1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Zhang J, Zhao H, Zhou Q, Yang X, Qi H, Zhao Y, Yang L. Discovery of Cyclic Peptide Inhibitors Targeted on TNFα-TNFR1 from Computational Design and Bioactivity Verification. Molecules 2024; 29:5147. [PMID: 39519786 PMCID: PMC11547827 DOI: 10.3390/molecules29215147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Activating tumor necrosis factor receptor 1 (TNFR1) with tumor necrosis factor alpha (TNFα) is one of the key pathological mechanisms resulting in the exacerbation of rheumatoid arthritis (RA) immune response. Despite various types of drugs being available for the treatment of RA, a series of shortcomings still limits their application. Therefore, developing novel peptide drugs that target TNFα-TNFR1 interaction is expected to expand therapeutic drug options. In this study, the detailed interaction mechanism between TNFα and TNFR1 was elucidated, based on which, a series of linear peptides were initially designed. To overcome its large conformational flexibility, two different head-to-tail cyclization strategies were adopted by adding a proline-glycine (GP) or cysteine-cysteine (CC) to form an amide or disulfide bond between the N-C terminal. The results indicate that two cyclic peptides, R1_CC4 and α_CC8, exhibit the strongest binding free energies. α_CC8 was selected for further optimization using virtual mutations through in vitro activity and toxicity experiments due to its optimal biological activity. The L16R mutant was screened, and its binding affinity to TNFR1 was validated using ELISA assays. This study designed a novel cyclic peptide structure with potential anti-inflammatory properties, possibly bringing an additional choice for the treatment of RA in the future.
Collapse
Affiliation(s)
- Jiangnan Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Huijian Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Qianqian Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Xiaoyue Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Haoran Qi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| | - Yongxing Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Longhua Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (J.Z.); (H.Z.); (Q.Z.); (X.Y.); (H.Q.)
| |
Collapse
|
3
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Gnanaskandan S, Srikanth P. Nuclear Factor Kappa B p65: A Possible Biomarker for Persistent Inflammation in HIV-1 Infection? Cureus 2024; 16:e71308. [PMID: 39529759 PMCID: PMC11552464 DOI: 10.7759/cureus.71308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Low-grade inflammation in people living with HIV (PWH) has become a significant contributor to the development of non-communicable diseases (NCDs) such as heart disease, stroke, and renal dysfunction. Though antiretroviral therapy (ART) has dramatically reduced mortality by limiting the emergence of opportunistic infections, it has not been successful in eliminating the remaining chronic, low-grade inflammation and activation that persists in the infected despite viral suppression and better CD4+ T cell count. Nonetheless, this relatively asymptomatic and subclinical chronic inflammation remains poorly understood and has become a major contributor to mortality in PWH. Another important component involved in this step is the Nuclear Factor kappa B (NF-κB) which is a central transcription factor in the immune system to respond to infection. Specifically, the p65/RELA subunit attaches to the HIV LTR (long terminal repeat) gene and consequently initiates the synthesis of genes related to inflammation and immune reactions. Persistent low-level chronic inflammation contributes to the pathophysiology of metabolic-inflammatory NCDs. Therefore, this review aims to assess the complex contextual function of NF-κB p65 during HIV-1 disease, particularly among individuals on ART who achieve viral suppression. As much as ART has helped to arrest the progression of the virus, immune function, and chronic inflammation have not been reversed in most PWH. It is, therefore, pertinent to know how the NF-κB p65 molecule remains involved in those with persistent immune inflammation concerns to enhance strategies on the same. This review will also discuss the possible variation in NF-κB p65 activity in particular population groups such as MSM (men who have sex with men) to acquire additional information that could potentially enhance the treatment.
Collapse
Affiliation(s)
- Sivasubramaniyan Gnanaskandan
- Microbiology, Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra Faculty of Allied Health Science, Chennai, IND
| | - Padma Srikanth
- Microbiology, Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra Faculty of Allied Health Science, Chennai, IND
| |
Collapse
|
5
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
6
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
7
|
Wilhelm E, Poirier M, Da Rocha M, Bédard M, McDonald PP, Lavigne P, Hunter CL, Bell B. Mitotic deacetylase complex (MiDAC) recognizes the HIV-1 core promoter to control activated viral gene expression. PLoS Pathog 2024; 20:e1011821. [PMID: 38781120 PMCID: PMC11115230 DOI: 10.1371/journal.ppat.1011821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.
