldwide. The outcomes of HBV infection consist of spontaneous HBV clearance and chronic HBV infection. Multiple factors contribute to the disparity of HBV infection outcomes, including host factors, viral factors and environmental factors. The present review comprehends the current researches mainly focusing on the relationships between genetic determinants, including single nucleotide polymorphisms (SNPs) and haplotypes, and susceptibility of HBV infection, namely chronic (persistent) HBV infection and HBV clearance. A number of determinants in the chromosomes, including mutations in human leukocyte antigens (HLAs), cytokines genes, toll-like receptors (TLRs), and other genes are related to the human susceptibility to HBV infection. Among the above variants, some of those in HLAs have been studied and replicated in multiple-ethnic populations and came to consistent conclusions, while some others are novel and need to be evaluated further.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Qiao Zhan
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Yanan Fan
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China.
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China.
| |
Collapse
|
6
|
Dandri M, Petersen J. cccDNA Maintenance in Chronic Hepatitis B - Targeting the Matrix of Viral Replication. Infect Drug Resist 2020; 13:3873-3886. [PMID: 33149632 PMCID: PMC7605611 DOI: 10.2147/idr.s240472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B is a numerically important cause of cirrhosis and hepatocellular carcinoma, despite an effective prophylactic vaccine and well-tolerated and effective oral antivirals. Both the incapacity of the immune system to clear hepatitis B virus (HBV) infection and the unique replication strategies adopted by HBV are considered key determinants of HBV chronicity. In this regard, the formation of the HBV DNA minichromosome, the covalently closed circular DNA (cccDNA), in the nucleus of infected hepatocytes, is essential not only for the production of all viral proteins but also for HBV persistence even after long-term antiviral therapy. Licensed polymerase inhibitors target the HBV reverse transcriptase activity, control the disease with long-term therapy but fail to eliminate the cccDNA. Consequently, the production of viral RNAs and proteins, including the hepatitis B surface antigen (HBsAg), is not abolished. Novel therapeutic efforts that are in the pipeline for early clinical trials explore novel targets and molecules. Such therapeutic efforts focus on achieving a functional cure, which is defined by the loss of HBsAg and undetectable HBV DNA levels in serum. Since a true cure of HBV infection requires the elimination of the cccDNA from infected cells, comprehension of the mechanisms implicated in cccDNA biogenesis, regulation and stability appears necessary to achieve HBV eradication. In this review, we will summarize the state of knowledge on cccDNA metabolism, focusing on insights suggesting potential weak points of the cccDNA that may be key for the development of therapeutic approaches and design of clinical trials aiming at lowering cccDNA loads and activity.
Collapse
Affiliation(s)
- Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Luebeck-Borstel-Riems Site, Germany
| | - Joerg Petersen
- Institute for Interdisciplinary Medicine, Asklepios Klinik St Georg, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Abstract
Hepatitis B virus (HBV) infection causes chronic hepatitis and has long term complications. Individuals ever infected with HBV are at risk of viral reactivation under certain circumstances. This review summarizes studies on HBV persistence and reactivation with a focus on the definitions and mechanisms. Emphasis is placed on the interplay between HBV replication and host immunity as this interplay determines the patterns of persistence following viral acquisition. Chronic infections exhibit as overt persistence when a defective immune response fails to control the viral replication. The HBV genome persists despite an immune response in the form of covalently closed circular DNA (cccDNA) and integrated DNA, rendering an occult state of viral persistence in individuals whose infection appears to have been resolved. We have described HBV reactivation that occurs because of changes in the virus or the immune system. This review aims to raise the awareness of HBV reactivation and to understand how HBV persists, and discusses the risks of HBV reactivation in a variety of clinical settings.
Collapse
Affiliation(s)
- Yu Shi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, China
| |
Collapse
|
8
|
van Campenhout MJH, van Bömmel F, Pfefferkorn M, Fischer J, Deichsel D, Boonstra A, van Vuuren AJ, Berg T, Hansen BE, Janssen HLA. Serum hepatitis B virus RNA predicts response to peginterferon treatment in HBeAg-positive chronic hepatitis B. J Viral Hepat 2020; 27:610-619. [PMID: 32052503 PMCID: PMC7383601 DOI: 10.1111/jvh.13272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) RNA in serum is a novel biomarker that reflects cccDNA activity. We investigated whether HBV RNA can predict serological response to peginterferon (PEG-IFN) treatment. Serum HBV RNA levels were retrospectively measured at weeks 0, 12, 24 and 52 of therapy and after treatment discontinuation (week 78) in 266 HBeAg-positive chronic HBV patients who had participated in a global randomized controlled trial (HBV99-01 study). Patients received 52 weeks PEG-IFN monotherapy (n = 136) or PEG-IFN and lamivudine (n = 130). The primary end point was HBeAg loss 24 weeks after PEG-IFN discontinuation. At baseline, the mean serum level of HBV RNA was 6.8 (SD 1.2) log c/mL. HBV RNA levels declined to 4.7 (1.7) log c/mL after one year of PEG-IFN therapy alone and to 3.3 (1.2)log c/mL after combination therapy. From week 12 onward, HBV RNA level was significantly lower in patients who achieved HBeAg loss at the end of follow-up as compared to those who did not, regardless of treatment allocation (week 12:4.4 vs 5.1 log c/mL, P = .01; week 24:3.7 vs 4.9 log c/mL, P < .001). The performance of a multivariable model based on HBV RNA level was comparable at week 12 (AUC 0.68) and 24 (AUC 0.72) of therapy. HBV RNA level above 5.5 log c/mL at week 12 showed negative predictive values of 93/67/90/64% for HBV genotypes A/B/C/D for the prediction of HBeAg loss. In conclusion, HBV RNA in serum declines profoundly during PEG-IFN treatment. Early on-treatment HBV RNA level may be used to predict nonresponse.
Collapse
Affiliation(s)
- Margo J. H. van Campenhout
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Florian van Bömmel
- Department of Gastroenterology and RheumatologySection of HepatologyUniversity Hospital LeipzigLeipzigGermany
| | - Maria Pfefferkorn
- Department of Gastroenterology and RheumatologySection of HepatologyUniversity Hospital LeipzigLeipzigGermany
| | - Janett Fischer
- Department of Gastroenterology and RheumatologySection of HepatologyUniversity Hospital LeipzigLeipzigGermany
| | - Danilo Deichsel
- Department of Gastroenterology and RheumatologySection of HepatologyUniversity Hospital LeipzigLeipzigGermany
| | - André Boonstra
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Anneke J. van Vuuren
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Thomas Berg
- Department of Gastroenterology and RheumatologySection of HepatologyUniversity Hospital LeipzigLeipzigGermany
| | - Bettina E. Hansen
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands,Institute of Health Policy, Management and EvaluationUniversity of TorontoTorontoCanada,Toronto Center for Liver DiseaseToronto Western and General HospitalUniversity Health NetworkTorontoCanada
| | - Harry L. A. Janssen
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands,Toronto Center for Liver DiseaseToronto Western and General HospitalUniversity Health NetworkTorontoCanada
| |
Collapse
|
9
|
Yamada N, Murayama A, Shiina M, Aly HH, Iwamoto M, Tsukuda S, Watashi K, Tanaka T, Moriishi K, Nishitsuji H, Sugiyama M, Mizokami M, Shimotohno K, Muramatsu M, Murata K, Kato T. Anti-viral effects of interferon-λ3 on hepatitis B virus infection in cell culture. Hepatol Res 2020; 50:283-291. [PMID: 31756766 DOI: 10.1111/hepr.13449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
AIM Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system. METHODS We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model. RESULTS By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3. CONCLUSIONS We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.
Collapse
Affiliation(s)
- Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaaki Shiina
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Liver Cancer Prevention Research Unit, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hironori Nishitsuji
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kunitada Shimotohno
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumoto Murata
- Department of Gastroenterology, International University of Health and Welfare, Nasushiobara, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
Abstract
With a yearly death toll of 880,000, hepatitis B virus (HBV) remains a major health problem worldwide, despite an effective prophylactic vaccine and well-tolerated, effective antivirals. HBV causes chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The viral genome persists in infected hepatocytes even after long-term antiviral therapy, and its integration, though no longer able to support viral replication, destabilizes the host genome. HBV is a DNA virus that utilizes a virus-encoded reverse transcriptase to convert an RNA intermediate, termed pregenomic RNA, into the relaxed circular DNA genome, which is subsequently converted into a covalently closed circular DNA (cccDNA) in the host cell nucleus. cccDNA is maintained in the nucleus of the infected hepatocyte as a stable minichromosome and functions as the viral transcriptional template for the production of all viral gene products, and thus, it is the molecular basis of HBV persistence. The nuclear cccDNA pool can be replenished through recycling of newly synthesized, DNA-containing HBV capsids. Licensed antivirals target the HBV reverse transcriptase activity but fail to eliminate cccDNA, which would be required to cure HBV infection. Elimination of HBV cccDNA is so far only achieved by antiviral immune responses. Thus, this review will focus on possible curative strategies aimed at eliminating or crippling the viral cccDNA. Newer insights into the HBV life cycle and host immune response provide novel, potentially curative therapeutic opportunities and targets.
