1
|
Mendel RR, Schwarz G. The History of Animal and Plant Sulfite Oxidase-A Personal View. Molecules 2023; 28:6998. [PMID: 37836841 PMCID: PMC10574614 DOI: 10.3390/molecules28196998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme in vertebrates, leading to basic biochemical and structural properties that have inspired research for decades. A personal view on sulfite oxidase in plants, that sulfates are assimilated for their de novo synthesis of cysteine, is presented by Ralf Mendel with numerous unexpected findings and unique properties of this single-cofactor sulfite oxidase localized to peroxisomes. Guenter Schwarz connects his research to sulfite oxidase via its deficiency in humans, demonstrating its unique role amongst all molybdenum enzymes in humans. In essence, in both the plant and animal kingdoms, sulfite oxidase represents an important player in redox regulation, signaling and metabolism, thereby connecting sulfur and nitrogen metabolism in multiple ways.
Collapse
Affiliation(s)
- Ralf R. Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany;
| |
Collapse
|
2
|
Hu D, Li M, Zhao FJ, Huang XY. The Vacuolar Molybdate Transporter OsMOT1;2 Controls Molybdenum Remobilization in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:863816. [PMID: 35356108 PMCID: PMC8959823 DOI: 10.3389/fpls.2022.863816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all living organisms. The Mo uptake process in plants has been well investigated. However, the mechanisms controlling Mo translocation and remobilization among different plant tissues are largely unknown, especially the allocation of Mo to rice grains that are the major dietary source of Mo for humans. In this study, we characterized the functions of a molybdate transporter, OsMOT1;2, in the interorgan allocation of Mo in rice. Heterologous expression in yeast established the molybdate transport activity of OsMOT1;2. OsMOT1;2 was highly expressed in the blades of the flag leaf and the second leaf during the grain filling stage. Subcellular localization revealed that OsMOT1;2 localizes to the tonoplast. Knockout of OsMOT1;2 led to more Mo accumulation in roots and less Mo translocation to shoots at the seedling stage and to grains at the maturity stage. The remobilization of Mo from older leaves to young leaves under molybdate-depleted condition was also decreased in the osmot1;2 knockout mutant. In contrast, overexpression of OsMOT1;2 enhanced the translocation of Mo from roots to shoots at the seedling stage. The remobilization of Mo from upper leaves to grains was also enhanced in the overexpression lines during grain filling. Our results suggest that OsMOT1;2 may function as a vacuolar molybdate exporter facilitating the efflux of Mo from the vacuole into the cytoplasm, and thus, it plays an important role in the root-to-shoot translocation of Mo and the remobilization of Mo from leaves to grains.
Collapse
|
3
|
Association of Mutations Identified in Xanthinuria with the Function and Inhibition Mechanism of Xanthine Oxidoreductase. Biomedicines 2021; 9:biomedicines9111723. [PMID: 34829959 PMCID: PMC8615798 DOI: 10.3390/biomedicines9111723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the two-step reaction from hypoxanthine to xanthine and from xanthine to uric acid in purine metabolism. XOR generally carries dehydrogenase activity (XDH) but is converted into an oxidase (XO) under various pathophysiologic conditions. The complex structure and enzymatic function of XOR have been well investigated by mutagenesis studies of mammalian XOR and structural analysis of XOR-inhibitor interactions. Three XOR inhibitors are currently used as hyperuricemia and gout therapeutics but are also expected to have potential effects other than uric acid reduction, such as suppressing XO-generating reactive oxygen species. Isolated XOR deficiency, xanthinuria type I, is a good model of the metabolic effects of XOR inhibitors. It is characterized by hypouricemia, markedly decreased uric acid excretion, and increased serum and urinary xanthine concentrations, with no clinically significant symptoms. The pathogenesis and relationship between mutations and XOR activity in xanthinuria are useful for elucidating the biological role of XOR and the details of the XOR reaction process. In this review, we aim to contribute to the basic science and clinical aspects of XOR by linking the mutations in xanthinuria to structural studies, in order to understand the function and reaction mechanism of XOR in vivo.
Collapse
|
4
|
Chandran S, Muthanandam D, Ponmudi N, Kumar M. Expanding the Phenotype of Molybdenum Cofactor Deficiency in Neonates: Report of Two Cases. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1733936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractMolybdenum cofactor deficiency (MoCD) is a rare neurometabolic disorder characterized by intractable seizures, progressive microcephaly, tone abnormalities, facial dysmorphism, and feeding difficulties in the neonatal period. We present two different neonatal cases of MoCD with atypical presentations which could have been easily missed. One is a preterm baby admitted with features of sepsis, poor perfusion, and seizures who later developed tone abnormalities and feeding difficulty. The second is a term baby who presented with stridor, respiratory distress, and metabolic acidosis followed by intractable seizures and encephalopathy. Both babies had characteristic radiological and biochemical findings, and genome sequencing identified mutations in MOCS2 and MOCS1 genes, respectively. MoCD presenting as hypoxic-ischemic encephalopathy and cerebral palsy are well described, but its presentation in preterm with “sepsis-like features with drug-responsive seizures” in the early newborn period is not described, and can also cause unnecessary delay in the diagnosis. Its clinical presentation with “stridor, respiratory distress, and metabolic acidosis” is also described for the first time in literature.
Collapse
Affiliation(s)
- Shanu Chandran
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Nithya Ponmudi
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Manish Kumar
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Lee EJ, Dandamudi R, Granadillo JL, Grange DK, Kakajiwala A. Rare cause of xanthinuria: a pediatric case of molybdenum cofactor deficiency B. CEN Case Rep 2021; 10:378-382. [PMID: 33502714 DOI: 10.1007/s13730-021-00572-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Molybdenum cofactor is essential for the activity of multiple enzymes including xanthine dehydrogenase. Molybdenum cofactor deficiencies are rare inborn errors of metabolism. Clinically, they present with intractable seizures, axial hypotonia, and hyperekplexia. They further develop cerebral atrophy, microcephaly, global developmental delay and ectopia lentis. We report a 5-year-old female with clinically, biochemically and genetically confirmed molybdenum cofactor deficiency type B due to compound heterozygous pathogenic variants in the molybdenum cofactor synthesis 2 gene found on whole exome sequencing. The xanthine stones were a key clue towards diagnosis. No mutation was detected in XDH gene. Implementation of a low-purine diet, urine alkalization and hydration lead to a near complete decrease in stone burden. The patient received pyridoxine supplementation with improvement in energy levels and attentiveness. Despite reports of high mortality at a young age, our patient was 9 years old at the time of this writing. Molybdenum cofactor deficiencies should be considered in neonates with early-onset seizures, hypotonia, and feeding difficulties. Screening with serum uric acid levels and empiric treatment may be considered while awaiting genetic results.