Collapse
Affiliation(s)
| | | | - Morgane Da Rocha
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Mikaël Bédard
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Patrick P. McDonald
- Pulmonary Division, Medicine Faculty, Université de Sherbrooke; and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Pierre Lavigne
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | | | - Brendan Bell
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
Lampson BL, Ramίrez AS, Baro M, He L, Hegde M, Koduri V, Pfaff JL, Hanna RE, Kowal J, Shirole NH, He Y, Doench JG, Contessa JN, Locher KP, Kaelin WG. Positive selection CRISPR screens reveal a druggable pocket in an oligosaccharyltransferase required for inflammatory signaling to NF-κB. Cell 2024; 187:2209-2223.e16. [PMID: 38670073 PMCID: PMC11149550 DOI: 10.1016/j.cell.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ana S Ramίrez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lixia He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Vidyasagar Koduri
- Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Jamie L Pfaff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Yanfeng He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Dimapasoc M, Moran JA, Cole SW, Ranjan A, Hourani R, Kim JT, Wender PA, Marsden MD, Zack JA. Defining the Effects of PKC Modulator HIV Latency-Reversing Agents on Natural Killer Cells. Pathog Immun 2024; 9:108-137. [PMID: 38765786 PMCID: PMC11101012 DOI: 10.20411/pai.v9i1.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Background Latency reversing agents (LRAs) such as protein kinase C (PKC) modulators can reduce rebound-competent HIV reservoirs in small animal models. Furthermore, administration of natural killer (NK) cells following LRA treatment improves this reservoir reduction. It is currently unknown why the combination of a PKC modulator and NK cells is so potent and whether exposure to PKC modulators may augment NK cell function in some way. Methods Primary human NK cells were treated with PKC modulators (bryostatin-1, prostratin, or the designed, synthetic bryostatin-1 analog SUW133), and evaluated by examining expression of activation markers by flow cytometry, analyzing transcriptomic profiles by RNA sequencing, measuring cytotoxicity by co-culturing with K562 cells, assessing cytokine production by Luminex assay, and examining the ability of cytokines and secreted factors to independently reverse HIV latency by co-culturing with Jurkat-Latency (J-Lat) cells. Results PKC modulators increased expression of proteins involved in NK cell activation. Transcriptomic profiles from PKC-treated NK cells displayed signatures of cellular activation and enrichment of genes associated with the NFκB pathway. NK cell cytotoxicity was unaffected by prostratin but significantly decreased by bryostatin-1 and SUW133. Cytokines from PKC-stimulated NK cells did not induce latency reversal in J-Lat cell lines. Conclusions Although PKC modulators have some significant effects on NK cells, their contribution in "kick and kill" strategies is likely due to upregulating HIV expression in CD4+ T cells, not directly enhancing the effector functions of NK cells. This suggests that PKC modulators are primarily augmenting the "kick" rather than the "kill" arm of this HIV cure approach.
Collapse
Affiliation(s)
- Melanie Dimapasoc
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
| | - Jose A. Moran
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California
| | - Steve W. Cole
- UCLA Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alok Ranjan
- Department of Chemistry, Stanford University, Stanford, California
| | - Rami Hourani
- Department of Chemistry, Stanford University, Stanford, California
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California
- Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, California
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
10
|
Kufera JT, Armstrong C, Wu F, Singhal A, Zhang H, Lai J, Wilkins HN, Simonetti FR, Siliciano JD, Siliciano RF. CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation. J Exp Med 2024; 221:e20231511. [PMID: 38270554 PMCID: PMC10818065 DOI: 10.1084/jem.20231511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy as a barrier to cure. The antigen-driven proliferation of infected cells is a major mechanism of reservoir persistence. However, activation through the T cell antigen receptor (TCR) can induce latent proviruses, leading to viral cytopathic effects and immune clearance. In single-cell studies, we show that, relative to uninfected cells or cells with a defective provirus, CD4+ T cells with an intact provirus have a profound proliferative defect in response to TCR stimulation. Virion production was observed in only 16.5% of cultures with an intact provirus, but proliferation was reduced even when no virion production was detected. Proliferation was inversely correlated with in vivo clone size. These results may reflect the effects of previous in vivo proliferation and do not support attempts to reduce the reservoir with antiproliferative agents, which may have greater effects on normal T cell responses.