Collapse
|
11
|
Lin CT, Hsieh YT, Yang YJ, Chen SH, Wu CH, Hwang LH. B-Cell Lymphoma 6 (BCL6) Is a Host Restriction Factor That Can Suppress HBV Gene Expression and Modulate Immune Responses. Front Microbiol 2019; 9:3253. [PMID: 30687256 PMCID: PMC6335256 DOI: 10.3389/fmicb.2018.03253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/14/2018] [Indexed: 01/12/2023] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic liver inflammation. Recent studies have demonstrated that some viral antigens can suppress host innate and adaptive immunity, and thus lead to HBV liver persistency. However, the cellular factors that can help host cells to clear HBV during acute infection remain largely unknown. Here, we used HBV-cleared and HBV-persistent mouse models to seek for cellular factors that might participate in HBV clearance. HBV replicon DNA was delivered into the mouse liver by hydrodynamic injection. RNA-Seq analysis was conducted to identify immune-related genes that were differentially expressed in HBV-persistent and HBV-cleared mouse models. A cellular factor, B cell lymphoma 6 (BCL6), was found to be significantly upregulated in the liver of HBV-cleared mice upon HBV clearance. Co-expression of BCL6 and a persistent HBV clone rendered the clone largely cleared, implicating an important role of BCL6 in controlling HBV clearance. Mechanistic studies demonstrated that BCL6 functioned as a repressor, binding to and suppressing the activities of the four HBV promoters. Correspondingly, BCL6 expression significantly reduced the levels of HBV viral RNA, DNA, and proteins. BCL6 expression could be stimulated by inflammatory cytokines such as TNF-α; the BCL6 in turn synergized TNF-α signaling to produce large amounts of CXCL9 and CXCL10, leading to increased infiltrating immune cells and elevated cytokine levels in the liver. Thus, positive feedback loops on BCL6 expression and immune responses could be produced. Together, our results demonstrate that BCL6 is a novel host restriction factor that exerts both anti-HBV and immunomodulatory activities. Induction of BCL6 in the liver may ultimately assist host immune responses to clear HBV.
Collapse
Affiliation(s)
- Chun-Ta Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan
| | - Yue-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yeng-Jey Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hui Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Hsuan Wu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
13
|
Xia Y, Schlapschy M, Morath V, Roeder N, Vogt EI, Stadler D, Cheng X, Dittmer U, Sutter K, Heikenwalder M, Skerra A, Protzer U. PASylated interferon α efficiently suppresses hepatitis B virus and induces anti-HBs seroconversion in HBV-transgenic mice. Antiviral Res 2019; 161:134-143. [DOI: 10.1016/j.antiviral.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 01/05/2023]
|
14
|
Gehring AJ, Protzer U. Targeting Innate and Adaptive Immune Responses to Cure Chronic HBV Infection. Gastroenterology 2019; 156:325-337. [PMID: 30367834 DOI: 10.1053/j.gastro.2018.10.032] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Fewer than 1% of chronic hepatitis B virus infections per year are cured with antiviral treatment. This creates a need for long-term treatment, which poses challenges for patients and health systems. Because cure is accompanied by recovery of antiviral immunity, a combination of direct-acting antiviral agents and immunotherapy are likely to be required. Extensive efforts have been made to identify determinants of the failed immune response to hepatitis B virus in patients with chronic infection. We review mechanisms of immune dysfunction in patients with chronic hepatitis B virus infection, immunotherapy strategies in development, and the challenges associated with successful implementation of immunotherapy.
Collapse
Affiliation(s)
- Adam J Gehring
- Toronto Centre for Liver Disease and Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada.
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
15
|
Type I Interferon Signaling Prevents Hepatitis B Virus-Specific T Cell Responses by Reducing Antigen Expression. J Virol 2018; 92:JVI.01099-18. [PMID: 30209178 DOI: 10.1128/jvi.01099-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Robust virus-specific CD8+ T cell responses are required for the clearance of hepatitis B virus (HBV). However, the factors that determine the magnitude of HBV-specific CD8+ T cell responses are poorly understood. To examine the impact of genetic variations of HBV on HBV-specific CD8+ T cell responses, we introduced three HBV clones (Aa_IND [Aa], C_JPN22 [C22], and D_IND60 [D60]) that express various amounts of HBV antigens into the livers of C57BL/6 (B6) (H-2b) mice and B10.D2 (H-2d) mice. In B6 mice, clone C22 barely induced HBV-specific CD8+ T cell responses and persisted the longest, while clone D60 elicited strong HBV-specific CD8+ T cell responses and was rapidly cleared. These differences between HBV clones largely diminished in H-2d mice. Interestingly, the magnitude of HBV-specific CD8+ T cell responses in B6 mice was associated with the HB core antigen expression level during the early phase of HBV transduction. Surprisingly, robust HBV-specific CD8+ T cell responses to clone C22 were induced in interferon-α/β receptor-deficient (IFN-αβR-/-) (H-2b) mice. The induction of HBV-specific CD8+ T cell responses to C22 in IFN-αβR-/- mice reflects enhanced HBV antigen expression because the suppression of antigen expression by HBV-specific small interfering RNA (siRNA) attenuated HBV-specific T cell responses in IFN-αβR-/- mice and prolonged HBV expression. Collectively, these results suggest that HBV genetic variation and type I interferon signaling determine the magnitude of HBV-specific CD8+ T cell responses by regulating the initial antigen expression levels.IMPORTANCE Hepatitis B virus (HBV) causes acute and chronic infection, and approximately 240 million people are chronically infected with HBV worldwide. It is generally believed that virus-specific CD8+ T cell responses are required for the clearance of HBV. However, the relative contributions of genetic variation and innate immune responses to the induction of HBV-specific CD8+ T cell responses are not fully understood. In this study, we discovered that different clearance rates between HBV clones after hydrodynamic transduction were associated with the magnitude of HBV-specific CD8+ T cell responses and initial HB core antigen expression. Surprisingly, type I interferon signaling negatively regulated HBV-specific CD8+ T cell responses by reducing early HBV antigen expression. These results show that the magnitude of the HBV-specific CD8+ T cell response is regulated primarily by the initial antigen expression level.
Collapse
|
16
|
Zhong Y, Liu DL, Ahmed MMM, Li PH, Zhou XL, Xie QD, Xu XQ, Han TT, Hou ZW, Huang JH, Xu L, Huang TH. Transcription and regulation of hepatitis B virus genes in host sperm cells. Asian J Androl 2018; 20:284-289. [PMID: 29111540 PMCID: PMC5952484 DOI: 10.4103/aja.aja_46_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023] Open
Abstract
To investigate whether transcription of hepatitis B virus (HBV) gene occurs in human sperm, total RNA was extracted from sperm of patients with chronic HBV infection (test-1), from donor sperm transfected with a plasmid containing the full-length HBV genome (test-2), and from nontransfected donor sperm (control), used as the template for reverse transcription-polymerase chain reaction (RT-PCR). Positive bands for HBV DNA were observed in the test groups but not in the control. Next, to identify the role of host genes in regulating viral gene transcription in sperm, total RNA was extracted from 2-cell embryos derived from hamster oocytes fertilized in vitro by HBV-transfected (test) or nontransfected (control) human sperm and successively subjected to SMART-PCR, suppression subtractive hybridization, T/A cloning, bacterial amplification, microarray hybridization, sequencing and the Basic Local Alignment Search Tool (BLAST) search to isolate differentially expressed genes. Twenty-nine sequences showing significant identity to five human gene families were identified, with chorionic somatomammotropin hormone 2 (CSH2), eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), pterin-4 alpha-carbinolamine dehydratase 2 (PCBD2), pregnancy-specific beta-1-glycoprotein 4 (PSG4) and titin (TTN) selected to represent target genes. Using real-time quantitative RT-PCR (qRT-PCR), when CSH2 and PCBD2 (or EIF4G2, PSG4 and TTN) were silenced by RNA interference, transcriptional levels of HBV s and x genes significantly decreased (or increased) (P < 0.05). Silencing of a control gene in sperm did not significantly change transcription of HBV s and x genes (P > 0.05). This study provides the first experimental evidence that transcription of HBV genes occurs in human sperm and is regulated by host genes.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Genetics, Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu 610066, China
| | - Dong-Ling Liu
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Mohamed Morsi M Ahmed
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Peng-Hao Li
- Department of Genetics, Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu 610066, China
| | - Xiao-Ling Zhou
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qing-Dong Xie
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Qing Xu
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Ting-Ting Han
- Department of Genetics, Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu 610066, China
| | - Zhi-Wei Hou
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Ji-Hua Huang
- Department of Genetics, Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu 610066, China
| | - Lan Xu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Tian-Hua Huang
- Department of Genetics, Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu 610066, China
- Correspondence: Dr. TH Huang ()
| |
Collapse
|
17
|
Mutz P, Metz P, Lempp FA, Bender S, Qu B, Schöneweis K, Seitz S, Tu T, Restuccia A, Frankish J, Dächert C, Schusser B, Koschny R, Polychronidis G, Schemmer P, Hoffmann K, Baumert TF, Binder M, Urban S, Bartenschlager R. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology 2018; 154:1791-1804.e22. [PMID: 29410097 DOI: 10.1053/j.gastro.2018.01.044] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.
