1
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
3
|
Nabavizadeh N, Bressin A, Shboul M, Moreno Traspas R, Chia PH, Bonnard C, Szenker‐Ravi E, Sarıbaş B, Beillard E, Altunoglu U, Hojati Z, Drutman S, Freier S, El‐Khateeb M, Fathallah R, Casanova J, Soror W, Arafat A, Escande‐Beillard N, Mayer A, Reversade B. A progeroid syndrome caused by a deep intronic variant in TAPT1 is revealed by RNA/SI-NET sequencing. EMBO Mol Med 2023; 15:e16478. [PMID: 36652330 PMCID: PMC9906387 DOI: 10.15252/emmm.202216478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.
Collapse
Affiliation(s)
- Nasrinsadat Nabavizadeh
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
- Division of Genetics, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| | | | - Mohammad Shboul
- Department of Medical Laboratory SciencesJordan University of Science and TechnologyIrbidJordan
| | - Ricardo Moreno Traspas
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
| | - Poh Hui Chia
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
| | - Carine Bonnard
- Model Development, A*STAR Skin Research Labs (A*SRL)Singapore CitySingapore
| | - Emmanuelle Szenker‐Ravi
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
| | - Burak Sarıbaş
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| | | | - Umut Altunoglu
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Scott Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchRockefeller UniversityNew YorkNYUSA
| | - Susanne Freier
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | | | - Rajaa Fathallah
- National Center for Diabetes, Endocrinology and GeneticsAmmanJordan
| | - Jean‐Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchRockefeller UniversityNew YorkNYUSA
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine InstituteUniversity of ParisParisFrance
- Howard Hughes Medical InstituteNew YorkNYUSA
- Pediatric Hematology and Immunology UnitNecker Hospital for Sick ChildrenParisFrance
| | - Wesam Soror
- National Center for Diabetes, Endocrinology and GeneticsAmmanJordan
| | - Alaa Arafat
- National Center for Diabetes, Endocrinology and GeneticsAmmanJordan
| | - Nathalie Escande‐Beillard
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
- Institute of Molecular and Cell Biology, A*STARSingapore CitySingapore
| | - Andreas Mayer
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Bruno Reversade
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
- Institute of Molecular and Cell Biology, A*STARSingapore CitySingapore
- Department of PaediatricsNational University of SingaporeSingapore CitySingapore
- Smart‐Health Initiative, BESE, KAUSTThuwalKingdom of Saudi Arabia
| |
Collapse
|
4
|
Chaudhry MZ, Messerle M, Čičin-Šain L. Construction of Human Cytomegalovirus Mutants with Markerless BAC Mutagenesis. Methods Mol Biol 2021; 2244:133-158. [PMID: 33555586 DOI: 10.1007/978-1-0716-1111-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they are studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of these loss-of-function viral mutants to the wild-type virus allow for the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 20 years. The cloning of CMV genomes into Escherichia coli as bacterial artificial chromosomes (BAC) allows for not only quick and efficient deletion of viral genomic regions, individual genes, or single-nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain-of-function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined parental viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, providing selective growth advantage to the recombined genomes and thus clonal selection of viruses with even extremely poor fitness. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.
Collapse
Affiliation(s)
- M Zeeshan Chaudhry
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Luka Čičin-Šain
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Center for Individualized Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany.
| |
Collapse
|
5
|
Copy-Paste Mutagenesis: A Method for Large-Scale Alteration of Viral Genomes. Int J Mol Sci 2019; 20:ijms20040913. [PMID: 30791544 PMCID: PMC6413233 DOI: 10.3390/ijms20040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
The cloning of the large DNA genomes of herpesviruses, poxviruses, and baculoviruses as bacterial artificial chromosomes (BAC) in Escherichia coli has opened a new era in viral genetics. Several methods of lambda Red-mediated genome engineering (recombineering) in E. coli have been described, which are now commonly used to generate recombinant viral genomes. These methods are very efficient at introducing deletions, small insertions, and point mutations. Here we present Copy-Paste mutagenesis, an efficient and versatile strategy for scarless large-scale alteration of viral genomes. It combines gap repair and en passant mutagenesis procedures and relies on positive selection in all crucial steps. We demonstrate that this method can be used to generate chimeric strains of human cytomegalovirus (HCMV), the largest human DNA virus. Large (~15 kbp) genome fragments of HCMV strain TB40/E were tagged with an excisable marker and cloned (copied) in a low-copy plasmid vector by gap repair recombination. The cloned fragment was then excised and inserted (pasted) into the HCMV AD169 genome with subsequent scarless removal of the marker by en passant mutagenesis. We have done four consecutive rounds of this procedure, thereby generating an AD169-TB40/E chimera containing 60 kbp of the donor strain TB40/E. This procedure is highly useful for identifying gene variants responsible for phenotypic differences between viral strains. It can also be used for repair of incomplete viral genomes, and for modification of any BAC-cloned sequence. The method should also be applicable for large-scale alterations of bacterial genomes.
Collapse
|
6
|
Caskurlu H, Karadag FY, Arslan F, Cag Y, Vahaboglu H. Comparison of universal prophylaxis and preemptive approach for cytomegalovirus associated outcome measures in renal transplant patients: A meta-analysis of available data. Transpl Infect Dis 2018; 21:e13016. [PMID: 30358045 DOI: 10.1111/tid.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/15/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022]
Abstract
Cytomegalovirus (CMV) is a ubiquitous latent human virus that often causes complications in renal transplantation recipients. Universal prophylaxis and preemptive therapy are alternative strategies to prevent CMV associated complications. This meta-analysis aimed to assess available data comparing the effectiveness of prophylaxis and preemptive therapy for preventing adverse outcomes. We searched the PubMed, Ovid, Web of Science, Cochrane Library, and Open Grey databases using a combination of keywords. Random effects models along with the Paule-Mandel estimator were used to synthesize pooled effect estimates. Eleven studies were eligible for the final analysis. Universal prophylaxis was better at preventing CMV disease than the preemptive approach (risk difference = -0.0459; confidence intervals = -0.0791, -0.0127; P-value = 0.0067; number needed to treat [NNT] = 22 [1/0.0459]; high, 79 [1/0.0127] patients; low, 13 [1/0.0791] patients). Subgroup analysis revealed a more consistent effect among studies published after 2010, with negligible between-study heterogeneity. The NNT for universal prophylaxis to prevent one excess CMV disease concerning preemptive therapy was 16 (1/0.0630) patients (high, 25 [1/0.0394]; low, 12 [1/0.0867] patients) in the subgroup of studies performed after 2010. We detected no significant difference between the two strategies regarding acute rejection and graft loss, with negligible variability due to heterogeneity between studies. Although universal prophylaxis performed better than the preemptive strategy for the prevention of CMV disease, the high NNT value may discourage the use of CMV prophylaxis. Since there were no differences between the strategies concerning acute rejection and graft loss, this study supports the use of the preemptive approach as an alternative to universal prophylaxis.
Collapse
Affiliation(s)
- Hulya Caskurlu
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Fatma Y Karadag
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Ferhat Arslan
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Yasemin Cag
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Haluk Vahaboglu
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| |
Collapse
|
7
|
Yamada KH, Majima R, Yamaguchi T, Inoue N. Characterization of phenyl pyrimidine derivatives that inhibit cytomegalovirus immediate-early gene expression. Antivir Chem Chemother 2018; 26:2040206618763193. [PMID: 29546767 PMCID: PMC5890547 DOI: 10.1177/2040206618763193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Previously, we established a reporter cell line for human cytomegalovirus and screened anti-human cytomegalovirus compounds using the cell line. In this study, we characterized one of the identified compounds, 2,4-diamino-6–(4-methoxyphenyl)pyrimidine (coded as 35C10). Methods 50% Effective concentrations (EC50s) and 50% cytotoxic concentrations (CC50s) of 35C10 and its derivatives in human fibroblasts were determined by X-gal staining of the cells infected with human cytomegalovirus Towne strain expressing β-galactosidase. Results EC50 and CC50 of 35C10 were 4.3 µM and >200 µM, respectively. Among several 35C10 derivatives, only one lacking 4-amino group of pyrimidine showed a similar EC50. 35C10 weakly inhibited murine cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. A “time of addition” experiment suggested that 35C10 inhibited an early phase of the infection. Although 35C10 did not inhibit viral attachment to the cells nor the delivery of viral DNA to the nuclei, it decreased the number of infected cells expressing immediate-early 1 and 2 (IE1/IE2) proteins. 35C10 also inhibited the activation of a promoter for TRL4 in the reporter cells upon human cytomegalovirus infection, but not in the same reporter cells transfected with a plasmid expressing IE2. Conclusion Our findings suggest that 35C10 is a novel compound that inhibits IE gene expression in human cytomegalovirus-infected cells.