Collapse
Affiliation(s)
- Joshua T. Kufera
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ciara Armstrong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Singhal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah N. Wilkins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
11
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
12
|
Chang J, Parent LJ. HIV-1 Gag co-localizes with euchromatin histone marks at the nuclear periphery. J Virol 2023; 97:e0117923. [PMID: 37991367 PMCID: PMC10734548 DOI: 10.1128/jvi.01179-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The traditional view of retrovirus assembly posits that packaging of gRNA by HIV-1 Gag occurs in the cytoplasm or at the plasma membrane. However, our previous studies showing that HIV-1 Gag enters the nucleus and binds to USvRNA at transcription sites suggest that gRNA selection may occur in the nucleus. In the present study, we observed that HIV-1 Gag trafficked to the nucleus and co-localized with USvRNA within 8 hours of expression. In infected T cells (J-Lat 10.6) reactivated from latency and in a HeLa cell line stably expressing an inducible Rev-dependent HIV-1 construct, we found that Gag preferentially localized with euchromatin histone marks associated with enhancer and promoter regions near the nuclear periphery, which is the favored site HIV-1 integration. These observations support the innovative hypothesis that HIV-1 Gag associates with euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized gRNA for packaging.
Collapse
Affiliation(s)
- Jordan Chang
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Leslie J. Parent
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
13
|
Sumala S, Ekalaksananan T, Pientong C, Buddhisa S, Passorn S, Duangjit S, Janyakhantikul S, Suktus A, Bumrungthai S. The Association of HHV-6 and the TNF-α (-308G/A) Promotor with Major Depressive Disorder Patients and Healthy Controls in Thailand. Viruses 2023; 15:1898. [PMID: 37766304 PMCID: PMC10535374 DOI: 10.3390/v15091898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a silent global health problem that can lead to suicide. MDD development is suggested to result from numerous risk factors, including genetic factors. A precise tool for MDD diagnosis is currently not available. Recently, inflammatory processes have been identified as being strongly involved in MDD development and the reactivation of human herpesvirus type 6 (HHV-6), upregulating cytokines such as TNF-α, which are associated with MDD. Therefore, this study aimed to determine the association of HHV-6 with genetic factors, especially TNF-α mutation, in MDD patients and their relatives compared to healthy controls. The Patient Health Questionnaire (PHQ-9) was used to evaluate MDD status, and 471 oral buccal samples were investigated for HHV-6 infection and viral copy number by qPCR. TNF-α (-308G/A) gene mutation and the cytokines TNF-α, IL-6, and IL-10 were analyzed by high-resolution melting (HRM) analysis and enzyme-linked immunosorbent assay (ELISA). Whole-exome sequencing of buccal samples was performed to analyze for genetic factors. The results showed significantly higher HHV-6 positivities and viral loads in MDD patients (15/59 (25.67%) and 14,473 ± 16,948 copies/µL DNA) and their relatives (blood relatives 17/36 (47.22%) and 8146 ± 5656 copies/µL DNA); non-blood relatives 7/16 (43.75%) and 20,721 ± 12,458 copies/µL DNA) compared to the healthy population (51/360 (14.17%) and 6303 ± 5791 copies/µL DNA). The TNF-α (-308G/A) mutation showed no significant difference. Surprisingly, 12/26 (46.15%) participants with the TNF-α (-308G/A) mutation showed HHV-6 positivities at higher rates than those with wild-type TNF-α (-308G) (70/267 (26.22%)). HHV-6-positive participants with TNF-α (-308G/A) showed higher levels of TNF-α, IL-6, and IL-10 than those of negative control. Exome analysis revealed that common mutations in immune genes were associated with depression. Therefore, this study unveiled the novel association of inflammatory gene TNF-α (-308G/A) mutations with HHV-6 reactivation, which could represent a combined risk factor for MDD. This result could induce further research on MDD development and clinical applications.
Collapse
Affiliation(s)
- Sasiwimon Sumala
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Supaporn Passorn
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Sureewan Duangjit
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Somwang Janyakhantikul
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Areeya Suktus
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Bumrungthai
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
14
|
Seo I, Kim S, Hyun J, Kim Y, Park HS, Yoon J, Bhang SH. Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90 α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med 2023; 8:e10560. [PMID: 37693062 PMCID: PMC10487335 DOI: 10.1002/btm2.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.
