1
|
Yan R, Song A, Zhang C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int J Mol Sci 2024; 25:9519. [PMID: 39273465 PMCID: PMC11395150 DOI: 10.3390/ijms25179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.
Collapse
Affiliation(s)
- Ruiwei Yan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Aguado-Alvaro LP, Garitano N, Pelacho B. Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis. Int J Mol Sci 2024; 25:6004. [PMID: 38892192 PMCID: PMC11172550 DOI: 10.3390/ijms25116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
3
|
Tenyi A, Milutinović A, Nemeth L. Expression of CD31, CD34, and smooth muscle actin (SMA) in endothelial cells of dental pulp vessels. BIOMOLECULES & BIOMEDICINE 2023; 24:821-826. [PMID: 38153414 PMCID: PMC11293224 DOI: 10.17305/bb.2023.9988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
The dental pulp is a highly vascularized and innervated loose connective tissue surrounded by hard dental tissues - enamel and dentine. With the primary dentin formation and the closure of the root apex, the conditions in the dental pulp change and pulp tissue compliance are reduced. Endothelial cells of pulpal blood vessels are highly differentiated and are capable of adaptation to changes in the environment. We aimed to evaluate the phenotypic plasticity of endothelial cells of pulpal blood vessels in permanent premolars with open (N = 6) or closed root apex (N = 30). The pulp tissue was stained with hematoxylin-eosin (HE) for the histological analysis, and immunohistochemically for a cluster of differentiation 31 (CD31), a cluster of differentiation 34 (CD34), and for smooth muscle actin (SMA) to detect vessels with CD31, CD34, and SMA positive endothelial cells. We used the student's t-test and Pearson correlation test for the statistical analysis. We found a significantly higher percentage of the vessels with CD31 (P = 0.005) and CD34 (P = 0.000) positive endothelial cells in the group of teeth with closed root apex compared to the group with open apex. A significant positive correlation between SMA positive and CD31 positive vessels (P = 0.003) and between CD31 positive and CD34 positive vessels (P = 0.031) was also found. We conclude that the endothelial cells of dental pulp vessels express a small amount of CD31, but have a pronounced expression of SMA and CD34, which indicates their progenitor potential and contractile ability.
Collapse
Affiliation(s)
- Ana Tenyi
- Department of Dental Diseases and Normal Dental Morphology, Medical Faculty University of Ljubljana, Ljubljana, Slovenia
| | - Aleksandra Milutinović
- Institute of Histology and Embryology, Medical Faculty University of Ljubljana, Ljubljana, Slovenia
| | - Lidija Nemeth
- Department of Dental Diseases and Normal Dental Morphology, Medical Faculty University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Grewal N, Dolmaci O, Klautz A, Legue J, Driessen A, Klautz R, Poelmann R. The role of transforming growth factor beta in bicuspid aortic valve aortopathy. Indian J Thorac Cardiovasc Surg 2023; 39:270-279. [PMID: 38093932 PMCID: PMC10713891 DOI: 10.1007/s12055-023-01513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 12/17/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most prevalent congenital cardiac deformity, which is associated with an increased risk to develop a thoracic aortic aneurysm and/or an aortic dissection as compared to persons with a tricuspid aortic valve. Due to the high prevalence of a BAV in the general population and the associated life-long increased risk for adverse vascular events, BAV disease places a considerable burden on the public health. The aim of the present review is to discuss the role of transforming growth factor beta (TGF-β) signaling in the development of the vascular wall and on how this complex signaling pathway may be involved in thoracic aortic aneurysm formation in tricuspid and BAV patients.
Collapse
Affiliation(s)
- Nimrat Grewal
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onur Dolmaci
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Arthur Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Juno Legue
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Antoine Driessen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Robert Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Kaw A, Wu T, Starosolski Z, Zhou Z, Pedroza AJ, Majumder S, Duan X, Kaw K, Pinelo JEE, Fischbein MP, Lorenzi PL, Tan L, Martinez SA, Mahmud I, Devkota L, Taegtmeyer H, Ghaghada KB, Marrelli SP, Kwartler CS, Milewicz DM. Augmenting Mitochondrial Respiration in Immature Smooth Muscle Cells with an ACTA2 Pathogenic Variant Mitigates Moyamoya-like Cerebrovascular Disease. RESEARCH SQUARE 2023:rs.3.rs-3304679. [PMID: 37886459 PMCID: PMC10602100 DOI: 10.21203/rs.3.rs-3304679/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
ACTA2 pathogenic variants altering arginine 179 cause childhood-onset strokes due to moyamoya disease (MMD)-like occlusion of the distal internal carotid arteries. A smooth muscle cell (SMC)-specific knock-in mouse model (Acta2SMC-R179C/+) inserted the mutation into 67% of aortic SMCs, whereas explanted SMCs were uniformly heterozygous. Acta2R179C/+ SMCs fail to fully differentiate and maintain stem cell-like features, including high glycolytic flux, and increasing oxidative respiration (OXPHOS) with nicotinamide riboside (NR) drives the mutant SMCs to differentiate and decreases migration. Acta2SMC-R179C/+ mice have intraluminal MMD-like occlusive lesions and strokes after carotid artery injury, whereas the similarly treated WT mice have no strokes and patent lumens. Treatment with NR prior to the carotid artery injury attenuates the strokes, MMD-like lumen occlusions, and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice. These data highlight the role of immature SMCs in MMD-associated occlusive disease and demonstrate that altering SMC metabolism to drive quiescence of Acta2R179C/+ SMCs attenuates strokes and aberrant vascular remodeling in the Acta2SMC-R179C/+ mice.
Collapse
Affiliation(s)
- Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ting Wu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zbigniew Starosolski
- Department of Radiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Xueyan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Jose E. E. Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara A. Martinez
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laxman Devkota
- Department of Radiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heinrich Taegtmeyer
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
6
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Derhambakhsh S, Mohammadi J, Shokrgozar MA, Rabbani H, Sadeghi N, Nekounam H, Mohammadi S, Lee KB, Khakbiz M. Investigation of electrical stimulation on phenotypic vascular smooth muscle cells differentiation in tissue-engineered small-diameter vascular graft. Tissue Cell 2023; 81:101996. [PMID: 36657256 DOI: 10.1016/j.tice.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 μA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and β-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and β-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.
Collapse
Affiliation(s)
- Sara Derhambakhsh
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran.
| | | | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloufar Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sotoudeh Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran.
| |
Collapse
|
8
|
Russo E, Bertolotto M, Zanetti V, Picciotto D, Esposito P, Carbone F, Montecucco F, Pontremoli R, Garibotto G, Viazzi F, Verzola D. Role of Uric Acid in Vascular Remodeling: Cytoskeleton Changes and Migration in VSMCs. Int J Mol Sci 2023; 24:2960. [PMID: 36769281 PMCID: PMC9917405 DOI: 10.3390/ijms24032960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The mechanisms by which hyperuricemia induces vascular dysfunction and contributes to cardiovascular disease are still debated. Phenotypic transition is a property of vascular smooth muscle cells (VSMCs) involved in organ damage. The aim of this study was to investigate the effects of uric acid (UA) on changes in the VSMC cytoskeleton, cell migration and the signals involved in these processes. MOVAS, a mouse VSMC line, was incubated with 6, 9 and 12 mg/dL of UA, angiotensin receptor blockers (ARBs), proteasome and MEK-inhibitors. Migration property was assessed in a micro-chemotaxis chamber and by phalloidin staining. Changes in cytoskeleton proteins (Smoothelin B (SMTB), alpha-Smooth Muscle Actin (αSMA), Smooth Muscle 22 Alpha (SM22α)), Atrogin-1 and MAPK activation were determined by Western blot, immunostaining and quantitative reverse transcription PCR. UA exposition modified SMT, αSMA and SM22α levels (p < 0.05) and significantly upregulated Atrogin-1 and MAPK activation. UA-treated VSMCs showed an increased migratory rate as compared to control cells (p < 0.001) and a re-arrangement of F-actin. Probenecid, proteasome inhibition and ARBs prevented the development of dysfunctional VSMC. This study shows, for the first time, that UA-induced cytoskeleton changes determine an increase in VSMC migratory rate, suggesting UA as a key player in vascular remodeling.