Collapse
Affiliation(s)
- Edward Jin Lee
- New York-Presbyterian, Columbia University Medical Center, New York, NY, USA
| | - Raja Dandamudi
- Washington University School of Medicine, St. Louis, MO, USA.,St. Louis Children's Hospital, St. Louis, MO, USA
| | - Jorge L Granadillo
- Washington University School of Medicine, St. Louis, MO, USA.,St. Louis Children's Hospital, St. Louis, MO, USA
| | - Dorothy Katherine Grange
- Washington University School of Medicine, St. Louis, MO, USA.,St. Louis Children's Hospital, St. Louis, MO, USA
| | - Aadil Kakajiwala
- Department of Critical Care Medicine, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA.
| |
Collapse
|
6
|
Proteins Structure Models in the Evaluation of Novel Variant (C.472_477del) in the MOCS2 Gene. Diagnostics (Basel) 2020; 10:diagnostics10100821. [PMID: 33066491 PMCID: PMC7602273 DOI: 10.3390/diagnostics10100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Molybdenum cofactor deficiency type B (MOCODB, #252160) is a rare autosomal recessive metabolic disorder characterized by intractable seizures of neonatal-onset, muscular spasticity, accompanying with hypouricemia, elevated urinary sulfite levels and craniofacial dysmorphism. Thirty-five patients were reported to date. (2) Methods: Our paper aimed to delineate the disease genotype by presenting another patient, in whom a novel, in-frame variant within the MOCS2 gene was identified. (3) Results: Exome sequencing led to the identification of a novel variant in the MOCS2 gene-c.472_477del of unknown significance (VUS). (4) Conclusions: To prove the clinical significance of the mentioned variant, analysis of the possible mutation consequences on molecular level with the use of the available crystal structure of the human molybdopterin synthase complex was of great importance. Moreover, a potential pathomechanism resulting from a molecular defect was presented, giving original insight into the current knowledge on this rare disease, including treatment options.
Collapse
|
7
|
Pang H, Lilla EA, Zhang P, Zhang D, Shields TP, Scott LG, Yang W, Yokoyama K. Mechanism of Rate Acceleration of Radical C-C Bond Formation Reaction by a Radical SAM GTP 3',8-Cyclase. J Am Chem Soc 2020; 142:9314-9326. [PMID: 32348669 DOI: 10.1021/jacs.0c01200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While the number of characterized radical S-adenosyl-l-methionine (SAM) enzymes is increasing, the roles of these enzymes in radical catalysis remain largely ambiguous. In radical SAM enzymes, the slow radical initiation step kinetically masks the subsequent steps, making it impossible to study the kinetics of radical chemistry. Due to this kinetic masking, it is unknown whether the subsequent radical reactions require rate acceleration by the enzyme active site. Here, we report the first evidence that a radical SAM enzyme MoaA accelerates the radical-mediated C-C bond formation. MoaA catalyzes an unprecedented 3',8-cyclization of GTP into 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP) during the molybdenum cofactor (Moco) biosynthesis. Through a series of EPR and biochemical characterizations, we found that MoaA catalyzes a shunt pathway in which an on-pathway intermediate, GTP C-3' radical, abstracts H-4' atom from (4'R)-5'-deoxyadenosine (5'-dA) to transiently generate 5'-deoxyadenos-4'-yl radical (5'-dA-C4'•) that is subsequently reduced stereospecifically to yield (4'S)-5'-dA. Detailed kinetic characterization of the shunt and the main pathways provided the comprehensive view of MoaA kinetics and determined the rate of the on-pathway 3',8-cyclization step as 2.7 ± 0.7 s-1. Together with DFT calculations, this observation suggested that the 3',8-cyclization by MoaA is accelerated by 6-9 orders of magnitude. Further experimental and theoretical characterizations suggested that the rate acceleration is achieved mainly by constraining the triphosphate and guanine base positions while leaving the ribose flexible, and a transition state stabilization through H-bond and electrostatic interactions with the positively charged R17 residue. This is the first evidence for rate acceleration of radical reactions by a radical SAM enzyme and provides insights into the mechanism by which radical SAM enzymes accelerate radical chemistry.
Collapse
Affiliation(s)
- Haoran Pang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Edward A Lilla
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Pan Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Du Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Thomas P Shields
- Cassia, LLC, 3030 Bunker Hill Street, Suite 214, San Diego, California 92109, United States
| | - Lincoln G Scott
- Cassia, LLC, 3030 Bunker Hill Street, Suite 214, San Diego, California 92109, United States
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
8
|
Maiti BK, Maia LB, Moura I, Moura JJG. Ni II -ATCUN-Catalyzed Tyrosine Nitration in the Presence of Nitrite and Sulfite. Chemistry 2019; 25:4309-4314. [PMID: 30715753 DOI: 10.1002/chem.201806228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 11/11/2022]
Abstract
The nitration of tyrosine residues in proteins represents a specific footprint of the formation of reactive nitrogen species (RNS) in vivo. Here, the fusion product of orange protein (ATCUN-ORP) was used as an in vitro model system containing an amino terminal Cu(II)- and Ni(II)-binding motif (ATCUN) tag at the N-terminus and a native tyrosine residue in the metal-cofactor-binding region for the formation of 3-NO2 -Tyr (3-NT). It is shown that NiII -ATCUN unusually performs nitration of tyrosine at physiological pH in the presence of the NO2 - /SO3 2- /O2 system, which is revealed by a characteristic absorbance band at 430 nm in basic medium and 350 nm in acidic medium (fingerprint of 3-NT). Kinetics studies showed that the formation of 3-NT depends on sulfite concentration over nitrite concentration suggesting key intermediate products, identified as oxysulfur radicals, which are detected by spin-trap EPR study by using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This study describes a new route in the formation of 3-NT, which is proposed to be linked with the sulfur metabolism pathway associated with the progression of disease occurrence in vivo.
Collapse
Affiliation(s)
- Biplab K Maiti
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Campus de Caparica, 2829-516, Caparica, Portugal
| | - Luisa B Maia
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Campus de Caparica, 2829-516, Caparica, Portugal
| | - Isabel Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Campus de Caparica, 2829-516, Caparica, Portugal
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
9
|
Huang XY, Liu H, Zhu YF, Pinson SRM, Lin HX, Guerinot ML, Zhao FJ, Salt DE. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. THE NEW PHYTOLOGIST 2019; 221:1983-1997. [PMID: 30339276 DOI: 10.1111/nph.15546] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/07/2018] [Indexed: 05/07/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for most living organisms, including humans. Cereals such as rice (Oryza sativa) are the major dietary source of Mo. However, little is known about the genetic basis of the variation in Mo content in rice grain. We mapped a quantitative trait locus (QTL) qGMo8 that controls Mo accumulation in rice grain by using a recombinant inbred line population and a backcross introgression line population. We identified a molybdate transporter, OsMOT1;1, as the causal gene for this QTL. OsMOT1;1 exhibits transport activity for molybdate, but not sulfate, when heterogeneously expressed in yeast cells. OsMOT1;1 is mainly expressed in roots and is involved in the uptake and translocation of molybdate under molybdate-limited condition. Knockdown of OsMOT1;1 results in less Mo being translocated to shoots, lower Mo concentration in grains and higher sensitivity to Mo deficiency. We reveal that the natural variation of Mo concentration in rice grains is attributed to the variable expression of OsMOT1;1 due to sequence variation in its promoter. Identification of natural allelic variation in OsMOT1;1 may facilitate the development of rice varieties with Mo-enriched grain for dietary needs and improve Mo nutrition of rice on Mo-deficient soils.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Fei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shannon R M Pinson
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, 72160, USA
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
10
|
Reiss J. Molybdenum cofactor deficiency type B knock-in mouse models carrying patient-identical mutations and their rescue by singular AAV injections. Hum Genet 2019; 138:355-361. [PMID: 30810871 DOI: 10.1007/s00439-019-01992-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Molybdenum cofactor deficiency is an autosomal, recessively inherited metabolic disorder, which, in the absence of an effective therapy, leads to early childhood death due to neurological deterioration. In type A of the disease, cyclic pyranopterin monophosphate (cPMP) is missing, the first intermediate in the biosynthesis of the cofactor, and a biochemical substitution therapy using cPMP has been developed. A comparable approach for type B of the disease with a defect in the second step of the synthesis, formation of molybdopterin, so far has been hampered by the extreme instability of the corresponding metabolites. To explore avenues for a successful and safe gene therapy, knock-in mouse models were created carrying the mutations c.88C>T (p.Q30X) and c.726_727delAA, which are also found in human patients. Recombinant adeno-associated viruses (rAAVs) were constructed and used for postnatal intrahepatic injections of MoCo-deficient mice in a proof-of-concept approach. Singular administration of an appropriate virus dose in 60 animals prevented the otherwise devastating phenotype to a variable extent. While untreated mice did not survive for more than 2 weeks, some of the treated mice grew up to adulthood in both sexes.
