1
|
Buss DJ, Deering J, Reznikov N, McKee MD. Understanding the structural biology of osteomalacia through multiscale 3D X-ray and electron tomographic imaging: a review of X-linked hypophosphatemia, the Hyp mouse model, and imaging methods. JBMR Plus 2025; 9:ziae176. [PMID: 39896117 PMCID: PMC11783288 DOI: 10.1093/jbmrpl/ziae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Biomineralization in bones and teeth is a highly regulated extracellular event. In the skeleton, mineralization at the tissue level is controlled within the collagenous extracellular matrix by both circulating and local factors. While systemic regulation of mineral ion homeostasis has been well-studied over many decades, much less is known about the regulation of mineralization at the local level directly within the extracellular matrix. Some local regulators have been identified, such as tissue-nonspecific alkaline phosphatase (TNAP), phosphate-regulating endopeptidase homolog X-linked (PHEX), pyrophosphate, and osteopontin, and others are currently under investigation. Dysregulation of the actions of enzyme-inhibitor substrate pairs engaged in mineralization (as we describe by the Stenciling Principle for extracellular matrix mineralization) leads to osteomalacic "soft bone" diseases, such as hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). This review addresses how advances in 3D imaging tools and software now allow contextual and correlative viewing and interpretation of mineralized tissue structure across most length scales. Contextualized and integrated 3D multiscale data obtained from these imaging modalities have afforded an unprecedented structural biology view of bone from the macroscale to the nanoscale. Such correlated volume imaging data is highly quantitative, providing not only an integrated view of the skeleton in health, but also a means to observe alterations that occur in disease. In the context of the many hierarchical levels of skeletal organization, here we summarize structural features of bone over multiple length scales, with a focus on nano- and microscale features as viewed by X-ray and electron tomography imaging methods (submicron μCT and FIB-SEM). We additionally summarize structural changes observed after dysregulation of the mineralization pathway, focusing here on the Hyp mouse model for XLH. More specifically, we summarize how mineral patterns/packs at the microscale (3D crossfibrillar mineral tessellation), and how this is defective in Hyp mouse bone and Hyp enthesis fibrocartilage.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joseph Deering
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Lira Dos Santos EJ, Nakajima K, Po J, Hanai A, Zhukouskaya V, Biosse Duplan M, Linglart A, Shimada T, Chaussain C, Bardet C. Dental impact of anti-fibroblast growth factor 23 therapy in X-linked hypophosphatemia. Int J Oral Sci 2023; 15:53. [PMID: 38052774 PMCID: PMC10697996 DOI: 10.1038/s41368-023-00259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
Elevated fibroblast growth factor 23 (FGF23) in X-linked hypophosphatemia (XLH) results in rickets and phosphate wasting, manifesting by severe bone and dental abnormalities. Burosumab, a FGF23-neutralizing antibody, an alternative to conventional treatment (phosphorus and active vitamin D analogs), showed significant improvement in the long bone phenotype. Here, we examined whether FGF23 antibody (FGF23-mAb) also improved the dentoalveolar features associated with XLH. Four-week-old male Hyp mice were injected weekly with 4 or 16 mg·kg-1 of FGF23-mAb for 2 months and compared to wild-type (WT) and vehicle (PBS) treated Hyp mice (n = 3-7 mice). Micro-CT analyses showed that both doses of FGF23-mAb restored dentin/cementum volume and corrected the enlarged pulp volume in Hyp mice, the higher concentration resulting in a rescue similar to WT levels. FGF23-mAb treatment also improved alveolar bone volume fraction and mineral density compared to vehicle-treated ones. Histology revealed improved mineralization of the dentoalveolar tissues, with a decreased amount of osteoid, predentin and cementoid. Better periodontal ligament attachment was also observed, evidenced by restoration of the acellular cementum. These preclinical data were consistent with the retrospective analysis of two patients with XLH showing that burosumab treatment improved oral features. Taken together, our data show that the dentoalveolar tissues are greatly improved by FGF23-mAb treatment, heralding its benefit in clinics for dental abnormalities.
Collapse
Affiliation(s)
- Elis J Lira Dos Santos
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France
| | - Kenta Nakajima
- R&D Division, Kyowa Kirin, Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo, Japan
| | - Julien Po
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France
| | - Ayako Hanai
- R&D Division, Kyowa Kirin, Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo, Japan
| | - Volha Zhukouskaya
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France
| | - Martin Biosse Duplan
- Université Paris Cité, Institut Imagine, INSERM UMR 1163, Paris, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université Paris Cité, Paris, France
| | - Agnès Linglart
- Paris-Saclay University, AP-HP, INSERM U1185, DMU SEA, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR filière, EndoRare, and BOND ERNs, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Takashi Shimada
- Medical Affairs Department, Kyowa Kirin, Co., Ltd, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Catherine Chaussain
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université Paris Cité, Paris, France
| | - Claire Bardet
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France.
| |
Collapse
|
3
|
Leser JM, Torre OM, Gould NR, Guo Q, Buck HV, Kodama J, Otsuru S, Stains JP. Osteoblast-lineage calcium/calmodulin-dependent kinase 2 delta and gamma regulates bone mass and quality. Proc Natl Acad Sci U S A 2023; 120:e2304492120. [PMID: 37976259 PMCID: PMC10666124 DOI: 10.1073/pnas.2304492120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
Bone regulates its mass and quality in response to diverse mechanical, hormonal, and local signals. The bone anabolic or catabolic responses to these signals are often received by osteocytes, which then coordinate the activity of osteoblasts and osteoclasts on bone surfaces. We previously established that calcium/calmodulin-dependent kinase 2 (CaMKII) is required for osteocytes to respond to some bone anabolic cues in vitro. However, a role for CaMKII in bone physiology in vivo is largely undescribed. Here, we show that conditional codeletion of the most abundant isoforms of CaMKII (delta and gamma) in mature osteoblasts and osteocytes [Ocn-cre:Camk2d/Camk2g double-knockout (dCKO)] caused severe osteopenia in both cortical and trabecular compartments by 8 wk of age. In addition to having less bone mass, dCKO bones are of worse quality, with significant deficits in mechanical properties, and a propensity to fracture. This striking skeletal phenotype is multifactorial, including diminished osteoblast activity, increased osteoclast activity, and altered phosphate homeostasis both systemically and locally. These dCKO mice exhibited decreased circulating phosphate (hypophosphatemia) and increased expression of the phosphate-regulating hormone fibroblast growth factor 23. Additionally, dCKO mice expressed less bone-derived tissue nonspecific alkaline phosphatase protein than control mice. Consistent with altered phosphate homeostasis, we observed that dCKO bones were hypo-mineralized with prominent osteoid seams, analogous to the phenotypes of mice with hypophosphatemia. Altogether, these data reveal a fundamental role for osteocyte CaMKIIδ and CaMKIIγ in the maintenance of bone mass and bone quality and link osteoblast/osteocyte CaMKII to phosphate homeostasis.
Collapse
Affiliation(s)
- Jenna M. Leser
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Olivia M. Torre
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Nicole R. Gould
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Qiaoyue Guo
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Heather V. Buck
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joe Kodama
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Satoru Otsuru
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph P. Stains
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
4
|
Yadav PS, Kobelski MM, Martins JS, Tao T, Liu ES, Demay MB. Impaired Growth Plate Maturation in XLH Is due to Both Excess FGF23 and Decreased 1,25-Dihydroxyvitamin D Signaling. Endocrinology 2023; 165:bqad186. [PMID: 38066669 PMCID: PMC10732678 DOI: 10.1210/endocr/bqad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 12/22/2023]
Abstract
X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Tao Tao
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eva S Liu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Carpenter KA, Alkhatib DO, Dulion BA, Guirado E, Patel S, Chen Y, George A, Ross RD. Sclerostin antibody improves alveolar bone quality in the Hyp mouse model of X-linked hypophosphatemia (XLH). Int J Oral Sci 2023; 15:47. [PMID: 37813865 PMCID: PMC10562382 DOI: 10.1038/s41368-023-00252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare disease of elevated fibroblast growth factor 23 (FGF23) production that leads to hypophosphatemia and impaired mineralization of bone and teeth. The clinical manifestations of XLH include a high prevalence of dental abscesses and periodontal disease, likely driven by poorly formed structures of the dentoalveolar complex, including the alveolar bone, cementum, dentin, and periodontal ligament. Our previous studies have demonstrated that sclerostin antibody (Scl-Ab) treatment improves phosphate homeostasis, and increases long bone mass, strength, and mineralization in the Hyp mouse model of XLH. In the current study, we investigated whether Scl-Ab impacts the dentoalveolar structures of Hyp mice. Male and female wild-type and Hyp littermates were injected with 25 mg·kg-1 of vehicle or Scl-Ab twice weekly beginning at 12 weeks of age and euthanized at 20 weeks of age. Scl-Ab increased alveolar bone mass in both male and female mice and alveolar tissue mineral density in the male mice. The positive effects of Scl-Ab were consistent with an increase in the fraction of active (nonphosphorylated) β-catenin, dentin matrix protein 1 (DMP1) and osteopontin stained alveolar osteocytes. Scl-Ab had no effect on the mass and mineralization of dentin, enamel, acellular or cellular cementum. There was a nonsignificant trend toward increased periodontal ligament (PDL) attachment fraction within the Hyp mice. Additional PDL fiber structural parameters were not affected by Scl-Ab. The current study demonstrates that Scl-Ab can improve alveolar bone in adult Hyp mice.