Collapse
Affiliation(s)
- Pascal Mutz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; HBIGS graduate school, Heidelberg, Germany
| | - Philippe Metz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Silke Bender
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Thomas Tu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Agnese Restuccia
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jamie Frankish
- Research Group "Dynamics of early viral infection and the innate antiviral response", Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Dächert
- Research Group "Dynamics of early viral infection and the innate antiviral response", Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Ronald Koschny
- Department of Gastroenterology, Infection and Intoxication, University Hospital Heidelberg, Heidelberg, Germany
| | - Georgios Polychronidis
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schemmer
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany; Division of Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Katrin Hoffmann
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Research Group "Dynamics of early viral infection and the innate antiviral response", Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; HBIGS graduate school, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
18
|
Li G, Zhu Y, Shao D, Chang H, Zhang X, Zhou D, Gao Y, Lan K, Deng Q. Recombinant covalently closed circular DNA of hepatitis B virus induces long-term viral persistence with chronic hepatitis in a mouse model. Hepatology 2018; 67:56-70. [PMID: 28749559 DOI: 10.1002/hep.29406] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 06/01/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
Abstract
UNLABELLED Covalently closed circular DNA of hepatitis B virus (HBV) is critical for viral persistence in vivo. We recently reported a technique involving recombinant covalently closed circular DNA (rcccDNA) of HBV by site-specific DNA recombination. Using hydrodynamic injection, rcccDNA induces a temporarily prolonged HBV antigenemia in immunocompetent mice, similar to acute resolving HBV infection. In this study, we simulated the pathophysiological impact of chronic hepatitis to reproduce rcccDNA persistence in mouse models. We showed that rcccDNA achieved long-lasting persistence in the presence of a compromised immune response or when transcriptional activity was repressed. To closely mimic chronic hepatitis, we used a replication-defective recombinant adenoviral vector to deliver rcccDNA to the liver, which led to prominent HBV persistence throughout the experiment duration (>62 weeks) in transgenic mice expressing Cre recombinase under the albumin promoter. A sustained necroinflammatory response and fibrosis were identified in mouse livers, with dysplastic lesions commonly seen during the late stage of viral persistence, analogous to the progressive pathology of clinical chronic hepatitis. CONCLUSION rcccDNA was intrinsically stable in vivo, enabling long-term persistence in the context of chronic hepatitis, and viral persistence, in turn, may promote progression of chronic liver disease; our study also presented a surrogate model of HBV cccDNA persistence in mice that could advance our understanding of the pathogenesis of chronic hepatitis B. (Hepatology 2018;67:56-70).
Collapse
Affiliation(s)
- Gaiyun Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Hepatopathy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dianhui Shao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, China
| | - Hao Chang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, China
| | - Dongming Zhou
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Deng
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Dandri M, Petersen J. Mechanism of Hepatitis B Virus Persistence in Hepatocytes and Its Carcinogenic Potential. Clin Infect Dis 2017; 62 Suppl 4:S281-8. [PMID: 27190317 DOI: 10.1093/cid/ciw023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Liver disease associated with persistent infection with hepatitis B virus (HBV) continues to be a major health problem of global impact. Despite the existence of an effective vaccine, at least 240 million people are chronically infected worldwide, and are at risk of developing liver cirrhosis and hepatocellular carcinoma. Although chronic HBV infection is considered the main risk factor for liver cancer development, the molecular mechanisms determining persistence of infection and long-term pathogenesis are not fully elucidated but appear to be multifactorial. Current therapeutic regimens based on the use of polymerase inhibitors can efficiently suppress viral replication but are unable to eradicate the infection. This is due both to the persistence of the HBV genome, which forms a stable minichromosome, the covalently closed circular DNA (cccDNA), in the nucleus of infected hepatocytes, as well as to the inability of the immune system to efficiently counteract chronic HBV infection. In this regard, the unique replication strategies adopted by HBV and viral protein production also appear to contribute to infection persistence by limiting the effectiveness of innate responses. The availability of improved experimental systems and molecular techniques have started to provide new information about the complex network of interactions that HBV establishes within the hepatocyte and that may contribute to disease progression and tumor development. Thus, this review will mostly focus on events involving the hepatocyte: the only target cell where HBV infection and replication take place.
Collapse
Affiliation(s)
- Maura Dandri
- I Department of Internal Medicine, University Medical Center Hamburg-Eppendorf German Center for Infection Research, Hamburg-Lübeck-Borstel site
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine, Asklepios Clinic St Georg, Hamburg, Germany
| |
Collapse
|
20
|
Flavocoxid exerts a potent antiviral effect against hepatitis B virus. Inflamm Res 2017; 67:89-103. [PMID: 29018874 DOI: 10.1007/s00011-017-1099-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
|
21
|
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide; it can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms determining HBV persistence are not fully understood, but these appear to be multifactorial and the unique replication strategy employed by HBV enables its maintenance in infected hepatocytes. Both the stability of the HBV genome, which forms a stable minichromosome, the covalently closed circular DNA (cccDNA) in the hepatocyte nucleus, and the inability of the immune system to resolve chronic HBV infection are believed to be key mechanisms of HBV chronicity. Since a true cure of HBV requires clearance of intranuclear cccDNA from infected hepatocytes, understanding the mechanisms involved in cccDNA biogenesis, regulation and stability is mandatory to achieve HBV eradication. This review will summarize the state of knowledge on these mechanisms including the impact of current treatments on the cccDNA stability and activity. We will focus on events challenging cccDNA persistence in dividing hepatocytes.
Collapse
|
22
|
Sang X, Wang R, Han Y, Zhang C, Shen H, Yang Z, Xiong Y, Liu H, Liu S, Li R, Yang R, Wang J, Wang X, Bai Z, Xiao X. T cell--associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model. Acta Pharm Sin B 2017; 7:311-318. [PMID: 28540167 PMCID: PMC5430867 DOI: 10.1016/j.apsb.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 01/05/2023] Open
Abstract
Although oxymatrine (OMT) has been shown to directly inhibit the replication of hepatitis B virus (HBV) in vitro, limited research has been done with this drug in vivo. In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg) was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg). The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV) in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon-γ (IFN-γ) in a dose-dependent manner in CD4+ T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CD4+ T cell
- CHB, chronic hepatitis B
- ETV, entecavir
- HBV
- HBV, hepatitis B virus
- HBcAg, hepatitis B core antigen
- HBeAg, hepatitis B e antigen
- HBsAg, hepatitis B surface antigen
- HE, hematoxylin and eosin
- IFN-γ
- IFN-γ, interferon-γ
- IL-4, interleukin-4
- Mouse
- NAs, nucleoside and nucleotide analogs
- OMT, oxymatrine
- Oxymatrine
- TCMs, traditional Chinese medicines
- TNF-α, tumor necrosis factor-α
Collapse
|
23
|
Liu Y, Nie H, Mao R, Mitra B, Cai D, Yan R, Guo JT, Block TM, Mechti N, Guo H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog 2017; 13:e1006296. [PMID: 28399146 PMCID: PMC5388505 DOI: 10.1371/journal.ppat.1006296] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general. HBV is a DNA virus but replicates its DNA via retrotranscription of a viral RNA pregenome. ISG20, an antiviral RNase induced by interferons, inhibits the replication of many RNA viruses but the underlying molecular antiviral mechanism remains elusive. Since all the known viruses, except for prions, have RNA products in their life cycles, ISG20 can be a broad spectrum antiviral protein; but in order to distinguish viral RNA from host RNA, ISG20 may have evolved to recognize virus-specific signals as its antiviral target. We demonstrated herein that ISG20 selectively binds to a unique stem-loop structure called epsilon (ε) in all HBV RNA species and degrades viral RNA to inhibit HBV replication. Because ε is the HBV pregenomic RNA packaging signal and reverse transcription priming site, the binding of ISG20 to ε, even in the absence of ribonuclease activity, results in antiviral effect to prevent DNA replication due to preventing viral polymerase binding to pgRNA. We also determined the structure and sequence requirements of ε RNA and ISG20 protein for ISG20-ε binding and antiviral activity. Such information will aid the function study of ISG20 against viral pathogens in host innate defense, and ISG20 has potentials to be developed into a therapeutic agent for viral diseases including hepatitis B.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hui Nie
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Nadir Mechti
- CNRS, UMR5235, DIMNP, University of Montpellier 2, Montpellier, France
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Secreted Interferon-Inducible Factors Restrict Hepatitis B and C Virus Entry In Vitro. J Immunol Res 2017; 2017:4828936. [PMID: 28367455 PMCID: PMC5358466 DOI: 10.1155/2017/4828936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Interferon-α (IFN-α) has been used for more than 20 years as the first-line therapy for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, because it has a number of antiviral effects. In this study, we describe a novel mode of its antiviral action. We demonstrate that the supernatant from IFN-α-treated cultured cells restricted HBV and HCV infection by inhibiting viral entry into hepatoma cells. The factors contained in the supernatant competed with the virus for binding to heparan glycosaminoglycans—the nonspecific attachment step shared by HBV and HCV. Secreted factors of high molecular mass that bind to heparin columns elicited the antiviral effect. In conclusion, IFN-α is able to induce soluble factors that can bind to heparan glycosaminoglycans thus leading to the inhibition of viral binding.