Collapse
Affiliation(s)
- Jochen Reiss
- Institut für Humangenetik der Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| |
Collapse
|
11
|
Fujii T, Yamamoto K, Banno Y. Translucent larval integument and flaccid paralysis caused by genome editing in a gene governing molybdenum cofactor biosynthesis in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:11-16. [PMID: 29803701 DOI: 10.1016/j.ibmb.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Translucency of the larval integument in Bombyx mori is caused by a lack of uric acid in the epidermis. Hime'nichi translucent (ohi) is a unique mutation causing intermediate translucency of the larval integument and male-specific flaccid paralysis. To determine the gene associated with the ohi mutation, the ohi locus was mapped to a 400-kb region containing 29 predicted genes. Among the genes in this region, we focused on Bombyx homolog of mammalian Gephyrin (BmGphn), which regulates molybdenum cofactor (MoCo) biosynthesis, because MoCo is indispensable for the activity of xanthine dehydrogenase (XDH), a key enzyme in uric acid biosynthesis. The translucent integument of ohi larvae turned opaque after injection of bovine xanthine oxidase, which is a mammalian equivalent to XDH, indicating that XDH activity is defective in ohi larvae. RT-PCR and sequencing analysis showed that (i) in ohi larvae, expression of the BmGphn gene was repressed in the fat body where uric acid is synthesized, and (ii) there was no amino acid substitution in the ohi mutant allele. Finally, we obtained BmGphn knockout alleles (hereafter denoted as BmGphnΔ) by using CRISPR/Cas9. The resulting ohi/BmGphnΔ larvae had translucent integuments, demonstrating that BmGphn is the gene responsible for the ohi phenotype. Our results show that repressed expression of BmGphn is a causative factor for the defective MoCo biosynthesis and XDH activity observed in ohi larvae. Interestingly, all male BmGphnΔ homozygotes died before pupation and showed a flaccid paralysis phenotype. The genetic and physiological mechanisms underlying this flaccid paralysis phenotype are also discussed.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Kazunori Yamamoto
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yutaka Banno
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
12
|
Pang H, Yokoyama K. Lessons From the Studies of a CC Bond Forming Radical SAM Enzyme in Molybdenum Cofactor Biosynthesis. Methods Enzymol 2018; 606:485-522. [PMID: 30097104 DOI: 10.1016/bs.mie.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MoaA is one of the founding members of the radical S-adenosyl-L-methionine (SAM) superfamily, and together with the second enzyme, MoaC, catalyzes the construction of the pyranopterin backbone structure of the molybdenum cofactor (Moco). However, the exact functions of both MoaA and MoaC had remained ambiguous for more than 2 decades. Recently, their functions were finally elucidated through successful characterization of the MoaA product as 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP), which was shown to be converted to cyclic pyranopterin monophosphate (cPMP) by MoaC. 3',8-cH2GTP was produced in a small quantity and was highly oxygen sensitive, which explains why this compound had previously eluded characterization. This chapter describes the methodologies for the characterization of MoaA, MoaC, and 3',8-cH2GTP, which together significantly altered the view of the mechanism of the pyranopterin backbone construction during the Moco biosynthesis. Through this chapter, we hope to share not only the protocols to study the first step of Moco biosynthesis but also the lessons we learned from the characterization of the chemically labile biosynthetic intermediate, which would be informative for the study of many other metabolic pathways and enzymes.
Collapse
Affiliation(s)
- Haoran Pang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
13
|
Durmaz MS, Özbakır B. Molybdenum cofactor deficiency: Neuroimaging findings. Radiol Case Rep 2018; 13:592-595. [PMID: 30108670 PMCID: PMC6078902 DOI: 10.1016/j.radcr.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/21/2018] [Indexed: 10/27/2022] Open
Abstract
Molybdenum cofactor deficiency is an extremely rare and fatal metabolic disorder that should be considered in the differential diagnosis of hypoxic-ischemic encephalopathy. Magnetic resonance imaging findings are useful in diagnosis. The short-echo-time magnetic resonance spectrum was characterized by a total loss of signal and lipid and lactate peaks. In this case, conventional magnetic resonance imaging and magnetic resonance spectroscopy findings of this extremely rare disease whose pathophysiology was not known were presented.
Collapse
Affiliation(s)
- Mehmet Sedat Durmaz
- Department of Radiology, Teaching and Research Hospital, Konya Health Sciences University, Necip Fazıl Mahallesi, Fatih Cad. No: 4/1, Meram, Konya, 42090, Turkey
| | - Bora Özbakır
- Department of Radiology, Teaching and Research Hospital, Konya Health Sciences University, Necip Fazıl Mahallesi, Fatih Cad. No: 4/1, Meram, Konya, 42090, Turkey.,Gynecology-Obstetrics and Pediatrics Hospital, Department of Radiology, Isparta, Turkey
| |
Collapse
|
14
|
Goswami S, Das MK, Sain D, Goswami B. A concise treatment of pterins: some recent synthetic and methodology aspects and their applications in molecular sensors. Pteridines 2018. [DOI: 10.1515/pteridines-2018-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract
A concise account of pterins in chemistry and biology and their applications in molecular sensors including their optical spectroscopic properties are described. Different natural, synthetic, biological and photophysical aspects are also discussed. Synthetic access to direct functionalised pterins and a recently reported new thiophene annulation technique are described for the synthesis of Form B of molybdenum cofactor. The receptor properties of fluorescent pterin molecules including selenopyrimidines which are rarely reported for their binding of anions and neutral molecules are also of major importance in this review. For such an old and still so young, unexplored pterin system on its power to be sensitive for physical studies especially the interaction with cations, anions and neutral molecules are fascinating and research in this area is relatively new and expected to increase fast. Pterin based receptors are for the first time put into a useful review for the advantage of those who want to explore pterin and modified pterin as chromogenic and fluorogenic sensors.
Collapse
Affiliation(s)
- Shyamaprosad Goswami
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal , India
| | - Manas Kumar Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal , India
| | - Dibyendu Sain
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal , India
| | - Bhaswati Goswami
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal , India
| |
Collapse
|
15
|
Kumar A, Dejanovic B, Hetsch F, Semtner M, Fusca D, Arjune S, Santamaria-Araujo JA, Winkelmann A, Ayton S, Bush AI, Kloppenburg P, Meier JC, Schwarz G, Belaidi AA. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest 2017; 127:4365-4378. [PMID: 29106383 DOI: 10.1172/jci89885] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.
Collapse
Affiliation(s)
- Avadh Kumar
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Florian Hetsch
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Debora Fusca
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jose Angel Santamaria-Araujo
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Aline Winkelmann
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany.,Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Scott Ayton
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jochen C Meier
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Abdel Ali Belaidi
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Duan G, Hakoyama T, Kamiya T, Miwa H, Lombardo F, Sato S, Tabata S, Chen Z, Watanabe T, Shinano T, Fujiwara T. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1108-1119. [PMID: 28276145 DOI: 10.1111/tpj.13532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high-affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate-mutagenized line (ljmot1) decreased by 70-95% compared with wild-type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60-70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm. LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons-removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules.