Collapse
Affiliation(s)
- Kelsey A Carpenter
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Delia O Alkhatib
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Bryan A Dulion
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Elizabeth Guirado
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Shreya Patel
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Yinghua Chen
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Anne George
- Department of Oral Biology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Li X, Lozovatsky L, Tommasini SM, Fretz J, Finberg KE. Bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia. Blood Adv 2023; 7:5156-5171. [PMID: 37417950 PMCID: PMC10480544 DOI: 10.1182/bloodadvances.2022009524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
Iron deficiency is a potent stimulator of fibroblast growth factor 23 (FGF23), a hormonal regulator of phosphate and vitamin D metabolism, that is classically thought to be produced by bone-embedded osteocytes. Here, we show that iron-deficient transmembrane serine protease 6 knockout (Tmprss6-/-) mice exhibit elevated circulating FGF23 and Fgf23 messenger RNA (mRNA) upregulation in the bone marrow (BM) but not the cortical bone. To clarify sites of Fgf23 promoter activity in Tmprss6-/- mice, we introduced a heterozygous enhanced green fluorescent protein (eGFP) reporter allele at the endogenous Fgf23 locus. Heterozygous Fgf23 disruption did not alter the severity of systemic iron deficiency or anemia in the Tmprss6-/- mice. Tmprss6-/-Fgf23+/eGFP mice showed green fluorescence in the vascular regions of BM sections and showed a subset of BM endothelial cells that were GFPbright by flow cytometry. Mining of transcriptomic data sets from mice with normal iron balance revealed higher Fgf23 mRNA in BM sinusoidal endothelial cells (BM-SECs) than that in other BM endothelial cell populations. Anti-GFP immunohistochemistry of fixed BM sections from Tmprss6-/-Fgf23+/eGFP mice revealed GFP expression in BM-SECs, which was more intense than in nonanemic controls. In addition, in mice with intact Tmprss6 alleles, Fgf23-eGFP reporter expression increased in BM-SECs following large-volume phlebotomy and also following erythropoietin treatment both ex vivo and in vivo. Collectively, our results identified BM-SECs as a novel site for Fgf23 upregulation in both acute and chronic anemia. Given the elevated serum erythropoietin in both anemic models, our findings raise the possibility that erythropoietin may act directly on BM-SECs to promote FGF23 production during anemia.
Collapse
Affiliation(s)
- Xiuqi Li
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Steven M. Tommasini
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | - Jackie Fretz
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
7
|
Ross R, Carpenter K, Alkhatib D, Dulion B, Guirado E, Patel S, Chen Y, George A. Sclerostin antibody improves alveolar bone quality in the Hyp mouse model of X-Linked Hypophosphatemia (XLH). RESEARCH SQUARE 2023:rs.3.rs-2762671. [PMID: 37090634 PMCID: PMC10120757 DOI: 10.21203/rs.3.rs-2762671/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
X-linked hypophosphatemia (XLH) is a rare disease of elevated fibroblast growth factor 23 (FGF23) production that leads to hypophosphatemia and poor mineralization of bone and teeth. The clinical manifestations of XLH include a high prevalence of dental abscesses, likely driven by poorly formed structures of the dentoalveolar complex, including the alveolar bone, cementum, dentin, and periodontal ligament. Our previous studies have demonstrated that sclerostin antibody (Scl-Ab) treatment improves phosphate homeostasis, and increases bone mass, strength and mineralization in the Hyp mouse model of XLH. In the current study, we investigated whether Scl-Ab impacts the dentoalveolar structures of Hyp mice. Male and female wild-type and Hyp littermates were injected with 25 mg/kg of vehicle or Scl-Ab twice weekly beginning at 12 weeks of age and euthanized at 20 weeks of age. Scl-Ab increased alveolar bone mass in both male and female mice and alveolar tissue mineral density in the male mice. The positive effects of Scl-Ab were consistent with an increase in the fraction of active (non-phosphorylated) β-catenin stained alveolar osteocytes. Scl-Ab had no effect on mineralized tissues of the tooth - dentin, enamel, acellular and cellular cementum. There was a non-significant trend toward increased periodontal ligament (PDL) attachment fraction within the Hyp mice. Additional PDL fibral structural parameters were not affected by Scl-Ab. The current study demonstrates that Scl-Ab can improve alveolar bone in the Hyp mouse model of XLH.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yinghua Chen
- University of Illinois Chicago College of Dentistry
| | | |
Collapse
|
8
|
Insights into the Molecular and Hormonal Regulation of Complications of X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by mutations in the PHEX gene, leading to elevated serum levels of FGF23, decreased production of 1,25 dihydroxyvitamin D3 (1,25D), and hypophosphatemia. Those affected with XLH manifest impaired growth and skeletal and dentoalveolar mineralization as well as increased mineralization of the tendon–bone attachment site (enthesopathy), all of which lead to decreased quality of life. Many molecular and murine studies have detailed the role of mineral ions and hormones in regulating complications of XLH, including how they modulate growth and growth plate maturation, bone mineralization and structure, osteocyte-mediated mineral matrix resorption and canalicular organization, and enthesopathy development. While these studies have provided insight into the molecular underpinnings of these skeletal processes, current therapies available for XLH do not fully prevent or treat these complications. Therefore, further investigations are needed to determine the molecular pathophysiology underlying the complications of XLH.
Collapse
|
9
|
Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: Regulation of mineralization in the periodontium. Genesis 2022; 60:e23474. [PMID: 35460154 PMCID: PMC9492628 DOI: 10.1002/dvg.23474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022]
Abstract
The periodontium supports and attaches teeth via mineralized and nonmineralized tissues. It consists of two, unique mineralized tissues, cementum and alveolar bone. In between these tissues, lies an unmineralized, fibrous periodontal ligament (PDL), which distributes occlusal forces, nourishes and invests teeth, and harbors progenitor cells for dentoalveolar repair. Many unanswered questions remain regarding periodontal biology. This review will focus on recent research providing insights into one enduring mystery: the precise regulation of the hard-soft tissue borders in the periodontium which define the interfaces of the cementum-PDL-alveolar bone structure. We will focus on advances in understanding the molecular mechanisms that maintain the unmineralized PDL "between a rock and a hard place" by regulating the mineralization of cementum and alveolar bone.
Collapse
Affiliation(s)
- Natalie L. Andras
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Fatma F. Mohamed
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Emily Y. Chu
- Division of Operative Dentistry, Department of General Dentistry, School of DentistryUniversity of MarylandBaltimoreMarylandUSA
| | - Brian L. Foster
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
Pathogenic Variants of the PHEX Gene. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twenty-five years ago, a pathogenic variant of the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene was identified as the cause of X-linked hypophosphatemic rickets (XLH). Subsequently, the overproduction of fibroblast growth factor 23 (FGF23) due to PHEX defects has been found to be associated with XLH pathophysiology. However, the mechanism by which PHEX deficiency contributes to the upregulation of FGF23 and the function of PHEX itself remain unclear. To date, over 700 pathogenic variants have been identified in patients with XLH, and functional assays and genotype–phenotype correlation analyses based on pathogenic variant data derived from XLH patients have been reported. Genetic testing for XLH is useful for the diagnosis. Not only have single-nucleotide variants causing missense, nonsense, and splicing variants and small deletion/insertion variants causing frameshift/non-frameshift alterations been observed, but also gross deletion/duplication variants causing copy number variants have been reported as pathogenic variants in PHEX. With the development of new technologies including next generation sequencing, it is expected that an increasing number of pathogenic variants will be identified. This chapter aimed to summarize the genotype of PHEX and related analyses and discusses the pathophysiology of PHEX defects to seek clues on unsolved questions.