Collapse
|
25
|
McFadden VC, Shalaby RE, Iram S, Oropeza CE, Landolfi JA, Lyubimov AV, Maienschein-Cline M, Green SJ, Kaestner KH, McLachlan A. Hepatic deficiency of the pioneer transcription factor FoxA restricts hepatitis B virus biosynthesis by the developmental regulation of viral DNA methylation. PLoS Pathog 2017; 13:e1006239. [PMID: 28235042 PMCID: PMC5342274 DOI: 10.1371/journal.ppat.1006239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/08/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
The FoxA family of pioneer transcription factors regulates hepatitis B virus (HBV) transcription, and hence viral replication. Hepatocyte-specific FoxA-deficiency in the HBV transgenic mouse model of chronic infection prevents the transcription of the viral DNA genome as a result of the failure of the developmentally controlled conversion of 5-methylcytosine residues to cytosine during postnatal hepatic maturation. These observations suggest that pioneer transcription factors such as FoxA, which mark genes for expression at subsequent developmental steps in the cellular differentiation program, mediate their effects by reversing the DNA methylation status of their target genes to permit their ensuing expression when the appropriate tissue-specific transcription factor combinations arise during development. Furthermore, as the FoxA-deficient HBV transgenic mice are viable, the specific developmental timing, abundance and isoform type of pioneer factor expression must permit all essential liver gene expression to occur at a level sufficient to support adequate liver function. This implies that pioneer transcription factors can recognize and mark their target genes in distinct developmental manners dependent upon, at least in part, the concentration and affinity of FoxA for its binding sites within enhancer and promoter regulatory sequence elements. This selective marking of cellular genes for expression by the FoxA pioneer factor compared to HBV may offer the opportunity for the specific silencing of HBV gene expression and hence the resolution of chronic HBV infections which are responsible for approximately one million deaths worldwide annually due to liver cirrhosis and hepatocellular carcinoma. This study demonstrates the connection between FoxA expression and gene silencing by DNA methylation in vivo during liver maturation. Insufficient FoxA expression results in selective developmentally regulated hepatitis B virus (HBV) silencing by DNA methylation. To our knowledge, this is the first in vivo demonstration that pioneer factors such as FoxA function by mediating the developmental demethylation of their target genes, leading to their tissue specific gene expression. Furthermore, our results strongly imply that the marking of cellular target genes for subsequent transcription later in development is dependent upon the level and timing of FoxA expression plus its affinity for its target sequences within enhancer and promoter regions. Consequently, these findings suggest that the appropriate control of FoxA activity during development could lead to the transcriptional inactivation of nuclear HBV covalently closed circular DNA by methylation and hence resolution of chronic HBV infection. This represents a clinical goal that current therapies are unable to attain, and hence suggests a potential route to a cure for this chronic infection which kills approximately 1 million individuals annually.
Collapse
Affiliation(s)
- Vanessa C. McFadden
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Rasha E. Shalaby
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Saira Iram
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Jennifer A. Landolfi
- Toxicology Research Laboratory Department of Pharmacology College of Medicine University of Illinois at Chicago Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory Department of Pharmacology College of Medicine University of Illinois at Chicago Chicago, IL, United States of America
| | - Mark Maienschein-Cline
- Research Resources Center College of Medicine University of Illinois at Chicago 835 South Wolcott Avenue Chicago, IL, United States of America
| | - Stefan J. Green
- Research Resources Center College of Medicine University of Illinois at Chicago 835 South Wolcott Avenue Chicago, IL, United States of America
| | - Klaus H. Kaestner
- Department of Genetics University of Pennsylvania School of Medicine Philadelphia, PA, United States of America
| | - Alan McLachlan
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Control of Hepatitis B Virus by Cytokines. Viruses 2017; 9:v9010018. [PMID: 28117695 PMCID: PMC5294987 DOI: 10.3390/v9010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation.
Collapse
|
27
|
Zhou Y, Li S, Tang Z, Xu C, Huang S, Wu J, Dittmer U, Dickow J, Sutter K, Lu M, Yang D, Song J. Different antiviral effects of IFNα and IFNβ in an HBV mouse model. Immunobiology 2016; 222:562-570. [PMID: 27839836 DOI: 10.1016/j.imbio.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
Abstract
Interferons α and β (IFNα and IFNβ) are type I interferons produced by the host to control pathogen propagation. However, only a minority of chronic hepatitis B (CHB) patients generate a sustained response after treatment with recombinant IFNα. The anti-HBV effect of IFNβ and the underlying mechanism are not well-understood. Here, we compared the antiviral activities of IFNα and IFNβ by application of IFNα or IFNβ expression plasmids using the well-established HBV hydrodynamic injection (HI) mouse model. Injection of IFNα expression plasmid could significantly reduce HBV serum markers including HBsAg, HBeAg and HBV DNA as well as the number of HBcAg positive cells in the liver, while IFNβ showed only a weak inhibition of HBV replication. In contrast to IFNβ, IFNα resulted in elevated expression levels of IFN stimulated genes (ISGs) as well as the proinflammatory cytokine interleukin 6 (IL6) in the liver. Moreover, IFNβ treated mice showed higher expression levels of the anti-inflammatory cytokines IL10 and TGFβ in the liver compared to IFNα. Our results demonstrated that both IFNα and IFNβ exert antiviral activities against HBV in HI mouse model, but IFNα is more effective than IFNβ.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; School of Medicine, Henan University, Kaifeng, PR China.
| | - Sheng Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Zongsheng Tang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Chunli Xu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Julia Dickow
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Kathrin Sutter
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jingjiao Song
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
28
|
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem, with approximately one third of populations have been infected, among which 3-5% of adults and more than 90% of children developed to chronic HBV infection. Host immune factors play essential roles in the outcome of HBV infection. Thus, ineffective immune response against HBV may result in persistent virus replications and liver necroinflammations, then lead to chronic HBV infection, liver cirrhosis, and even hepatocellular carcinoma. Cytokine balance was shown to be an important immune characteristic in the development and progression of hepatitis B, as well as in an effective antiviral immunity. Large numbers of cytokines are not only involved in the initiation and regulation of immune responses but also contributing directly or indirectly to the inhibition of virus replication. Besides, cytokines initiate downstream signaling pathway activities by binding to specific receptors expressed on the target cells and play important roles in the responses against viral infections and, therefore, might affect susceptibility to HBV and/or the natural course of the infection. Since cytokines are the primary causes of inflammation and mediates liver injury after HBV infection, we have discussed recent advances on the roles of various cytokines [including T helper type 1 cells (Th1), Th2, Th17, regulatory T cells (Treg)-related cytokines] in different phases of HBV infection and cytokine-related mechanisms for impaired viral control and liver damage during HBV infection. We then focus on experimental therapeutic applications of cytokines to gain a better understanding of this newly emerging aspect of disease pathogenesis.
Collapse
|
29
|
Viral DNA-Dependent Induction of Innate Immune Response to Hepatitis B Virus in Immortalized Mouse Hepatocytes. J Virol 2015; 90:486-96. [PMID: 26491170 DOI: 10.1128/jvi.01263-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) infects hundreds of millions of people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV is an enveloped virus with a relaxed circular (RC) DNA genome. In the nuclei of infected human hepatocytes, conversion of RC DNA from the incoming virion or cytoplasmic mature nucleocapsid (NC) to the covalently closed circular (CCC) DNA, which serves as the template for producing all viral transcripts, is essential to establish and sustain viral replication. A prerequisite for CCC DNA formation is the uncoating (disassembly) of NCs to expose their RC DNA content for conversion to CCC DNA. We report here that in an immortalized mouse hepatocyte cell line, AML12HBV10, in which RC DNA exposure is enhanced, the exposed viral DNA could trigger an innate immune response that was able to modulate viral gene expression and replication. When viral gene expression and replication were low, the innate response initially stimulated these processes but subsequently acted to shut off viral gene expression and replication after they reached peak levels. Inhibition of viral DNA synthesis or cellular DNA sensing and innate immune signaling diminished the innate response. These results indicate that HBV DNA, when exposed in the host cell cytoplasm, can function to trigger an innate immune response that, in turn, modulates viral gene expression and replication. IMPORTANCE Chronic infection by hepatitis B virus (HBV) afflicts hundreds of millions worldwide and is sustained by the episomal covalently closed circular (CCC) DNA in the nuclei of infected hepatocytes. Release of viral genomic DNA from cytoplasmic nucleocapsids (NCs) (NC disassembly or uncoating) is a prerequisite for its conversion to CCC DNA, which can also potentially expose the viral DNA to host DNA sensors and trigger an innate immune response. We have found that in an immortalized mouse hepatocyte cell line in which efficient CCC DNA formation was associated with enhanced exposure of nucleocapsid-associated DNA, the exposed viral DNA indeed triggered host cytoplasmic DNA sensing and an innate immune response that was able to modulate HBV gene expression and replication. Thus, HBV can, under select conditions, be recognized by the host innate immune response through exposed viral DNA, which may be exploited therapeutically to clear viral persistence.