Collapse
Affiliation(s)
- Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeong‐Kee Yoon
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
15
|
Jamal I, Paudel A, Thompson L, Abdelmalek M, Khan IA, Singh VB. Sulforaphane prevents the reactivation of HIV-1 by suppressing NFκB signaling. J Virus Erad 2023; 9:100341. [PMID: 37663574 PMCID: PMC10469555 DOI: 10.1016/j.jve.2023.100341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Despite more than 20 years of combination antiretroviral therapy (cART), complete eradication of HIV remains a daunting task. While cART has been very effective in limiting new cycles of infection and keeping viral load below detectable levels with partial restoration of immune functions, it cannot provide a cure. Evidently, the interruption of cART leads to a quick rebound of the viral load within a few weeks. These consistent observations have revealed HIV ability to persist as an undetectable latent reservoir in a variety of tissues that remain insensitive to antiretroviral therapies. The 'Block-and-Lock' approach to drive latent cells into deep latency has emerged as a viable strategy to achieve a functional cure. It entails the development of latency-promoting agents with anti-HIV functions. Recent reports have suggested sulforaphane (SFN), an inducer of NRF-2 (nuclear erythroid 2-related factor 2)-mediated antioxidative signaling, to possess anti-HIV properties by restricting HIV replication at the early stages. However, the effect of SFN on the expression of integrated provirus remains unexplored. We have hypothesized that SFN may promote latency and prevent reactivation. Our results indicate that SFN can render latently infected monocytes and CD4+ T cells resistant to reactivation. SFN treatments antagonized the effects of known latency reactivating agents, tumor necrosis pactor (TNF-α), and phorbol 12-myristate 13-acetate (PMA), and caused a significant reduction in HIV transcription, viral RNA copies, and p24 levels. Furthermore, this block of reactivation was found to be mediated by SFN-induced NRF-2 signaling that specifically decreased the activation of NFκB signaling and thus restricted the HIV-1 promoter (5'LTR) activity. Overall, our study provides compelling evidence to highlight the latency-promoting potential of SFN which could be used in the 'Block-and-Lock' approach to achieve an HIV cure.
Collapse
Affiliation(s)
- Imran Jamal
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Anisha Paudel
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Landon Thompson
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Michel Abdelmalek
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Irfan A. Khan
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Vir B. Singh
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| |
Collapse
|
16
|
McMyn NF, Varriale J, Fray EJ, Zitzmann C, MacLeod H, Lai J, Singhal A, Moskovljevic M, Garcia MA, Lopez BM, Hariharan V, Rhodehouse K, Lynn K, Tebas P, Mounzer K, Montaner LJ, Benko E, Kovacs C, Hoh R, Simonetti FR, Laird GM, Deeks SG, Ribeiro RM, Perelson AS, Siliciano RF, Siliciano JM. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J Clin Invest 2023; 133:e171554. [PMID: 37463049 PMCID: PMC10471168 DOI: 10.1172/jci171554] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear. Recent integration site studies indicate gradual selection against inducible, intact proviruses, raising speculation that decades of ART might allow treatment interruption without viral rebound. Therefore, we measured the reservoir in 42 people on long-term ART (mean 22 years) using a quantitative viral outgrowth assay. After 7 years of ART, there was no long-term decrease in the frequency of inducible, replication-competent proviruses but rather an increase with an estimated doubling time of 23 years. Another reservoir assay, the intact proviral DNA assay, confirmed that reservoir decay with t1/2 of 44 months did not continue with long-term ART. The lack of decay reflected proliferation of infected cells. Most inducible, replication-competent viruses (79.8%) had env sequences identical to those of other isolates from the same sample. Thus, although integration site analysis indicates changes in reservoir composition, the proliferation of CD4+ T cells counteracts decay, maintaining the frequency of inducible, replication-competent proviruses at roughly constant levels over the long term. These results reinforce the need for lifelong ART.
Collapse
Affiliation(s)
- Natalie F. McMyn
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Varriale
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily J. Fray
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anushka Singhal
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Mauro A. Garcia
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brianna M. Lopez
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vivek Hariharan
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth Lynn
- The Wistar Institute, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karam Mounzer
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | | | | | | | | | - Ruy M. Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Robert F. Siliciano
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | | |
Collapse
|
17