Collapse
Affiliation(s)
- Koh-Hei Yamada
- 1 Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryuichi Majima
- 1 Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Toyofumi Yamaguchi
- 2 Department of Biosciences, Teikyo University of Science and Technology, Tokyo, Japan
| | - Naoki Inoue
- 1 Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
8
|
Close WL, Bhandari A, Hojeij M, Pellett PE. Generation of a novel human cytomegalovirus bacterial artificial chromosome tailored for transduction of exogenous sequences. Virus Res 2017; 242:66-78. [DOI: 10.1016/j.virusres.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/25/2022]
|
9
|
Bailer SM, Funk C, Riedl A, Ruzsics Z. Herpesviral vectors and their application in oncolytic therapy, vaccination, and gene transfer. Virus Genes 2017. [PMID: 28634751 DOI: 10.1007/s11262-017-1482-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herpesviruses are enveloped DNA viruses that infect vertebrate cells. Their high potential cloning capacity and the lifelong persistence of their genomes in various host cells make them attractive platforms for vector-based therapy. In this review, we would like to highlight recent advances of three major areas of herpesvirus vector development and application: (i) oncolytic therapy, (ii) recombinant vaccines, and (iii) large capacity gene transfer vehicles.
Collapse
Affiliation(s)
- Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany. .,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany.,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - André Riedl
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany.,German Center for Infection Research - DZIF, Freiburg, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany. .,German Center for Infection Research - DZIF, Freiburg, Germany.
| |
Collapse
|
10
|
Majima R, Shindoh K, Yamaguchi T, Inoue N. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62. Antiviral Res 2017; 140:142-150. [PMID: 28161581 DOI: 10.1016/j.antiviral.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Previously we established reporter cell lines for human cytomegalovirus (HCMV) and varicella zoster virus (VZV) and identified several antiviral compounds against these viruses using the reporter cells. In this study, we found that one of the identified anti-HCMV compounds, a thienylcarboxamide derivative (coded as 133G4), was effective against not only HCMV but also VZV. The following findings indicate that 133G4 inhibits the activation of early gene promoters by HCMV IE2 and VZV IE62: i) 133G4 decreased the expression of HCMV early and late genes but not that of HCMV IE1/IE2 in HCMV-infected cells, ii) 133G4 inhibited the activation of several HCMV early gene promoters of transiently-transfected plasmids in HCMV-infected cells, and iii) in transient transfection assays, 133G4 decreased the activation of HCMV (or VZV) early gene promoters by HCMV IE2 (or VZV IE62) in the absence of other viral protein expression. The inhibition of early gene activation was observed in the human and African green monkey cell lines but not in the rodent cell lines, and the compound was not effective against murine CMV. In addition, VZV IE62 activated HCMV early promoters, and 133G4 still inhibited such promoter activation. Therefore, we hypothesized that 133G4 targets a cellular factor used commonly in activation of human herpesvirus promoters and examined whether 133G4 affects the functions of cellular proteins USF1, TBP, Med25 and EAP, the involvement of which in VZV IE62-dependent viral gene activation has been well characterized. Our experimental results using one-hybrid and bimolecular fluorescence complementation assays demonstrated that 133G4 did not inhibit the recruitment of USF1 or TBP to their binding sites, nor inhibited the direct interactions of VZV IE62 with Med25 and EAP. Thus, 133G4 is a unique anti-VZV and -HCMV compound, which warrants further studies to find out its inhibitory mechanism.
Collapse
Affiliation(s)
- Ryuichi Majima
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Shindoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Toyofumi Yamaguchi
- Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
11
|
A Luciferase Gene Driven by an Alphaherpesviral Promoter Also Responds to Immediate Early Antigens of the Betaherpesvirus HCMV, Allowing Comparative Analyses of Different Human Herpesviruses in One Reporter Cell Line. PLoS One 2017; 12:e0169580. [PMID: 28060895 PMCID: PMC5217978 DOI: 10.1371/journal.pone.0169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Widely used methods for quantification of human cytomegalovirus (HCMV) infection in cell culture such as immunoblotting or plaque reduction assays are generally restricted to low throughput and require time-consuming evaluation. Up to now, only few HCMV reporter cell lines have been generated to overcome these restrictions and they are afflicted with other limitations because permanently expandable cell lines are normally not fully permissive to HCMV. In this work, a previously existing epithelial cell line hosting a luciferase gene under control of a Varicella-zoster virus promoter was adopted to investigate HCMV infection. The cells were susceptible to different HCMV strains at infection efficiencies that corresponded to their respective degree of epithelial cell tropism. Expression of early and late viral antigens, formation of nuclear inclusions, release of infectious virus progeny, and focal growth indicated productive viral replication. However, viral release and spread occurred at lower levels than in primary cell lines which appears to be due to a malfunction of virion morphogenesis during the nuclear stage. Expression of the luciferase reporter gene was specifically induced in HCMV infected cultures as a function of the virus dose and dependent on viral immediate early gene expression. The level of reporter activity accurately reflected infection efficiencies as determined by viral antigen immunostaining, and hence could discriminate the cell tropism of the tested virus strains. As proof-of-principle, we demonstrate that this cell line is applicable to evaluate drug resistance of clinical HCMV isolates and the neutralization capacity of human sera, and that it allows comparative and simultaneous analysis of HCMV and human herpes simplex virus type 1. In summary, the permanent epithelial reporter cell line allows robust, rapid and objective quantitation of HCMV infection and it will be particularly useful in higher throughput analyses as well as in comparative analyses of different human herpesviruses.
Collapse
|
12
|
Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, Oiknine-Djian E, Yamin R, Meir K, Amsalem H, Imbar T, Mandelboim O, Yagel S, Wolf DG. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology 2015; 485:289-96. [PMID: 26318261 DOI: 10.1016/j.virol.2015.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Ronit Haimov-Kochman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Imbar
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
13
|
A role for 3-O-sulfated heparan sulfate in promoting human cytomegalovirus infection in human iris cells. J Virol 2015; 89:5185-92. [PMID: 25717110 DOI: 10.1128/jvi.00109-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) has emerged as a clinically opportunistic pathogen that targets multiple types of ocular cells and tissues, including the iris region of the uveal tract during anterior uveitis. In this report, we used primary cultures of human iris stroma (HIS) cells derived from human eye donors to investigate HCMV entry. The following lines of evidence suggested the role of 3-O-sulfated heparan sulfate (3-OS HS) during HCMV-mediated entry and cell-to-cell fusion in HIS cells. First, 3-O-sulfotransferase-3 (3-OST-3) expression in HIS cells promoted HCMV internalization, while pretreatment of HIS cells with heparinase enzyme or with anti-3-OS HS (G2) peptide significantly reduced the HCMV-mediated formation of plaques/foci. Second, coculture of the HCMV-infected HIS cells with CHO-K1 cells expressing 3-OS HS significantly enhanced cell fusion. Finally, a similar trend of enhanced fusion was observed with cells expressing HCMV glycoproteins (gB, gO, and gH-gL) cocultured with 3-OS HS cells. Taken together, these results highlight the role of 3-OS HS during HCMV plaque formation and cell-to-cell fusion and identify a novel target for future therapeutic interventions.
Collapse
|
14
|
Abstract
To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they be studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of loss of function viral mutants to the wild-type virus allow the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 15 years. The cloning of CMV genomes into (E. coli) as bacterial artificial chromosomes (BAC) allows not only quick and efficient deletion of viral genomic regions, individual genes, or single nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain of function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, allowing a selective growth advantage to the recombined genomes. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.