Collapse
|
30
|
Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc Natl Acad Sci U S A 2015; 112:E5715-24. [PMID: 26438841 DOI: 10.1073/pnas.1518090112] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects 240 million people worldwide and is a major risk factor for liver failure and hepatocellular carcinoma. Current antiviral therapy inhibits cytoplasmic HBV genomic replication, but is not curative because it does not directly affect nuclear HBV closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence. Novel approaches that directly target cccDNA regulation would therefore be highly desirable. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications (PTMs). Here, using a new cccDNA ChIP-Seq approach, we report, to our knowledge, the first genome-wide maps of PTMs in cccDNA-containing chromatin from de novo infected HepG2 cells, primary human hepatocytes, and from HBV-infected liver tissue. We find high levels of PTMs associated with active transcription enriched at specific sites within the HBV genome and, surprisingly, very low levels of PTMs linked to transcriptional repression even at silent HBV promoters. We show that transcription and active PTMs in HBV chromatin are reduced by the activation of an innate immunity pathway, and that this effect can be recapitulated with a small molecule epigenetic modifying agent, opening the possibility that chromatin-based regulation of cccDNA transcription could be a new therapeutic approach to chronic HBV infection.
Collapse
|
31
|
The Interferon-Inducible Protein Tetherin Inhibits Hepatitis B Virus Virion Secretion. J Virol 2015; 89:9200-12. [PMID: 26109732 DOI: 10.1128/jvi.00933-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Interferon alpha (IFN-α) is an approved medication for chronic hepatitis B therapy. Besides acting as an immunomodulator, IFN-α elicits a pleiotropic antiviral state in hepatitis B virus (HBV)-infected hepatocytes, but whether or not IFN-α impedes the late steps of the HBV life cycle, such as HBV secretion, remains elusive. Here we report that IFN-α treatment of HepAD38 cells with established HBV replication selectively reduced HBV virion release without altering intracellular viral replication or the secretion of HBV subviral particles and nonenveloped capsids. In search of the interferon-stimulated gene(s) that is responsible for the reduction of HBV virion release, we found that tetherin, a broad-spectrum antiviral transmembrane protein that inhibits the egress of a variety of enveloped viruses, was highly induced by IFN-α in HepAD38 cells and in primary human hepatocytes. We further demonstrated that the expression of full-length tetherin, but not the C-terminal glycosylphosphatidylinositol (GPI) anchor-truncated form, inhibited HBV virion egress from HepAD38 cells. In addition, GPI anchor-truncated tetherin exhibited a dominant-negative effect and was incorporated into the liberated virions. We also found colocalization of tetherin and HBV L protein at the intracellular multivesicular body, where the budding of HBV virions takes place. In line with this, electron microscopy demonstrated that HBV virions were tethered in the lumen of the cisterna membrane under tetherin expression. Finally, knockdown of tetherin or overexpression of dominant negative tetherin attenuated the IFN-α-mediated reduction of HBV virion release. Taken together, our study suggests that IFN-α inhibits HBV virion egress from hepatocytes through the induction of tetherin. IMPORTANCE Tetherin is a host restriction factor that blocks the egress of a variety of enveloped viruses through tethering the budding virions on the cell surface with its membrane anchor domains. Here we report that interferon directly and selectively inhibits the secretion of HBV virions, but not subviral particles or nonenveloped capsids, through the induction of tetherin in hepatocyte-derived cells. The antiviral function of tetherin requires the carboxyl-terminal GPI anchor, while the GPI anchor deletion mutant exhibits dominant negative activity and attaches to liberated HBV virions. Consistent with the fact that HBV is an intracellular budding virus, microscopy analyses demonstrated that the tethering of HBV virions occurs in the intracellular cisterna and that tetherin colocalizes with HBV virions on the multivesicular body, which is the HBV virion budding site. Our study not only expands the antiviral spectrum of tetherin but also sheds light on the mechanisms of interferon-elicited anti-HBV responses.
Collapse
|
32
|
Shin GC, Ahn SH, Choi HS, Kim J, Park ES, Kim DH, Kim KH. Hepatocystin contributes to interferon-mediated antiviral response to hepatitis B virus by regulating hepatocyte nuclear factor 4α. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1648-57. [PMID: 24769044 DOI: 10.1016/j.bbadis.2014.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 02/07/2023]
Abstract
Hepatocystin/80K-H is known as a causative gene for autosomal dominant polycystic liver disease. However, the role of hepatocystin in hepatitis B virus-related liver disease remains unknown. Here, we investigated the role of hepatocystin on the cytokine-mediated antiviral response against hepatitis B virus infection. We investigated the antiviral effect and mechanism of hepatocystin by ectopic expression and RNAi knockdown in cell culture and mouse livers. Hepatocystin suppressed the replication of hepatitis B virus both in vitro and in vivo. This inhibitory effect was HBx-independent and mediated by the transcriptional regulation of viral genome via the activation of exogenous signal-regulated kinase 1/2 and the reduced expression of hepatocyte nuclear factor 4α, a transcription factor essential for hepatitis B virus replication. The amino-terminal region of hepatocystin was essential for regulation of this antiviral signaling pathway. We also found that hepatocystin acts as a critical component in interferon-mediated mitogen-activated protein kinase signaling pathway, and the interferon-induced antiviral activity against hepatitis B virus is associated with the expression levels of hepatocystin. We demonstrated that hepatocystin plays a critical role in modulating the susceptibility of hepatitis B virus to interferon, suggesting that the modulation of hepatocystin expression is important for cytokine-mediated viral clearance during hepatitis B virus infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea; Institute of Functional Genomics, Konkuk University, Seoul, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Sun Choi
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jingyeong Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea; Institute of Functional Genomics, Konkuk University, Seoul, Republic of Korea; Research Institute of Medical Sciences, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 2014; 343:1221-8. [PMID: 24557838 DOI: 10.1126/science.1243462] [Citation(s) in RCA: 713] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-α treatment can clear HBV but is limited by systemic side effects. We describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-β receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-β receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases-for example, by lymphotoxin-β receptor activation-allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.
Collapse
Affiliation(s)
- Julie Lucifora
- Institute of Virology, Technische Universität München-Helmholtz Zentrum München, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Adenoviral delivery of recombinant hepatitis B virus expressing foreign antigenic epitopes for immunotherapy of persistent viral infection. J Virol 2013; 88:3004-15. [PMID: 24371056 DOI: 10.1128/jvi.02756-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED We previously reported a proof-of-concept study for curing chronic hepatitis B virus (HBV) infection using a foreign-antigen recombinant HBV (rHBV) as a gene therapy vector. Targeted elimination of wild-type HBV (wtHBV)-infected cells could be achieved by functionally activating an in situ T-cell response against the foreign antigen. However, as chronic HBV infection spreads to all hepatocytes, specific targeting of virus-infected cells is thought to be less critical. It is also feared that rHBV may not induce active immunization in a setting resembling natural infection. For this immunotherapeutic approach to be practically viable, in the present study, we used a recombinant adenovirus (rAd) vector for rHBV delivery. The rAd vector allowed efficient transduction of wtHBV-producing HepG2 cells, with transferred rHBV undergoing dominant viral replication. Progeny rHBV virions proved to be infectious, as demonstrated in primary tupaia hepatocytes. These results greatly expanded the antiviral capacity of the replication-defective rAd/rHBV in wtHBV-infected liver tissue. With prior priming in the periphery, transduction with rAd/rHBV attracted a substantial influx of the foreign-antigen-specific T-effector cells into the liver. Despite the fully activated T-cell response, active expression of rHBV was observed for a prolonged time, which is essential for rHBV to achieve sustained expansion. In a mouse model of HBV persistence established by infection with a recombinant adeno-associated virus carrying the wtHBV genome, rAd/rHBV-based immunotherapy elicited a foreign-antigen-specific T-cell response that triggered effective viral clearance and subsequent seroconversion to HBV. It therefore represents an efficient strategy to overcome immune tolerance, thereby eliminating chronic HBV infection. IMPORTANCE Adenovirus-delivered rHBV activated a foreign-antigen-specific T-cell response that abrogated HBV persistence in a mouse model. Our study provides further evidence of the potential of foreign-antigen-based immunotherapy for the treatment of chronic HBV infection.