Collapse
Affiliation(s)
- Elisa Russo
- Nephrology and Dialysis Unit, San Luca Hospital, 55100 Lucca, Italy
| | - Maria Bertolotto
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | | | | | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
9
|
Akasaka Y. The Role of Mesenchymal Stromal Cells in Tissue Repair and Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:561-574. [PMID: 34841889 DOI: 10.1089/wound.2021.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The present review covers an overview of the current understanding of biology of mesenchymal stromal cells (MSCs) and suggests an important role of their differential potential for clinical approaches associated with tissue repair and fibrosis. Recent Advances: Genetic lineage tracing technology has enabled the delineation of cellular hierarchies and examination of MSC cellular origins and myofibroblast sources. This technique has led to the characterization of perivascular MSC populations and suggests that pericytes might provide a local source of tissue-specific MSCs, which can differentiate into tissue-specific cells for tissue repair and fibrosis. Autologous adipose tissue MSCs led to the advance in tissue engineering for regeneration of damaged tissues. Critical Issues: Recent investigation has revealed that perivascular MSCs might be the origin of myofibroblasts during fibrosis development, and perivascular MSCs might be the major source of myofibroblasts in fibrogenic disease. Adipose tissue MSCs combined with cytokines and biomaterials are available in the treatment of soft tissue defect and skin wound healing. Future Directions: Further investigation of the roles of perivascular MSCs may enable new approaches in the treatment of fibrogenic disease; moreover, perivascular MSCs might have potential as an antifibrotic target for fibrogenic disease. Autologous adipose tissue MSCs combined with cytokines and biomaterials will be an alternative method for the treatment of soft tissue defect and skin wound healing.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Division of Research Promotion and Development, Advanced Research Center, Toho University Graduate School of Medicine, Ota-ku, Japan.,Department of Pathology, Toho University School of Medicine, Ota-ku, Japan
| |
Collapse
|
10
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
11
|
Wen Y, Kong Y, Cao G, Xu Y, Zhang C, Zhang J, Xiao P, Wang Y. Di-n-butyl phthalate regulates vascular smooth muscle cells phenotypic switching by MiR-139-5p-MYOCD pathways. Toxicology 2022; 477:153279. [PMID: 35926758 DOI: 10.1016/j.tox.2022.153279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Di-n-butyl phthalate (DBP) is ubiquitous in environment and has been detected in almost all human bodies. Few data could be found about the effects of DBP on cardiovascular system, though its reproductive toxicities have been studied extensively. This study aimed to explore effects of DBP on phenotypic switching of vascular smooth muscle cells (VSMCs), an essential step during the formation of atherosclerosis (AS). A7r5 cells were employed and exposed to various levels of DBP (10-9, 10-8, 10-7, 10-6, and 10-5 M) or DMSO as control. CCK-8 assay was used to detect the effects of DBP on cell viability. Expressions of mRNA/miRNAs and proteins were measured by qRT-PCR and western blotting, respectively. Bioinformatic analysis and dual-luciferase reporter assay were used to analyze the combination between miR-139-5p and Myocardin (MYOCD). Results revealed that DBP at 10-7 M prompted phenotypic switching from contractile to synthetic of VSMCs by inhibiting contractile VSMCs marker genes via suppressing the expression of MYOCD. Moreover, miR-139c-5p directly targeted MYOCD 3'UTR and modulated MYOCD expression. Besides, DBP inhibited the expression of MYOCD and VSMCs marker genes by upregulating miR-139-5p. Collectively, these data suggested that DBP could promote the phenotypic switching from contractile to synthetic of VSMCs in A7r5 cells through miR-139-5p-MYOCD.
Collapse
Affiliation(s)
- Yun Wen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yi Kong
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Guofa Cao
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yuan Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Chengxiang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
An D, Chung-Wah-Cheong J, Yu DY, Balaratnasingam C. Alpha-Smooth Muscle Actin Expression and Parafoveal Blood Flow Pathways Are Altered in Preclinical Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35522303 PMCID: PMC9078056 DOI: 10.1167/iovs.63.5.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate differences in alpha smooth muscle actin (αSMA) expression and parafoveal blood flow pathways in diabetic retinopathy (DR). Methods Human donor eyes from healthy subjects (n = 8), patients with diabetes but no DR (DR-; n = 7), and patients with clinical DR (DR+; n = 13) were perfusion labeled with antibodies targeting αSMA, lectin, collagen IV, and filamentous actin. High-resolution confocal scanning laser microscopy was used to quantify αSMA staining and capillary density in the parafoveal circulation. Quantitative analyses of connections between retinal arteries and veins within the superficial vascular plexus (SVP), intermediate capillary plexus (ICP) and deep capillary plexus (DCP) were performed. Results Mean age between the groups was not different (P = 0.979). αSMA staining was seen in the SVP and ICP of all groups. The DCP was predominantly devoid of αSMA staining in control eyes but increased in a disease stage-specific manner in the DR- and DR+ groups. The increase in αSMA staining was localized to pericytes and endothelia of terminal arterioles and adjacent capillary segments. Capillary density was less in the DCP in the DR+ group (P < 0.001). ICP of the DR- and DR+ groups received more direct arteriole supplies than the control group (P < 0.001). Venous outflow pathways were not altered (all P > 0.284). Conclusions Alterations in αSMA and vascular inflow pathways in preclinical DR suggest that perfusion abnormalities precede structural vascular changes such as capillary loss. Preclinical DR may be characterized by a "steal" phenomenon where blood flow is preferentially diverted from the SVP to the ICP and DCP.
Collapse
Affiliation(s)
- Dong An
- Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | | - Dao-Yi Yu
- Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Department of Ophthalmology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
13
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
14
|
Leonard EV, Figueroa RJ, Bussmann J, Lawson ND, Amigo JD, Siekmann AF. Regenerating vascular mural cells in zebrafish fin blood vessels are not derived from pre-existing mural cells and differentially require Pdgfrb signalling for their development. Development 2022; 149:274745. [PMID: 35297968 PMCID: PMC9058498 DOI: 10.1242/dev.199640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor β (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ricardo J. Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeroen Bussmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Julio D. Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Subramanian S, Biswas A, Alves C, Sudhakar S, Shekdar K, Krishnan P, Shroff M, Taranath A, Arrigoni F, Aldinger K, Leventer R, Dobyns W, Mankad K. ACTA2-Related Dysgyria: An Under-Recognized Malformation of Cortical Development. AJNR Am J Neuroradiol 2022; 43:146-150. [PMID: 34857515 PMCID: PMC8757559 DOI: 10.3174/ajnr.a7364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Pathogenic variants in the ACTA2 gene cause a distinctive arterial phenotype that has recently been described to be associated with brain malformation. Our objective was to further characterize gyral abnormalities in patients with ACTA2 pathogenic variants as per the 2020 consensus recommendations for the definition and classification of malformations of cortical development. MATERIALS AND METHODS We performed a retrospective, multicentric review of patients with proved ACTA2 pathogenic variants, searching for the presence of malformations of cortical development. A consensus read was performed for all patients, and the type and location of cortical malformation were noted in each. The presence of the typical ACTA2 arterial phenotype as well as demographic and relevant clinical data was obtained. RESULTS We included 13 patients with ACTA2 pathogenic variants (Arg179His mutation, n = 11, and Arg179Cys mutation, n = 2). Ninety-two percent (12/13) of patients had peri-Sylvian dysgyria, 77% (10/13) had frontal dysgyria, and 15% (2/13) had generalized dysgyria. The peri-Sylvian location was involved in all patients with dysgyria (12/12). All patients with dysgyria had a characteristic arterial phenotype described in ACTA2 pathogenic variants. One patient did not have dysgyria or the characteristic arterial phenotype. CONCLUSIONS Dysgyria is common in patients with ACTA2 pathogenic variants, with a peri-Sylvian and frontal predominance, and was seen in all our patients who also had the typical ACTA2 arterial phenotype.