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
18
|
Ghofrani J, Bowen A, Chen J, Balakrishnan PB, Powell AB, Cherukula K, Cruz CRY, Jones RB, Lynch RM, Sweeney EE, Fernandes R. Nanodepots Encapsulating a Latency Reversing Agent and Broadly Neutralizing Antibody Enhance Natural Killer Cell Cytotoxicity Against an in vitro Model of Latent HIV. Int J Nanomedicine 2023; 18:4055-4066. [PMID: 37520301 PMCID: PMC10386837 DOI: 10.2147/ijn.s401304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Current antiretroviral therapies (ART) for human immunodeficiency virus (HIV) are not curative, as the virus persists in latent reservoirs, requiring lifelong adherence to ART and increasing the risk of co-morbidities. "Shock and kill" approaches to reactivate HIV from latent reservoirs followed by administration of anti-HIV drugs represent a promising strategy for eradicating latent HIV. To achieve effective shock and kill, we describe a strategy to eradicate the HIV reservoir that combines latency reversing agents (LRAs), broadly neutralizing antibodies (bnAbs), and natural killer (NK) cells. This strategy utilizes a polymer nanodepot (ND) that co-encapsulates the LRA and bnAb to reactivate latent infection and elicit enhanced cytotoxicity from co-administered NK cells. Methods Poly(lactic-co-glycolic acid) (PLGA) NDs were synthesized using the nanoprecipitation method to co-encapsulate an LRA (TNF-α) and a bnAb (3BNC117) (TNF-α-3BNC117-NDs). ACH-2 cells were used as a cellular model of latent HIV infection. An NK92 subline, genetically modified to constitutively express the Fc receptor CD16, was administered to ACH-2 cells in combination with TNF-α-3BNC117-NDs. ACH-2 cell death and extracellular p24 were measured via flow cytometry and ELISA, respectively. Results Stable PLGA NDs co-encapsulated TNF-α and 3BNC117 with high efficiencies and released these agents in physiological conditions. NK92 phenotype remained similar in the presence of TNF-α-3BNC117-NDs. TNF-α released from NDs efficiently reactivated HIV in ACH-2 cells, as measured by a 3.0-fold increase in the frequency of intracellular p24 positive cells. Released 3BNC117 neutralized and bound reactivated virus, targeting 57.5% of total ACH-2 cells. Critically, TNF-α-3BNC117-NDs significantly enhanced NK92 cell-mediated killing of ACH-2 cells (1.9-fold) and reduced extracellular levels of p24 to baseline. Conclusion These findings suggest the therapeutic potential of our novel ND-based tripartite strategy to reactivate HIV from latently infected cells, generate an HIV-specific site for bnAb binding, and enhance the killing of reactivated HIV-infected target cells by NK92 cells.
Collapse
Affiliation(s)
- Joshua Ghofrani
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Allan Bowen
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Jie Chen
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | | | - Allison B Powell
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Kondareddy Cherukula
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Conrad Russell Y Cruz
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rebecca M Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Rohan Fernandes
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
- Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
19
|
Gong K, Lai Y. Development trends of immune activation during HIV infection in recent three decades: a bibliometric analysis based on CiteSpace. Arch Microbiol 2023; 205:283. [PMID: 37432538 DOI: 10.1007/s00203-023-03624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
This study aimed to evaluate and pinpoint the status, hot areas, and frontiers of immune activation during HIV infection utilizing CiteSpace. From 1990 to 2022, we searched for studies on immune activation during HIV infection in the Web of Science Core Collection. CiteSpace was used to visually analyze the publications to identify the research status and pertinent research hotspots and frontiers in terms of the countries, institutions, authors, references, journals, and keywords. The Web of Science Core Collection yielded 5321 articles on immune activation during HIV infection. With 2854 and 364 articles, the United States and the University of California, San Francisco were the leading nation and institution in this domain. Steven G. Deeks has published 95 papers and is the most published author. The top cited articles on microbial translocation as a significant factor during HIV infection were published by Brenchley et al. Research on molecular/biology/genetics is often referenced in publications in the journals of molecular/biology/immunology. Inflammation, risk, mortality, cardiovascular disease, persistence, and biomarkers will be high-frequency words that are hot topics of research. According to the results, there was a strong collaboration between countries and organizations but little collaboration among authors. Molecular biology, immunology, and medicine are the main study subjects. The current hot topics in research are inflammation, risk, mortality, cardiovascular disease, persistence, and biomarkers. Future studies should concentrate on reducing the pathological changes caused by inflammation and altering the mechanisms of immune activation to reduce the size of the viral reservoir.