Collapse
|
35
|
Mao R, Nie H, Cai D, Zhang J, Liu H, Yan R, Cuconati A, Block TM, Guo JT, Guo H. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 2013; 9:e1003494. [PMID: 23853601 PMCID: PMC3708887 DOI: 10.1371/journal.ppat.1003494] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/20/2013] [Indexed: 02/07/2023] Open
Abstract
The zinc finger antiviral protein (ZAP) is a mammalian host restriction factor that inhibits the replication of a variety of RNA viruses, including retroviruses, alphaviruses and filoviruses, through interaction with the ZAP-responsive elements (ZRE) in viral RNA, and recruiting the exosome to degrade RNA substrate. Hepatitis B virus (HBV) is a pararetrovirus that replicates its genomic DNA via reverse transcription of a viral pregenomic (pg) RNA precursor. Here, we demonstrate that the two isoforms of human ZAP (hZAP-L and -S) inhibit HBV replication in human hepatocyte-derived cells through posttranscriptional down-regulation of viral pgRNA. Mechanistically, the zinc finger motif-containing N-terminus of hZAP is responsible for the reduction of HBV RNA, and the integrity of the four zinc finger motifs is essential for ZAP to bind to HBV RNA and fulfill its antiviral function. The ZRE sequences conferring the susceptibility of viral RNA to ZAP-mediated RNA decay were mapped to the terminal redundant region (nt 1820–1918) of HBV pgRNA. In agreement with its role as a host restriction factor and as an innate immune mediator for HBV infection, ZAP was upregulated in cultured primary human hepatocytes and hepatocyte-derived cells upon IFN-α treatment or IPS-1 activation, and in the livers of hepatitis B patients during immune active phase. Knock down of ZAP expression increased the level of HBV RNA and partially attenuated the antiviral effect elicited by IPS-1 in cell cultures. In summary, we demonstrated that ZAP is an intrinsic host antiviral factor with activity against HBV through down-regulation of viral RNA, and that ZAP plays a role in the innate control of HBV replication. Our findings thus shed light on virus-host interaction, viral pathogenesis, and antiviral approaches. The dynamics of virus and host interaction greatly influence viral pathogenesis, and host cells have evolved multiple mechanisms to inhibit viral replication. Since it was first discovered as a cellular restriction factor for retroviruses, the host-encoded zinc finger antiviral protein (ZAP) has been shown to antagonize a variety of viral species, possibly through a common mechanism by which ZAP targets viral RNA for degradation. Here we report that hepatitis B virus (HBV) is also vulnerable to ZAP-mediated viral RNA reduction. ZAP is able to interact with HBV RNA through its zinc finger motifs, and the ZAP-responsive element which determines ZAP's antiviral specificity and activity is located within the 100-nucleotide-long terminal redundant region in the viral RNA genome. While the replication of HBV is constitutively restricted under the basal expression of intrahepatic ZAP, activation of host innate defenses, and potentially the acquired immune responses as well, could further elevate ZAP expression to suppress HBV replication. Therefore, our study not only expands the antiviral spectrum of ZAP, but also provides cumulative and novel information for a better understanding of ZAP biology and antiviral mechanisms. We also envision that the endogenous or engineered ZAP could be utilized in the future for development of therapeutic means to treat chronic hepatitis B, which currently affects more than 5% of the world's population.
Collapse
Affiliation(s)
- Richeng Mao
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui Nie
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Dawei Cai
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Jiming Zhang
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ran Yan
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Andrea Cuconati
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Haitao Guo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Thimme R, Dandri M. Dissecting the divergent effects of interferon-alpha on immune cells: time to rethink combination therapy in chronic hepatitis B? J Hepatol 2013; 58:205-9. [PMID: 23159772 DOI: 10.1016/j.jhep.2012.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 01/05/2023]
|
37
|
Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. Semin Immunopathol 2012; 35:23-38. [PMID: 22814721 DOI: 10.1007/s00281-012-0331-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases. Whether HBV infection is cleared or persists is determined by both viral factors and host immune responses. It becomes clear that innate immunity is of importance in protecting the host from HBV infection and persistence. However, HBV develops strategies to suppress the antiviral immune responses. A combined therapeutic strategy with both viral suppression and enhancement of antiviral immune responses is needed for effective long-term clearance and cure for chronic HBV infection. We and others confirmed that bifunctional siRNAs with both gene silencing and innate immune activation properties are beneficial for inhibition of HBV and represent a potential approach for treatment of viral infection. Understanding the nature of liver innate immunity and their roles in chronic HBV progression and HBV clearance may aid in the design of novel therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
38
|
Yang J, Zhu X, Liu J, Ding X, Han M, Hu W, Wang X, Zhou Z, Wang S. Inhibition of Hepatitis B virus replication by phospholipid scramblase 1 in vitro and in vivo. Antiviral Res 2012; 94:9-17. [PMID: 22342889 DOI: 10.1016/j.antiviral.2012.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/20/2012] [Accepted: 01/30/2012] [Indexed: 01/03/2023]
Abstract
Human Phospholipid scramblase 1 (PLSCR1) is an α/β interferon-inducible protein that mediates antiviral activity against RNA viruses including vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV). In the present study, we investigated the antiviral activity of PLSCR1 protein against HBV (Hepatitis B virus). Firstly, PLSCR1 mRNA and protein expression was found to be downregulated in HepG2 cells after HBV infection. Then by performing co-transient-transfection experiments in cells and hydrodynamics-based transfection experiments in mice using a HBV expression plasmid and a PLSCR1 expression plasmid, we found that PLSCR1 inhibited HBV replication in vitro and in vivo through a significant reduction in the synthesis of viral proteins, DNA replicative intermediates and HBV RNAs. We also demonstrated that the antiviral action of PLSCR1 against HBV occurs, partly at least, by activating the Jak/Stat pathway. In conclusion, our results suggest that the expression of PLSCR1 is involved in HBV replication and that PLSCR1 has antiviral activity against HBV.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Radiation Medicine, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri M, Levrero M. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest 2012; 122:529-37. [PMID: 22251702 DOI: 10.1172/jci58847] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 11/09/2011] [Indexed: 02/06/2023] Open
Abstract
HBV infection remains a leading cause of death worldwide. IFN-α inhibits viral replication in vitro and in vivo, and pegylated IFN-α is a commonly administered treatment for individuals infected with HBV. The HBV genome contains a typical IFN-stimulated response element (ISRE), but the molecular mechanisms by which IFN-α suppresses HBV replication have not been established in relevant experimental systems. Here, we show that IFN-α inhibits HBV replication by decreasing the transcription of pregenomic RNA (pgRNA) and subgenomic RNA from the HBV covalently closed circular DNA (cccDNA) minichromosome, both in cultured cells in which HBV is replicating and in mice whose livers have been repopulated with human hepatocytes and infected with HBV. Administration of IFN-α resulted in cccDNA-bound histone hypoacetylation as well as active recruitment to the cccDNA of transcriptional corepressors. IFN-α treatment also reduced binding of the STAT1 and STAT2 transcription factors to active cccDNA. The inhibitory activity of IFN-α was linked to the IRSE, as IRSE-mutant HBV transcribed less pgRNA and could not be repressed by IFN-α treatment. Our results identify a molecular mechanism whereby IFN-α mediates epigenetic repression of HBV cccDNA transcriptional activity, which may assist in the development of novel effective therapeutics.
Collapse
Affiliation(s)
- Laura Belloni
- EAL Inserm U785, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lu JJ, Chen EQ, Yang JH, Zhou TY, Liu L, Tang H. A mutation in the interferon regulatory element of HBV may influence the response of interferon treatment in chronic hepatitis B patients. Virol J 2012; 9:10. [PMID: 22233973 PMCID: PMC3287143 DOI: 10.1186/1743-422x-9-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/10/2012] [Indexed: 02/05/2023] Open
Abstract
Background A functional interferon regulatory element (IRE) has been found in the EnhI/X promoter region of hepatitis B virus (HBV) genome. The purpose of this study is to compare the gene order of responder and non-responder to interferon therapy in patients with chronic hepatitis B (CHB), so as to evaluate the relationship between IRE mutation and the response to interferon treatment for CHB patients. Results Synthetic therapeutic effect is divided into complete response (CR), partial response (PR) and non-response (NR). Among the 62 cases included in this study, 40 cases (64.5%) were in the response group (CR and PR) and 22 (35.5%) cases were in the NR group. Wild type sequence of HBV IRE TTTCACTTTC were found in 35 cases (56.5%), and five different IRE gene sequences. included TTTtACTTTC, TTTCAtTTTC, TTTtAtTTTC, TTTtACTTTt and cTTtACcTTC, were found in 22 cases (35.5%), 1 case (1.6%), 1 case (1.6%), 2 cases (3.2%) and 1 case (1.6%) respectively. There were 41.9%cases (26/62) with forth base C→T mutation, consisted of 32.5% (13/40) cases in response group and 59.1% (13/22) cases in NR group. Among the 35 cases with IRE sequences, there were 67.5% (27/40) cases in response group and 36.4% (8/22) in NR group, and the difference in IRE sequences between two groups was statistic significantly (P = 0.027). The result suggested that there is likely relationship between the forth base mutation (C→T) of IRE region and the response of HBV to Interferon therapy, and this mutation may partially decrease the inhibition effect of interferon on HBV. Conclusion The forth base C→T mutation in IRE element of HBV may partially influence the response of Interferon treatment in CHB patients.