Collapse
|
15
|
Haynes RJ, Kline MC, Toman B, Scott C, Wallace P, Butler JM, Holden MJ. Standard reference material 2366 for measurement of human cytomegalovirus DNA. J Mol Diagn 2013; 15:177-85. [PMID: 23321018 DOI: 10.1016/j.jmoldx.2012.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/14/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022] Open
Abstract
Human cytomegalovirus (CMV), classified as human herpesvirus 5, is ubiquitous in human populations. Infection generally causes little illness in healthy individuals, but can cause life-threatening disease in those who are immunocompromised or in newborns through complications arising from congenital CMV infection. An important aspect in diagnosis and treatment is to track circulating viral load with molecular methods, particularly with quantitative PCR. Standardization is vital, because of interlaboratory variability (due in part to the variety of assays and calibrants). Toward that end, the U.S. National Institute of Standards and Technology produced a Standard Reference Material 2366 appropriate for establishing metrological traceability of assay calibrants. This standard is composed of CMV DNA (Towne(Δ147) bacterial artificial chromosome DNA). Regions of the CMV DNA that are commonly used as targets for PCR assays were sequenced. Digital PCR was used to quantify the DNA, with concentration expressed as copies per microliter. The materials were tested for homogeneity and stability. An interlaboratory study was conducted by Quality Control for Molecular Diagnostics (Glasgow, UK), in which one component of SRM 2366 was included for analysis by participants in a CMV external quality assessment and proficiency testing program.
Collapse
Affiliation(s)
- Ross J Haynes
- Applied Genetics Group, Biomolecular Measurement Division, Gaithersburg, Maryland 20899, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Cotin S, Calliste CA, Mazeron MC, Hantz S, Duroux JL, Rawlinson WD, Ploy MC, Alain S. Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antiviral Res 2012; 96:181-6. [DOI: 10.1016/j.antiviral.2012.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
|
17
|
James SH, Prichard MN. The genetic basis of human cytomegalovirus resistance and current trends in antiviral resistance analysis. Infect Disord Drug Targets 2012; 11:504-13. [PMID: 21827431 DOI: 10.2174/187152611797636668] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/25/2010] [Indexed: 11/22/2022]
Abstract
Infections due to resistant human cytomegalovirus (CMV) are an emerging problem, particularly in immunocompromised hosts. When managing such patients, clinicians should be aware of the possibility of developing CMV antiviral resistance, especially while on prolonged therapy or if severe immunosuppression is present. CMV resistance to current antiviral agents is mediated by alterations in either the UL97 kinase or DNA polymerase, encoded by the UL97 and UL54 genes, respectively. UL97 mutations are capable of conferring resistance to ganciclovir, while UL54 mutations can impart resistance to ganciclovir, cidofovir, and foscarnet. If treatment failure is suspected to be due to antiviral resistance, CMV resistance analysis should be obtained. Phenotypic resistance assays performed on clinical isolates measure antiviral susceptibilities directly, but are laborious and time-consuming. Therefore, genotypic resistance analysis has become the more common means of diagnosing CMV resistance. Mutations in UL97 or UL54 may be clinically associated with resistance, but their effect on antiviral susceptibility must be confirmed by marker transfer techniques such as recombinant phenotyping.
Collapse
Affiliation(s)
- S H James
- University of Alabama at Birmingham, Birmingham, AL 35233-1711, USA.
| | | |
Collapse
|
18
|
Use of recombination-mediated genetic engineering for construction of rescue human cytomegalovirus bacterial artificial chromosome clones. J Biomed Biotechnol 2012; 2012:357147. [PMID: 22500089 PMCID: PMC3303630 DOI: 10.1155/2012/357147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 11/28/2011] [Indexed: 01/15/2023] Open
Abstract
Bacterial artificial chromosome (BAC) technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV). The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In this paper, we describe the construction of HCMV BAC mutants using a homologous recombination system. A gene capture method, or gap repair cloning, to seize large fragments of DNA from the virus BAC in order to generate rescue viruses, is described in detail. Construction of rescue clones using gap repair cloning is highly efficient and provides a novel use of the homologous recombination-based method in E. coli for molecular cloning, known colloquially as recombineering, when rescuing large BAC deletions. This method of excising large fragments of DNA provides important prospects for in vitro homologous recombination for genetic cloning.
Collapse
|
19
|
Shi-Chen Ou D, Lee SB, Chu CS, Chang LH, Chung BC, Juan LJ. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res 2011; 21:642-53. [PMID: 21221131 PMCID: PMC3203653 DOI: 10.1038/cr.2011.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.
Collapse
Affiliation(s)
- Derick Shi-Chen Ou
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Sung-Bau Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Chi-Shuen Chu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Liang-Hao Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Bon-chu Chung
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
- Tel: +886-2-2789-9215; Fax: +886-2-27826085
E-mail:
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
- Institute of Molecular Medicine, National Taiwan University, No.7, Chung San South Road, Taipei 100
- Tel: +886-2-27871234; Fax: +886-2-27898811
E-mail:
| |
Collapse
|
20
|
Lee SB, Lee CF, Ou DSC, Dulal K, Chang LH, Ma CH, Huang CF, Zhu H, Lin YS, Juan LJ. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2. Cell Res 2011; 21:1230-47. [PMID: 21445097 DOI: 10.1038/cr.2011.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Genomics Research Center, Academia Sinica, Taipei 115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2010; 2011:812742. [PMID: 21253509 PMCID: PMC3021883 DOI: 10.1155/2011/812742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/27/2010] [Indexed: 11/17/2022] Open
Abstract
The advent of cloning herpesviral genomes as bacterial artificial chromosomes (BACs) has made herpesviruses accessible to bacterial genetics and has thus revolutionised their mutagenesis. This opened all possibilities of reverse genetics to ask scientific questions by introducing precisely accurate mutations into the viral genome for testing their influence on the phenotype under study or to create phenotypes of interest. Here, we report on our experience with using BAC technology for a designed modulation of viral antigenicity and immunogenicity with focus on the CD8 T-cell response. One approach is replacing an intrinsic antigenic peptide in a viral carrier protein with a foreign antigenic sequence, a strategy that we have termed "orthotopic peptide swap". Another approach is the functional deletion of an antigenic peptide by point mutation of its C-terminal MHC class-I anchor residue. We discuss the concepts and summarize recently published major scientific results obtained with immunological mutants of murine cytomegalovirus.
Collapse
|
22
|
Lee SB, Ou DSC, Lee CF, Juan LJ. Gene-specific transcriptional activation mediated by the p150 subunit of the chromatin assembly factor 1. J Biol Chem 2009; 284:14040-9. [PMID: 19324875 DOI: 10.1074/jbc.m901833200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin assembly factor 1 contains three subunits, p150, p60, and p48. It is essential for coupling nucleosome assembly to newly synthesized DNA. Whether chromatin assembly factor 1 subunits have functions beyond escorting histones, which depends on the complex formation of p150 and p60, has been an issue of great interest. This study reveals a novel role of p150, but not p60, in gene-specific transcriptional activation. We found that p150 transcriptionally activated an essential viral promoter, the major immediate early promoter (MIEP) of the human cytomegalovirus, independently of p60. Knocking down p150 decreased the MIEP function in both transfected and virally infected cells. The chromatin immunoprecipitation analysis and the in vitro protein-DNA binding assay demonstrated that p150 used its KER domain to associate with the MIEP from -593 to -574 bp. The N-terminal 244 residues were also found essential for p150-mediated MIEP activation, likely through recruiting the acetyltransferase p300 to acetylate local histones. Domain swapping experiments further showed that the KER and the N terminus of p150 acted as an independent DNA binding and transcriptional activation domain, respectively. Because p60 did not seem involved in the reaction, together these results indicate for the first time that p150 directly activates transcription, independently of its histone deposition function.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | |
Collapse
|
23
|
Abstract
Bacterial artificial chromosomes (BACs) are DNA molecules assembled in vitro from defined constituents and are stably maintained as one large DNA fragment in Escherichia coli. Artificial chromosomes are useful for genome sequencing programs, for transduction of DNA segments into eukaryotic cells, and for functional characterization of genomic regions and entire viral genomes such as cytomegalovirus (CMV) genomes. CMV genomes in BACs are ready for the advanced tools of E. coli genetics. Homologous and site-specific recombination, or transposon-based approaches allow for the engineering of virtually any kind of genetic change.