Collapse
|
11
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
12
|
Zhukouskaya VV, Jauze L, Charles S, Leborgne C, Hilliquin S, Sadoine J, Slimani L, Baroukh B, van Wittenberghe L, Danièle N, Rajas F, Linglart A, Mingozzi F, Chaussain C, Bardet C, Ronzitti G. A novel therapeutic strategy for skeletal disorders: Proof of concept of gene therapy for X-linked hypophosphatemia. SCIENCE ADVANCES 2021; 7:eabj5018. [PMID: 34705504 PMCID: PMC8550245 DOI: 10.1126/sciadv.abj5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Adeno-associated virus (AAV) vectors are a well-established gene transfer approach for rare genetic diseases. Nonetheless, some tissues, such as bone, remain refractory to AAV. X-linked hypophosphatemia (XLH) is a rare skeletal disorder associated with increased levels of fibroblast growth factor 23 (FGF23), resulting in skeletal deformities and short stature. The conventional treatment for XLH, lifelong phosphate and active vitamin D analogs supplementation, partially improves quality of life and is associated with severe long-term side effects. Recently, a monoclonal antibody against FGF23 has been approved for XLH but remains a high-cost lifelong therapy. We developed a liver-targeting AAV vector to inhibit FGF23 signaling. We showed that hepatic expression of the C-terminal tail of FGF23 corrected skeletal manifestations and osteomalacia in a XLH mouse model. Our data provide proof of concept for AAV gene transfer to treat XLH, a prototypical bone disease, further expanding the use of this modality to treat skeletal disorders.
Collapse
Affiliation(s)
- Volha V. Zhukouskaya
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, INTEGRARE Research Unit UMR_S951, 91000 Evry, France
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
- Paris-Saclay University, INSERM U1185, AP-HP, DMU SEA, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR filière, EndoRare, and BOND ERN, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Louisa Jauze
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, INTEGRARE Research Unit UMR_S951, 91000 Evry, France
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France
| | - Séverine Charles
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, INTEGRARE Research Unit UMR_S951, 91000 Evry, France
| | - Christian Leborgne
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, INTEGRARE Research Unit UMR_S951, 91000 Evry, France
| | - Stéphane Hilliquin
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
- AP-HP, Department of Rheumatology, Cochin Hospital, Université de Paris, Paris, France
| | - Jérémy Sadoine
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
| | - Lotfi Slimani
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
| | - Brigitte Baroukh
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
| | | | | | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France
| | - Agnès Linglart
- Paris-Saclay University, INSERM U1185, AP-HP, DMU SEA, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR filière, EndoRare, and BOND ERN, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Federico Mingozzi
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, INTEGRARE Research Unit UMR_S951, 91000 Evry, France
| | - Catherine Chaussain
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
- Paris-Saclay University, INSERM U1185, AP-HP, DMU SEA, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR filière, EndoRare, and BOND ERN, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, Paris 75018, France
| | - Claire Bardet
- Université de Paris, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Montrouge, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, INTEGRARE Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
13
|
Barhoumi T, Alghanem B, Shaibah H, Mansour FA, Alamri HS, Akiel MA, Alroqi F, Boudjelal M. SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril). Front Immunol 2021; 12:728896. [PMID: 34616396 PMCID: PMC8488399 DOI: 10.3389/fimmu.2021.728896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
A purified spike (S) glycoprotein of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) coronavirus was used to study its effects on THP-1 macrophages, peripheral blood mononuclear cells (PBMCs), and HUVEC cells. The S protein mediates the entry of SARS-CoV-2 into cells through binding to the angiotensin-converting enzyme 2 (ACE2) receptors. We measured the viability, intracellular cytokine release, oxidative stress, proinflammatory markers, and THP-1-like macrophage polarization. We observed an increase in apoptosis, ROS generation, MCP-1, and intracellular calcium expression in the THP-1 macrophages. Stimulation with the S protein polarizes the THP-1 macrophages towards proinflammatory futures with an increase in the TNFα and MHC-II M1-like phenotype markers. Treating the cells with an ACE inhibitor, perindopril, at 100 µM reduced apoptosis, ROS, and MHC-II expression induced by S protein. We analyzed the sensitivity of the HUVEC cells after the exposure to a conditioned media (CM) of THP-1 macrophages stimulated with the S protein. The CM induced endothelial cell apoptosis and MCP-1 expression. Treatment with perindopril reduced these effects. However, the direct stimulation of the HUVEC cells with the S protein, slightly increased HIF1α and MCP-1 expression, which was significantly increased by the ACE inhibitor treatment. The S protein stimulation induced ROS generation and changed the mitogenic responses of the PBMCs through the upregulation of TNFα and interleukin (IL)-17 cytokine expression. These effects were reduced by the perindopril (100 µM) treatment. Proteomic analysis of the S protein stimulated THP-1 macrophages with or without perindopril (100 µM) exposed more than 400 differentially regulated proteins. Our results provide a mechanistic analysis suggesting that the blood and vascular components could be activated directly through S protein systemically present in the circulation and that the activation of the local renin angiotensin system may be partially involved in this process. Graphical Suggested pathways that might be involved at least in part in S protein inducing activation of inflammatory markers (red narrow) and angiotensin-converting enzyme inhibitor (ACEi) modulation of this process (green narrow).
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maaged A Akiel
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fayhan Alroqi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammad Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Rickets, elevated fibroblast growth factor-23 and mild anemia: Answers. Pediatr Nephrol 2021; 36:2301-2304. [PMID: 33646398 DOI: 10.1007/s00467-021-05012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
|
15
|
Wang K, Ren Y, Lin S, Jing Y, Ma C, Wang J, Yuan XB, Han X, Zhao H, Wang Z, Zheng M, Xiao Y, Chen L, Olsen BR, Feng JQ. Osteocytes but not osteoblasts directly build mineralized bone structures. Int J Biol Sci 2021; 17:2430-2448. [PMID: 34326685 PMCID: PMC8315029 DOI: 10.7150/ijbs.61012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of β-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-β-catenin signaling. Further, the constitutive expression of β-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Shuxian Lin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, 200092, China
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - X Baozhi Yuan
- Angitia Biopharmaceuticals, Guangzhou, 510000, China
| | - Xianglong Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hu Zhao
- Department of Restorative Dentistry, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, 6009, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Bjorn Reino Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
16
|
Zhang H, Xu Q, Lu Y, Qin C. Effect of high phosphate diet on the formation of dentin in Fam20c-deficient mice. Eur J Oral Sci 2021; 129:e12795. [PMID: 33905141 DOI: 10.1111/eos.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
FAM20C (family with sequence similarity 20-member C), a kinase that phosphorylates secretory proteins, plays essential roles in various biological processes. In humans, mutations in FAM20C gene cause Raine syndrome, an autosomal recessive hereditary disease manifesting a broad spectrum of developmental defects including skeletal and craniofacial deformities. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets and that high phosphate (hPi) diet significantly improved the development of the skeleton in Fam20c-deficient mice. In this study, we evaluated the effects of hPi diet on the formation of dentin in Fam20c-deficient mice, using plain x-ray radiography, micro-computed tomography (µCT), histology, and immunohistochemistry. Plain x-ray radiography and µCT analyses showed that the hPi diet improved the dentin volume fraction and dentin mineral density of the Fam20c-deficient mice. Histology analyses further demonstrated that the hPi diet dramatically improved the integrity of the mandibular first molars and prevented pulp infection and dental abscesses in Fam20c-deficient mice. Our results support that the hPi diet significantly increased the formation and mineralization of dentin in Fam20c-deficient mice, implying that hypophosphatemia is a significant contributor to the dentin defects in Fam20c-deficient subjects.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Qian Xu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
17
|
Lira Dos Santos EJ, Chavez MB, Tan MH, Mohamed FF, Kolli TN, Foster BL, Liu ES. Effects of Active Vitamin D or FGF23 Antibody on Hyp Mice Dentoalveolar Tissues. J Dent Res 2021; 100:1482-1491. [PMID: 33906518 DOI: 10.1177/00220345211011041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the PHEX gene lead to X-linked hypophosphatemia (XLH), a form of inherited rickets featuring elevated fibroblast growth factor 23 (FGF23), reduced 1,25-dihydroxyvitamin D (1,25D), and hypophosphatemia. Hyp mutant mice replicate the XLH phenotype, including dentin, alveolar bone, and cementum defects. We aimed to compare effects of 1,25D versus FGF23-neutralizing antibody (FGF23Ab) monotherapies on Hyp mouse dentoalveolar mineralization. Male Hyp mice, either injected subcutaneously with daily 1,25D or thrice weekly with FGF23 blocking antibody from 2 to 35 d postnatal, were compared to wild-type (WT) controls and untreated Hyp mice. Mandibles were analyzed by high-resolution micro-computed tomography (micro-CT), histology, and immunohistochemistry. Both interventions maintained normocalcemia, increased serum phosphate levels, and improved dentoalveolar mineralization in treated versus untreated Hyp mice. 1,25D increased crown dentin volume and thickness and root dentin/cementum volume, whereas FGF23Ab effects were limited to crown dentin volume. 1,25D increased bone volume fraction, bone mineral density, and tissue mineral density in Hyp mice, whereas FGF23Ab failed to significantly affect these alveolar bone parameters. Neither treatment fully attenuated dentin and bone defects to WT levels, and pulp volumes remained elevated regardless of treatment. Both treatments reduced predentin thickness and improved periodontal ligament organization, while 1,25D promoted a more profound improvement in acellular cementum thickness. Altered cell densities and lacunocanalicular properties of alveolar and mandibular bone osteocytes and cementocytes in Hyp mice were partially corrected by either treatment. Neither treatment normalized the altered distributions of bone sialoprotein and osteopontin in Hyp mouse alveolar bone. Moderate improvements from both 1,25D and FGF23Ab treatment regimens support further studies and collection of oral health data from subjects receiving a newly approved anti-FGF23 therapy. The inability of either treatment to fully correct Hyp mouse dentin and bone prompts further experiments into underlying pathological mechanisms to identify new therapeutic approaches.