Collapse
Affiliation(s)
- S. Subramanian
- From the Division of Pediatric Radiology (S.S.), Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. Biswas
- Department of Diagnostic Imaging (A.B., P.K., M.S.), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - S.V. Sudhakar
- Department of Radiology (S.V.S., K.M.), Great Ormond Street Hospital, NHS Foundation Trust, London, UK
| | - K.V. Shekdar
- Department of Radiology, and Department of Radiology (K.V.S.), Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - P. Krishnan
- Department of Diagnostic Imaging (A.B., P.K., M.S.), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - M. Shroff
- Department of Diagnostic Imaging (A.B., P.K., M.S.), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - A. Taranath
- Department of Medical Imaging (A.T.), Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - F. Arrigoni
- Neuroimaging Lab (F.A.), Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico Eugenio Medea, Bosisio Parini, Italy
| | - K.A. Aldinger
- Department of Pediatrics (K.A.A.), University of Washington School of Medicine, Seattle, Washington,Center for Integrative Brain Research (K.A.A., W.B.D.), Seattle Children’s Research Institute, Seattle, Washington
| | - R.J. Leventer
- Department of Neurology (R.J.L.), Royal Children’s Hospital and Murdoch Children’s Research Institute, Parkville, Victoria, Australia,Department of Pediatrics (R.J.L.), University of Melbourne, Melbourne, Victoria, Australia
| | - W.B. Dobyns
- Center for Integrative Brain Research (K.A.A., W.B.D.), Seattle Children’s Research Institute, Seattle, Washington,Division of Genetics and Metabolism (W.B.D.), Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - K. Mankad
- Department of Radiology (S.V.S., K.M.), Great Ormond Street Hospital, NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Kant RJ, Bare CF, Coulombe KL. Tissues with Patterned Vessels or Protein Release Induce Vascular Chemotaxis in an In Vitro Platform. Tissue Eng Part A 2021; 27:1290-1304. [PMID: 33472529 PMCID: PMC8610033 DOI: 10.1089/ten.tea.2020.0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered tissues designed for translational applications in regenerative medicine require vascular networks to deliver oxygen and nutrients rapidly to the implanted cells. A limiting factor of in vivo translation is the rapid and successful inosculation, or connection, of host and implanted vascular networks and subsequent perfusion of the implant. An approach gaining favor in vascular tissue engineering is to provide instructive cues from the engineered tissue to enhance host vascular penetration and connection with the implant. Here, we use a novel in vitro platform based on the aortic ring assay to evaluate the impact of patterned, endothelialized vessels or growth factor release from engineered constructs on preinosculative vascular cell outgrowth from surrogate host tissue in a controlled, defined environment, and introduce robust tools for evaluating vascular morphogenesis and chemotaxis. We demonstrate the creation of engineered vessels at the arteriole scale, which develop basement membrane, exhibit tight junctions, and actively sprout into the surrounding bulk hydrogel. Vessel-containing constructs are co-cultured adjacent to rodent aortic rings, and the resulting heterocellular outgrowth is quantified. Cells originating from the aortic ring migrate preferentially toward constructs containing engineered vessels with 1.5-fold faster outgrowth kinetics, 2.5-fold increased cellular density, and 1.6-fold greater network formation versus control (no endothelial cells and growth factor-reduced culture medium). Growth factor release from constructs with nonendothelialized channels and in reduced factor medium equivalently stimulates sustained vascular outgrowth distance, cellular density, and network formation, akin to engineered vessels in endothelial growth medium 2 (EGM-2) medium. In conclusion, we show that three-dimensional endothelialized patterned vessels or growth factor release stimulate a robust, host-derived vascular cell chemotactic response at early time points critical for instructive angiogenic cues. Further, we developed robust, unbiased tools to quantify metrics of vascular morphogenesis and preinosculative heterocellular outgrowth from rat aortic rings and demonstrated the utility of our complex, controlled environment, heterocellular in vitro platform. Impact statement Using a novel in vitro platform, we show that engineered constructs with patterned vessels or angiogenic growth factor release, two methods of instructing host revascularization responses, equivalently improve early host-derived vascular outgrowth. Our platform leverages the aortic ring assay in a tissue engineering context to study preinosculative vascular cell chemotaxis from surrogate host vascular cells in response to paracrine cues from co-cultured engineered tissues using robust, open-source quantification tools. Our accessible and flexible platform enables translationally focused studies in revascularization using implantable therapeutics containing prepatterned vessels with greater environmental control than in vivo studies to advance vascular tissue engineering.
Collapse
Affiliation(s)
- Rajeev J. Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Colette F. Bare
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
18
|
Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2021; 320:G919-G935. [PMID: 33729000 PMCID: PMC8285581 DOI: 10.1152/ajpgi.00066.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral smooth muscle is a crucial component of the walls of hollow organs like the gut, bladder, and uterus. This specialized smooth muscle has unique properties that distinguish it from other muscle types and facilitate robust dilation and contraction. Visceral myopathies are diseases where severe visceral smooth muscle dysfunction prevents efficient movement of air and nutrients through the bowel, impairs bladder emptying, and affects normal uterine contraction and relaxation, particularly during pregnancy. Disease severity exists along a spectrum. The most debilitating defects cause highly dysfunctional bowel, reduced intrauterine colon growth (microcolon), and bladder-emptying defects requiring catheterization, a condition called megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). People with MMIHS often die early in childhood. When the bowel is the main organ affected and microcolon is absent, the condition is known as myopathic chronic intestinal pseudo-obstruction (CIPO). Visceral myopathies like MMIHS and myopathic CIPO are most commonly caused by mutations in contractile apparatus cytoskeletal proteins. Here, we review visceral myopathy-causing mutations and normal functions of these disease-associated proteins. We propose molecular, cellular, and tissue-level models that may explain clinical and histopathological features of visceral myopathy and hope these observations prompt new mechanistic studies.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,2Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| | - Rachel Helen Ceron
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,3Department of Physiology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Esposito P, Verzola D, La Porta E, Milanesi S, Grignano MA, Avella A, Gregorini M, Abelli M, Ticozzelli E, Rampino T, Garibotto G. Myostatin in the Arterial Wall of Patients with End-Stage Renal Disease. J Atheroscler Thromb 2020; 27:1039-1052. [PMID: 32173683 PMCID: PMC7585912 DOI: 10.5551/jat.51144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Myostatin (Mstn) has been described as a trigger for the progression of atherosclerosis. In this study, we evaluated the role of Mstn in arterial remodeling in patients with end-stage renal disease (ESRD). METHODS Vascular specimens were collected from 16 ESRD patients (56.4±7.9 years) undergoing renal transplant (recipients) and 15 deceased kidney non-uremic donors (55.4±12.1 years). We studied gene and protein expression of Mstn, ubiquitin ligases, Atrogin-1, and muscle ring finger protein-1 (MuRF-1), inflammatory marker CCL2, cytoskeleton components, and Klotho by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Moreover, we assessed vascular calcification and collagen deposition. Finally, we studied the effects of recombinant Mstn on rat vascular smooth muscle cells (VSMCs, A7r5) and evaluated the effects of uremic serum (US) on primary human VSMCs. RESULTS Myostatin mRNA was upregulated in the arterial vascular wall of recipients compared with donors (~15- folds, p<0.05). This response was accompanied by the upregulation of gene expression of Atrogin-1 and MuRF-1 (+2.5- and +10-fold) and CCL2 (+3-fold). Conversely, we found downregulation of protein expression of Smoothelin, α-smooth muscle actin (α-SMA), vimentin, and Klotho (-85%, -50%, -70%, and -80%, respectively; p<0.05) and gene expression of vimentin and Klotho. Exposition of A7r5 to Mstn induced a time-dependent SMAD 2/SMAD 3 phosphorylation and expression of collagen-1 and transforming growth factor β (TGFβ) mRNA, while US induced overexpression of Mstn and Atrogin-1 and downregulation of Smoothelin and Klotho. CONCLUSIONS Our data suggest that uremia might induce vascular Mstn gene expression together with a complex pathway of molecular and structural changes in the vascular wall. Myostatin, in turn, can translate the metabolic alterations of uremia into profibrotic and stiffness inducing signals.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Address for correspondence: Pasquale Esposito, Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Piazzale Golgi 2, 27100 Pavia, Italy E-mail:
| | - Daniela Verzola
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Edoardo La Porta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Samantha Milanesi
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessandro Avella
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Massimo Abelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Ticozzelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
20
|
Guerra DD, Hurt KJ. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod 2020; 101:4-25. [PMID: 30848786 DOI: 10.1093/biolre/ioz038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Gasotransmitters are endogenous small gaseous messengers exemplified by nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S or sulfide). Gasotransmitters are implicated in myriad physiologic functions including many aspects of reproduction. Our objective was to comprehensively review basic mechanisms and functions of gasotransmitters during pregnancy from conception to uterine involution and highlight future research opportunities. We searched PubMed and Web of Science databases using combinations of keywords nitric oxide, carbon monoxide, sulfide, placenta, uterus, labor, and pregnancy. We included English language publications on human and animal studies from any date through August 2018 and retained basic and translational articles with relevant original findings. All gasotransmitters activate cGMP signaling. NO and sulfide also covalently modify target protein cysteines. Protein kinases and ion channels transduce gasotransmitter signals, and co-expressed gasotransmitters can be synergistic or antagonistic depending on cell type. Gasotransmitters influence tubal transit, placentation, cervical remodeling, and myometrial contractility. NO, CO, and sulfide dilate resistance vessels, suppress inflammation, and relax myometrium to promote uterine quiescence and normal placentation. Cervical remodeling and rupture of fetal membranes coincide with enhanced oxidation and altered gasotransmitter metabolism. Mechanisms mediating cellular and organismal changes in pregnancy due to gasotransmitters are largely unknown. Altered gasotransmitter signaling has been reported for preeclampsia, intrauterine growth restriction, premature rupture of membranes, and preterm labor. However, in most cases specific molecular changes are not yet characterized. Nonclassical signaling pathways and the crosstalk among gasotransmitters are emerging investigation topics.