Collapse
Affiliation(s)
- Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsuneo Hakoyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Miwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fabien Lombardo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- National Agriculture and Food Research Organization (NARO) Institute of Crop Science, Ibaraki, 305-8518, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
| | - Zheng Chen
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
| | - Takuro Shinano
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- NARO Tohoku Agricultural Research Center, Arai, Fukushima, 960-2156, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
17
|
Bushnell EA. A computational investigation into the catalytic activity of a diselenolene sulfite oxidase biomimetic complex. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molybdenum is the only 4d metal found in almost all life. One such molybdenum-containing enzyme is sulfite oxidase, which also contains the dithiolene-molybdopterin ligand. Sulfite oxidase is essential in the degradation of sulfur-containing compounds such as cysteine and methionine. Past work has shown parallels in the chemistry of dithiolene–metal and diselenolene–metal complexes. Thus, in this present work, the oxygen atom transfer mechanism for a diselenolene sulfite oxidase biomimetic complex was investigated using computational tools, the results of which were compared to the analogous dithiolene biomimetic complex. From the results obtained, the molybdenum-diselenolene sulfite oxidase biomimetic complex is able to catalyse the oxygen atom transfer and does so with a marginally lower value of ΔrG‡ than that for the analogous dithiolene complex. In particular, it was found that on average, the diselenolene complex had an activation energy 1.2 kJ mol–1 lower in energy than the analogous dithiolene complex. However, the calculated value of ΔrG suggests that the oxidation of sulfite is more favourable for the dithiolene complex where the average difference in reaction aqueous Gibbs reaction energy was –9.4 kJ mol–1 relative to the diselenolene complex. It is noted that with the use of D3 and D3BJ corrections in combination with the B3LYP functional, the barrier for oxygen atom transfer is lowered by more than 30.0 kJ mol–1 for both the diselenolene and dithiolene complexes. Such results suggest that to study such oxo-transfer reactions, the proper treatment of dispersion interaction is necessary.
Collapse
Affiliation(s)
- Eric A.C. Bushnell
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, MB R7A 6A9, Canada
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, MB R7A 6A9, Canada
| |
Collapse
|
18
|
Susnea I, Weiskirchen R. Trace metal imaging in diagnostic of hepatic metal disease. MASS SPECTROMETRY REVIEWS 2016; 35:666-686. [PMID: 25677057 DOI: 10.1002/mas.21454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The liver is the most central organ and the largest gland of the body that influences and controls a variety of metabolic and catabolic processes. It produces inconceivable many essential proteins, is responsible for the recovery of various food components, degrades toxins, mediates the bile production, and is involved in the excretion of unwanted metabolites. Several of these anabolic or catabolic functions of the liver depend on trace elements. These are either integral part of enzymes, cofactors, or act as chemical catalysts. Therefore, a lack of trace elements can lead to organ failure or systemic illness. Conversely, excessive hepatic trace element deposition resulting from genetic disorders, intoxication, extensive dietary supply, or long-term parenteral nutrition may cause hepatic inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma. Although specific serum parameters currently allow rough assessment of metal deficit and excess, the precise quantification of hepatic metal content in liver is presently only possible by different titration or staining techniques of biopsy specimens. Recently, novel innovative metal imaging techniques were developed that are on the way to replace these traditional methods. In the present review, we summarize the function of different trace elements in liver health and disease and discuss the present knowledge on how quantitative biometal imaging techniques such as synchrotron X-ray fluorescence microscopy, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry enrich diagnostics in the detection and quantification of hepatic metal disorders. We will further discuss sample preparation, sensitivity, spatial resolution, specificity, quantification strategies, and potential future applications of metal bioimaging in experimental research and clinical daily routine. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:666-686, 2016.
Collapse
Affiliation(s)
- Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074, Aachen, Germany.
| |
Collapse
|
19
|
Fujii T, Yamamoto K, Banno Y. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 73:20-26. [PMID: 27041280 DOI: 10.1016/j.ibmb.2016.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Kimiko Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba 305-8634, Japan
| | - Yutaka Banno
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
20
|
Abstract
Molybdenum cofactor deficiency (MoCD) is a severe autosomal recessive inborn error of metabolism first described in 1978. It is characterized by a neonatal presentation of intractable seizures, feeding difficulties, severe developmental delay, microcephaly with brain atrophy and coarse facial features. MoCD results in deficiency of the molybdenum cofactor dependent enzymes sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase and mitochondrial amidoxime reducing component. The resultant accumulation of sulfite, taurine, S-sulfocysteine and thiosulfate contributes to the severe neurological impairment. Recently, initial evidence has demonstrated early treatment with cyclic PMP can turn MoCD type A from a previously neonatal lethal condition with only palliative options, to near normal neurological outcomes in affected patients. We review MoCD and focus on describing the currently published evidence of this exciting new therapeutic option for MoCD type A caused by pathogenic variants in MOCD1.
Collapse
Affiliation(s)
- Paldeep S Atwal
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Center for Individualized Medicine FL, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Fernando Scaglia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Pimkov IV, Serli-Mitasev B, Peterson AA, Ratvasky SC, Hammann B, Basu P. Designing the Molybdopterin Core through Regioselective Coupling of Building Blocks. Chemistry 2015; 21:17057-72. [DOI: 10.1002/chem.201502845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 01/08/2023]
|
22
|
Hahn A, Engelhard C, Reschke S, Teutloff C, Bittl R, Leimkühler S, Risse T. Strukturelle Einblicke in den Mo-Cofaktor-Einbau in Sulfitoxidase durch ortsspezifische Spinmarkierung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Hahn A, Engelhard C, Reschke S, Teutloff C, Bittl R, Leimkühler S, Risse T. Structural Insights into the Incorporation of the Mo Cofactor into Sulfite Oxidase from Site‐Directed Spin Labeling. Angew Chem Int Ed Engl 2015; 54:11865-9. [DOI: 10.1002/anie.201504772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/29/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Aaron Hahn
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)
| | | | - Stefan Reschke
- Institut für Biochemie und Biologie, Universität Potsdam, Karl‐Liebknecht‐Str. 24‐25, 14476 Golm (Germany)
| | - Christian Teutloff
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany)
- Berlin Joint EPR Laboratory Freie Universität Berlin (Germany)
| | - Robert Bittl
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany)
- Berlin Joint EPR Laboratory Freie Universität Berlin (Germany)
| | - Silke Leimkühler
- Institut für Biochemie und Biologie, Universität Potsdam, Karl‐Liebknecht‐Str. 24‐25, 14476 Golm (Germany)
| | - Thomas Risse
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)
- Berlin Joint EPR Laboratory Freie Universität Berlin (Germany)
| |
Collapse
|
24
|
Exome sequencing and array-based comparative genomic hybridisation analysis of preferential 6-methylmercaptopurine producers. THE PHARMACOGENOMICS JOURNAL 2015; 15:414-21. [DOI: 10.1038/tpj.2015.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/15/2014] [Accepted: 01/28/2015] [Indexed: 12/23/2022]
|
25
|
Hover BM, Yokoyama K. C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis. J Am Chem Soc 2015; 137:3352-9. [PMID: 25697423 DOI: 10.1021/ja512997j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molybdenum cofactor (Moco) is an essential redox cofactor found in all kingdoms of life. Genetic mutations in the human Moco biosynthetic enzymes lead to a fatal metabolic disorder, Moco deficiency (MoCD). Greater than 50% of all human MoCD patients have mutations in MOCS1A, a radical S-adenosyl-l-methionine (SAM) enzyme involved in the conversion of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate. In MOCS1A, one of the frequently affected locations is the GG motif constituted of two consecutive Gly at the C-terminus. The GG motif is conserved among all MOCS1A homologues, but its role in catalysis or the mechanism by which its mutation causes MoCD was unknown. Here, we report the functional characterization of the GG motif using MoaA, a bacterial homologue of MOCS1A, as a model. Our study elucidated that the GG motif is essential for the activity of MoaA to produce 3',8-cH2GTP from GTP (GTP 3',8-cyclase), and that synthetic peptides corresponding to the C-terminal region of wt-MoaA rescue the GTP 3',8-cyclase activity of the GG-motif mutants. Further biochemical characterization suggested that the C-terminal tail containing the GG motif interacts with the SAM-binding pocket of MoaA, and is essential for the binding of SAM and subsequent radical initiation. In sum, these observations suggest that the C-terminal tail of MoaA provides an essential mechanism to trigger the free radical reaction, impairment of which results in the complete loss of catalytic function of the enzyme, and causes MoCD.