Collapse
Affiliation(s)
- Jia-Jie Lu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
41
|
Park IH, Baek KW, Cho EY, Ahn BY. PKR-dependent mechanisms of interferon-α for inhibiting hepatitis B virus replication. Mol Cells 2011; 32:167-72. [PMID: 21710204 PMCID: PMC3887671 DOI: 10.1007/s10059-011-1059-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/23/2022] Open
Abstract
Interferon-α (IFN-α) inhibits the replication of hepatitis B virus (HBV) in vivo and in vitro, but the molecular mechanism of this inhibition has been elusive. We found that while HBV replication in transfected human hepatoma Huh-7 cell was severely inhibited by IFN-α treatment as reported previously, this inhibition was markedly impaired in the cell in which the expression of IFN-inducible, double-stranded RNA-dependent protein kinase (PKR) was stably and specifically suppressed through RNA-interference. Intracellular level of viral capsids was down-regulated likewise in a PKR-dependent manner, whereas that of HBV transcripts including the viral RNA pregenome was not affected by IFN-α treatment. Ectopic expression of PKR also resulted in the reduction of viral capsids with concomitant increase of phosphorylated eIF2α. These results suggested that PKR functions as a key mediator of IFN-α in opposing HBV replication, most likely through the inhibition of protein synthesis.
Collapse
Affiliation(s)
- Il-Hyun Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- These authors contributed equally to this work
| | - Kyung-Won Baek
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- These authors contributed equally to this work
| | - Eun-Young Cho
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Byung-Yoon Ahn
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
42
|
Ebert G, Poeck H, Lucifora J, Baschuk N, Esser K, Esposito I, Hartmann G, Protzer U. 5' Triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology 2011; 141:696-706, 706.e1-3. [PMID: 21684282 DOI: 10.1053/j.gastro.2011.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Approved therapies for chronic hepatitis B include systemic administration of interferon (IFN)-alfa and inhibitors of hepatitis B virus (HBV) reverse-transcription. Systemic application of IFN-alfa is limited by side effects. Reverse-transcriptase inhibitors effectively control HBV replication, but rarely eliminate the virus and can select drug-resistant variants. We aimed to develop an alternative therapeutic approach that combines gene silencing with induction of IFN in the liver. METHODS To stimulate an immune response while inhibiting HBV activity, we designed 3 small interfering (si)RNAs that target highly conserved sequences and multiple HBV transcripts of all genotypes. A 5'-triphosphate (3p) was added to the siRNAs, turning them into a ligand for the cytosolic helicase retinoic acid-inducible protein I, which becomes activated and induces expression of type-I IFNs. Antiviral activity was investigated in cell lines that replicate HBV, in HBV-infected primary human hepatocytes, and in HBV transgenic mice. RESULTS 3p-double-stranded RNA (3p-RNA) activated retinoic acid-inducible protein I, induced a strong type I IFN response (expression of IFN-β) in liver cells and showed transient but strong antiviral activity. Bifunctional, HBV-specific, 3p-siRNAs controlled replication of HBV more efficiently and for longer periods of time than 3p-RNAs without silencing capacity or siRNAs that targeted identical sequences but did not contain 3p. CONCLUSIONS HBV-specific 3p-siRNAs are bifunctional antiviral molecules that induce production of type I IFNs in the liver and target HBV RNAs to inhibit viral replication.
Collapse
Affiliation(s)
- Gregor Ebert
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yao Y, Li J, Lu Z, Tong A, Wang W, Su X, Zhou Y, Mu B, Zhou S, Li X, Chen L, Gou L, Song H, Yang J, Wei Y. Proteomic analysis of the interleukin-4 (IL-4) response in hepatitis B virus-positive human hepatocelluar carcinoma cell line HepG2.2.15. Electrophoresis 2011; 32:2004-12. [PMID: 21739463 DOI: 10.1002/elps.201100147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. In recent decades, significant progress toward understanding the molecular virology and pathogenesis of HBV infection has been made. In addition, multiple treatment modalities have been developed for persons with HBV infection. In the present study, we demonstrated that IL-4 inhibits the expression of hepatitis B surface antigen and hepatitis B e antigen in a HBV stably transfected hepatocellular carcinoma cell line (HepG2.2.15). To reveal the anti-HBV mechanism of IL-4 by proteomics, 2-DE and MS technology were utilized to profile global changes in protein expression in HepG2.2.15 cells after IL-4 treatment. A total of 56 differentially expressed proteins were identified in IL-4-treated HepG2.2.15 cells. To find out the interaction of these changed proteins by bioinformatics, signaling network analysis with the STRING tool showed that the identified proteins are primarily involved in transcription and proteolysis. Taken together, these results offer valuable clues for understanding the molecular mechanisms of the IL-4-mediated anti-HBV response.
Collapse
Affiliation(s)
- Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lütgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, Lohse AW, Petersen J, Dandri M. Hepatitis B virus limits response of human hepatocytes to interferon-α in chimeric mice. Gastroenterology 2011; 140:2074-83, 2083.e1-2. [PMID: 21376046 DOI: 10.1053/j.gastro.2011.02.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/06/2011] [Accepted: 02/18/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Interferon (IFN)-α therapy is not effective for most patients with chronic hepatitis B virus (HBV) infection for reasons that are not clear. We investigated whether HBV infection reduced IFN-α-mediated induction of antiviral defense mechanisms in human hepatocytes. METHODS Human hepatocytes were injected into severe combined immune-deficient mice (SCID/beige) that expressed transgenic urokinase plasminogen activator under control of the albumin promoter. Some mice were infected with HBV; infected and uninfected mice were given injections of human IFN-α. Changes in viral DNA and expression of human interferon-stimulated genes (ISGs) were measured by real-time polymerase chain reaction, using human-specific primers, and by immunohistochemistry. RESULTS Median HBV viremia (0.8log) and intrahepatic loads of HBV RNA decreased 3-fold by 8 or 12 hours after each injection of IFN-α, but increased within 24 hours. IFN-α activated expression of human ISGs and nuclear translocation of signal transducers and activators of transcription-1 (STAT1) in human hepatocytes that repopulated the livers of uninfected mice. Although baseline levels of human ISGs were slightly increased in HBV-infected mice, compared with uninfected mice, IFN-α failed to increase expression of the ISGs OAS-1, MxA, MyD88, and TAP-1 (which regulates antigen presentation) in HBV-infected mice. IFN-α did not induce nuclear translocation of STAT1 in HBV-infected human hepatocytes. Administration of the nucleoside analogue entecavir (for 20 days) suppressed HBV replication but did not restore responsiveness to IFN-α. CONCLUSIONS HBV prevents induction of IFN-α signaling by inhibiting nuclear translocation of STAT1; this can interfere with transcription of ISGs in human hepatocytes. These effects of HBV might contribute to the limited effectiveness of endogenous and therapeutic IFN-α in patients and promote viral persistence.
Collapse
Affiliation(s)
- Marc Lütgehetmann
- Department of Internal Medicine, University Medical Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brunelle MN, Saboulard D, Massinet H, Lamant C, Soussan P, Brezillon N, Kremsdorf D. Inhibition of hepatitis B virus DNA replication by a thermostable interferon-γ variant. Antivir Ther 2010; 15:861-9. [PMID: 20834098 DOI: 10.3851/imp1639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Treatment of HBV chronic carriers using interferon (IFN)-α or nucleoside/nucleotide analogues fails to suppress viral infection. Type-II IFN-γ has been shown to inhibit HBV replication. The goal of the present work was to evaluate the antiviral efficacy against HBV of a thermostable IFN-γ variant isolated using Massive Mutagenesis and thermoresistant selection (THR) technologies. METHODS The thermostability of wild-type (wt) and S63C IFN-γ was determined in vitro and in vivo. Activation of the IFN-γ responsive element by wt and S63C IFN-γ was tested using a luciferase assay. HepG2.2.15 cells constitutively expressing HBV were used to analyse the antiviral activity of wt and S63C IFN-γ against HBV replication. Intracellular HBV DNA was detected by Southern blot and quantified by real-time PCR analyses. RESULTS S63C IFN-γ was shown to be more thermostable and had a longer half-life than wt IFN-γ. Both wt and S63C IFN-γ displayed a similar capacity to activate the IFN pathway. The treatment of HepG2.2.15 cells with wt or S63C IFN-γ induced the inhibition of HBV viral replication. After heating, S63C IFN-γ displayed better conservation of its antiviral activity against HBV when compared with wt IFN-γ. CONCLUSIONS These results confirm that the THR method can be used to isolate mutants with enhanced thermostability and demonstrate that a thermostable IFN-γ variant presents antiviral properties against HBV replication. This molecule could provide a new strategy to treat patients who do not respond to antiviral therapy.