Collapse
Affiliation(s)
- Kang Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
21
|
Chang J, Parent LJ. HIV-1 Gag colocalizes with euchromatin histone marks at the nuclear periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529990. [PMID: 36865288 PMCID: PMC9980143 DOI: 10.1101/2023.02.24.529990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The retroviral Gag protein of human immunodeficiency virus type 1 (HIV-1) plays a central role in the selection of unspliced viral genomic RNA for packaging into new virions. Previously, we demonstrated that full-length HIV-1 Gag undergoes nuclear trafficking where it associates with unspliced viral RNA (vRNA) at transcription sites. To further explore the kinetics of HIV-1 Gag nuclear localization, we used biochemical and imaging techniques to examine the timing of HIV-1 entry into the nucleus. We also aimed to determine more precisely Gag's subnuclear distribution to test the hypothesis that Gag would be associated with euchromatin, the transcriptionally active region of the nucleus. We observed that HIV-1 Gag localized to the nucleus shortly after its synthesis in the cytoplasm, suggesting that nuclear trafficking was not strictly concentration-dependent. Furthermore, we found that HIV-1 Gag preferentially localized to the transcriptionally active euchromatin fraction compared to the heterochromatin-rich region in a latently-infected CD4+ T cell line (J-Lat 10.6) treated with latency-reversal agents. Interestingly, HIV-1 Gag was more closely associated with transcriptionally-active histone markers near the nuclear periphery, where the HIV-1 provirus was previously shown to integrate. Although the precise function of Gag's association with histones in transcriptionally-active chromatin remains uncertain, together with previous reports, this finding is consistent with a potential role for euchromatin-associated Gag molecules to select newly transcribed unspliced vRNA during the initial stage of virion assembly. Importance The traditional view of retroviral assembly posits that HIV-1 Gag selection of unspliced vRNA begins in the cytoplasm. However, our previous studies demonstrated that HIV-1 Gag enters the nucleus and binds to unspliced HIV-1 RNA at transcription sites, suggesting that genomic RNA selection may occur in the nucleus. In the present study, we observed nuclear entry of HIV-1 Gag and co-localization with unspliced viral RNA within 8 hours post-expression. In CD4+ T cells (J-Lat 10.6) treated with latency reversal agents, as well as a HeLa cell line stably expressing an inducible Rev-dependent provirus, we found that HIV-1 Gag preferentially localized with histone marks associated with enhancer and promoter regions of transcriptionally active euchromatin near the nuclear periphery, which favors HIV-1 proviral integration sites. These observations support the hypothesis that HIV-1 Gag hijacks euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized genomic RNA for packaging.
Collapse
|
22
|
Abstract
Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.
Collapse
|
23
|
Furtado Milão J, Love L, Gourgi G, Derhaschnig L, Svensson JP, Sönnerborg A, van Domselaar R. Natural killer cells induce HIV-1 latency reversal after treatment with pan-caspase inhibitors. Front Immunol 2022; 13:1067767. [PMID: 36561752 PMCID: PMC9763267 DOI: 10.3389/fimmu.2022.1067767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The establishment of a latency reservoir is the major obstacle for a cure of HIV-1. The shock-and-kill strategy aims to reactivate HIV-1 replication in HIV -1 latently infected cells, exposing the HIV-1-infected cells to cytotoxic lymphocytes. However, none of the latency reversal agents (LRAs) tested so far have shown the desired effect in people living with HIV-1. We observed that NK cells stimulated with a pan-caspase inhibitor induced latency reversal in co-cultures with HIV-1 latently infected cells. Synergy in HIV-1 reactivation was observed with LRAs prostratin and JQ1. The supernatants of the pan-caspase inhibitor-treated NK cells activated the HIV-1 LTR promoter, indicating that a secreted factor by NK cells was responsible for the HIV-1 reactivation. Assessing changes in the secreted cytokine profile of pan-caspase inhibitor-treated NK cells revealed increased levels of the HIV-1 suppressor chemokines MIP1α (CCL3), MIP1β (CCL4) and RANTES (CCL5). However, these cytokines individually or together did not induce LTR promoter activation, suggesting that CCL3-5 were not responsible for the observed HIV-1 reactivation. The cytokine profile did indicate that pan-caspase inhibitors induce NK cell activation. Altogether, our approach might be-in combination with other shock-and-kill strategies or LRAs-a strategy for reducing viral latency reservoirs and a step forward towards eradication of functionally active HIV-1 in infected individuals.
Collapse
Affiliation(s)
- Joana Furtado Milão
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Luca Love
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - George Gourgi
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Derhaschnig
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - J. Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden,Division of Clinical Microbiology, ANA Futura Laboratory, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert van Domselaar
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Robert van Domselaar,
| |
Collapse
|
24
|
Suleman S, Payne A, Bowden J, Haque SA, Zahn M, Fawaz S, Khalifa MS, Jobling S, Hay D, Franco M, Fronza R, Wang W, Strobel-Freidekind O, Deichmann A, Takeuchi Y, Waddington SN, Gil-Farina I, Schmidt M, Themis M. HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival. Gene Ther 2022; 29:720-729. [PMID: 35513551 PMCID: PMC9750860 DOI: 10.1038/s41434-022-00335-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
- Testavec Ltd, Queensgate House, Maidenhead, UK
| | - Annette Payne
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Department of Computer Science, College of Engineering Design and Physical Sciences, Brunel University London, Uxbridge, UK
| | - Johnathan Bowden
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Sharmin Al Haque
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Marco Zahn
- Genewerk GmbH, Heidelberg, Germany
- University Heidelberg, Medical Faculty, Heidelberg, Germany
| | - Serena Fawaz
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Mohammad S Khalifa
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Susan Jobling
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Institute of Environment, Health and Societies, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK
| | - David Hay
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | - Wei Wang
- Genewerk GmbH, Heidelberg, Germany
| | | | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Simon N Waddington
- Gene Transfer Technology, EGA Institute for Women's Health, University College London, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | | | - Manfred Schmidt
- Genewerk GmbH, Heidelberg, Germany
- Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany
| | - Michael Themis
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK.