Collapse
Affiliation(s)
- E J Lira Dos Santos
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Campinas State University, School of Dentistry, Piracicaba, São Paulo, Brazil
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F F Mohamed
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E S Liu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Clayton D, Chavez MB, Tan MH, Kolli TN, Giovani PA, Hammersmith KJ, Bowden SA, Foster BL. Mineralization Defects in the Primary Dentition Associated With X-Linked Hypophosphatemic Rickets. JBMR Plus 2021; 5:e10463. [PMID: 33869987 PMCID: PMC8046057 DOI: 10.1002/jbm4.10463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Delaney Clayton
- Biosciences Division, College of Dentistry The Ohio State University Columbus OH USA
| | - Michael B Chavez
- Biosciences Division, College of Dentistry The Ohio State University Columbus OH USA
| | - Michelle H Tan
- Biosciences Division, College of Dentistry The Ohio State University Columbus OH USA
| | - Tamara N Kolli
- Biosciences Division, College of Dentistry The Ohio State University Columbus OH USA
| | - Priscila A Giovani
- Biosciences Division, College of Dentistry The Ohio State University Columbus OH USA.,Department of Pediatric Dentistry, Piracicaba Dental School University of Campinas Campinas Brazil
| | - Kimberly J Hammersmith
- Division of Pediatric Dentistry, College of Dentistry The Ohio State University Columbus OH USA.,Department of Dentistry Nationwide Children's Hospital Columbus OH USA
| | - Sasigarn A Bowden
- Department of Pediatrics, Division of Endocrinology Nationwide Children's Hospital Columbus OH USA.,College of Medicine The Ohio State University Columbus OH USA
| | - Brian L Foster
- Biosciences Division, College of Dentistry The Ohio State University Columbus OH USA
| |
Collapse
|
19
|
Agoro R, Park MY, Le Henaff C, Jankauskas S, Gaias A, Chen G, Mohammadi M, Sitara D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021; 106:391-403. [PMID: 32193252 PMCID: PMC7849576 DOI: 10.3324/haematol.2019.237040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLR), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte- secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wildtype mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.
Collapse
Affiliation(s)
- Rafiou Agoro
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Min Young Park
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Carole Le Henaff
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | | | - Alina Gaias
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Gaozhi Chen
- Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China
| | - Moosa Mohammadi
- Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, USA
| | - Despina Sitara
- NYU College of Dentistry and NYU School of Medicine, New York, USA
| |
Collapse
|
20
|
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Athonvarangkul D, Insogna KL. New Therapies for Hypophosphatemia-Related to FGF23 Excess. Calcif Tissue Int 2021; 108:143-157. [PMID: 32504139 DOI: 10.1007/s00223-020-00705-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
FGF23 is a hormone produced by osteocytes in response to an elevation in the concentration of extracellular phosphate. Excess production of FGF23 by bone cells, or rarely by tumors, is the hormonal basis for several musculoskeletal syndromes characterized by hypophosphatemia due to renal phosphate wasting. FGF23-dependent chronic hypophosphatemia causes rickets and osteomalacia, as well as other skeletal complications. Genetic disorders of FGF23-mediated hypophosphatemia include X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR), fibrous dysplasia of bone, McCune-Albright syndrome, and epidermal nevus syndrome (ENS), also known as cutaneous skeletal hypophosphatemia syndrome (CSHS). The principle acquired form of FGF23-mediated hypophosphatemia is tumor-induced osteomalacia (TIO). This review summarizes current knowledge about the pathophysiology and clinical presentation of the most common FGF23-mediated conditions, with a focus on new treatment modalities. For many decades, calcitriol and phosphate supplements were the mainstay of therapy. Recently, burosumab, a monoclonal blocking antibody to FGF23, has been approved for treatment of XLH in children and adults, and an active comparator trial in children has shown good efficacy and safety for this drug. The remainder of FGF23-mediated hypophosphatemic disorders continue to be treated with phosphate and calcitriol, although ongoing trials with burosumab for treatment of tumor-induced osteomalacia show early promise. Burosumab may be an effective treatment for the remainder of FGF23-mediated disorders, but clinical trials to support that possibility are at present not available.
Collapse
Affiliation(s)
- Diana Athonvarangkul
- Department of Medicine Section of Endocrinology, Yale School of Medicine, PO Box 802080, New Haven, CT, 06520, USA.
| | - Karl L Insogna
- Department of Medicine Section of Endocrinology, Yale School of Medicine, PO Box 802080, New Haven, CT, 06520, USA
| |
Collapse
|
22
|
Freiin von Hövel F, Kefalakes E, Grothe C. What Can We Learn from FGF-2 Isoform-Specific Mouse Mutants? Differential Insights into FGF-2 Physiology In Vivo. Int J Mol Sci 2020; 22:ijms22010390. [PMID: 33396566 PMCID: PMC7795026 DOI: 10.3390/ijms22010390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2), ubiquitously expressed in humans and mice, is functionally involved in cell growth, migration and maturation in vitro and in vivo. Based on the same mRNA, an 18-kilo Dalton (kDa) FGF-2 isoform named FGF-2 low molecular weight (FGF-2LMW) isoform is translated in humans and rodents. Additionally, two larger isoforms weighing 21 and 22 kDa also exist, summarized as the FGF-2 high molecular weight (FGF-2HMW) isoform. Meanwhile, the human FGF-2HMW comprises a 22, 23, 24 and 34 kDa protein. Independent studies verified a specific intracellular localization, mode of action and tissue-specific spatiotemporal expression of the FGF-2 isoforms, increasing the complexity of their physiological and pathophysiological roles. In order to analyze their spectrum of effects, FGF-2LMW knock out (ko) and FGF-2HMWko mice have been generated, as well as mice specifically overexpressing either FGF-2LMW or FGF-2HMW. So far, the development and functionality of the cardiovascular system, bone formation and regeneration as well as their impact on the central nervous system including disease models of neurodegeneration, have been examined. This review provides a summary of the studies characterizing the in vivo effects modulated by the FGF-2 isoforms and, thus, offers a comprehensive overview of its actions in the aforementioned organ systems.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Ekaterini Kefalakes
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Claudia Grothe
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-532-2897; Fax: +49-511-532-2880
| |
Collapse
|
23
|
Buss DJ, Reznikov N, McKee MD. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J Struct Biol 2020; 212:107603. [DOI: 10.1016/j.jsb.2020.107603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/05/2023]
|
24
|
Chavez MB, Kramer K, Chu EY, Thumbigere-Math V, Foster BL. Insights into dental mineralization from three heritable mineralization disorders. J Struct Biol 2020; 212:107597. [PMID: 32758526 PMCID: PMC7530110 DOI: 10.1016/j.jsb.2020.107597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Teeth are comprised of three unique mineralized tissues, enamel, dentin, and cementum, that are susceptible to developmental defects similar to those affecting bone. X-linked hypophosphatemia (XLH), caused by PHEX mutations, leads to increased fibroblast growth factor 23 (FGF23)-driven hypophosphatemia and local extracellular matrix disturbances. Hypophosphatasia (HPP), caused by ALPL mutations, results in increased levels of inorganic pyrophosphate (PPi), a mineralization inhibitor. Generalized arterial calcification in infancy (GACI), caused by ENPP1 mutations, results in vascular calcification due to decreased PPi, later compounded by FGF23-driven hypophosphatemia. In this perspective, we compare and contrast dental defects in primary teeth associated with XLH, HPP, and GACI, briefly reviewing genetic and biochemical features of these disorders and findings of clinical and preclinical studies to date, including some of our own recent observations. The distinct dental defects associated with the three heritable mineralization disorders reflect unique processes of the respective dental hard tissues, revealing insights into their development and clues about pathological mechanisms underlying such disorders.