Collapse
Affiliation(s)
- Bradley M Hover
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | |
Collapse
|
26
|
Hilken S, Kaletta F, Heinsch A, Neudörfl JM, Berkessel A. Synthesis of an Oxidation-Stable Analogue of Cyclic Pyranopterin Monophosphate (cPMP). European J Org Chem 2014. [DOI: 10.1002/ejoc.201301784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Reschke S, Niks D, Wilson H, Sigfridsson KGV, Haumann M, Rajagopalan KV, Hille R, Leimkühler S. Effect of Exchange of the Cysteine Molybdenum Ligand with Selenocysteine on the Structure and Function of the Active Site in Human Sulfite Oxidase. Biochemistry 2013; 52:8295-303. [DOI: 10.1021/bi4008512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Reschke
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Dimitri Niks
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Heather Wilson
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | - Michael Haumann
- Institute
of Experimental Physics, Free University Berlin, 14195 Berlin, Germany
| | - K. V. Rajagopalan
- Department
of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Russ Hille
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Silke Leimkühler
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
28
|
Ranguelova K, Rice AB, Lardinois OM, Triquigneaux M, Steinckwich N, Deterding LJ, Garantziotis S, Mason RP. Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trapping detection in human neutrophils. Free Radic Biol Med 2013; 60:98-106. [PMID: 23376232 PMCID: PMC3654059 DOI: 10.1016/j.freeradbiomed.2013.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/20/2022]
Abstract
Previous studies focused on catalyzed oxidation of (bi)sulfite, leading to the formation of the reactive sulfur trioxide ((•)SO3(-)), peroxymonosulfate ((-)O3SOO(•)), and sulfate (SO4(•-)) anion radicals, which can damage target proteins and oxidize them to protein radicals. It is known that these very reactive sulfur- and oxygen-centered radicals can be formed by oxidation of (bi)sulfite by peroxidases. Myeloperoxidase (MPO), an abundant heme protein secreted from activated neutrophils that play a central role in host defense mechanisms, allergic reactions, and asthma, is a likely candidate for initiating the respiratory damage caused by sulfur dioxide. The objective of this study was to examine the oxidative damage caused by (bi)sulfite-derived free radicals in human neutrophils through formation of protein radicals. We used immuno-spin trapping and confocal microscopy to study the protein oxidations driven by sulfite-derived radicals. We found that the presence of sulfite can cause MPO-catalyzed oxidation of MPO to a protein radical in phorbol 12-myristate 13-acetate-activated human neutrophils. We trapped the MPO-derived radicals in situ using the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and detected them immunologically as nitrone adducts in cells. Our present study demonstrates that myeloperoxidase initiates (bi)sulfite oxidation leading to MPO radical damage, possibly leading to (bi)sulfite-exacerbated allergic reactions.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Annette B. Rice
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Olivier M. Lardinois
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mathilde Triquigneaux
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Natacha Steinckwich
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Ronald P. Mason
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Address correspondence to: Ronald P. Mason, Ph.D., National Institute of Environmental Health Sciences, National Institutes of Health, MD F0-02, P.O. Box 12233, Research Triangle Park, NC 27709. ; Fax: +1 919 541 1043
| |
Collapse
|
29
|
Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 2013; 135:7019-32. [PMID: 23627491 PMCID: PMC3777439 DOI: 10.1021/ja401781t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molybdenum cofactor (Moco) is a redox cofactor found in all kingdoms of life, and its biosynthesis is essential for survival of many organisms, including humans. The first step of Moco biosynthesis is a unique transformation of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP). In bacteria, MoaA and MoaC catalyze this transformation, although the specific functions of these enzymes were not fully understood. Here, we report the first isolation and structural characterization of a product of MoaA. This molecule was isolated under anaerobic conditions from a solution of MoaA incubated with GTP, S-adenosyl-L-methionine, and sodium dithionite in the absence of MoaC. Structural characterization by chemical derivatization, MS, and NMR spectroscopy suggested the structure of this molecule to be (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate (3',8-cH2GTP). The isolated 3',8-cH2GTP was converted to cPMP by MoaC or its human homologue, MOCS1B, with high specificities (Km < 0.060 μM and 0.79 ± 0.24 μM for MoaC and MOCS1B, respectively), suggesting the physiological relevance of 3',8-cH2GTP. These observations, in combination with some mechanistic studies of MoaA, unambiguously demonstrate that MoaA catalyzes a unique radical C-C bond formation reaction and that, in contrast to previous proposals, MoaC plays a major role in the complex rearrangement to generate the pyranopterin ring.
Collapse
Affiliation(s)
- Bradley M. Hover
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| | - Anna Loksztejn
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| | - Anthony A. Ribeiro
- Duke NMR Spectroscopy Center and Department of Radiology, Duke University Medical Center, Durham, NC, 27710
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| |
Collapse
|
30
|
Goswami S, Maity AC, Chakraborty S, Das MK, Goswami B. A new route for total synthesis of (±) dephospho Form B of molybdenum cofactor by direct one step thiophene annulation from suitable pterin alkynes. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Belaidi AA, Schwarz G. Molybdenum Cofactor Deficiency: Metabolic Link Between Taurine and S-Sulfocysteine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:13-9. [DOI: 10.1007/978-1-4614-6093-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhao X, Cong X, Zheng L, Xu L, Yin L, Peng J. Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol Lett 2012; 214:69-80. [PMID: 22939915 DOI: 10.1016/j.toxlet.2012.08.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 02/07/2023]
Abstract
The aim of the study was to investigate the protective effect of dioscin against APAP-induced hepatotoxicity. In the in vitro tests, HepG2 cells were given APAP pretreatment with or without dioscin. In the in vivo experiments, mice were orally administrated dioscin for five days and then given APAP. Some biochemical and morphology parameters were assayed and the possible mechanism was investigated. Dioscin improved AST release, mitochondrial dysfunction, apoptosis and necrosis of HepG2 cells induced by APAP. Following administration of dioscin, APAP-induced hepatotoxicity in mice was significantly attenuated. Furthermore, the liver cell apoptosis and necrosis, and hepatic mitochondrial edema were also prevented. Fifteen differentially expressed proteins were found by using proteomics, and six of them, Suox, Krt18, Rgn, Prdx1, MDH and PNP were validated. These proteins may be involved in the hepatoprotective effect of dioscin and might cooperate with the levels of Ca(2+) in mitochondria, decreased expression of ATP2A2, and decreased mitochondrial cardiolipin. In addition, dioscin inhibited APAP-induced activation and expression of CYP2E1, up-regulated the expression of Bcl-2 and Bid, and inhibited the expression of Bax, Bak and p53. Dioscin showed a remarkable protective effect against APAP-induced hepatotoxicity by adjusting mitochondrial function. These results indicated that dioscin has the capability on the treatment of liver injury.