Collapse
Affiliation(s)
- Damian D Guerra
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
O'Leary LA, Davoli MA, Belliveau C, Tanti A, Ma JC, Farmer WT, Turecki G, Murai KK, Mechawar N. Characterization of Vimentin-Immunoreactive Astrocytes in the Human Brain. Front Neuroanat 2020; 14:31. [PMID: 32848635 PMCID: PMC7406576 DOI: 10.3389/fnana.2020.00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are commonly identified by their expression of the intermediate filament protein glial fibrillary acidic protein (GFAP). GFAP-immunoreactive (GFAP-IR) astrocytes exhibit regional heterogeneity in density and morphology in the mouse brain as well as morphological diversity in the human cortex. However, regional variations in astrocyte distribution and morphology remain to be assessed comprehensively. This was the overarching objective of this postmortem study, which mainly exploited the immunolabeling of vimentin (VIM), an intermediate filament protein expressed by astrocytes and endothelial cells which presents the advantage of more extensively labeling cell structures. We compared the densities of vimentin-immunoreactive (VIM-IR) and GFAP-IR astrocytes in various brain regions (prefrontal and primary visual cortex, caudate nucleus, mediodorsal thalamus) from male individuals having died suddenly in the absence of neurological or psychiatric conditions. The morphometric properties of VIM-IR in these brain regions were also assessed. We found that VIM-IR astrocytes generally express the canonical astrocytic markers Aldh1L1 and GFAP but that VIM-IR astrocytes are less abundant than GFAP-IR astrocytes in all human brain regions, particularly in the thalamus, where VIM-IR cells were nearly absent. About 20% of all VIM-IR astrocytes presented a twin cell morphology, a phenomenon rarely observed for GFAP-IR astrocytes. Furthermore VIM-IR astrocytes in the striatum were often seen to extend numerous parallel processes which seemed to give rise to large VIM-IR fiber bundles projecting over long distances. Moreover, morphometric analyses revealed that VIM-IR astrocytes were more complex than their mouse counterparts in functionally homologous brain regions, as has been previously reported for GFAP-IR astrocytes. Lastly, the density of GFAP-IR astrocytes in gray and white matter were inversely correlated with vascular density, but for VIM-IR astrocytes this was only the case in gray matter, suggesting that gliovascular interactions may especially influence the regional heterogeneity of GFAP-IR astrocytes. Taken together, these findings reveal special features displayed uniquely by human VIM-IR astrocytes and illustrate that astrocytes display important region- and marker-specific differences in the healthy human brain.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jie Christopher Ma
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - William Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Keith Kazuo Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Chauhan G, Mehta A, Gupta S. Stromal-AR influences the growth of epithelial cells in the development of benign prostate hyperplasia. Mol Cell Biochem 2020; 471:129-142. [PMID: 32504365 DOI: 10.1007/s11010-020-03773-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022]
Abstract
Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, β-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Avani Mehta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.,Division of Biological Sciences, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sarita Gupta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
23
|
Evaluation of digital image analysis as a supportive tool for the stratification of head and neck vascular anomalies. Eur Arch Otorhinolaryngol 2020; 277:2893-2906. [PMID: 32488381 PMCID: PMC7496082 DOI: 10.1007/s00405-020-06097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 11/26/2022]
Abstract
Background The histological differentiation of individual types of vascular anomalies (VA), such as lymphatic malformations (LM), hemangioma (Hem), paraganglioma (PG), venous malformations (VeM), arteriovenous malformations (AVM), pyogenic granulomas (GP), and (not otherwise classified) vascular malformations (VM n.o.c.) is frequently difficult due to the heterogeneity of these anomalies. The aim of the study was to evaluate digital image analysis as a method for VA stratification Methods A total of 40 VA tissues were examined immunohistologically using a selection of five vascular endothelial-associated markers (CD31, CD34, CLDN5, PDPN, VIM). The staining results were documented microscopically followed by digital image analyses based quantification of the candidate-marker-proteins using the open source program ImageJ/Fiji. Results Differences in the expression patterns of the candidate proteins could be detected particularly when deploying the quotient of the quantified immunohistochemical signal values. Deploying signal marker quotients, LM could be fully distinguished from all other tested tissue types. GP achieved stratification from LM, Hem, VM, PG and AVM tissues, whereas Hem, PG, VM and AVM exhibited significantly different signal marker quotients compared with LM and GP tissues. Conclusion Although stratification of different VA from each other was only achieved in part with the markers used, the results of this study strongly support the usefulness of digital image analysis for the stratification of VA. Against the background of upcoming new diagnostic techniques involving artificial intelligence and deep (machine) learning, our data serve as a paradigm of how digital evaluation methods can be deployed to support diagnostic decision making in the field of VAs.
Collapse
|
24
|
The Development of the Ascending Aortic Wall in Tricuspid and Bicuspid Aortic Valve: A Process from Maturation to Degeneration. J Clin Med 2020; 9:jcm9040908. [PMID: 32225051 PMCID: PMC7230962 DOI: 10.3390/jcm9040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Patients with a bicuspid aortic valve (BAV) have an increased risk for aortic dilation and dissection. In this study, we provide a histological stratification of the developing aorta in the tricuspid aortic valve (TAV) and the BAV populations as a reference for future studies on aortopathy and related syndromes. Methods: Non-dilated TAV and BAV ascending aortic wall samples were collected, including 60 TAV (embryonic–70 years) and 32 BAV specimens (fetal–72 years, categorized in eight age groups. Results: In TAV, intimal development starts in the neonatal phase. After birth, the thickness of the medial layer increases significantly by increase of elastic lamellae up to and including the “young child” phase stabilizing afterwards. The BAV shows already prenatal intimal thickening becoming significantly thinner after birth subsequently stabilizing. In BAV, increase in elastic lamellae is seen between the young child and the adolescent phases, stabilizing afterwards. Conclusions: Vascular development in TAV is described in three phases: maturation, stabilization, and degeneration. For BAV, the development can be described in two phases: maturation (already prenatally) and degeneration. After birth, the development of the aorta is characterized by degeneration, leading to weakening of the ascending aortic wall and increasing the risk of aortopathy.
Collapse
|
25
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
26
|
Chiarini A, Dal Prà I, Faggian G, Armato U, Luciani GB. Maladaptive remodeling of pulmonary artery root autografts after Ross procedure: A proteomic study. J Thorac Cardiovasc Surg 2020; 159:621-632.e3. [DOI: 10.1016/j.jtcvs.2019.07.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
|
27
|
Javed E, Thangavel C, Frara N, Singh J, Mohanty I, Hypolite J, Birbe R, Braverman AS, Den RB, Rattan S, Zderic SA, Deshpande DA, Penn RB, Ruggieri MR, Chacko S, Boopathi E. Increased expression of desmin and vimentin reduces bladder smooth muscle contractility via JNK2. FASEB J 2020; 34:2126-2146. [PMID: 31909533 PMCID: PMC7018560 DOI: 10.1096/fj.201901301r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
Bladder dysfunction is associated with the overexpression of the intermediate filament (IF) proteins desmin and vimentin in obstructed bladder smooth muscle (BSM). However, the mechanisms by which these proteins contribute to BSM dysfunction are not known. Previous studies have shown that desmin and vimentin directly participate in signal transduction. In this study, we hypothesized that BSM dysfunction associated with overexpression of desmin or vimentin is mediated via c-Jun N-terminal kinase (JNK). We employed a model of murine BSM tissue in which increased expression of desmin or vimentin was induced by adenoviral transduction to examine the sufficiency of increased IF protein expression to reduce BSM contraction. Murine BSM strips overexpressing desmin or vimentin generated less force in response to KCl and carbachol relative to the levels in control murine BSM strips, an effect associated with increased JNK2 phosphorylation and reduced myosin light chain (MLC20 ) phosphorylation. Furthermore, desmin and vimentin overexpressions did not alter BSM contractility and MLC20 phosphorylation in strips isolated from JNK2 knockout mice. Pharmacological JNK2 inhibition produced results qualitatively similar to those caused by JNK2 knockout. These findings suggest that inhibition of JNK2 may improve diminished BSM contractility associated with obstructive bladder disease.
Collapse
Affiliation(s)
- Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Nagat Frara
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jagmohan Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ipsita Mohanty
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Hypolite
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, NJ, USA
| | - Alan S Braverman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Ruggieri
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Swärd K, Krawczyk KK, Morén B, Zhu B, Matic L, Holmberg J, Hedin U, Uvelius B, Stenkula K, Rippe C. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators. Am J Physiol Cell Physiol 2019; 317:C1128-C1142. [PMID: 31461342 DOI: 10.1152/ajpcell.00047.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| | | | - Björn Morén
- Department of Experimental Medical Science, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Lund, Lund University, Lund, Sweden
| | - Karin Stenkula
- Department of Experimental Medical Science, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
29
|
The Key Role of Epithelial to Mesenchymal Transition (EMT) in Hypertensive Kidney Disease. Int J Mol Sci 2019; 20:ijms20143567. [PMID: 31330886 PMCID: PMC6679134 DOI: 10.3390/ijms20143567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT), originally described as a key process for organ development and metastasis budding in cancer, plays a key role in the development of renal fibrosis in several diseases, including hypertensive nephroangiosclerosis. We herein reviewed the concept of EMT and its role in renal diseases, with particular focus on hypertensive kidney disease, the second leading cause of end-stage renal disease after diabetes mellitus. After discussing the pathophysiology of hypertensive nephropathy, the 'classic' view of hypertensive nephrosclerosis entailing hyalinization, and sclerosis of interlobular and afferent arterioles, we examined the changes occurring in the glomerulus and tubulo-interstitium and the studies that investigated the role of EMT and its molecular mechanisms in hypertensive kidney disease. Finally, we examined the reasons why some studies failed to provide solid evidence for renal EMT in hypertension.