Collapse
Affiliation(s)
- Z Ruzsics
- Max von Pettenkofer Institute, Dept. of Virology, Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | |
Collapse
|
24
|
Jonjic S, Krmpotic A, Arapovic J, Koszinowski UH. Dissection of the antiviral NK cell response by MCMV mutants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 415:127-49. [PMID: 18370152 DOI: 10.1007/978-1-59745-570-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Our understanding of virus control by natural killer (NK) cells relies mainly on in vitro observations. The significance of these findings for virus control in vivo is not yet fully understood. Complexity is added by the fact that many viruses, particularly herpesviruses, are equipped with sets of genes that, dependent on the genetic background of the host, modify the NK cell response. The advent of recombinant DNA technology and mutagenesis procedures for BAC-cloned viral genomes has made it possible not only to screen for viral proteins with such functions but also to assess their biological relevance. Mutant viruses with gene defects reveal the efficacy and complexity of NK cell control. Here, we describe procedures to assess the NK cell response to mouse cytomegalovirus (MCMV), a prominent virus model for studying NK cell functions in vivo.
Collapse
Affiliation(s)
- Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | |
Collapse
|
25
|
Prior infection with murine cytomegalovirus (MCMV) limits the immunocontraceptive effects of an MCMV vector expressing the mouse zona-pellucida-3 protein. Vaccine 2008; 26:3860-9. [PMID: 18573574 DOI: 10.1016/j.vaccine.2008.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 11/21/2022]
Abstract
We have developed a murine cytomegalovirus (MCMV)-vectored vaccine expressing the mouse zona-pellucida-3 gene (rMCMV-ZP3), which successfully induces infertility in experimentally inoculated laboratory or wild-derived mice. However, the future success of this vector as a fully disseminating vaccine in free-living mice may be compromised by pre-existing immunity since there is a high prevalence of naturally acquired MCMV infection in these mice. To evaluate the effect of prior immunity to MCMV on vaccine efficacy, we constructed two new biologically effective recombinant MCMV vectors expressing the mouse ZP3 protein from two MCMV strains (N1 and G4) derived from free-living mice. In wild mice, mixed MCMV infection is common and could be acquired either by simultaneous coinfection or sequential infection with different MCMV strains. Interestingly, while coinfection with both wild-type and rMCMV-ZP3 via the intraperitoneal route reduced the impact of the rMCMV-ZP3, prior infection with the same wild-type strain as that used to construct the rMCMV-ZP3 abrogated the immunocontraceptive effects of either N1-ZP3 or G4-ZP3. However, prior infection with G4 28 days before the introduction of N1-ZP3 had a reduced influence on the efficacy of the rMCMV-ZP3. Thus, the strain of virus and the timing of prior infection are factors that may influence the efficacy of the rMCMV-ZP3. Given that mixed infection of mice with MCMV is common, it is possible that prior immunity acquired by natural mucosal infection may have less a less inhibitory effect on the immunocontraceptive outcome.
Collapse
|
26
|
Brune W, Hengel H, Koszinowski UH. A mouse model for cytomegalovirus infection. ACTA ACUST UNITED AC 2008; Chapter 19:Unit 19.7. [PMID: 18432758 DOI: 10.1002/0471142735.im1907s43] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This unit describes procedures for infecting newborn and adult mice with murine cytomegalovirus (mCMV). Methods are included for propagating mCMV in cell cultures and for preparing a more virulent form of mCMV from salivary glands of infected mice. A plaque-forming cell (PFC) assay is provided for measuring mCMV titers of infected tissues or virus stocks. In addition, a method is described for preparing the murine embryonic fibroblasts used for propagating mCMV and for the PFC assay.
Collapse
Affiliation(s)
- W Brune
- University of Munich, Max von Pettenkofer Institute, Munich, Germany
| | | | | |
Collapse
|
27
|
Establishment of a cell-based assay for screening of compounds inhibiting very early events in the cytomegalovirus replication cycle and characterization of a compound identified using the assay. Antimicrob Agents Chemother 2008; 52:2420-7. [PMID: 18458124 DOI: 10.1128/aac.00134-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To simplify the detection of infectious human cytomegalovirus (HCMV), we generated a cell line that produced luciferase in a dose-dependent manner upon HCMV infection. Using this cell line, we identified anti-HCMV compounds from a diverse library of 9,600 compounds. One of them, 1-(3,5-dichloro-4-pyridyl)piperidine-4-carboxamide (DPPC), was effective against HCMV (Towne strain) infection of human lung fibroblast cells at a 50% effective concentration of 2.5 microM. DPPC also inhibited the growth of clinical HCMV isolates and guinea pig and mouse cytomegaloviruses. Experiments using various time frames for treatment of the cells with DPPC demonstrated that DPPC was effective during the first 24 h after HCMV infection. DPPC treatment decreased not only viral DNA replication but also IE1 and IE2 expression at mRNA and protein levels in the HCMV-infected cells. However, DPPC did not inhibit the attachment of HCMV particles to the cell surface. DPPC is a unique compound that targets the very early phase of cytomegalovirus infection, probably by disrupting a pathway that is important after viral entry but before immediate-early gene expression.
Collapse
|
28
|
Borst EM, Benkartek C, Messerle M. Use of bacterial artificial chromosomes in generating targeted mutations in human and mouse cytomegaloviruses. CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 10:10.32.1-10.32.30. [PMID: 18432982 DOI: 10.1002/0471142735.im1032s77] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cloning of cytomegalovirus (CMV) genomes as bacterial artificial chromosomes (BAC) in E. coli and their manipulation using the techniques of bacterial genetics has greatly facilitated the construction of CMV mutants. This unit describes easily applicable procedures that allow rapid introduction of any kind of targeted mutation into BAC-cloned CMV genomes. Protocols for the reconstitution of virus from isolated BAC DNA, preparation of a virus stock, and isolation and characterization of viral DNA are also included. Special emphasis is laid on description of critical steps and thorough characterization of the altered BACs.
Collapse
Affiliation(s)
- Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Hai R, Chu A, Li H, Umamoto S, Rider P, Liu F. Infection of human cytomegalovirus in cultured human gingival tissue. Virol J 2006; 3:84. [PMID: 17022821 PMCID: PMC1617094 DOI: 10.1186/1743-422x-3-84] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 10/05/2006] [Indexed: 11/17/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) infection in the oral cavity plays an important role in its horizontal transmission and in causing viral-associated oral diseases such as gingivitis. However, little is currently known about HCMV pathogenesis in oral mucosa, partially because HCMV infection is primarily limited to human cells and few cultured tissue or animal models are available for studying HCMV infection. Results In this report, we studied the infection of HCMV in a cultured gingival tissue model (EpiGingival, MatTek Co.) and investigated whether the cultured tissue can be used to study HCMV infection in the oral mucosa. HCMV replicated in tissues that were infected through the apical surface, achieving a titer of at least 300-fold at 10 days postinfection. Moreover, the virus spread from the apical surface to the basal region and reduced the thickness of the stratum coreum at the apical region. Viral proteins IE1, UL44, and UL99 were expressed in infected tissues, a characteristic of HCMV lytic replication in vivo. Studies of a collection of eight viral mutants provide the first direct evidence that a mutant with a deletion of open reading frame US18 is deficient in growth in the tissues, suggesting that HCMV encodes specific determinants for its infection in oral mucosa. Treatment by ganciclovir abolished viral growth in the infected tissues. Conclusion These results suggest that the cultured gingival mucosa can be used as a tissue model for studying HCMV infection and for screening antivirals to block viral replication and transmission in the oral cavity.