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
25
|
Lu Y, Michel HA, Wang PH, Smith GL. Manipulation of innate immune signaling pathways by SARS-CoV-2 non-structural proteins. Front Microbiol 2022; 13:1027015. [PMID: 36478862 PMCID: PMC9720297 DOI: 10.3389/fmicb.2022.1027015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic, induces an unbalanced immune response in the host. For instance, the production of type I interferon (IFN) and the response to it, which act as a front-line defense against virus invasion, are inhibited during SARS-CoV-2 infection. In addition, tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, is upregulated in COVID-19 patients with severe symptoms. Studies on the closely related betacoronavirus, SARS-CoV, showed that viral proteins such as Nsp1, Orf6 and nucleocapsid protein inhibit IFN-β production and responses at multiple steps. Given the conservation of these proteins between SARS-CoV and SARS-CoV-2, it is not surprising that SARS-CoV-2 deploys similar immune evasion strategies. Here, we carried out a screen to examine the role of individual SARS-CoV-2 proteins in regulating innate immune signaling, such as the activation of transcription factors IRF3 and NF-κB and the response to type I and type II IFN. In addition to established roles of SARS-CoV-2 proteins, we report that SARS-CoV-2 proteins Nsp6 and Orf8 inhibit the type I IFN response but at different stages. Orf6 blocks the translocation of STAT1 and STAT2 into the nucleus, whereas ORF8 inhibits the pathway in the nucleus after STAT1/2 translocation. SARS-CoV-2 Orf6 also suppresses IRF3 activation and TNF-α-induced NF-κB activation.
Collapse
Affiliation(s)
- Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hendrik A. Michel
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|
27
|
Dai W, Wu F, McMyn N, Song B, Walker-Sperling VE, Varriale J, Zhang H, Barouch DH, Siliciano JD, Li W, Siliciano RF. Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Sci Transl Med 2022; 14:eabh3351. [PMID: 36260688 PMCID: PMC9705157 DOI: 10.1126/scitranslmed.abh3351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reversing HIV-1 latency promotes killing of infected cells and is essential for cure strategies; however, no single latency reversing agent (LRA) or LRA combination have been shown to reduce HIV-1 latent reservoir size in persons living with HIV-1 (PLWH). Here, we describe an approach to systematically identify LRA combinations to reactivate latent HIV-1 using genome-wide CRISPR screens. Screens on cells treated with suboptimal concentrations of an LRA can identify host genes whose knockout enhances viral gene expression. Therefore, inhibitors of these genes should synergize with the LRA. We tested this approach using AZD5582, an activator of the noncanonical nuclear factor κB (ncNF-κB) pathway, as an LRA and identified histone deacetylase 2 (HDAC2) and bromodomain-containing protein 2 (BRD2), part of the bromodomain and extra-terminal motif (BET) protein family targeted by BET inhibitors, as potential targets. Using CD4+ T cells from PLWH, we confirmed synergy between AZD5582 and several HDAC inhibitors and between AZD5582 and the BET inhibitor, JQ1. A reciprocal screen using suboptimal concentrations of an HDAC inhibitor as an LRA identified BRD2 and ncNF-κB regulators, especially BIRC2, as synergistic candidates for use in combination with HDAC inhibition. Moreover, we identified and validated additional synergistic drug candidates in latency cell line cells and primary lymphocytes isolated from PLWH. Specifically, the knockout of genes encoding CYLD or YPEL5 displayed synergy with existing LRAs in inducing HIV mRNAs. Our study provides insights into the roles of host factors in HIV-1 reactivation and validates a system for identifying drug combinations for HIV-1 latency reversal.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Natalie McMyn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital. 111 Michigan Ave NW, Washington, DC 20010,Department of Genomics and Precision Medicine, George Washington University. 111 Michigan Ave NW, Washington, DC 20010
| | - Victoria E. Walker-Sperling
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Joseph Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital. 111 Michigan Ave NW, Washington, DC 20010,Department of Genomics and Precision Medicine, George Washington University. 111 Michigan Ave NW, Washington, DC 20010,To whom correspondence should be addressed; ;
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205,To whom correspondence should be addressed; ;
| |
Collapse
|
28