Collapse
Affiliation(s)
- Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Kaitrin Kramer
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Faraji-Bellée CA, Cauliez A, Salmon B, Fogel O, Zhukouskaya V, Benoit A, Schinke T, Roux C, Linglart A, Miceli-Richard C, Chaussain C, Briot K, Bardet C. Development of Enthesopathies and Joint Structural Damage in a Murine Model of X-Linked Hypophosphatemia. Front Cell Dev Biol 2020; 8:854. [PMID: 33072734 PMCID: PMC7536578 DOI: 10.3389/fcell.2020.00854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by rickets and osteomalacia, caused by inactivating mutations in the Phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. With aging, adult patients develop paradoxical heterotopic calcifications of tendons and ligaments at their insertion sites (enthesophytes), and joint alterations. Understanding the progression of this structural damage that severely affects patients’ quality of life will help to improve the management of XLH. Here, we characterized the occurrence of enthesophytes and joint alterations through a 12 month in vivo micro-CT follow-up in the Hyp mouse, a murine model of XLH (n = 5 mice per group). Similar to adult patients with XLH, Hyp mice developed calcaneal enthesophytes, hip joint alterations, erosions of the sacroiliac joints and periarticular calcifications. These lesions were already present at month 3 and gradually worsened over time. In sharp contrast, no abnormalities were observed in control mice at early time points. Histological analyses confirmed the presence of bone erosions, calcifications and expansion of mineralizing enthesis fibrocartilage in Hyp mice and their absence in controls and suggested that new bone formation is driven by altered mechanical strain. Interestingly, despite a strong deformation of the curvature, none of the Hyp mice displayed enthesophyte at the spine. Peripheral enthesophytes and joint alterations develop at the early stages of the disease and gradually worsen overtime. Overall, our findings highlight the relevance of this preclinical model to test new therapies aiming to prevent bone and joint complications in XLH.
Collapse
Affiliation(s)
- Carole-Anne Faraji-Bellée
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France
| | - Axelle Cauliez
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France
| | - Benjamin Salmon
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, Paris, France
| | - Olivier Fogel
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France
| | - Volha Zhukouskaya
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France
| | - Aurélie Benoit
- Université de Paris, URB2I, UR 4462, Dental School, Montrouge, France
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Christian Roux
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France.,APHP, Department of Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France.,Paris Sud - Paris Saclay University, Faculté de Médecine, Le Kremlin - Bicêtre, France
| | - Corinne Miceli-Richard
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France
| | - Catherine Chaussain
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, Paris, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France
| | - Karine Briot
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France
| | - Claire Bardet
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France
| |
Collapse
|
26
|
Cotti S, Huysseune A, Koppe W, Rücklin M, Marone F, Wölfel EM, Fiedler IAK, Busse B, Forlino A, Witten PE. More Bone with Less Minerals? The Effects of Dietary Phosphorus on the Post-Cranial Skeleton in Zebrafish. Int J Mol Sci 2020; 21:ijms21155429. [PMID: 32751494 PMCID: PMC7432380 DOI: 10.3390/ijms21155429] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.
Collapse
Affiliation(s)
- Silvia Cotti
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100 Pavia, Italy;
| | - Ann Huysseune
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
| | | | - Martin Rücklin
- Department of Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, 2333 Leiden, The Netherlands;
| | - Federica Marone
- X-ray Tomography Group, Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland;
| | - Eva M. Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; (E.M.W.); (I.A.K.F.); (B.B.)
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, 27100 Pavia, Italy;
| | - P. Eckhard Witten
- Evolutionary Developmental Biology Group, Department of Biology, Ghent University, 9000 Ghent, Belgium; (S.C.); (A.H.)
- Correspondence:
| |
Collapse
|
27
|
Zhang H, Li L, Kesterke MJ, Lu Y, Qin C. High-Phosphate Diet Improved the Skeletal Development of Fam20c-Deficient Mice. Cells Tissues Organs 2020; 208:25-36. [PMID: 32101876 DOI: 10.1159/000506005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/19/2020] [Indexed: 12/29/2022] Open
Abstract
FAM20C (family with sequence similarity 20 - member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. Previously, we reported that inactivation of Fam20c in mice led to hypophosphatemic rickets/osteomalacia along with increased circulating fibroblast growth factor 23 (FGF23) levels and dental defects. In this study, we examined whether a high-phosphate (hPi) diet could rescue the skeletal defects in Fam20c-deficient mice. Fam20c conditional knockout (cKO) mice were generated by crossing female Fam20c-floxed mice (Fam20cfl/fl) with male Sox2-Cre;Fam20cfl/+ mice. The pregnant female Fam20cfi/fl mice were fed either a normal or hPi diet until the litters were weaned. The cKO and control offspring were continuously given a normal or hPi diet for 4 weeks after weaning. Plain X-ray radiography, micro-CT, histology, immunohistochemistry (FGF23, DMP1, OPN, and SOX9), and in situ hybridization (type II and type X collagen) analyses were performed to evaluate the effects of an hPi diet on the mouse skeleton. Plain X-ray radiography and micro-CT radiography analyses showed that the hPi diet improved the shape and mineral density of the Fam20c-deficient femurs/tibiae, and rescued the growth plate defects in the long bone. Histology analyses further demonstrated that an hPi diet nearly completely rescued the growth plate-widening defects in the long bone and restored the expanded hypertrophic zone to nearly normal width. These results suggested that the hPi diet significantly improved the skeletal development of the Fam20c-deficient mice, implying that hypophosphatemia partially contributed to the skeletal defects in Fam20c-deficient subjects.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA,
| | - Lili Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Matthew J Kesterke
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
28
|
Zhang H, Chavez MB, Kolli TN, Tan MH, Fong H, Chu EY, Li Y, Ren X, Watanabe K, Kim DG, Foster BL. Dentoalveolar Defects in the Hyp Mouse Model of X-linked Hypophosphatemia. J Dent Res 2020; 99:419-428. [PMID: 31977267 DOI: 10.1177/0022034520901719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in PHEX cause X-linked hypophosphatemia (XLH), a form of hypophosphatemic rickets. Hyp (Phex mutant) mice recapitulate the XLH phenotype. Dental disorders are prevalent in individuals with XLH; however, underlying dentoalveolar defects remain incompletely understood. We analyzed Hyp mouse dentoalveolar defects at 42 and 90 d postnatal to comparatively define effects of XLH on dental formation and function. Phex mRNA was expressed by odontoblasts (dentin), osteocytes (bone), and cementocytes (cellular cementum) in wild-type (WT) mice. Enamel density was unaffected, though enamel volume was significantly reduced in Hyp mice. Dentin defects in Hyp molars were indicated histologically by wide predentin, thin dentin, and extensive interglobular dentin, confirming micro-computed tomography (micro-CT) findings of reduced dentin volume and density. Acellular cementum was thin and showed periodontal ligament detachment. Mechanical testing indicated dramatically altered periodontal mechanical properties in Hyp versus WT mice. Hyp mandibles demonstrated expanded alveolar bone with accumulation of osteoid, and micro-CT confirmed decreased bone volume fraction and alveolar bone density. Cellular cementum area was significantly increased in Hyp versus WT molars owing to accumulation of hypomineralized cementoid. Histology, scanning electron microscopy, and nanoindentation revealed hypomineralized "halos" surrounding Hyp cementocyte and osteocyte lacunae. Three-dimensional micro-CT analyses confirmed larger cementocyte/osteocyte lacunae and significantly reduced perilacunar mineral density. While long bone and alveolar bone osteocytes in Hyp mice overexpressed fibroblast growth factor 23 (Fgf23), its expression in molars was much lower, with cementocyte Fgf23 expression particularly low. Expression and distribution of other selected markers were disturbed in Hyp versus WT long bone, alveolar bone, and cementum, including osteocyte/cementocyte marker dentin matrix protein 1 (Dmp1). This study reports for the first time a quantitative analysis of the Hyp mouse dentoalveolar phenotype, including all mineralized tissues. Novel insights into cellular cementum provide evidence for a role for cementocytes in perilacunar mineralization and cementum biology.