Collapse
Affiliation(s)
- Rong Hai
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Alice Chu
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Hongjian Li
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Sean Umamoto
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Paul Rider
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Cheeran MCJ, Hu S, Ni HT, Sheng W, Palmquist JM, Peterson PK, Lokensgard JR. Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways. J Neurosci Res 2006; 82:839-50. [PMID: 16273540 DOI: 10.1002/jnr.20682] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytomegalovirus (CMV) is a major cause of congenital brain disease, and its neuropathogenesis may be related to viral infection of rapidly dividing, susceptible neural precursor cells (NPCs). In the present study, we evaluated the susceptibility of human fetal brain-derived NPCs (nestin(+), A2B5(+), CD133(+)) to infection with CMV. Data derived from these studies demonstrated that undifferentiated NPCs supported productive viral replication. After differentiation in the presence of serum, a treatment that promotes development of an astroglial cell phenotype (GFAP(+), nestin(-), A2B5(-)), viral expression was retained. However, differentiation of NPCs in medium containing platelet-derived growth factor and brain-derived neurotropic factor, conditions that support the development of neurons (Tuj-1(+), nestin(-), A2B5(-)), resulted in reduced viral expression, with corresponding decreased CMV major immediate-early promoter (MIEP) activity relative to undifferentiated cells. Further experiments showed that cellular differentiation into a neuronal phenotype was associated with elevated levels of various CCAAT/enhancer binding protein beta (C/EBP)-beta isoforms, which suppressed MIEP activity in cotransfected NPCs. Taken together, these data demonstrate that the susceptibility of primary human NPCs to CMV is retained concomitantly with differentiation into glial cells but is actively repressed following differentiation into neurons.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, 55455, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Griffin C, Wang ECY, McSharry BP, Rickards C, Browne H, Wilkinson GWG, Tomasec P. Characterization of a highly glycosylated form of the human cytomegalovirus HLA class I homologue gpUL18. J Gen Virol 2005; 86:2999-3008. [PMID: 16227221 PMCID: PMC2844262 DOI: 10.1099/vir.0.81126-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) gpUL18 is a HLA class I (HLA-I) homologue with high affinity for the inhibitory receptor LIR-1/ILT2. The previously described 67 kDa form of gpUL18 is shown here to be sensitive to endoglycosidase-H (EndoH). A novel form of gpUL18 with a molecular mass of approximately 160 kDa and resistance to EndoH was identified in cells infected with HCMV strain AD169 or the low passage HCMV isolates Merlin and Toledo. The 67 kDa EndoH-sensitive gpUL18 glycoform was detected earlier in a productive infection (from 24 h post-infection) than the slower-migrating EndoH-resistant glycoform (from 72 h post-infection). Deletion of the US2-US11 region from the HCMV genome was associated with a substantial up-regulation of endogenous HLA-I in infected cells, but had no obvious effect on the gpUL18 expression pattern. Vaccinia virus and adenovirus vectors were used to further analyse gpUL18 expression. Depending on the delivery vector system, differences in the electrophoretic motility of the EndoH-resistant >105 kDa form of gpUL18, but not the EndoH-sensitive 67 kDa form, were observed; post-translational modification of the higher molecular mass glycoform appears to be influenced by active virus infection and vector delivery. The EndoH-sensitive 67 kDa gpUL18 had a rapid turnover, while the maturation to the EndoH-resistant >105 kDa form was relatively slow and inefficient. However, synthesis of the EndoH-resistant >105 kDa form was enhanced with elevated levels of beta2-microglobulin. When expressed by using an adenovirus vector, both the EndoH-sensitive 67 kDa and the EndoH-resistant >105 kDa gpUL18 forms could be detected on the cell surface.
Collapse
Affiliation(s)
- Cora Griffin
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Eddie C. Y. Wang
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Brian P. McSharry
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Carole Rickards
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Helena Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Gavin W. G. Wilkinson
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Peter Tomasec
- Section of Infection and Immunity, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| |
Collapse
|
32
|
McCormick AL, Meiering CD, Smith GB, Mocarski ES. Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 2005; 79:12205-17. [PMID: 16160147 PMCID: PMC1211555 DOI: 10.1128/jvi.79.19.12205-12217.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus carries a mitochondria-localized inhibitor of apoptosis (vMIA) that is conserved in primate cytomegaloviruses. We find that inactivating mutations within UL37x1, which encodes vMIA, do not substantially affect replication in TownevarATCC (Towne-BAC), a virus that carries a functional copy of the betaherpesvirus-conserved viral inhibitor of caspase 8 activation, the UL36 gene product. In Towne-BAC infection, vMIA reduces susceptibility of infected cells to intrinsic death induced by proteasome inhibition. vMIA is sufficient to confer resistance to proteasome inhibition when expressed independent of viral infection. Murine cytomegalovirus m38.5, whose position in the viral genome is analogous to UL37x1, exhibits mitochondrial association and functions in much the same manner as vMIA in inhibiting intrinsic cell death. This work suggests a common role for vMIA in rodent and primate cytomegaloviruses, modulating the threshold of virus-infected cells to intrinsic cell death.
Collapse
Affiliation(s)
- A Louise McCormick
- Department of Microbiology & Immunology, Fairchild Science Building, Stanford University School of Medicine, Stanford, CA 95304-5124, USA
| | | | | | | |
Collapse
|
33
|
Evers DL, Chao CF, Wang X, Zhang Z, Huong SM, Huang ES. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res 2005; 68:124-34. [PMID: 16188329 PMCID: PMC7114262 DOI: 10.1016/j.antiviral.2005.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/06/2022]
Abstract
We report antiviral activity against human cytomegalovirus for certain dietary flavonoids and their likely biochemical mechanisms of action. Nine out of ten evaluated flavonoids blocked HCMV replication at concentrations that were significantly lower than those producing cytotoxicity against growing or stationary phase host cells. Baicalein was the most potent inhibitor in this series (IC50 = 0.4–1.2 μM), including positive control ganciclovir. Baicalein and genistein were chosen as model compounds to study the antiviral mechanism(s) of action for this series. Both flavonoids significantly reduced the levels of HCMV early and late proteins, as well as viral DNA synthesis. Baicalein reduced the levels of HCMV immediate-early proteins to nearly background levels while genistein did not. The antiviral effects of genistein, but not baicalein, were fully reversible in cell culture. Pre-incubation of concentrated virus stocks with either flavonoid did not inhibit HCMV replication, suggesting that baicalein did not directly inactivate virus particles. Baicalein functionally blocked epidermal growth factor receptor tyrosine kinase activity and HCMV nuclear translocation, while genistein did not. At 24 h post infection HCMV-infected cells treated with genistein continued to express immediate-early proteins and efficiently phosphorylate IE1-72. However, HCMV induction of NF-κB and increases in the levels of cell cycle regulatory proteins—events that are associated with immediate-early protein functioning – were absent. The data suggested that the primary mechanism of action for baicalein may be to block HCMV infection at entry while the primary mechanism of action for genistein may be to block HCMV immediate-early protein functioning.
Collapse
Affiliation(s)
- David L. Evers
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Chih-Fang Chao
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Xin Wang
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Shu-Mei Huong
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Eng-Shang Huang
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Corresponding author. Tel.: +1 919 966 4323; fax: +1 919 966 4303.
| |
Collapse
|
34
|
Rizvanov AA, Khaiboullina SF, van Geelen AGM, St Jeor SC. Replication and immunoactivity of the recombinant Peromyscus maniculatus cytomegalovirus expressing hantavirus G1 glycoprotein in vivo and in vitro. Vaccine 2005; 24:327-34. [PMID: 16125285 DOI: 10.1016/j.vaccine.2005.07.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/28/2005] [Indexed: 11/18/2022]
Abstract
Previously, we have shown that CMV isolated from deer mouse could be used in vivo and in vitro to express Sin Nombre virus (SNV) glycoprotein G1 in deer mice [Rizvanov AA, van Geelen AG, Morzunov S, et al. Generation of a recombinant cytomegalovirus for expression of a hantavirus glycoprotein. J.Virol. 2003;77(22):12203-10]. In this report, we further characterize replication of wild-type (wt) and recombinant Peromyscus CMV (PCMV) in vivo and in vitro using realtime PCR, and infectious center assays. Our findings indicate that both wt PCMV and recombinant PCMV establish persistent infections in P. maniculatus. In addition, we demonstrated that gamma irradiation of PCMV infected mice resulted in reactivation of recombinant PCMV in persistently infected mice.
Collapse
Affiliation(s)
- Albert A Rizvanov
- Department of Microbiology, University of Nevada, Reno. Reno, NV 89557, USA
| | | | | | | |
Collapse
|
35
|
Evers DL, Wang X, Huong SM, Huang DY, Huang ES. 3,4',5-Trihydroxy-trans-stilbene (resveratrol) inhibits human cytomegalovirus replication and virus-induced cellular signaling. Antiviral Res 2005; 63:85-95. [PMID: 15302137 DOI: 10.1016/j.antiviral.2004.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 03/15/2004] [Indexed: 12/15/2022]
Abstract
Resveratrol is a polyphenolic natural product that is present in red wine and peanuts and has inhibitory activity against inflammation, heart disease, and cancer. Here we describe its inhibition of human cytomegalovirus replication (IC50 = 1-2 microM). At least 50-fold higher concentrations of compound were required to produce cytotoxicity against growing or stationary human embryonic lung fibroblasts. Mechanism of action studies determined that resveratrol blocked virus-induced activation of the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3-kinase signal transduction as well as NF-kappaB and Sp1 transcription factor activation shortly following infection. Resveratrol prevented the appearance of immediate-early, early, and late viral proteins. Human cytomegalovirus DNA replication was reduced to undetectable levels by treatment with resveratrol, as were the second (late) phases of virus-induced phosphatidylinositol-3-kinase signaling and transcription factor activation. Resveratrol lost substantial antiviral activity when its addition was delayed until 4 h postinfection. Compound reversibility and preincubation studies were inconsistent with a virucidal mechanism of action. These data indicated that this compound likely operated during attachment and entry. We hypothesize that the primary molecular target for resveratrol may be blockage of epidermal growth factor receptor activation and its downstream effectors.