Collapse
|
30
|
Ma Y, Ren Y, Guan J. Knockdown of GC binding factor 2 by RNA interference inhibits invasion and migration of vascular smooth muscle cells. Mol Med Rep 2019; 20:1781-1789. [PMID: 31257544 PMCID: PMC6625445 DOI: 10.3892/mmr.2019.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/17/2019] [Indexed: 11/05/2022] Open
Abstract
GC binding factor 2 (GCF2) is a transcriptional repressor that inhibits the transcription of GC‑rich promoters, thereby regulating biological processes, including proliferation. However, the role of GCF2 in vascular smooth muscle cells (VSMCs) remains unclear. The level of α‑smooth muscle (α‑SM) actin was determined by immunofluorescence. Cell viability, migration and invasion were analyzed using Cell Counting Kit‑8, wound healing and Transwell assays, respectively. Apoptosis and cell cycle progression were determined using flow cytometry. The expressions of Bcl‑2, Bax, cleaved caspase‑3, cyclin E, CDK2 and the CDK inhibitor p21 were determined by reverse transcription‑quantitative (RT‑q)PCR and western blot analysis. RT‑qPCR was performed to analyze the levels of GCF2 and western blot analysis was conducted to determine the phosphorylation levels of PI3K and AKT. α‑SM actin was found to be expressed in VSMCs. Cell viability, migration and invasion were inhibited by small interfering (si)RNA targeting GCF2. Changes in the expression levels of Bcl‑2, Bax and cleaved caspase‑3 showed that the pro‑apoptotic capacity of the cells was increased by siGCF2. Cell cycle arrest in the G0/G1 phase was induced by siGCF2, which was accompanied by changes in the levels of cyclin E, CDK2 and p21. Furthermore, phosphorylation of PI3K and AKT was suppressed by siGCF2. However, the inhibitory effects of siGCF2 on cell viability, migration and invasion were increased by insulin‑like growth factor 1, which is a specific agonist of AKT. The anti‑proliferative activity of siGCF2 may be associated with the PI3K/AKT pathway in VSMCs.
Collapse
Affiliation(s)
- Ying Ma
- Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Yongqiang Ren
- Department of Cardiology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266034, P.R. China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
31
|
Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci 2019; 4:449-467. [PMID: 31312768 PMCID: PMC6610002 DOI: 10.1016/j.jacbts.2019.02.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction. In addition to their involvement in extracellular matrix expansion, activated fibroblasts may also exert protective actions, preserving the cardiac extracellular matrix, transducing survival signals to cardiomyocytes, and regulating inflammation and angiogenesis. The functional diversity of cardiac fibroblasts may reflect their phenotypic heterogeneity.
Collapse
Key Words
- AT1, angiotensin type 1
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- MRTF, myocardin-related transcription factor
- PDGF, platelet-derived growth factor
- RNA, ribonucleic acid
- ROCK, Rho-associated coiled-coil containing kinase
- ROS, reactive oxygen species
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRP, transient receptor potential
- cytokines
- extracellular matrix
- fibroblast
- infarction
- lncRNA, long noncoding ribonucleic acid
- miRNA, micro–ribonucleic acid
- remodeling
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
32
|
Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation. Cell Death Differ 2019; 26:2790-2806. [PMID: 31024075 DOI: 10.1038/s41418-019-0335-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/04/2019] [Accepted: 04/04/2019] [Indexed: 12/25/2022] Open
Abstract
TEAD1 (TEA domain transcription factor 1), a transcription factor known for the functional output of Hippo signaling, is important for tumorigenesis. However, the role of TEAD1 in the development of vascular smooth muscle cell (VSMC) is unknown. To investigate cell-specific role of Tead1, we generated cardiomyocyte (CMC) and VSMC-specific Tead1 knockout mice. We found CMC/VSMC-specific deletion of Tead1 led to embryonic lethality by E14.5 in mice due to hypoplastic cardiac and vascular walls, as a result of impaired CMC and VSMC proliferation. Whole transcriptome analysis revealed that deletion of Tead1 in CMCs/VSMCs downregulated expression of muscle contractile genes and key transcription factors including Pitx2c and myocardin. In vitro studies demonstrated that PITX2c and myocardin rescued TEAD1-dependent defects in VSMC differentiation. We further identified Pitx2c as a novel transcriptional target of TEAD1, and PITX2c exhibited functional synergy with myocardin by directly interacting with myocardin, leading to augment the differentiation of VSMC. In summary, our study reveals a critical role of Tead1 in cardiovascular development in mice, but also identifies a novel regulatory mechanism, whereby Tead1 functions upstream of the genetic regulatory hierarchy for establishing smooth muscle contractile phenotype.
Collapse
|
33
|
Non-invasive functional molecular phenotyping of human smooth muscle cells utilized in cardiovascular tissue engineering. Acta Biomater 2019; 89:193-205. [PMID: 30878445 DOI: 10.1016/j.actbio.2019.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Smooth muscle cell (SMC) diversity and plasticity are limiting factors in their characterization and application in cardiovascular tissue engineering. This work aimed to evaluate the potential of Raman microspectroscopy and Raman imaging to distinguish SMCs of different tissue origins and phenotypes. Cultured human SMCs isolated from different vascular and non-vascular tissues as well as fixed human SMC-containing tissues were analyzed. In addition, Raman spectra and images of tissue-engineered SMC constructs were acquired. Routine techniques such as qPCR, histochemistry, histological and immunocytological staining were performed for comparative gene and protein expression analysis. We identified that SMCs of different tissue origins exhibited unique spectral information that allowed a separation of all groups of origin by multivariate data analysis (MVA). We were further able to non-invasively monitor phenotypic switching in cultured SMCs and assess the impact of different culture conditions on extracellular matrix remodeling in the tissue-engineered ring constructs. Interestingly, we identified that the Raman signature of the human SMC-based ring constructs was similar to the one obtained from native aortic tissue. We conclude that Raman microspectroscopic methods are promising tools to characterize cells and define cellular and extracellular matrix components on a molecular level. In this study, in situ measurements were marker-independent, fast, and identified cellular differences that were not detectable by established routine techniques. Perspectively, Raman microspectroscopy and MVA in combination with artificial intelligence can be suitable for automated quality monitoring of (stem) cell and cell-based tissue engineering products. STATEMENT OF SIGNIFICANCE: The accessibility of autologous blood vessels for surgery is limited. Tissue engineering (TE) aims to develop functional vascular replacements; however, no commercially available TE vascular graft (TEVG) exists to date. One limiting factor is the availability of a well-characterized and safe cell source. Smooth muscle cells (SMCs) are generally used for TEVGs. To engineer a TEVG, proliferating SMCs of the synthesizing phenotype are essential, whereas functional, sustainable TEVGs require SMCs of the contractile phenotype. SMC diversity and plasticity are therefore limiting factors, also for their quality monitoring and application in TE. In this study, Raman microspectroscopy and imaging combined with machine learning tools allowed the non-destructive, marker-independent characterization of SMCs, smooth muscle tissues and TE SMC-constructs. The spectral information was specific enough to distinguish for the first time the phenotypic switching in SMCs in real-time, and monitor the impact of culture conditions on ECM remodeling in the TE SMC-constructs.