Collapse
Affiliation(s)
- H Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - H Fong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Y Li
- Department of Oral Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - X Ren
- Department of Periodontics, School of Stomatology, Shanxi Medical University, Taiyuan, China
| | - K Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D G Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Saraff V, Nadar R, Högler W. New Developments in the Treatment of X-Linked Hypophosphataemia: Implications for Clinical Management. Paediatr Drugs 2020; 22:113-121. [PMID: 31965544 PMCID: PMC7083817 DOI: 10.1007/s40272-020-00381-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-linked hypophosphataemia (XLH) is due to mutations in phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and represents the most common heritable form of rickets. In this condition, the hormone fibroblast growth factor 23 (FGF23) is produced in excessive amounts for still unknown reasons, and causes renal phosphate wasting and suppression of 1,25-dihydroxyvitamin D, leading to low serum phosphate concentrations. Prolonged hypophosphataemia decreases apoptosis of hypertrophic chondrocytes in growth plates (causing rickets) and decreases mineralisation of existing bone (causing osteomalacia). In contrast to historical conventional treatment with oral phosphate supplements and active vitamin D for the last 50 years, the new anti-FGF23 antibody treatment (burosumab) targets the primary pathology by blocking FGF23, thereby restoring phosphate homeostasis. In this review, we describe the changes in treatment monitoring, treatment targets and long-term treatment goals, including future opportunities and challenges in the treatment of XLH in children.
Collapse
Affiliation(s)
- Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital NHS Trust, Birmingham, UK ,grid.6572.60000 0004 1936 7486Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Ruchi Nadar
- Department of Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital NHS Trust, Birmingham, UK
| | - Wolfgang Högler
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK. .,Department of Pediatrics and Adolescent Medicine, Johannes Kepler University Linz, Kepler Universitätsklinikum, Krankenhausstrasse 26-30, 4020, Linz, Austria.
| |
Collapse
|
30
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
32
|
Abstract
Hypophosphatemic rickets, mostly of the X-linked dominant form caused by pathogenic variants of the PHEX gene, poses therapeutic challenges with consequences for growth and bone development and portends a high risk of fractions and poor bone healing, dental problems and nephrolithiasis/nephrocalcinosis. Conventional treatment consists of PO4 supplements and calcitriol requiring monitoring for treatment-emergent adverse effects. FGF23 measurement, where available, has implications for the differential diagnosis of hypophosphatemia syndromes and, potentially, treatment monitoring. Newer therapeutic modalities include calcium sensing receptor modulation (cinacalcet) and biological molecules targeting FGF23 or its receptors. Their long-term effects must be compared with those of conventional treatments.
Collapse
Affiliation(s)
- Martin Bitzan
- Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Room B RC.6164, Montreal, Quebec H4A 3J1, Canada.
| | - Paul R Goodyer
- The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Room EM1.2232, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
33
|
Abstract
Calcium kidney stones are common worldwide. Most are idiopathic and composed of calcium oxalate. Calcium phosphate is present in around 80% and may initiate stone formation. Stone production is multifactorial with a polygenic genetic contribution. Phosphaturia is found frequently among stone formers but until recently received scant attention. This review examines possible mechanisms for the phosphaturia and its relevance to stone formation from a wide angle. There is a striking lack of clinical data. Phosphaturia is associated, but not correlated, with hypercalciuria, increased 1,25 dihydroxy-vitamin D [1,25 (OH)2D], and sometimes evidence of disturbances in proximal renal tubular function. Phosphate reabsorption in the proximal renal tubules requires tightly regulated interaction of many proteins. Paracellular flow through intercellular tight junctions is the major route of phosphate absorption from the intestine and can be reduced therapeutically in hyperphosphatemic patients. In monogenic defects stones develop when phosphaturia is associated with hypercalciuria, generally explained by increased 1,25 (OH)2D production in response to hypophosphatemia. Calcification does not occur in disorders with increased FGF23 when phosphaturia occurs in isolation and 1,25 (OH)2D is suppressed. Candidate gene studies have identified mutations in the phosphate transporters, but in few individuals. One genome-wide study identified a polymorphism of the phosphate transporter gene SLC34A4 associated with stones. Others did not find mutations obviously linked to phosphate reabsorption. Future genetic studies should have a wide trawl and should focus initially on groups of patients with clearly defined phenotypes. The global data should be pooled.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
34
|
Abstract
Mineralized "hard" tissues of the skeleton possess unique biomechanical properties to support the body weight and movement and act as a source of essential minerals required for critical body functions. For a long time, extracellular matrix (ECM) mineralization in the vertebrate skeleton was considered as a passive process. However, the explosion of genetic studies during the past decades has established that this process is essentially controlled by multiple genetic pathways. These pathways regulate the homeostasis of ionic calcium and inorganic phosphate-two mineral components required for bone mineral formation, the synthesis of mineral scaffolding ECM, and the maintainence of the levels of the inhibitory organic and inorganic molecules controlling the process of mineral crystal formation and its growth. More recently, intracellular enzyme regulators of skeletal tissue mineralization have been identified. The current review will discuss the key determinants of ECM mineralization in bone and propose a unified model explaining this process.
Collapse
Affiliation(s)
- Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- Shriners Hospital for Children, Montreal, Quebec H4A 0A9, Canada
| |
Collapse
|
35
|
Sroga GE, Vashishth D. Phosphorylation of Extracellular Bone Matrix Proteins and Its Contribution to Bone Fragility. J Bone Miner Res 2018; 33:2214-2229. [PMID: 30001467 DOI: 10.1002/jbmr.3552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 01/22/2023]
Abstract
Phosphorylation of bone matrix proteins is of fundamental importance to all vertebrates including humans. However, it is currently unknown whether increase or decline of total protein phosphorylation levels, particularly in hypophosphatemia-related osteoporosis, osteomalacia, and rickets, contribute to bone fracture. To address this gap, we combined biochemical measurements with mechanical evaluation of bone to discern fracture characteristics associated with age-related development of skeletal fragility in relation to total phosphorylation levels of bone matrix proteins and one of the key representatives of bone matrix phosphoproteins, osteopontin (OPN). Here for the first time, we report that as people age the total phosphorylation level declines by approximately 20% for bone matrix proteins and approximately 30% for OPN in the ninth decade of human life. Moreover, our results suggest that the decline of total protein phosphorylation of extracellular matrix (ECM) contributes to bone fragility, but less pronouncedly than glycation. We theorize that the separation of two sources of OPN negative charges, acidic backbone amino acids and phosphorylation, would be nature's means of assuring that OPN functions in both energy dissipation and biomineralization. We propose that total phosphorylation decline could be an important contributor to the development of osteoporosis, increased fracture risk and skeletal fragility. Targeting the enzymes kinase FamC20 and bone alkaline phosphatase involved in the regulation of matrix proteins' phosphorylation could be a means for the development of suitable therapeutic treatments. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
36
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández-Frías O, Fernández-Iglesias Á, Hermida-Prado F, Anes-González G, Rubio-Aliaga I, Lopez JM, Santos F. Marked alterations in the structure, dynamics and maturation of growth plate likely explain growth retardation and bone deformities of young Hyp mice. Bone 2018; 116:187-195. [PMID: 30096468 DOI: 10.1016/j.bone.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Mechanisms underlying growth impairment and bone deformities in X-linked hypophosphatemia are not fully understood. We here describe marked alterations in the structure, dynamics and maturation of growth plate in growth-retarded young Hyp mice, in comparison with wild type mice. Hyp mice exhibited reduced proliferation and apoptosis rates of chondrocytes as well as severe disturbance in the process of chondrocyte hypertrophy disclosed by abnormal expression of proteins likely involved in cell enlargement, irregular chondro-osseous junction and disordered bone trabecular pattern and vascular invasion in the primary spongiosa. (Hyp mice had elevated circulating FGF23 levels and over activation of ERK in the growth plate.) All these findings provide a basis to explain growth impairment and metaphyseal deformities in XLH. Hyp mice were compared with wild type mice serum parameters, nutritional status and growth impairment by evaluation of growth cartilage and bone structures. Hyp mice presented hyphosphatemia with high FGF23 levels. Weight gain and longitudinal growth resulted reduced in them with numerous skeletal abnormalities at cortical bone. It was also observed aberrant trabecular organization at primary spongiosa and atypical growth plate organization with abnormal proliferation and hypertrophy of chondrocytes and diminished apoptosis and vascular invasion processes. The present results show for the first time the abnormalities present in the growth plate of young Hyp mice and suggest that both cartilage and bone alterations may be involved in the growth impairment and the long bone deformities of XLH.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain; Harvard School of Dental Medicine, Developmental Biology, Harvard University, Boston, MA, USA
| | - Helena Gil-Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| | - Débora Claramunt-Taberner
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Olaya Hernández-Frías
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngologist, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Gonzalo Anes-González
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Isabel Rubio-Aliaga
- University of Zurich, Institute of Physiology, Kidney and Acid-base Physiology Group, Zurich, Switzerland
| | - Jose Manuel Lopez
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain; Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| |
Collapse
|
37
|
Kaneko I, Segawa H, Ikuta K, Hanazaki A, Fujii T, Tatsumi S, Kido S, Hasegawa T, Amizuka N, Saito H, Miyamoto KI. Eldecalcitol Causes FGF23 Resistance for Pi Reabsorption and Improves Rachitic Bone Phenotypes in the Male Hyp Mouse. Endocrinology 2018; 159:2741-2758. [PMID: 29878089 DOI: 10.1210/en.2018-00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
X-linked hypophosphatemia (XLH), the most common form of inheritable rickets, is caused by inactivation of phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and leads to fibroblast growth factor (FGF) 23-dependent renal inorganic phosphate (Pi) wasting. In the present study, we investigated whether maintaining Pi homeostasis with a potent vitamin D3 analog, eldecalcitol [1α,25-dihydroxy-2β-(3-hydroxypropyloxy) vitamin D3; ED71], could improve hypophosphatemic rickets in a murine model of XLH, the Hyp mouse. Vehicle, ED71, or 1,25-dihydroxyvitamin D was subcutaneously injected five times weekly in wild-type (WT) and Hyp mice for 4 weeks, from 4 to 8 weeks of age. Injection of ED71 into WT mice suppressed the synthesis of renal 1,25-dihydroxyvitamin D and promoted phosphaturic activity. In contrast, administration of ED71 to Hyp mice completely restored renal Pi transport and NaPi-2a protein levels, although the plasma-intact FGF23 levels were further increased. In addition, ED71 markedly increased the levels of the scaffold proteins, renal sodium-hydrogen exchanger regulatory factor 1, and ezrin in the Hyp mouse kidney. Treatment with ED71 increased the body weight and improved hypophosphatemia, the bone volume/total volume, bone mineral content, and growth plate structure in Hyp mice. Thus, ED71 causes FGF23 resistance for phosphate reabsorption and improves rachitic bone phenotypes in Hyp mice. In conclusion, ED71 has opposite effects on phosphate homeostasis in WT and Hyp mice. Analysis of Hyp mice treated with ED71 could result in an additional model for elucidating PHEX abnormalities.