Collapse
Affiliation(s)
- David L Evers
- Lineberger Comprehensive Cancer Center, Rm 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
36
|
Rizvanov AA, van Geelen AGM, Morzunov S, Otteson EW, Bohlman C, Pari GS, St Jeor SC. Generation of a recombinant cytomegalovirus for expression of a hantavirus glycoprotein. J Virol 2003; 77:12203-10. [PMID: 14581557 PMCID: PMC254267 DOI: 10.1128/jvi.77.22.12203-12210.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 07/29/2003] [Indexed: 11/20/2022] Open
Abstract
A cytomegalovirus (CMV) was isolated from its natural host, Peromyscus maniculatus, and was designated Peromyscus CMV (PCMV). A recombinant PCMV was constructed that contained Sin Nombre virus glycoprotein G1 (SNV-G1) fused in frame to the enhanced green fluorescent protein (EGFP) gene inserted into a site homologous to the human CMV UL33 (P33) gene. The recombinant CMV was used for expression and immunization of deer mice against SNV-G1. The results of the study indicate that P. maniculatus could be infected with as few as 10 virus particles of recombinant virus. Challenge of P. maniculatus with either recombinant or wild-type PCMV produced no overt pathology in infected animals. P. maniculatus immunized with recombinant virus developed an antibody response to SNV and EGFP. When rechallenged with recombinant virus, animals exhibited an anamnestic response against SNV. Interestingly, a preexisting immune response against PCMV did not prevent reinfection with recombinant PCMV.
Collapse
Affiliation(s)
- Albert A Rizvanov
- Department of Microbiology, University of Nevada at Reno, Reno, Nevada 89557, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
McSharry BP, Tomasec P, Neale ML, Wilkinson GWG. The most abundantly transcribed human cytomegalovirus gene (beta 2.7) is non-essential for growth in vitro. J Gen Virol 2003; 84:2511-2516. [PMID: 12917473 DOI: 10.1099/vir.0.19298-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The most abundantly transcribed HCMV gene (beta 2.7) encodes a 2.7 kb polyadenylated RNA. Although the laboratory-adapted HCMV strains AD169 and Towne possess two copies of the beta 2.7 gene within an expanded b sequence element, the low passage strain Toledo and all clinical isolates analysed contain only a single copy located within the U(L) region. A beta 2.7 deletion mutant constructed based on a strain Toledo background was shown to replicate with kinetics comparable to those of the parental virus; the beta2.7 gene is therefore not essential for virus replication in vitro. Sequencing the beta 2.7 gene from HCMV clinical isolates and the Toledo strain reveals that although the overall gene sequence is highly conserved (>99 %), the RL4 frame originally assigned in strain AD169 was disrupted in each of these viruses. Consequently, the beta 2.7 transcript does not encode any obvious translation product and thus may not function as an mRNA.
Collapse
Affiliation(s)
- Brian P McSharry
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - Peter Tomasec
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - M Lynne Neale
- Department of Medical Microbiology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - Gavin W G Wilkinson
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| |
Collapse
|
38
|
van der Strate BWA, De Boer FM, Bakker HI, Meijer DKF, Molema G, Harmsen MC. Synergy of bovine lactoferrin with the anti-cytomegalovirus drug cidofovir in vitro. Antiviral Res 2003; 58:159-65. [PMID: 12742576 DOI: 10.1016/s0166-3542(02)00211-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
UNLABELLED Human cytomegalovirus (HCMV) causes severe morbidity and mortality in immunocompromised patients. Treatment of HCMV infections with conventional antiviral drugs like ganciclovir and cidofovir has major drawbacks (i.e. serious side effects). Therefore, combination therapies using drugs with different antiviral mechanisms should be envisaged. Potential synergy between lactoferrin (LF), an antibacterial, antimycotic and antiviral protein, and the antiviral drugs acyclovir, ganciclovir, foscarnet and cidofovir was investigated, using an in vitro test system with the recombinant RC256 HCMV strain. RESULTS Combination of LF with acyclovir and foscarnet resulted in antagonism. When LF and ganciclovir were combined, neither synergy nor antagonism was observed. Strikingly, the combination of LF with cidofovir resulted in marked synergy. The synergistic effect could be explained by inhibition of two subsequent steps in the viral replication cycle: HCMV penetration into the target cells and intracellular synthesis of HCMV DNA. In conclusion, LF might be a potential candidate for combination therapy with cidofovir.
Collapse
Affiliation(s)
- Barry W A van der Strate
- Department of Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration (GUIDE), University Centre for Pharmacy, Ant Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Cheeran MCJ, Hu S, Sheng WS, Peterson PK, Lokensgard JR. CXCL10 production from cytomegalovirus-stimulated microglia is regulated by both human and viral interleukin-10. J Virol 2003; 77:4502-15. [PMID: 12663757 PMCID: PMC152158 DOI: 10.1128/jvi.77.8.4502-4515.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glial cells orchestrate immunocyte recruitment to focal areas of viral infection within the brain and synchronize immune cell functions through a regulated network of cytokines and chemokines. Since recruitment of T lymphocytes plays a critical role in resolving cytomegalovirus (CMV) infection, we investigated the production of a T-cell chemoattractant, CXCL10 (gamma interferon-inducible protein 10) in response to viral infection of human glial cells. Infection with CMV was found to elicit the production of CXCL10 from primary microglial cells but not from astrocytes. This CXCL10 expression was not dependent on secondary protein synthesis but did require the phosphorylation of p38 mitogen-activated protein (MAP) kinase. In addition, migration of activated lymphocytes toward supernatants from CMV-stimulated microglial cells was partially suppressed by anti-CXCL10 antibodies. Since regulation of central nervous system inflammation is essential to allow viral clearance without immunopathology, microglial cells were then treated with anti-inflammatory cytokines. CMV-induced CXCL10 production from microglial cells was suppressed following treatment with interleukin-10 (IL-10) and IL-4 but not following treatment with transforming growth factor beta. The IL-10-mediated inhibition of CXCL10 production was associated with decreased CMV-induced NF-kappa B activation but not decreased p38 MAP kinase phosphorylation. Finally, CMV infection of fully permissive astrocytes resulted in mRNA expression for the viral homologue to human IL-10 (i.e., cmvIL-10 [UL111a]) in its spliced form and conditioned medium from CMV-infected astrocytes inhibited virus-induced CXCL10 production from microglial cells through the IL-10 receptor. These findings present yet another mechanism through which CMV may subvert host immune responses.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Minneapolis Medical Research Foundation and University of Minnesota Medical School, Minneapolis, Minnesota 55404, USA
| | | | | | | | | |
Collapse
|
40
|
Zhu J, Chen J, Hai R, Tong T, Xiao J, Zhan X, Lu S, Liu F. In vitro and in vivo characterization of a murine cytomegalovirus with a mutation at open reading frame m166. J Virol 2003; 77:2882-91. [PMID: 12584312 PMCID: PMC149767 DOI: 10.1128/jvi.77.5.2882-2891.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the mutants, Rvm166, which contained the transposon sequence at open reading frame m166, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. The viral mutant replicated as well as the wild-type Smith strain in vitro in NIH 3T3 cells, whereas the transposon insertion precluded the expression of >65% of the m166 open reading frame. Compared to the wild-type strain and a rescued virus that restored the m166 region, the viral mutant was significantly attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. At 21 days postinfection, the titers of the viral mutant in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice were lower than the titers of the Smith strain and the rescued virus by about 30000-, 10000-, 1000-, 300-, and 800-fold, respectively. Moreover, the virulence of the mutant virus appears to be severely attenuated because no death was found in SCID mice infected with the viral mutant up to 90 days postinfection, whereas all of the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results suggest that m166 probably encodes a virulence factor and is required for MCMV virulence in killing SCID mice and for optimal viral growth in vivo.