Collapse
|
46
|
Inhibition of hepatitis B virus replication by MyD88 involves accelerated degradation of pregenomic RNA and nuclear retention of pre-S/S RNAs. J Virol 2010; 84:6387-99. [PMID: 20410269 DOI: 10.1128/jvi.00236-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myeloid differentiation primary response protein 88 (MyD88), which can be induced by alpha interferon (IFN-alpha), has an antiviral activity against the hepatitis B virus (HBV). The mechanism of this antiviral activity remains poorly understood. Here, we report that MyD88 inhibited HBV replication in HepG2.2.15 cells and in a mouse model. The knockdown of MyD88 expression weakened the IFN-alpha-induced inhibition of HBV replication. Furthermore, MyD88 posttranscriptionally reduced the levels of viral RNA. Remarkably, MyD88 accelerated the decay of viral pregenomic RNA in the cytoplasm. Mapping analysis showed that the RNA sequence located in the 5'-proximal region of the pregenomic RNA was critical for the decay. In addition, MyD88 inhibited the nuclear export of pre-S/S RNAs via the posttranscriptional regulatory element (PRE). The retained pre-S/S RNAs were shown to degrade in the nucleus. Finally, we found that MyD88 inhibited the expression of polypyrimidine tract-binding protein (PTB), a key nuclear export factor for PRE-containing RNA. Taken together, our results define a novel antiviral mechanism against HBV mediated by MyD88.
Collapse
|
47
|
Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol 2008; 83:847-58. [PMID: 18971270 DOI: 10.1128/jvi.02008-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recognition of virus infections by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation associated gene 5 (MDA5), activates signaling pathways, leading to the induction of inflammatory cytokines that limit viral replication. To determine the effects of PRR-mediated innate immune response on hepatitis B virus (HBV) replication, a 1.3mer HBV genome was cotransfected into HepG2 or Huh7 cells with plasmid expressing TLR adaptors, myeloid differentiation primary response gene 88 (MyD88), and TIR-domain-containing adaptor-inducing beta interferon (TRIF), or RIG-I/MDA5 adaptor, interferon promoter stimulator 1 (IPS-1). The results showed that expressing each of the three adaptors dramatically reduced the levels of HBV mRNA and DNA in both HepG2 and Huh7 cells. However, HBV replication was not significantly affected by treatment of HBV genome-transfected cells with culture media harvested from cells transfected with each of the three adaptors, indicating that the adaptor-induced antiviral response was predominantly mediated by intracellular factors rather than by secreted cytokines. Analyses of involved signaling pathways revealed that activation of NF-kappaB is required for all three adaptors to elicit antiviral response in both HepG2 and Huh7 cells. However, activation of interferon regulatory factor 3 is only essential for induction of antiviral response by IPS-1 in Huh7 cells, but not in HepG2 cells. Furthermore, our results suggest that besides NF-kappaB, additional signaling pathway(s) are required for TRIF to induce a maximum antiviral response against HBV. Knowing the molecular mechanisms by which PRR-mediated innate defense responses control HBV infections could potentially lead to the development of novel therapeutics that evoke the host cellular innate antiviral response to control HBV infections.
Collapse
|
48
|
Turelli P, Liagre-Quazzola A, Mangeat B, Verp S, Jost S, Trono D. APOBEC3-independent interferon-induced viral clearance in hepatitis B virus transgenic mice. J Virol 2008; 82:6585-90. [PMID: 18434399 PMCID: PMC2447049 DOI: 10.1128/jvi.00216-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/09/2008] [Indexed: 12/15/2022] Open
Abstract
Interferon (IFN) has been part of the standard treatment of chronic hepatitis B infection for more than 2 decades, yet the mechanism of action of this antiviral remains poorly understood. It was recently observed that members of the human APOBEC family of cytidine deaminases endowed with anti-hepatitis B virus (HBV) activity are upregulated by type I and II IFNs. However, we demonstrated that, in tissue culture, these cellular enzymes are not essential effectors of the anti-HBV action of these cytokines. Here, we show that murine APOBEC3 (muA3) can also block HBV replication. While expressed at low levels in the mouse liver at baseline, muA3 is upregulated upon IFN induction. However, in HBV-transgenic muA3 knockout mice, IFN induction blocked HBV DNA production as efficiently as in control HBV-transgenic muA3-competent animals. We conclude that APOBEC3 is not an essential mediator of the IFN-mediated inhibition of HBV in vivo.
Collapse
Affiliation(s)
- Priscilla Turelli
- Global Health Institute, School of Life Sciences and Frontiers in Genetics National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Liu FJ, Liu L, He F, Wang S, Zhou TY, Liu C, Deng LY, Tang H. Establishment and primary application of a mouse model with hepatitis B virus replication. World J Gastroenterol 2007; 13:5324-30. [PMID: 17879401 PMCID: PMC4171321 DOI: 10.3748/wjg.v13.i40.5324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a rapid and convenient animal model with hepatitis B virus (HBV) replication.
METHODS: A naked DNA solution of HBV-replication-competent plasmid was transferred to BALB/C mice via the tail vein, using a hydrodynamic in vivo transfection procedure. After injection, these mice were sacrificed on d 1, 3, 4, 5, 7 and 10. HBV DNA replication intermediates in the liver were analyzed by Southern blot hybridization. The expression of hepatitis B core antigen (HBcAg) and hepatitis B surface antigen (HBsAg) in the liver was checked by immunohistochemistry. Serum HBsAg and hepatitis B e antigen (HBeAg) was detected by enzyme-linked immunosorbent assay (ELISA). Inhibition of HBV replication was compared in HBV replication model mice treated intraperitoneally with polyinosinic-polytidylin acid (polyIC) or phosphate-buffered saline (PBS).
RESULTS: After hydrodynamic in vivo transfection, HBV DNA replication intermediates in the mouse liver were detectable on d 1 and abundant on d 3 and 4, the levels were slightly decreased and remained relatively stable between d 5 and 7, and were almost undetectable on d 10. The expression patterns of HBcAg and HBsAg were similar to that of HBV replication intermediate DNA, except that they reached a peak on d 1 after injection. No obvious differences in HBV DNA replication intermediates were observed in the left, right and middle lobes of the liver. After treatment with polyIC, the level of HBV intermediate DNA in the liver was lower than that in the control mice injected with PBS.
CONCLUSION: A rapid and convenient mouse model with a high level of HBV replication was developed and used to investigate the inhibitory effect of polyIC on HBV replication, which provides a useful tool for future functional studies of the HBV genome.
Collapse
Affiliation(s)
- Feng-Jun Liu
- Center of Infectious Diseases, Division of Molecular Biology of infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu M, Cao B, Zhang H, Dai Y, Liu X, Xu C. Association of interferon-gamma gene haplotype in the Chinese population with hepatitis B virus infection. Immunogenetics 2006; 58:859-64. [PMID: 17033822 DOI: 10.1007/s00251-006-0161-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/07/2006] [Indexed: 11/25/2022]
Abstract
In general, cytokines encoded by different genes of human genome might strongly influence host cell-mediated immune responses, which play an important role in the clearance of virus by the infected host. Interferon gamma (IFN-gamma) produced by T lymphocytes and natural killer cells plays an essential role in affecting cellular immune responses. A functional study demonstrated that two single nucleotide polymorphisms located in the IFN-gamma gene intron (at positions +874 and +2109) were involved in its transcriptional regulation. The aim of this study was to evaluate whether IFN-gamma gene polymorphisms or its haplotypes might be associated with predisposition to hepatitis B virus (HBV) infection in the Chinese population. The study included 181 cases with HBV infection and 272 gender, age-matched healthy controls. All genotyping were identified by polymerase chain reaction in association with the measurement of amplification refractory mutation system. A significant difference was observed between case and control groups. The frequency of +874A allele was significantly higher in patients than in controls (OR = 2.25, 95%CI = 1.69-2.99, P < 0.0001). However, no significant difference was found in the allelic frequencies of IFN-gamma +2109A/G between cases and controls (P > 0.05). By haplotype analysis, the frequency of haplotype AG (+874A and +2109G) revealed a significant difference in the cases in comparison to controls (P < 0.0001). Multiple logistic regression analysis showed that individuals possessing haplotype AG had an increased likelihood of HBV infection (OR = 8.14, 95%CI = 4.98-13.30). Our results suggest that haplotype AG containing +874A and +2109G may be a crucial risk factor of genetic susceptibility to HBV infection in the Chinese population.
Collapse
Affiliation(s)
- Meiqiang Liu
- Medical College, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | |
Collapse
|