Collapse
Affiliation(s)
- Ichiro Kaneko
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Toru Fujii
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shinsuke Kido
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
38
|
The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int 2018; 94:49-59. [DOI: 10.1016/j.kint.2018.02.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
|
39
|
Johnson K, Levine K, Sergi J, Chamoun J, Roach R, Vekich J, Favis M, Horn M, Cao X, Miller B, Snyder W, Aivazian D, Reagan W, Berryman E, Colangelo J, Markiewicz V, Bagi CM, Brown TP, Coyle A, Mohammadi M, Magram J. Therapeutic Effects of FGF23 c-tail Fc in a Murine Preclinical Model of X-Linked Hypophosphatemia Via the Selective Modulation of Phosphate Reabsorption. J Bone Miner Res 2017; 32:2062-2073. [PMID: 28600887 PMCID: PMC5816679 DOI: 10.1002/jbmr.3197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 01/13/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is the causative factor of X-linked hypophosphatemia (XLH), a genetic disorder effecting 1:20,000 that is characterized by excessive phosphate excretion, elevated FGF23 levels and a rickets/osteomalacia phenotype. FGF23 inhibits phosphate reabsorption and suppresses 1α,25-dihydroxyvitamin D (1,25D) biosynthesis, analytes that differentially contribute to bone integrity and deleterious soft-tissue mineralization. As inhibition of ligand broadly modulates downstream targets, balancing efficacy and unwanted toxicity is difficult when targeting the FGF23 pathway. We demonstrate that a FGF23 c-tail-Fc fusion molecule selectively modulates the phosphate pathway in vivo by competitive antagonism of FGF23 binding to the FGFR/α klotho receptor complex. Repeated injection of FGF23 c-tail Fc in Hyp mice, a preclinical model of XLH, increases cell surface abundance of kidney NaPi transporters, normalizes phosphate excretion, and significantly improves bone architecture in the absence of soft-tissue mineralization. Repeated injection does not modulate either 1,25D or calcium in a physiologically relevant manner in either a wild-type or disease setting. These data suggest that bone integrity can be improved in models of XLH via the exclusive modulation of phosphate. We posit that the selective modulation of the phosphate pathway will increase the window between efficacy and safety risks, allowing increased efficacy to be achieved in the treatment of this chronic disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kristen Johnson
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Kymberly Levine
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Joseph Sergi
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Jean Chamoun
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Rachel Roach
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | | | - Mike Favis
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Mark Horn
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Xianjun Cao
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Brian Miller
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - William Snyder
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Dikran Aivazian
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - William Reagan
- Drug Safety Research and Development, Pfizer, Groton, CT, USA
| | | | | | | | - Cedo M Bagi
- Comparative Medicine, Pfizer, Groton, CT, USA
| | - Thomas P Brown
- Drug Safety Research and Development, Pfizer, Groton, CT, USA
| | - Anthony Coyle
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Jeanne Magram
- Center for Therapeutic Innovation, Pfizer, New York, NY, USA
| |
Collapse
|
40
|
Marulanda J, Eimar H, McKee MD, Berkvens M, Nelea V, Roman H, Borrás T, Tamimi F, Ferron M, Murshed M. Matrix Gla protein deficiency impairs nasal septum growth, causing midface hypoplasia. J Biol Chem 2017; 292:11400-11412. [PMID: 28487368 PMCID: PMC5500805 DOI: 10.1074/jbc.m116.769802] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
Genetic and environmental factors may lead to abnormal growth of the orofacial skeleton, affecting the overall structure of the face. In this study, we investigated the craniofacial abnormalities in a mouse model for Keutel syndrome, a rare genetic disease caused by loss-of-function mutations in the matrix Gla protein (MGP) gene. Keutel syndrome patients show diffuse ectopic calcification of cartilaginous tissues and impaired midface development. Our comparative cephalometric analyses of micro-computed tomography images revealed a severe midface hypoplasia in Mgp-/- mice. In vivo reporter studies demonstrated that the Mgp promoter is highly active at the cranial sutures, cranial base synchondroses, and nasal septum. Interestingly, the cranial sutures of the mutant mice showed normal anatomical features. Although we observed a mild increase in mineralization of the spheno-occipital synchondrosis, it did not reduce the relative length of the cranial base in comparison with total skull length. Contrary to this, we found the nasal septum to be abnormally mineralized and shortened in Mgp-/- mice. Transgenic restoration of Mgp expression in chondrocytes fully corrected the craniofacial anomalies caused by MGP deficiency, suggesting a local role for MGP in the developing nasal septum. Although there was no up-regulation of markers for hypertrophic chondrocytes, a TUNEL assay showed a marked increase in apoptotic chondrocytes in the calcified nasal septum. Transmission electron microscopy confirmed unusual mineral deposits in the septal extracellular matrix of the mutant mice. Of note, the systemic reduction of the inorganic phosphate level was sufficient to prevent abnormal mineralization of the nasal septum in Mgp-/-;Hyp compound mutants. Our work provides evidence that modulation of local and systemic factors regulating extracellular matrix mineralization can be possible therapeutic strategies to prevent ectopic cartilage calcification and some forms of congenital craniofacial anomalies in humans.
Collapse
Affiliation(s)
- Juliana Marulanda
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Hazem Eimar
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Marc D McKee
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
- the Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Michelle Berkvens
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Valentin Nelea
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Hassem Roman
- the Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0C7, Canada
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Teresa Borrás
- the Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Faleh Tamimi
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Mathieu Ferron
- the Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada, and
| | - Monzur Murshed
- From the Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada,
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Shriners Hospital for Children, Montreal, Quebec H4A 0A9, Canada
| |
Collapse
|
41
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández O, Fernández-Iglesias A, Alonso-Durán L, Rodríguez-Rubio E, Santos F. X-linked hypophosphatemia and growth. Rev Endocr Metab Disord 2017; 18:107-115. [PMID: 28130634 DOI: 10.1007/s11154-017-9408-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
X-Linked hypophosphatemia (XLH) is the most common form of hereditary rickets caused by loss-of function mutations in the PHEX gene. XLH is characterized by hypophosphatemia secondary to renal phosphate wasting, inappropriately low concentrations of 1,25 dihydroxyvitamin D and high circulating levels of fibroblast growth factor 23 (FGF23). Short stature and rachitic osseous lesions are characteristic phenotypic findings of XLH although the severity of these manifestations is highly variable among patients. The degree of growth impairment is not dependent on the magnitude of hypophosphatemia or the extent of legs´ bowing and height is not normalized by chronic administration of phosphate supplements and 1α hydroxyvitamin D derivatives. Treatment with growth hormone accelerates longitudinal growth rate but there is still controversy regarding the potential risk of increasing bone deformities and body disproportion. Treatments aimed at blocking FGF23 action are promising, but information is lacking on the consequences of counteracting FGF23 during the growing period. This review summarizes current knowledge on phosphorus metabolism in XLH, presents updated information on XLH and growth, including the effects of FGF23 on epiphyseal growth plate of the Hyp mouse, an animal model of the disease, and discusses growth hormone and novel FGF23 related therapies.