Collapse
Affiliation(s)
- Jiaming Zhu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee M, Abenes G, Zhan X, Dunn W, Haghjoo E, Tong T, Tam A, Chan K, Liu F. Genetic analyses of gene function and pathogenesis of murine cytomegalovirus by transposon-mediated mutagenesis. J Clin Virol 2002; 25 Suppl 2:S111-22. [PMID: 12361762 DOI: 10.1016/s1386-6532(02)00096-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Murine cytomegalovirus (MCMV) has a linear genome of 230 kb and encodes more than 170 genes, many of which have not been extensively studied for their functions in pathogenesis in vivo. A Tn3-based transposon was constructed and used to generate MCMV mutants by disrupting viral gene targets. The functions of the mutated genes were investigated by studying the viral mutants in cultured cells and in immunocompetent Balb/c and immunodeficient SCID mice. A pool of MCMV mutants that contained the transposon sequence randomly inserted at the viral genome was generated. Studies of several mutants (e.g. a viral mutant with the transposon inserted at open reading frame m09) in cultured cells and in mice indicate that the presence of the transposon sequence per se in the viral genome does not significantly affect viral growth in vitro and in vivo. Moreover, the genome structures of the viral mutants, including the transposon insertion regions, were stable during replication in cultured cells and in animals. Several viral mutants (e.g. a viral mutant with the transposon at M27) that are attenuated in growth and virulence in animals were identified. These results suggest that the genes mutated in these viral mutants may be important for viral virulence and pathogenesis. The Tn3-based system may be a useful tool for the systematic construction of CMV mutants and for studies of CMV gene functions in viral replication in vitro and in pathogenesis in vivo.
Collapse
Affiliation(s)
- Manfred Lee
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The genetic analysis of the large and complex herpesviruses has been a constant challenge to herpesvirologists. Elegant methods have been developed to produce mutants in infected cells that rely on the cellular recombination machinery. Bacterial artificial chromosomes (BACs), single copy F-factor-based plasmid vectors of intermediate insert capacity, have now enabled the cloning of complete herpesvirus genomes. Infectious virus genomes can be shuttled between Escherichia coli and eukaryotic cells. Herpesvirus BAC DNA engineering in E. coli by homologous recombination requires neither restriction sites nor cloning steps and allows the introduction of a wide variety of DNA modifications. Such E. coli-based technology has provided a safe, fast and effective approach to the systematic mining of the information stored in herpesvirus genomes as a result of their intimate co-evolution with their specific hosts for millions of years. Use of this technique could lead to new developments in clinical virology and basic virology research, and increase the usage of viral genomes as investigative tools and vectors.
Collapse
Affiliation(s)
- Markus Wagner
- Max von Pettenkofer Institute, Department of Virology, Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | |
Collapse
|
43
|
Yu D, Smith GA, Enquist LW, Shenk T. Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol 2002; 76:2316-28. [PMID: 11836410 PMCID: PMC153828 DOI: 10.1128/jvi.76.5.2316-2328.2002] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The full-length genome of human cytomegalovirus strain AD169 was cloned as an infectious bacterial artificial chromosome (BAC) plasmid, pAD/Cre. The BAC vector, flanked by LoxP sites, was inserted immediately after the Us28 open reading frame without deletion of any viral sequences. The BAC vector contained the Cre recombinase-encoding gene disrupted by an intron under control of the simian virus 40 early promoter. When pAD/Cre was transfected into primary human foreskin fibroblast cells, Cre was expressed and mediated site-specific recombination between the two LoxP sites, excising the BAC DNA backbone. This gave rise to progeny virus that was wild type with the exception of an inserted 34-bp LoxP site. We performed site-directed mutagenesis on pAD/Cre to generate a series of viruses in which the TRL/IRL13 diploid genes were disrupted and subsequently repaired. The mutants reach the same titer as the wild-type virus, indicating that the TRL/IRL13 open reading frames are not required for virus growth in cell culture. The sequence of the TRL13 open reading frame in the low-passage Toledo strain of human cytomegalovirus is quite different from the corresponding region in the AD169 strain. One of multiple changes is a frameshift mutation. As a consequence, strain Toledo encodes a putative TRL13 protein whose C-terminal domain is larger (extending through the TRL14 coding region) and encodes in a reading frame different from that of strain AD169. We speculate that the strain AD169 coding region has drifted during passage in the laboratory. We propose that TRL13 has been truncated in strain AD169 and that the partially overlapping TRL14 open reading frame is not functional. This view is consistent with the presence of both TRL13 and -14 on all mRNAs that we have mapped from this region, an organization that would include the much longer strain Toledo TRL13 open reading frame on the mRNAs.
Collapse
Affiliation(s)
- Dong Yu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
44
|
Meyer AL, Bruening EE, Dunkle WE, Booth RJ, Steinbaugh BA, Vara Prasad JV. PD0084430: a non-nucleoside inhibitor of human cytomegalovirus replication in vitro. Antiviral Res 2001; 52:289-300. [PMID: 11675146 DOI: 10.1016/s0166-3542(01)00170-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a major opportunistic pathogen in immunocompromised individuals. Current therapies target viral DNA replication and accumulate mutations that yield cross-resistance among the approved drugs. A novel, non-nucleoside inhibitor of HCMV replication, PD0084430, was identified in a screening assay using the HCMV beta-galactosidase recombinant RC256. The EC(50) for PD0084430 by inhibition of beta-galactosidase production is 1+/-0.7 microM. This antiviral activity was confirmed by yield reduction and plaque reduction assays using HCMV strain AD169. The TC(50) of PD0084430 as measured by (4C)thymidine incorporation is approximately 30 microM and by XTT is approximately 90 microM. The TC(50) for inhibition of cellular proliferation is approximately 20 microM. Time of addition experiments displayed a similar drop in efficacy for both PD0084430 and GCV when added after the onset of viral DNA replication. The transcomplementation assay for viral DNA replication, using a transfected ori(Lyt) containing plasmid, confirmed that viral DNA synthesis was inhibited at the same concentrations that showed antiviral activity. Western blots showed no apparent block of immediate early or early gene expression. Two ganciclovir (GCV) resistant isolates of HCMV tested showed no cross-resistance to PD0084430. These data suggested a potentially promising novel compound that inhibited HCMV at or before viral DNA replication. However, in vivo testing in mice dosed either orally or intraperitoneally showed rapid glucuronidation on the -OH group. SAR studies on this backbone showed that the -OH group was essential for the antiviral activity in vitro.
Collapse
Affiliation(s)
- A L Meyer
- Department of Infectious Diseases, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Boulware SL, Bronstein JC, Nordby EC, Weber PC. Identification and characterization of a benzothiophene inhibitor of herpes simplex virus type 1 replication which acts at the immediate early stage of infection. Antiviral Res 2001; 51:111-25. [PMID: 11431036 DOI: 10.1016/s0166-3542(01)00147-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analysis of a large compound library in a high throughput virus infection assay screen identified the benzothiophene PD146626 as a potent and specific inhibitor of herpes simplex virus type 1 (HSV-1) replication. PD146626 possessed an EC(50) and EC(90) against HSV-1 of 0.1 and 1 microM, respectively, and mediated no detectable cytotoxicity in cells at concentrations up to 1 microM. Western blot analyses and time of addition experiments demonstrated that in the presence of PD146626 HSV-1 underwent a specific block in viral gene expression at the immediate early stage. However, several observations indicated that a cellular function rather than a viral immediate early transactivator protein represented the molecular target for PD146626, including the lack of resistance of VP16 and ICP0 mutant viruses to the compound, the inability to select resistant strains of HSV-1 following exhaustive serial passaging of virus in the presence of the compound, and the sensitivity of human cytomegalovirus, which lacks VP16 and ICP0 homologs, to the compound. Moreover, kinetic studies suggested an unusual pattern of responsiveness of the host cell to PD146626, in that the compound could induce an extended antiviral state in cells after only a brief exposure. Together these results suggest that PD146626 targets a novel cellular function that is critical for the expression of HSV-1 immediate early genes but not host cell genes.