Collapse
Affiliation(s)
- Xiaoming Zhao
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | | | | | | | | | | |
Collapse
|
33
|
Meier S, Solodovnikova N, Jensen PR, Wendland J. Sulfite Action in Glycolytic Inhibition: In Vivo Real-Time Observation by Hyperpolarized13C NMR Spectroscopy. Chembiochem 2012; 13:2265-9. [DOI: 10.1002/cbic.201200450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 01/29/2023]
|
34
|
Qin G, Wang J, Huo Y, Yan H, Jiang C, Zhou J, Wang X, Sang N. Sulfur dioxide inhalation stimulated mitochondrial biogenesis in rat brains. Toxicology 2012; 300:67-74. [PMID: 22677886 DOI: 10.1016/j.tox.2012.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/20/2012] [Accepted: 05/28/2012] [Indexed: 11/15/2022]
Abstract
Sulfur dioxide (SO(2)) is a common environmental pollutant. Mitochondria play essential roles in energy metabolism, generation of reactive oxygen species, and regulation of apoptosis in response to neuronal brain injury. It is of interest to observe the effect of SO(2) on mitochondrial function in brain. In the present study, male Wistar rats were housed in exposure chambers and treated with 3.5, 7 and 14mg/m(3) SO(2) for 4h/day for 30days, while control rats were exposed to filtered air in the same condition. Mitochondrial membrane potential (MMP) was assessed in cerebral mitochondria using the lipophilic cationic probe JC-1. The amount of ATP was measured by the luciferinluciferase method. Analyses of mitochondrial replication and transcription were performed by real time PCR. The protein levels were detected using Western blotting. Our results showed that cerebral mtDNA content was markedly increased in rats after SO(2) exposure. Paralleling the change in mtDNA content, MMP, ATP content, MDA level, CO1 & 4 and ATP6 & 8 expression, and cytochrome c oxidase activity were increased in rat cortex after SO(2) inhalation. Moreover, mitochondrial biogenesis was accompanied by increased expression of NRF1 and TFAM, whereas PGC-1α was not changed. We report for the first time increased mitochondrial biogenesis in brain of rats exposed to SO(2), which might be an adaptive response to mitochondrial depletion by oxidant damage.
Collapse
Affiliation(s)
- Guohua Qin
- The College of Environmental Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ranguelova K, Rice AB, Khajo A, Triquigneaux M, Garantziotis S, Magliozzo RS, Mason RP. Formation of reactive sulfite-derived free radicals by the activation of human neutrophils: an ESR study. Free Radic Biol Med 2012; 52:1264-71. [PMID: 22326772 PMCID: PMC3313009 DOI: 10.1016/j.freeradbiomed.2012.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 01/09/2012] [Accepted: 01/21/2012] [Indexed: 11/25/2022]
Abstract
The objective of this study was to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In this study sulfite ((•)SO(3)(-)) and sulfate (SO(4)(•-)) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, phorbol 12-myristate 13-acetate-stimulated neutrophils produced DMPO-sulfite anion radical, -superoxide, and -hydroxyl radical adducts. The last adduct probably resulted, in part, from the conversion of DMPO-sulfate to DMPO-hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO(4)(•-)) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Annette B. Rice
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Abdelahad Khajo
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210, USA
| | - Mathilde Triquigneaux
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Richard S. Magliozzo
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210, USA
| | - Ronald P. Mason
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
36
|
Belaidi AA, Arjune S, Santamaria-Araujo JA, Sass JO, Schwarz G. Molybdenum cofactor deficiency: a new HPLC method for fast quantification of s-sulfocysteine in urine and serum. JIMD Rep 2011; 5:35-43. [PMID: 23430915 PMCID: PMC3509921 DOI: 10.1007/8904_2011_89] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/20/2011] [Accepted: 09/01/2011] [Indexed: 02/10/2023] Open
Abstract
Molybdenum cofactor deficiency (MoCD) is a rare inherited metabolic disorder characterized by severe and progressive neurological damage mainly caused by the loss of sulfite oxidase activity. Elevated urinary levels of sulfite, thiosulfate, and S-sulfocysteine (SSC) are hallmarks in the diagnosis of MoCD and sulfite oxidase deficiency (SOD). Recently, a first successful treatment of a human MoCD type A patient based on a substitution therapy with the molybdenum cofactor precursor cPMP has been reported, resulting in nearly complete normalization of MoCD biomarkers. Knowing the rapid progression of the disease symptoms in nontreated patients, an early diagnosis of MoCD as well as a sensitive method to monitor daily changes in SSC levels, a key marker of sulfite toxicity, is crucial for treatment outcome. Here, we describe a fast and sensitive method for the analysis of SSC in human urine samples using high performance liquid chromatography (HPLC). The analysis is based on precolumn derivatization with O-phthaldialdehyde (OPA) and separation on a C18 reverse phase column coupled to UV detection. The method was extended to human serum analysis and no interference with endogenous amino acids was found. Finally, SSC values from 45 pediatric urine, 75 adult urine, and 24 serum samples from control individuals as well as MoCD patients are reported. Our method represents a cost-effective technique for routine diagnosis of MoCD and SOD, and can be used also to monitor treatment efficiency in those sulfite toxicity disorders on a daily basis.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| | - Sita Arjune
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| | - Jose Angel Santamaria-Araujo
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| | - Jörn Oliver Sass
- />Labor für Klinische Biochemie & Stoffwechsel, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Guenter Schwarz
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| |
Collapse
|
37
|
Van Hove JLK, Lohr NJ. Metabolic and monogenic causes of seizures in neonates and young infants. Mol Genet Metab 2011; 104:214-30. [PMID: 21839663 DOI: 10.1016/j.ymgme.2011.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 11/22/2022]
Abstract
Seizures in neonates or young infants present a frequent diagnostic challenge. After exclusion of acquired causes, disturbances of the internal homeostasis and brain malformations, the physician must evaluate for inborn errors of metabolism and for other non-malformative genetic disorders as the cause of seizures. The metabolic causes can be categorized into disorders of neurotransmitter metabolism, disorders of energy production, and synthetic or catabolic disorders associated with brain malformation, dysfunction and degeneration. Other genetic conditions involve channelopathies, and disorders resulting in abnormal growth, differentiation and formation of neuronal populations. These conditions are important given their potential for treatment and the risk for recurrence in the family. In this paper, we will succinctly review the metabolic and genetic non-malformative causes of seizures in neonates and infants less than 6 months of age. We will then provide differential diagnostic clues and a practical paradigm for their evaluation.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, University of Colorado, Clinical Genetics, Aurora, CO 80045, USA.
| | | |
Collapse
|
38
|
Structure and stability of the molybdenum cofactor intermediate cyclic pyranopterin monophosphate. J Biol Inorg Chem 2011; 17:113-22. [DOI: 10.1007/s00775-011-0835-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022]
|
39
|
Reiss J, Hahnewald R. Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 2010; 32:10-8. [DOI: 10.1002/humu.21390] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Johnson-Winters K, Tollin G, Enemark JH. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Biochemistry 2010; 49:7242-54. [PMID: 20666399 PMCID: PMC2927705 DOI: 10.1021/bi1008485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfite oxidizing enzymes (SOEs) are molybdenum cofactor-dependent enzymes that are found in plants, animals, and bacteria. Sulfite oxidase (SO) is found in animals and plants, while sulfite dehydrogenase (SDH) is found in bacteria. In animals, SO catalyzes the oxidation of toxic sulfite to sulfate as the final step in the catabolism of the sulfur-containing amino acids, methionine and cysteine. In humans, sulfite oxidase deficiency is an inherited recessive disorder that produces severe neonatal neurological problems that lead to early death. Plant SO (PSO) also plays an important role in sulfite detoxification and in addition serves as an intermediate enzyme in the assimilatory reduction of sulfate. In vertebrates, the proposed catalytic mechanism of SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme. A similar mechanism is proposed for SDH, involving its molybdenum cofactor and c-type heme. However, PSO, which lacks an integral heme cofactor, uses molecular oxygen as its electron acceptor. Here we review recent results for SOEs from kinetic measurements, computational studies, electron paramagnetic resonance (EPR) spectroscopy, electrochemical measurements, and site-directed mutagenesis on active site residues of SOEs and of the flexible polypepetide tether that connects the heme and molybdenum domains of human SO. Rapid kinetic studies of PSO are also discussed.