Collapse
Affiliation(s)
- R Fuente
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - H Gil-Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - D Claramunt-Taberner
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - O Hernández
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - A Fernández-Iglesias
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - L Alonso-Durán
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - E Rodríguez-Rubio
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - F Santos
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain.
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
42
|
Boukpessi T, Hoac B, Coyac BR, Leger T, Garcia C, Wicart P, Whyte MP, Glorieux FH, Linglart A, Chaussain C, McKee MD. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 2017; 95:151-161. [PMID: 27884786 DOI: 10.1016/j.bone.2016.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/11/2016] [Accepted: 11/19/2016] [Indexed: 01/13/2023]
Abstract
Seven young patients with X-linked hypophosphatemia (XLH, having inactivating PHEX mutations) were discovered to accumulate osteopontin (OPN) at the sites of defective bone mineralization near osteocytes - the so-called hallmark periosteocytic (lacunar) "halos" of XLH. OPN was also localized in the pericanalicular matrix extending beyond the osteocyte lacunae, as well as in the hypomineralized matrix of tooth dentin. OPN, a potent inhibitor of mineralization normally degraded by PHEX, is a member of a family of acidic, phosphorylated, calcium-binding, extracellular matrix proteins known to regulate dental, skeletal, and pathologic mineralization. Associated with the increased amount of OPN (along with inhibitory OPN peptide fragments) in XLH bone matrix, we found an enlarged, hypomineralized, lacuno-canalicular network - a defective pattern of skeletal mineralization that decreases stiffness locally at: i) the cell-matrix interface in the pericellular environment of the mechanosensing osteocyte, and ii) the osteocyte's dendritic network of cell processes extending throughout the bone. Our findings of an excess of inhibitory OPN near osteocytes and their cell processes, and in dentin, spatially correlates with the defective mineralization observed at these sites in the skeleton and teeth of XLH patients. These changes likely contribute to the dento-osseous pathobiology of XLH, and participate in the aberrant bone adaptation and remodeling seen in XLH.
Collapse
Affiliation(s)
- Tchilalo Boukpessi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry University Paris Descartes Sorbonne Paris Cité, Paris, France; AP-HP Department of Odontology, Charles Foix and Bretonneau Hospitals, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France.
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Benjamin R Coyac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry University Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Thibaut Leger
- Jacques Monod Institute, Proteomic Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Camille Garcia
- Jacques Monod Institute, Proteomic Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Philippe Wicart
- AP-HP Department of Pediatric Orthopedics, Necker Hospital, School of Medicine University Paris Descartes Sorbonne Paris Cité, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Agnès Linglart
- AP-HP Department of Pediatric Endocrinology, Kremlin Bicêtre Hospital, School of Medicine University Paris Sud, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Catherine Chaussain
- EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry University Paris Descartes Sorbonne Paris Cité, Paris, France; AP-HP Department of Odontology, Charles Foix and Bretonneau Hospitals, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Paris, France
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
Onishi T, Ogawa T, Hayashibara T, Hoshino T, Okawa R, Ooshima T. Hyper-expression of Osteocalcin mRNA in Odontoblasts of Hyp Mice. J Dent Res 2016; 84:84-8. [PMID: 15615882 DOI: 10.1177/154405910508400115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Hyp mouse is a murine homologue of human X-linked hypophosphatemia that displays hypo-mineralization in bone and dentin. In this study, we tested the hypothesis that the defect in Hyp mice leads to alterations in the expression of dentin matrix proteins that may be associated with the hypo-mineralization changes in the tissues. Quantitative RT-PCR analyses showed that expression of the osteocalcin gene in Hyp mice tooth germ samples was significantly higher than in wild-type mice, whereas the gene expressions of osteonectin, osteopontn, dentin matrix protein 1, and type I collagen in both types of mice were similar. Further, cultured Hyp mice tooth germ samples exhibited a higher expression of the osteocalcin gene than did those from wild-type mice, which was in accord with the results of our in vivo analysis. These findings suggest that osteocalcin mRNA is highly expressed in Hyp mice odontoblasts and may be associated with dentin hypo-mineralization.
Collapse
Affiliation(s)
- T Onishi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Ovejero D, Gafni RI, Collins MT. 1,25-Dihydroxyvitamin D as Monotherapy for XLH: Back to the Future? J Bone Miner Res 2016; 31:925-8. [PMID: 27093323 DOI: 10.1002/jbmr.2858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Diana Ovejero
- Section on Skeletal Disorders and Mineral Homeostasis, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel I Gafni
- Section on Skeletal Disorders and Mineral Homeostasis, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Collins
- Section on Skeletal Disorders and Mineral Homeostasis, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Sui T, Yuan L, Liu H, Chen M, Deng J, Wang Y, Li Z, Lai L. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH). Hum Mol Genet 2016; 25:2661-2671. [PMID: 27126636 DOI: 10.1093/hmg/ddw125] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/20/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is the most common cause of inheritable rickets, with an incidence of 1/20 000 in humans. Inactivation or mutation of the gene PHEX, a phosphate-regulating endopeptidase, leads to hypophosphatemia and defective bone mineralization in XLH patients. Presently, there is no adequate animal model for safety assessments of physiotherapies and drug screening for XLH rickets. In this study, an XLH model was generated via PHEX gene knockout (KO) through coinjection of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9)/sgRNA mRNA into rabbit zygotes. The typical phenotypes of growth retardation, hypophosphatemia, elevated serum FGF23 and bone mineralization were observed in the PHEX KO rabbits but not in normal controls. In summary, for the first time, we have successfully obtained PHEX KO rabbits and recapitulated human XLH using the CRISPR/Cas9 system. This novel XLH rabbit model could be utilized as a drug screening model for XLH prevention and preclinical therapy.
Collapse
Affiliation(s)
- Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Huan Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Mao Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Jichao Deng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Yong Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China .,CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
46
|
Du E, Xiao L, Hurley MM. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice. J Cell Biochem 2016; 117:1991-2000. [PMID: 26762209 DOI: 10.1002/jcb.25493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
Abstract
High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erxia Du
- Department of Medicine, UCONN Health, Farmington, 06030, Connecticut
| | - Liping Xiao
- Department of Medicine, UCONN Health, Farmington, 06030, Connecticut
| | - Marja M Hurley
- Department of Medicine, UCONN Health, Farmington, 06030, Connecticut
| |
Collapse
|
47
|
Abstract
Traditionally, control of phosphorus in the body has been considered secondary to the tighter control of calcium by parathyroid hormone and vitamin D. However, over the past decade, substantial advances have been made in understanding the control of phosphorus by the so-called phosphatonin system, the lynchpin of which is fibroblast growth factor 23 (FGF23). FGF23 binds to the klotho/FGFR1c receptor complex in renal tubular epithelial cells, leading to upregulation of Na/Pi cotransporters and subsequent excretion of phosphorus from the body. In addition, FGF23 inhibits parathyroid hormone and the renal 1α-hydroxylase enzyme, while it stimulates 24-hydroxylase, leading to decreased 1,25-dihydroxyvitamin D3. FGF23 is intimately involved in the pathogenesis of a number of diseases, particularly the hereditary hypophosphatemic rickets group and chronic kidney disease, and is a target for the development of new treatments in human medicine. Little work has been done on FGF23 or the other phosphatonins in veterinary medicine, but increases in FGF23 are seen with chronic kidney disease in cats, and increased FGF23 expression has been found in soft tissue sarcomas in dogs.
Collapse
Affiliation(s)
- M. R. Hardcastle
- Gribbles Veterinary Pathology Ltd, Mt Wellington, Auckland, New Zealand
| | - K. E. Dittmer
- Animal and Biomedical Sciences, Institute of Veterinary, Massey University, Palmerston North, New Zealand
| |
Collapse
|
48
|
Liu J, Nam HK, Campbell C, Gasque KCDS, Millán JL, Hatch NE. Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(-/-) mouse model of infantile hypophosphatasia. Bone 2014; 67:81-94. [PMID: 25014884 PMCID: PMC4149826 DOI: 10.1016/j.bone.2014.06.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. OBJECTIVES Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl(-/-) mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. METHODS Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. RESULTS Alpl(-/-) mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl(-/-) mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. CONCLUSIONS These findings demonstrate that Alpl(-/-) mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base.
Collapse
Affiliation(s)
- Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Cassie Campbell
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant 2014; 29:iv45-iv54. [DOI: 10.1093/ndt/gfu217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
Abstract
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed.
Collapse
Affiliation(s)
- Brian L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|