Collapse
|
34
|
Hazra S, Henson GD, Bramwell RC, Donato AJ, Lesniewski LA. Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries. Am J Physiol Heart Circ Physiol 2019; 316:H485-H494. [PMID: 30550353 DOI: 10.1152/ajpheart.00278.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood flow regulation is a critical factor for tissue oxygenation and substrate supply. Increased reactivity of arteries to vasoconstrictors may increase vascular resistance, resulting in reduced blood flow. We aimed to investigate the effect of a high-fat (HF) diet on stiffness and vasoconstrictor reactivity of white adipose tissue (WAT) and brown adipose tissue (BAT) resistance arteries and also investigated the interconversion of both adipose depots in the setting of a HF diet. Vasoconstrictor reactivity and passive morphology and mechanical properties of arteries from B6D2F1 mice (5 mo old) fed normal chow (NC) or a HF diet (8 wk) were measured using pressure myography. Receptor gene expression in WAT and BAT arteries and markers of WAT and BAT were assessed in whole tissue lysates by real-time RT-PCR. Despite greater receptor-independent vasoconstriction (in response to KCl, P < 0.01), vasoconstriction in response to angiotensin II ( P < 0.01) was lower in NC-BAT than NC-WAT arteries and similar in response to endothelin-1 ( P = 0.07) and norepinephrine ( P = 0.11) in NC-BAT and NC-WAT arteries. With the exception of BAT artery reactivity to endothelin-1 and angiotensin II, the HF diet tended to attenuate reactivity in arteries from both adipose depots and increased expression of adipose markers in BAT. No significant differences in morphology or passive mechanical properties were found between adipose types or diet conditions. Alterations in gene expression of adipose markers after the HF diet suggest beiging of BAT. An increase in brown adipocytes in the absence of increased BAT mass may be a compensatory mechanism to dissipate excess energy from a HF diet. NEW & NOTEWORTHY Despite no differences in passive mechanical properties and greater receptor-independent vasoconstriction, receptor-mediated vasoconstriction was either lower in brown than white adipose tissue arteries or similar in brown and white adipose tissue arteries. A high-fat diet has a greater impact on vasoconstrictor responses in white adipose tissue but leads to altered adipose tissue gene expression consistent with beiging of the brown adipose tissue.
Collapse
Affiliation(s)
- Sugata Hazra
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Grant D Henson
- Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah
| | - R Colton Bramwell
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah.,Department of Biochemistry, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah.,Department of Biochemistry, University of Utah , Salt Lake City, Utah
| |
Collapse
|
35
|
Lauf PK, Sharma N, Adragna NC. Kinetic studies of K-Cl cotransport in cultured rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C274-C284. [PMID: 30649919 DOI: 10.1152/ajpcell.00002.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During aging, and development of atherosclerosis and cardiovascular disease (CVD), aortic vascular smooth muscle cells (VSMCs) transition from healthy contractile to diseased synthetic phenotypes. K-Cl cotransport (KCC) maintains cell volume and ion homeostasis in growth and differentiation, and hence is important for VSMC proliferation and migration. Therefore, KCC activity may play a role in the contractile-to-synthetic VSMC phenotypic transition. Early, medium, and late synthetic passage VSMCs were tested for specific cytoskeletal protein expression. KCC-mediated ouabain- and bumetanide-insensitive Rb+ (a K+ congener) influx was determined as Cl--dependent Rb+ influx at different external Rb+ and Cl- ion concentrations, [Rb+]o and [Cl-]o. Expressions of the cytoskeletal proteins α-actin, vimentin, and desmin fell from early through late synthetic VSMCs. KCC kinetic parameters, such as maximum velocity ( Vm), and apparent Cl- and Rb+ affinities ( Km), were calculated with Lineweaver-Burk, Hanes-Woolf, and Hill approximations. Vm values of both Rb+- and Cl--dependent influxes were of equal magnitude, commensurate with a KCC stoichiometry of unity, and rose threefold from early to late synthetic VSMCs. Hill coefficients for Rb+ and Cl- correlated with cell passage number, suggesting increased KCC ligand cooperativity. However, Km values for [Cl-]o were strikingly bimodal with 60-80 mM in early, ~20-30 mM in medium, and 60 mM in late passage cells. In contrast, Km values for [Rb+]o remained steady at ~17 mM. Since total KCC isoform expression was similar with cell passage, structure/function changes of the KCC signalosome may accompany the transition of aortic VSMCs from a healthy to a diseased phenotype.
Collapse
Affiliation(s)
- Peter K Lauf
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Department of Pathology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Neelima Sharma
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Norma C Adragna
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| |
Collapse
|
36
|
The cell-cell junctions of mammalian testes: II. The lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions-a novel architectonic cell-cell junction system. Cell Tissue Res 2018; 375:451-482. [PMID: 30591979 DOI: 10.1007/s00441-018-2968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral "lamellar smooth muscle cells" (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in "dense bodies," "focal adhesions," and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Collapse
|
37
|
Okolo FC, Zhang G, Rhodes J, Potoka DA. Intra-amniotic Sildenafil Treatment Modulates Vascular Smooth Muscle Cell Phenotype in the Nitrofen Model of Congenital Diaphragmatic Hernia. Sci Rep 2018; 8:17668. [PMID: 30518769 PMCID: PMC6281652 DOI: 10.1038/s41598-018-34948-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
The etiology of pulmonary vascular abnormalities in CDH is incompletely understood. Studies have demonstrated improvement in pulmonary vasculature with prenatal therapy in animal models. We hypothesize that prenatal sildenafil may attenuate defective pulmonary vascular development via modulation of vSMC phenotype from undifferentiated, proliferative phenotype to differentiated, contractile phenotype. We utilized the nitrofen model of CDH to examine the effect of IA sildenafil on pulmonary vSMC phenotype during lung development. Timed-pregnant CD-1 mice were gavage fed 25 mg nitrofen or olive oil (control) at E8.5 of gestation. Single IA injections of Sildenafil (Revatio; 10 µL of 4 mg/4 ml solution) or dextrose control were performed at E12.5. Mice were sacrificed on various gestational days for embryonic lung harvest. Markers of vSMC development of undifferentiated and differentiated phenotypes were analyzed by immunostaining and western blot. Across all time points in gestation, nitrofen-treated embryonic lungs demonstrated increased vSMC expression of NOTCH3, Hes-5, PDGFR-β, desmin and α-SMA and decreased expression of calponin and SMMHC, compared to oil controls. IA dextrose treatment had no effect on expression levels. However, IA Sildenafil treatment resulted in down-regulation of NOTCH3, Hes-5, PDGFR-β, desmin and α-SMA and upregulation of calponin and SMMHC, comparable to oil controls. In the nitrofen model, vSMC express markers consistent with more undifferentiated proliferative phenotype, resulting in hypermuscularization of intrapulmonary arterioles in CDH. A single dose of IA Sildenafil treatment early in gestation, results in sustained normalization of vSMC phenotype. Pharmacologic modulation of the vSMC phenotype at key gestational points may have therapeutic potential.
Collapse
MESH Headings
- Amnion
- Animals
- Female
- Hernias, Diaphragmatic, Congenital/chemically induced
- Hernias, Diaphragmatic, Congenital/drug therapy
- Hernias, Diaphragmatic, Congenital/etiology
- Injections
- Lung/blood supply
- Lung/drug effects
- Lung/embryology
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/embryology
- Phenotype
- Phenyl Ethers
- Pregnancy
- Sildenafil Citrate/administration & dosage
- Sildenafil Citrate/therapeutic use
- Vasodilator Agents/administration & dosage
- Vasodilator Agents/therapeutic use
Collapse
Affiliation(s)
- Frances C Okolo
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Guangfeng Zhang
- Department of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julie Rhodes
- Department of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Douglas A Potoka
- Department of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Mecheri B, Paris F, Lübbert H. Histological investigations on the dura mater vascular system of mice. Acta Histochem 2018; 120:846-857. [PMID: 30292321 DOI: 10.1016/j.acthis.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
The human dura mater encephali is a well innervated and vascularized membrane. Its vascular system plays a crucial role in disorders and pathological cases like dural hematoma, meningitis, and different headache types. To investigate these diseases mouse models are increasingly being used. However, the literature on the vascular system of the mouse dura mater is sparse and explicit studies concerned exclusively with its vasculature are lacking. Here we present a detailed light and scanning electron microscopic investigation of the supratentorial dura mater of the mouse species, with a focus on the largest part of it, the parietal dura mater. By utilizing different immunohistochemical and classical staining methods, a "cartography" of the vascular system was achieved. Additionally, the different blood vessel types with their mural cells were characterized. In contrast to humans, no arteries were found in the mouse parietal dura mater. Its supply is assured through frontolateral and occipital localized arteriolar branches. These arteriolar vessels exhibit in some specimens arteriolar anastomoses with one another. The venous blood is drained to the superior sagittal and transverse sinus through satellite venules accompanying the arterioles or through solitary venules. In all samples, large ruptured venules were identified in the frontolateral dural area. Scanning electron microscopy revealed that these vessels were ruptured on the dorsal side (skull bones-oriented side) of the dura. Our results contribute to the anatomical data on the mouse species and may set up a basis for fundamental investigation of disorders, for which the role of dural blood vessels is not yet clarified.