Collapse
Affiliation(s)
| | - Gordon Tollin
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721
| | - John H. Enemark
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
41
|
Ranguelova K, Bonini MG, Mason RP. (Bi)sulfite oxidation by copper, zinc-superoxide dismutase: Sulfite-derived, radical-initiated protein radical formation. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:970-5. [PMID: 20348042 PMCID: PMC2920917 DOI: 10.1289/ehp.0901533] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/26/2010] [Indexed: 05/12/2023]
Abstract
BACKGROUND Sulfur dioxide, formed during the combustion of fossil fuels, is a major air pollutant near large cities. Its two ionized forms in aqueous solution, sulfite and (bi)sulfite, are widely used as preservatives and antioxidants to prevent food and beverage spoilage. (Bi)sulfite can be oxidized by peroxidases to form the very reactive sulfur trioxide anion radical (*SO(3)-). This free radical further reacts with oxygen to form the peroxymonosulfate anion radical (-O(3)SOO*) and sulfate anion radical (SO(4)*-). OBJECTIVE To explore the critical role of these radical intermediates in further oxidizing biomolecules, we examined the ability of copper,zinc-superoxide dismutase (Cu,Zn-SOD) to initiate this radical chain reaction, using human serum albumin (HSA) as a model target. METHODS We used electron paramagnetic resonance, optical spectroscopy, oxygen uptake, and immuno-spin trapping to study the protein oxidations driven by sulfite-derived radicals. RESULTS We found that when Cu,Zn-SOD reacted with (bi)sulfite, *SO(3)- was produced, with the concomitant reduction of SOD-Cu(II) to SOD-Cu(I). Further, we demonstrated that sulfite oxidation mediated by Cu,Zn-SOD induced the formation of radical-derived 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapped HSA radicals. CONCLUSIONS The present study suggests that protein oxidative damage resulting from (bi)sulfite oxidation promoted by Cu,Zn-SOD could be involved in oxidative damage and tissue injury in (bi)sulfite-exacerbated allergic reactions.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
42
|
|
43
|
Abstract
Epileptic encephalopathies presenting in early life present a diagnostic and therapeutic challenge. These disorders present with multiple seizure types that are treatment resistant and associated with significant abnormalities on electroencephalographic studies. The underlying etiology in many cases may be related to an inborn error of metabolism. Efforts to establish the specific diagnosis of a genetic defect or an inborn error of metabolism often results in requests for a vast array of biochemical and molecular tests leading to an expensive workup. In this review, we present the clinician with information that provides a rationale for a selective and nuanced approach to biochemical assays, and initial treatment strategies while waiting for a specific diagnosis to be established. A careful consideration of the presentation, identification of potentially treatable conditions, and consultation with the biochemical genetics laboratory can lead to a greater measure of success while limiting cost overruns. Such a targeted approach is hoped will lead to an early diagnosis and appropriate interventions.
Collapse
|
44
|
Qiu JA, Wilson HL, Pushie MJ, Kisker C, George GN, Rajagopalan KV. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site. Biochemistry 2010; 49:3989-4000. [PMID: 20356030 DOI: 10.1021/bi1001954] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 A resolution and to 2.4 A resolution in the presence of sulfite, and the C185A variant to 2.8 A resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo(VI) state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density functional theory calculations of the trioxo form of the cofactor reasonably reproducd the Mo horizontal lineO distances of the complex; however, the calculated Mo-S distances were slightly longer than either crystallographic or EXAFS measurements. Taken together, these results indicate that the active sites of the C185S and C185A variants are essentially catalytically inactive, the crystal structures of C185S and C185A variants contain a fully oxidized, trioxo form of the cofactor, and Tyr322 can undergo a conformational change that is relevant to the reaction mechanism. Additional DFT calculations demonstrated that such methods can reasonably reproduce the geometry and bond lengths of the active site.
Collapse
Affiliation(s)
- James A Qiu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ranguelova K, Chatterjee S, Ehrenshaft M, Ramirez DC, Summers FA, Kadiiska MB, Mason RP. Protein Radical Formation Resulting from Eosinophil Peroxidase-catalyzed Oxidation of Sulfite. J Biol Chem 2010; 285:24195-205. [PMID: 20501663 DOI: 10.1074/jbc.m109.069054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eosinophil peroxidase (EPO) is an abundant heme protein in eosinophils that catalyzes the formation of cytotoxic oxidants implicated in asthma, allergic inflammatory disorders, and cancer. It is known that some proteins with peroxidase activity (horseradish peroxidase and prostaglandin hydroperoxidase) can catalyze oxidation of bisulfite (hydrated sulfur dioxide), leading to the formation of sulfur trioxide anion radical ((.)SO(3)(-)). This free radical further reacts with oxygen to form peroxymonosulfate anion radical ((-)O(3)SOO(.)) and the very reactive sulfate anion radical (SO(4)()), which is nearly as strong an oxidant as the hydroxyl radical. However, the ability of EPO to generate reactive sulfur radicals has not yet been reported. Here we demonstrate that eosinophil peroxidase/H(2)O(2) is able to oxidize bisulfite, ultimately forming the sulfate anion radical (SO(4)()), and that these reactive intermediates can oxidize target proteins to protein radicals, thereby initiating protein oxidation. We used immuno-spin trapping and confocal microscopy to study protein oxidation by EPO/H(2)O(2) in the presence of bisulfite in a pure enzymatic system and in human promyelocytic leukemia HL-60 clone 15 cells, maturated to eosinophils. Polyclonal antiserum raised against the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) detected the presence of DMPO covalently attached to the proteins resulting from the DMPO trapping of protein free radicals. We found that sulfite oxidation mediated by EPO/H(2)O(2) induced the formation of radical-derived DMPO spin-trapped human serum albumin and, to a lesser extent, of DMPO-EPO. These studies suggest that EPO-dependent oxidative damage may play a role in tissue injury in bisulfite-exacerbated eosinophilic inflammatory disorders.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Laboratory of Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Niknahad H, O'Brien PJ. Mechanism of sulfite cytotoxicity in isolated rat hepatocytes. Chem Biol Interact 2008; 174:147-54. [PMID: 18579106 DOI: 10.1016/j.cbi.2008.05.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/20/2008] [Accepted: 05/27/2008] [Indexed: 11/26/2022]
Abstract
Sulfite (SO(3)(2-)) has been widely used as preservative and antimicrobial in preventing browning of foods and beverages. SO(2), a common air pollutant, also is capable of producing sulfite and bisulfite depending on the pH of solutions. A molybdenum-dependent mitochondrial enzyme, sulfite oxidase, oxidizes sulfite to inorganic sulfate and prevents its toxic effects. In the present study, sulfite toxicity towards isolated rat hepatocytes was markedly increased by partial inhibition of cytochrome a/a(3) by cyanide or by putting rats on a high-tungsten/low-molybdenum diet, which result in inactivation of sulfite oxidase. Sulfite cytotoxicity was accompanied by a rapid disappearance of GSSG followed by a slow depletion of reduced glutathione (GSH). Depleting hepatocyte GSH beforehand increased cytotoxicity of sulfite. On the other hand, dithiothreitol (DTT), a thiol reductant, added even 1h after the addition of sulfite to hepatocytes, prevented cell death and restored hepatocyte GSH levels. Sulfite cytotoxicity was also accompanied by an increase of oxygen uptake, reactive oxygen species (ROS) formation and lipid peroxidation. Cytochrome P450 inhibitors, metyrapone and piperonyl butoxide also prevented sulfite-induced cytotoxicity and lipid peroxidation. Desferroxamine and antioxidants also protected the cells against sulfite toxicity. These findings suggest that cytotoxicity of sulfite is mediated by free radicals as ROS formation increases by sulfite and antioxidants prevent its toxicity. Reaction of sulfite or its free radical metabolite with disulfide bonds of GSSG and GSH results in the compromise of GSH/GSSG antioxidant system leaving the cell susceptible to oxidative stress. Restoring GSH content of the cell or protein-SH groups by DTT can prevent sulfite cytotoxicity.