Collapse
Affiliation(s)
- S L Boulware
- Infectious Diseases Section, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
46
|
Ahn JH, Xu Y, Jang WJ, Matunis MJ, Hayward GS. Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 2001; 75:3859-72. [PMID: 11264375 PMCID: PMC114877 DOI: 10.1128/jvi.75.8.3859-3872.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 01/19/2001] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early protein IE2 is a nuclear phosphoprotein that is believed to be a key regulator in both lytic and latent infections. Using yeast two-hybrid screening, small ubiquitin-like modifiers (SUMO-1, SUMO-2, and SUMO-3) and a SUMO-conjugating enzyme (Ubc9) were isolated as IE2-interacting proteins. In vitro binding assays with glutathione S-transferase (GST) fusion proteins provided evidence for direct protein-protein interaction. Mapping data showed that the C-terminal end of SUMO-1 is critical for interaction with IE2 in both yeast and in vitro binding assays. IE2 was efficiently modified by SUMO-1 or SUMO-2 in cotransfected cells and in cells infected with a recombinant adenovirus expressing HCMV IE2, although the level of modification was much lower in HCMV-infected cells. Two lysine residues at positions 175 and 180 were mapped as major alternative SUMO-1 conjugation sites in both cotransfected cells and an in vitro sumoylation assay and could be conjugated by SUMO-1 simultaneously. Although mutations of these lysine residues did not interfere with the POD (or ND10) targeting of IE2, overexpression of SUMO-1 enhanced IE2-mediated transactivation in a promoter-dependent manner in reporter assays. Interestingly, many other cellular proteins identified as IE2 interaction partners in yeast two-hybrid assays also interact with SUMO-1, suggesting that either directly bound or covalently conjugated SUMO moieties may act as a bridge for interactions between IE2 and other SUMO-1-modified or SUMO-1-interacting proteins. When we investigated the intracellular localization of SUMO-1 in HCMV-infected cells, the pattern changed from nuclear punctate to predominantly nuclear diffuse in an IE1-dependent manner at very early times after infection, but with some SUMO-1 protein now associated with IE2 punctate domains. However, at late times after infection, SUMO-1 was predominantly detected within viral DNA replication compartments containing IE2. Taken together, these results show that HCMV infection causes the redistribution of SUMO-1 and that IE2 both physically binds to and is covalently modified by SUMO moieties, suggesting possible modulation of both the function of SUMO-1 and protein-protein interactions of IE2 during HCMV infection.
Collapse
Affiliation(s)
- J H Ahn
- Molecular Virology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
47
|
Cheeran MC, Hu S, Yager SL, Gekker G, Peterson PK, Lokensgard JR. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neurovirol 2001; 7:135-47. [PMID: 11517386 DOI: 10.1080/13550280152058799] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Glial cells function as sensors for infection within the brain and produce cytokines to limit viral replication and spread. We examined both cytokine (TNF-alpha, IL-1beta, and IL-6) and chemokine (MCP-1, MIP-1alpha, RANTES, and IL-8) production by primary human glial cells in response to cytomegalovirus (CMV). Although CMV-infected astrocytes did not produce antiviral cytokines, they generated significant quantities of the chemokines MCP-1 and IL-8 in response to viral infection. On the other hand, supernatants from CMV-stimulated purified microglial cell cultures showed a marked increase in the production of TNF-alpha and IL-6, as well as chemokines. Supernatants from CMV-infected astrocyte cultures induced the migration of microglia towards chemotactic signals generated from infected astrocytes. Antibodies to MCP-1, but not to MIP-1alpha, RANTES, or IL-8, inhibited this migratory activity. These findings suggest that infected astrocytes may use MCP-1 to recruit antiviral cytokine-producing microglial cells to foci of infection. To test this hypothesis, cocultures of astrocytes and microglial cells were infected with CMV. Viral gene expression in these cocultures was 60% lower than in CMV infected purified astrocyte cultures lacking microglia. These results support the hypothesis that microglia play an important antiviral role in defense of the brain against CMV. The host defense function of microglial cells may be directed in part by chemokines, such as MCP-1, produced by infected astrocytes.
Collapse
Affiliation(s)
- M C Cheeran
- Institute for Brain and Immune Disorders, Minneapolis Medical Research Foundation, Minneapolis, Minnesota 55404, USA
| | | | | | | | | | | |
Collapse
|
48
|
Smith RL, Traul DL, Schaack J, Clayton GH, Staley KJ, Wilcox CL. Characterization of promoter function and cell-type-specific expression from viral vectors in the nervous system. J Virol 2000; 74:11254-61. [PMID: 11070024 PMCID: PMC113226 DOI: 10.1128/jvi.74.23.11254-11261.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral vectors have become important tools to effectively transfer genes into terminally differentiated cells, including neurons. However, the rational for selection of the promoter for use in viral vectors remains poorly understood. Comparison of promoters has been complicated by the use of different viral backgrounds, transgenes, and target tissues. Adenoviral vectors were constructed in the same vector background to directly compare three viral promoters, the human cytomegalovirus (CMV) immediate-early promoter, the Rous sarcoma virus (RSV) long terminal repeat, and the adenoviral E1A promoter, driving expression of the Escherichia coli lacZ gene or the gene for the enhanced green fluorescent protein. The temporal patterns, levels of expression, and cytotoxicity from the vectors were analyzed. In sensory neuronal cultures, the CMV promoter produced the highest levels of expression, the RSV promoter produced lower levels, and the E1A promoter produced limited expression. There was no evidence of cytotoxicity produced by the viral vectors. In vivo analyses following stereotaxic injection of the vector into the rat hippocampus demonstrated differences in the cell-type-specific expression from the CMV promoter versus the RSV promoter. In acutely prepared hippocampal brain slices, marked differences in the cell type specificity of expression from the promoters were confirmed. The CMV promoter produced expression in hilar regions and pyramidal neurons, with minimal expression in the dentate gyrus. The RSV promoter produced expression in dentate gyrus neurons. These results demonstrate that the selection of the promoter is critical for the success of the viral vector to express a transgene in specific cell types.
Collapse
Affiliation(s)
- R L Smith
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
49
|
Henry SC, Schmader K, Brown TT, Miller SE, Howell DN, Daley GG, Hamilton JD. Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection. J Virol Methods 2000; 89:61-73. [PMID: 10996640 DOI: 10.1016/s0166-0934(00)00202-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A recombinant murine cytomegalovirus (mCMV) that expresses enhanced green fluorescent protein (EGFP) under control of the native immediate-early 1/3 promoter was constructed to detect directly sites of viral activity in latent and reactivated infections. The recombinant virus had acute and latent infection characteristics similar to those of wild-type mCMV. Rare green-fluorescing foci were observed in paraffin sections from lungs and spleens infected latently. Positive immunoperoxidase staining for EGFP in sections of the same lung tissues suggests that these cells may be sites of restricted viral gene expression. EGFP was detected easily in tissue explants reactivating from latent infection in vitro. Morphology and adhesion characteristics of fluorescing cells suggest that viral reactivation occurs in tissue macrophages in explant cultures. The observations presented in this study demonstrate the usefulness of EGFP-expressing recombinants as tools for direct tracking of mCMV activity in vivo and in vitro.
Collapse
Affiliation(s)
- S C Henry
- Department of Veterans Affairs, Medical Research Service and the Research Center on AIDS and HIV Infection, 111-H, 508 Fulton Street, Durham, NC 27705, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 2000; 74:7720-9. [PMID: 10933677 PMCID: PMC112300 DOI: 10.1128/jvi.74.17.7720-7729.2000] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Here, we have subjected the HCMV BAC to random transposon (Tn) mutagenesis using a Tn1721-derived insertion sequence and have provided the conditions for excision of the BAC cassette. We report on a fast and efficient screening procedure for a Tn insertion library. Bacterial clones containing randomly mutated full-length HCMV genomes were transferred into 96-well microtiter plates. A PCR screening method based on two Tn primers and one primer specific for the desired genomic position of the Tn insertion was established. Within three consecutive rounds of PCR a Tn insertion of interest can be assigned to a specific bacterial clone. We applied this method to retrieve mutants of HCMV envelope glycoprotein genes. To determine the infectivities of the mutant HCMV genomes, the DNA of the identified BACs was transfected into permissive fibroblasts. In contrast to BACs with mutations in the genes coding for gB, gH, gL, and gM, which did not yield infectious virus, BACs with disruptions of open reading frame UL4 (gp48) or UL74 (gO) were viable, although gO-deficient viruses showed a severe growth deficit. Thus, gO (UL74), a component of the glycoprotein complex III, is dispensable for viral growth. We conclude that our approach of PCR screening for Tn insertions will greatly facilitate the functional analysis of herpesvirus genomes.
Collapse
Affiliation(s)
- U Hobom
- Lehrstuhl für Virologie, Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|