Collapse
|
39
|
Jaslove JM, Nelson CM. Smooth muscle: a stiff sculptor of epithelial shapes. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170318. [PMID: 30249770 PMCID: PMC6158200 DOI: 10.1098/rstb.2017.0318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Smooth muscle is increasingly recognized as a key mechanical sculptor of epithelia during embryonic development. Smooth muscle is a mesenchymal tissue that surrounds the epithelia of organs including the gut, blood vessels, lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is stiffer than its adjacent epithelium and often serves its morphogenetic function by physically constraining the growth of a proliferating epithelial layer. This constraint leads to mechanical instabilities and epithelial morphogenesis through buckling. Smooth muscle stiffness alone, without smooth muscle cell shortening, seems to be sufficient to drive epithelial morphogenesis. Fully understanding the development of organs that use smooth muscle stiffness as a driver of morphogenesis requires investigating how smooth muscle develops, a key aspect of which is distinguishing smooth muscle-like tissues from one another in vivo and in culture. This necessitates a comprehensive appreciation of the genetic, anatomical and functional markers that are used to distinguish the different subtypes of smooth muscle (for example, vascular versus visceral) from similar cell types (including myofibroblasts and myoepithelial cells). Here, we review how smooth muscle acts as a mechanical driver of morphogenesis and discuss ways of identifying smooth muscle, which is critical for understanding these morphogenetic events.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Jacob M Jaslove
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Reagan AM, Gu X, Paudel S, Ashpole NM, Zalles M, Sonntag WE, Ungvari Z, Csiszar A, Otalora L, Freeman WM, Stout MB, Elliott MH. Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency. Neurobiol Aging 2018; 71:1-12. [PMID: 30059797 DOI: 10.1016/j.neurobiolaging.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
Collapse
Affiliation(s)
- Alaina M Reagan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiaowu Gu
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sijalu Paudel
- Department of Cell Biology, Cameron University, Lawton, OK, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA
| | - Michelle Zalles
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
| | - Michael H Elliott
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
41
|
Bridge JC, Amer M, Morris GE, Martin NRW, Player DJ, Knox AJ, Aylott JW, Lewis MP, Rose FRAJ. Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells
in vitro. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aace8f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Gatti JR, Zhang X, Korcari E, Lee SJ, Greenstone N, Dean JG, Maripudi S, Wang MM. Redistribution of Mature Smooth Muscle Markers in Brain Arteries in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Transl Stroke Res 2018; 10:10.1007/s12975-018-0643-x. [PMID: 29931596 PMCID: PMC6309602 DOI: 10.1007/s12975-018-0643-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
Vascular smooth muscle cells (SMCs) undergo a series of dramatic changes in CADASIL, the most common inherited cause of vascular dementia and stroke. NOTCH3 protein accumulates and aggregates early in CADASIL, followed by loss of mature SMCs from the media of brain arteries and marked intimal proliferation. Similar intimal thickening is seen in peripheral arterial disease, which features pathological intimal cells including proliferative, dedifferentiated, smooth muscle-like cells deficient in SMC markers. Limited studies have been performed to investigate the differentiation state and location of SMCs in brain vascular disorders. Thus, we investigated the distribution of cells expressing SMC markers in a group of genetically characterized, North American CADASIL brains. We quantified brain RNA abundance of these markers in nine genetically verified cases of CADASIL and found that mRNA expression for several mature SMC markers was increased in CADASIL brain compared to age-matched control. Immunohistochemical studies and in situ hybridization localization of mRNA demonstrated loss of SMCs from the arterial media, and SMC marker-expressing cells were instead redistributed into the intima of diseased arteries and around balloon cells of the degenerating media. We conclude that, despite loss of medial smooth muscle cells in diseased arteries, smooth muscle markers are not lost from CADASIL brain, but rather, the localization of cells expressing mature SMC markers changes dramatically.
Collapse
Affiliation(s)
- John R Gatti
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Ejona Korcari
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Nya Greenstone
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Jon G Dean
- Department Molecular & Integrative Physiology, University of Michigan, 7625 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA
| | - Snehaa Maripudi
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
- Department Molecular & Integrative Physiology, University of Michigan, 7625 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA.
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
43
|
Chiarini A, Onorati F, Marconi M, Pasquali A, Patuzzo C, Malashicheva A, Irtyega O, Faggian G, Pignatti PF, Trabetti E, Armato U, Dal Pra I. Studies on sporadic non-syndromic thoracic aortic aneurysms: 1. Deregulation of Jagged/Notch 1 homeostasis and selection of synthetic/secretor phenotype smooth muscle cells. Eur J Prev Cardiol 2018; 25:42-50. [DOI: 10.1177/2047487318759119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. The study aimed at defining the peculiar morphologic and molecular changes occurring in the media layer of SNSTAAs. Design This study was based on a single centre design. Methods Media layer samples taken from seven carefully selected SNSTAAs and seven reference patients (controls) were investigated via quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, quantitative histology, and immunohistochemistry/immunofluorescence. Results In SNSTAAs media, aortic smooth muscle cells numbers were halved due to an apoptotic process coupled with a negligible cell proliferation. Cystathionine γ-lyase was diffusely up-regulated. Surviving aortic smooth muscle cells exhibited diverging phenotypes: in inner- and outer-media contractile cells prevailed, having higher contents of smooth-muscle-α-actin holoprotein (45-kDa) and of caspase-3-cleaved smooth-muscle-α-actin 25-kDa fragments; in mid-media, aortic smooth muscle cells exhibited a synthetic/secretor phenotype, down-regulating vimentin, but up-regulating glial fibrillary acidic protein, trans-Golgi network 46 protein, Jagged1 (172-kDa) holoprotein, and Jagged1’s receptor Notch1. Extracellular soluble Jagged1 (42-kDa) fragments accumulated. Conclusions In SNSTAAs, there is a relentless aortic smooth muscle cells attrition caused by the up-regulated cystathionine γ-lyase. In mid-media, synthetic/secretor aortic smooth muscle cells intensify Jagged1/NOTCH1 signalling in the attempt to counterbalance the weakened aortic wall, due to aortic smooth muscle cells net loss and mechanical stress. Synthetic/secretor aortic smooth muscle cells are apoptosis-prone, and the accruing thrombin-cleaved Jagged1 fragments counteract the otherwise useful effects of Jagged1/NOTCH1 signalling, thus hampering tissue homeostasis/remodelling, and aortic smooth muscle cells adhesion, differentiation, and migration.
Collapse
Affiliation(s)
- Anna Chiarini
- Histology and Embryology Section, University of Verona Medical School, Italy
| | - Francesco Onorati
- Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Maddalena Marconi
- Histology and Embryology Section, University of Verona Medical School, Italy
| | | | - Cristina Patuzzo
- Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Olga Irtyega
- Federal Almazov Medical Research Centre, St. Petersburg, Russia
| | - Giuseppe Faggian
- Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Pier F Pignatti
- Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Ubaldo Armato
- Histology and Embryology Section, University of Verona Medical School, Italy
| | - Ilaria Dal Pra
- Histology and Embryology Section, University of Verona Medical School, Italy
| |
Collapse
|
44
|
Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet 2018; 26:669-675. [PMID: 29453416 DOI: 10.1038/s41431-017-0055-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/11/2022] Open
Abstract
Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a severe disease characterized by functional obstruction in the urinary and gastrointestinal tract. The molecular basis of this condition started to be defined recently, and the genes related to the syndrome (ACTG2-heterozygous variant in sporadic cases; and MYH11 (myosin heavy chain 11), LMOD1 (leiomodin 1) and MYLK (myosin light chain (MLC) kinase)-autosomal recessive inheritance), encode proteins involved in the smooth muscle contraction, supporting a myopathic basis for the disease. In the present article, we described a family with two affected siblings with MMIHS born to consanguineous parents and the molecular investigation performed to define the genetic etiology. Previous whole exome sequencing of the affected child and parents did not identify a candidate gene for the disease in this family, but now we present a reanalysis of the data that led to the identification of a homozygous deletion encompassing the last exon of MYL9 (myosin regulatory light chain 9) in the affected individual. MYL9 gene encodes a regulatory myosin MLC and the phosphorylation of this protein is a crucial step in the contraction process of smooth muscle cell. Despite the absence of human or animal phenotype related to MYL9, a cause-effect relationship between MYL9 and the MMIHS seems biologically plausible. The present study reveals a strong candidate gene for autosomal recessive forms of MMIHS, expanding the molecular basis of this disease and reinforces the myopathic basis of this condition.