Collapse
Affiliation(s)
- Hossein Niknahad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, and Pharmaceutical Research Center, Shiraz University of Medical Sciences, Isfahan Road, Akbarabad, Shiraz 71345-1583, Iran.
| | | |
Collapse
|
47
|
Abstract
Molybdenum is an essential element for almost all living beings, which, in the form of a molybdopterin-cofactor, participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. This metal is taken up by cells in form of the oxyanion molybdate. Bacteria acquire molybdate by an ATP-binding-cassette (ABC) transport system in a widely studied process, but how eukaryotic cells take up molybdenum is unknown because molybdate transporters have not been identified so far. Here, we report a eukaryotic high-affinity molybdate transporter, encoded by the green alga Chlamydomonas reinhardtii gene MoT1. An antisense RNA strategy over the MoT1 gene showed that interference of the expression of this gene leads to the inhibition of molybdate transport activity and, in turn, of the Mo-containing enzyme nitrate reductase, indicating a function of MoT1 in molybdate transport. MOT1 functionality was also shown by heterologous expression in Saccharomyces cerevisiae. Molybdate uptake mediated by MOT1 showed a K(m) of approximately 6 nM, which is the range of the lowest K(m) values reported and was activated in the presence of nitrate. Analysis of deduced sequence from the putative protein coded by MoT1 showed motifs specifically conserved in similar proteins present in the databases, and defines a family of membrane proteins in both eukaryotes and prokaryotes probably involved in molybdate transport and distantly related to plant sulfate transporters SULTR. These findings represent an important step in the understanding of molybdate transport, a crucial process in eukaryotic cells.
Collapse
|
48
|
Ichida K, Aydin HI, Hosoyamada M, Kalkanoglu HS, Dursun A, Ohno I, Coskun T, Tokatli A, Shibasaki T, Hosoya T. A Turkish case with molybdenum cofactor deficiency. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1087-91. [PMID: 17065069 DOI: 10.1080/15257770600894022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Molybdenum cofactor deficiency (MIM 252150) is a rare progressive neurodegenerative disorder with about 100 cases reported worldwide. We have identified a male with molybdenum cofactor deficiency and analyzed the molybdenum cofactor synthesis (MOCS)1 gene, MOCS2 gene, MOCS3 gene and GEPH gene. We homozygously identified the CGA insertion after A666 of the MOCS1 gene which produces arginine insertion at codon 222 of MOCS1A. The parents, his brother and his sister who did not have any symptoms were heterozygous for the same mutation. This region was highly conserved in various species. The N-terminal part of MOCS1 a protein is suggested to form the central core of the protein and be composed of an incomplete [(alpha/beta)6] triosephosphate isomerase (TIM) barrel with a lateral opening that is covered by the C-terminal part of the protein. The insertion is located in the loop connecting the fifth beta strand to the sixth alpha helices of the TIM barrel structure. This arginine insertion would induce the conformation change and the lack of the activity.
Collapse
Affiliation(s)
- K Ichida
- Division of Kidney and Hypertension, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fischer K, Llamas A, Tejada-Jimenez M, Schrader N, Kuper J, Ataya FS, Galvan A, Mendel RR, Fernandez E, Schwarz G. Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii. J Biol Chem 2006; 281:30186-94. [PMID: 16873364 DOI: 10.1074/jbc.m603919200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molybdenum cofactor (Moco) forms the catalytic site in all eukaryotic molybdenum enzymes and is synthesized by a multistep biosynthetic pathway. The mechanism of transfer, storage, and insertion of Moco into the appropriate apo-enzyme is poorly understood. In Chlamydomonas reinhardtii, a Moco carrier protein (MCP) has been identified and characterized recently. Here we show biochemical evidence that MCP binds Moco as well as the tungstate-substituted form of the cofactor (Wco) with high affinity, whereas molybdopterin, the ultimate cofactor precursor, is not bound. This binding selectivity points to a specific metal-mediated interaction with MCP, which protects Moco and Wco from oxidation with t((1/2)) of 24 and 96 h, respectively. UV-visible spectroscopy showed defined absorption bands at 393, 470, and 570 nm pointing to ene-diothiolate and protein side-chain charge transfer bonds with molybdenum. We have determined the crystal structure of MCP at 1.6 Angstrom resolution using seleno-methionated and native protein. The monomer constitutes a Rossmann fold with two homodimers forming a symmetrical tetramer in solution. Based on conserved surface residues, charge distribution, shape, in silico docking studies, structural comparisons, and identification of an anionbinding site, a prominent surface depression was proposed as a Moco-binding site, which was confirmed by structure-guided mutagenesis coupled to substrate binding studies.
Collapse
Affiliation(s)
- Katrin Fischer
- Institute of Plant Biology, Technical University Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Qin G, Meng Z. The expressions of protooncogenes and CYP1A in lungs of rats exposed to sulfur dioxide and benzo(a)pyrene. Regul Toxicol Pharmacol 2006; 45:36-43. [PMID: 16616405 DOI: 10.1016/j.yrtph.2006.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Indexed: 11/16/2022]
Abstract
Sulfur dioxide (SO2) is a ubiquitous air pollutant, present in low concentrations in the urban air, and in higher concentrations in the working environment. Benzo(a)pyrene (B(a)P), a polycyclic aromatic hydrocarbon, is a ubiquitous environmental contaminant with diverse toxicological effects. To investigate the interactions between SO2 and B(a)P, male Wistar rats were exposed to intratracheally instilled with benzo(a)pyrene (B(a)P; 3 mg) or SO2 (20 ppm) inhalation alone or together. The mRNA of CYP1A1 and 1A2, c-fos, and c-jun and protein levels of c-fos and c-jun were analyzed in lungs using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and Western blot analysis, respectively. And 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities were detected. In lungs of rats exposed to SO2 alone, the gene transcription of CYP1A1 and 1A2, the EROD and MROD activities were decreased. Meanwhile, the mRNA and protein levels of c-jun and c-fos were increased significantly. Exposure to B(a)P alone induced CYP1A1, CYP1A2 mRNA levels, the protein levels of c-jun, and the EROD and MROD activities in lungs. However, exposure to B(a)P plus inhaled SO2 neither increased nor decreased CYP1A1/2 mRNA expressions, EROD, and MROD activities in lungs, versus exposure to B(a)P alone. Nevertheless, exposure to B(a)P plus inhaled SO2 increased the mRNA and protein levels of c-jun and c-fos in lungs compared with lungs exposed to SO2 alone. Accordingly, the SO2-induced decreases of CYP1A1/2 might not influence the metabolic activation of B(a)P. However, when B(a)P and SO2 were given in the combinations, one might postulate that a synergistic effect on the expressions of c-fos and c-jun between SO2 and B(a)P, which might be one of the possible mechanisms of combination effects between B(a)P and the air pollutants.
Collapse
Affiliation(s)
- Guohua Qin
- Institute of Environmental Medicine and Toxicology, Shanxi University, Taiyuan 030006, China.
| | | |
Collapse
|