Collapse
|
45
|
Zhang D, Chen W, Chen H, Yu HQ, Kassab G, Cheng JX. Chemical imaging of fresh vascular smooth muscle cell response by epi-detected stimulated Raman scattering. JOURNAL OF BIOPHOTONICS 2018; 11:e201700005. [PMID: 28715124 DOI: 10.1002/jbio.201700005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
An understanding of deformation of cardiovascular tissue under hemodynamic load is crucial for understanding the health and disease of blood vessels. In the present work, an epi-detected stimulated Raman scattering (epi-SRS) imaging platform was designed for in situ functional imaging of vascular smooth muscle cells (VMSCs) in fresh coronary arteries. For the first time, the pressure-induced morphological deformation of fresh VSMCs was imaged with no fixation and in a label-free manner. The relation between the loading pressure and the morphological parameters, including angle and length of the VSMCs, were apparent. The morphological responses of VMSCs to drug treatment were also explored, to demonstrate the capability of functional imaging for VSMCs by this method. The time-course imaging revealed the drug induced change in angle and length of VSMCs. The present study provides a better understanding of the biomechanical framework of blood vessels, as well as their responses to external stimulations, which are fundamental for developing new strategies for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Delong Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Wei Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, P.R. China
| | - Huan Chen
- California Medical Innovations Institute, San Diego, California
| | - Han-Qing Yu
- Department of Chemistry, University of Science and Technology of China, Hefei, P.R. China
| | - Ghassan Kassab
- California Medical Innovations Institute, San Diego, California
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
46
|
Murali M, MacDonald JA. Smoothelins and the Control of Muscle Contractility. ADVANCES IN PHARMACOLOGY 2018; 81:39-78. [DOI: 10.1016/bs.apha.2017.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Lee SJ, Kwon S, Gatti JR, Korcari E, Gresser TE, Felix PC, Keep SG, Pasquale KC, Bai T, Blanchett-Anderson SA, Wu NW, Obeng-Nyarko C, Senagbe KM, Young KC, Maripudi S, Yalavarthi BC, Korcari D, Liu AY, Schaffler BC, Keep RF, Wang MM. Large-scale identification of human cerebrovascular proteins: Inter-tissue and intracerebral vascular protein diversity. PLoS One 2017; 12:e0188540. [PMID: 29190776 PMCID: PMC5708641 DOI: 10.1371/journal.pone.0188540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
The human cerebrovascular system is responsible for regulating demand-dependent perfusion and maintaining the blood-brain barrier (BBB). In addition, defects in the human cerebrovasculature lead to stroke, intracerebral hemorrhage, vascular malformations, and vascular cognitive impairment. The objective of this study was to discover new proteins of the human cerebrovascular system using expression data from the Human Protein Atlas, a large-scale project which allows public access to immunohistochemical analysis of human tissues. We screened 20,158 proteins in the HPA and identified 346 expression patterns correlating to blood vessels in human brain. Independent experiments showed that 51/52 of these distributions could be experimentally replicated across different brain samples. Some proteins (40%) demonstrated endothelial cell (EC)-enriched expression, while others were expressed primarily in vascular smooth muscle cells (VSMC; 18%); 39% of these proteins were expressed in both cell types. Most brain EC markers were tissue oligospecific; that is, they were expressed in endothelia in an average of 4.8 out of 9 organs examined. Although most markers expressed in endothelial cells of the brain were present in all cerebral capillaries, a significant number (21%) were expressed only in a fraction of brain capillaries within each brain sample. Among proteins found in cerebral VSMC, virtually all were also expressed in peripheral VSMC and in non-vascular smooth muscle cells (SMC). Only one was potentially brain specific: VHL (Von Hippel-Lindau tumor suppressor). HRC (histidine rich calcium binding protein) and VHL were restricted to VSMC and not found in non-vascular tissues such as uterus or gut. In conclusion, we define a set of brain vascular proteins that could be relevant to understanding the unique physiology and pathophysiology of the human cerebrovasculature. This set of proteins defines inter-organ molecular differences in the vasculature and confirms the broad heterogeneity of vascular cells within the brain.
Collapse
Affiliation(s)
- Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Soonhyung Kwon
- School of Social Work, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John R. Gatti
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ejona Korcari
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ty E. Gresser
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Princess C. Felix
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Simon G. Keep
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin C. Pasquale
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tongxu Bai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Nancy W. Wu
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charissa Obeng-Nyarko
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kossi M. Senagbe
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathy C. Young
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Snehaa Maripudi
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bharath C. Yalavarthi
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dajana Korcari
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andre Y. Liu
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin C. Schaffler
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
49
|
Vascular disease-causing mutation, smooth muscle α-actin R258C, dominantly suppresses functions of α-actin in human patient fibroblasts. Proc Natl Acad Sci U S A 2017; 114:E5569-E5578. [PMID: 28652363 DOI: 10.1073/pnas.1703506114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The most common genetic alterations for familial thoracic aortic aneurysms and dissections (TAAD) are missense mutations in vascular smooth muscle (SM) α-actin encoded by ACTA2 We focus here on ACTA2-R258C, a recurrent mutation associated with early onset of TAAD and occlusive moyamoya-like cerebrovascular disease. Recent biochemical results with SM α-actin-R258C predicted that this variant will compromise multiple actin-dependent functions in intact cells and tissues, but a model system to measure R258C-induced effects was lacking. We describe the development of an approach to interrogate functional consequences of actin mutations in affected patient-derived cells. Primary dermal fibroblasts from R258C patients exhibited increased proliferative capacity compared with controls, consistent with inhibition of growth suppression attributed to SM α-actin. Telomerase-immortalized lines of control and R258C human dermal fibroblasts were established and SM α-actin expression induced with adenovirus encoding myocardin-related transcription factor A, a potent coactivator of ACTA2 Two-dimensional Western blotting confirmed induction of both wild-type and mutant SM α-actin in heterozygous ACTA2-R258C cells. Expression of mutant SM α-actin in heterozygous ACTA2-R258C fibroblasts abrogated the significant effects of SM α-actin induction on formation of stress fibers and focal adhesions, filamentous to soluble actin ratio, matrix contraction, and cell migration. These results demonstrate that R258C dominantly disrupts cytoskeletal functions attributed to SM α-actin in fibroblasts and are consistent with deficiencies in multiple cytoskeletal functions. Thus, cellular defects due to this ACTA2 mutation in both aortic smooth muscle cells and adventitial fibroblasts may contribute to development of TAAD and proliferative occlusive vascular disease.
Collapse
|
50
|
Sunaga H, Matsui H, Anjo S, Syamsunarno MRAA, Koitabashi N, Iso T, Matsuzaka T, Shimano H, Yokoyama T, Kurabayashi M. Elongation of Long-Chain Fatty Acid Family Member 6 (Elovl6)-Driven Fatty Acid Metabolism Regulates Vascular Smooth Muscle Cell Phenotype Through AMP-Activated Protein Kinase/Krüppel-Like Factor 4 (AMPK/KLF4) Signaling. J Am Heart Assoc 2016; 5:e004014. [PMID: 27881420 PMCID: PMC5210431 DOI: 10.1161/jaha.116.004014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Fatty acids constitute the critical components of cell structure and function, and dysregulation of fatty acid composition may exert diverging vascular effects including proliferation, migration, and differentiation of vascular smooth muscle cells (VSMCs). However, direct evidence for this hypothesis has been lacking. We investigated the role of elongation of long-chain fatty acid member 6 (Elovl6), a rate-limiting enzyme catalyzing the elongation of saturated and monounsaturated long-chain fatty acid, in the regulation of phenotypic switching of VSMC. METHODS AND RESULTS Neointima formation following wire injury was markedly inhibited in Elovl6-null (Elovl6-/-) mice, and cultured VSMCs with siRNA-mediated knockdown of Elovl6 was barely responsive to PDGF-BB. Elovl6 inhibition induced cell cycle suppressors p53 and p21 and reduced the mammalian targets of rapamycin (mTOR) phosphorylation and VSMC marker expression. These changes are ascribed to increased palmitate levels and reduced oleate levels, changes that lead to reactive oxygen species (ROS) production and resulting AMP-activated protein kinase (AMPK) activation. Notably, Elovl6 inhibition robustly induced the pluripotency gene Krüppel-like factor 4 (KLF4) expression in VSMC, and KLF4 knockdown significantly attenuated AMPK-induced phenotypic switching of VSMC, indicating that KLF4 is a bona fide target of AMPK. CONCLUSIONS We demonstrate for the first time that dysregulation of Elovl6-driven long-chain fatty acid metabolism induces phenotypic switching of VSMC via ROS production and AMPK/KLF4 signaling that leads to growth arrest and downregulation of VSMC marker expression. The modulation of Elovl6-mediated cellular processes may provide an intriguing approach for tackling atherosclerosis and postangioplasty restenosis.
Collapse
Affiliation(s)
- Hiroaki Sunaga
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- Department of Medicine and Biological Sciences, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Saki Anjo
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Mas Risky A A Syamsunarno
- Department of Medicine and Biological Sciences, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Biochemistry, Faculty of Medicine Universitas Padjadjaran, Jatinangor, Indonesia
| | - Norimichi Koitabashi
- Department of Medicine and Biological Sciences, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Iso
- Department of Medicine and Biological Sciences, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Graduate School of Comprehensive Human Sciences International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Japan
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Medicine and Biological Sciences, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|