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
29
|
Bisom TC, White LA, Lanchy JM, Lodmell JS. RIOK3 and Its Alternatively Spliced Isoform Have Disparate Roles in the Innate Immune Response to Rift Valley Fever Virus (MP12) Infection. Viruses 2022; 14:2064. [PMID: 36146870 PMCID: PMC9502082 DOI: 10.3390/v14092064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic human and livestock RNA virus that poses a significant threat to public health and biosecurity. During RVFV infection, the atypical kinase RIOK3 plays important roles in the innate immune response. Although its exact functions in innate immunity are not completely understood, RIOK3 has been shown to be necessary for mounting an antiviral interferon (IFN) response to RVFV in epithelial cells. Furthermore, after immune stimulation, the splicing pattern for RIOK3 mRNA changes markedly, and RIOK3's dominant alternatively spliced isoform, RIOK3 X2, exhibits an opposite effect on the IFN response by dampening it. Here, we further investigate the roles of RIOK3 and its spliced isoform in other innate immune responses to RVFV, namely the NFκB-mediated inflammatory response. We find that while RIOK3 is important for negatively regulating this inflammatory pathway, its alternatively spliced isoform, RIOK3 X2, stimulates it. Overall, these data demonstrate that both RIOK3 and its X2 isoform have unique roles in separate innate immune pathways that respond to RVFV infection.
Collapse
Affiliation(s)
- Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA
| | - Luke A. White
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59801, USA
| |
Collapse
|
30
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
31
|
Perdomo-Celis F, Passaes C, Monceaux V, Volant S, Boufassa F, de Truchis P, Marcou M, Bourdic K, Weiss L, Jung C, Bourgeois C, Goujard C, Meyer L, Müller-Trutwin M, Lambotte O, Sáez-Cirión A. Reprogramming dysfunctional CD8+ T cells to promote properties associated with natural HIV control. J Clin Invest 2022; 132:e157549. [PMID: 35380989 PMCID: PMC9151687 DOI: 10.1172/jci157549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Virus-specific CD8+ T cells play a central role in HIV-1 natural controllers to maintain suppressed viremia in the absence of antiretroviral therapy. These cells display a memory program that confers them stemness properties, high survival, polyfunctionality, proliferative capacity, metabolic plasticity, and antiviral potential. The development and maintenance of such qualities by memory CD8+ T cells appear crucial to achieving natural HIV-1 control. Here, we show that targeting the signaling pathways Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) and mTORC through GSK3 inhibition to reprogram HIV-specific CD8+ T cells from noncontrollers promoted functional capacities associated with natural control of infection. Features of such reprogrammed cells included enrichment in TCF-1+ less-differentiated subsets, a superior response to antigen, enhanced survival, polyfunctionality, metabolic plasticity, less mTORC1 dependency, an improved response to γ-chain cytokines, and a stronger HIV-suppressive capacity. Thus, such CD8+ T cell reprogramming, combined with other available immunomodulators, might represent a promising strategy for adoptive cell therapy in the search for an HIV-1 cure.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Caroline Passaes
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Hub Bioinformatique et Biostatistique, Paris, France
| | - Faroudy Boufassa
- Université Paris Saclay, INSERM Centre de Recherche en Épidémiologie et Santé des Populations (CESP) U1018, Assistance Publique–Hôpitaux de Paris (AP-HP), Department of Public Health, Bicêtre Hospital, Paris, France
| | - Pierre de Truchis
- Université Paris-Saclay, AP-HP Hôpital Raymond Poincaré, Garches, France
| | - Morgane Marcou
- Université Paris-Saclay, AP-HP Hôpital Raymond Poincaré, Garches, France
| | - Katia Bourdic
- Université Paris-Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Le Kremlin Bicêtre, France
| | - Laurence Weiss
- Université de Paris Cité, AP-HP, Paris Centre, Hôtel Dieu, Paris, France
| | - Corinne Jung
- Université de Paris Cité, AP-HP, Paris Centre, Hôtel Dieu, Paris, France
| | - Christine Bourgeois
- Université Paris-Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Le Kremlin Bicêtre, France
| | - Cécile Goujard
- Université Paris-Saclay, AP-HP, Hôpital Bicêtre, Départements Médico-Universitaires (DMU) 7, INSERM U1018, CESP, Le Kremlin Bicêtre, France
| | - Laurence Meyer
- Université Paris Saclay, INSERM Centre de Recherche en Épidémiologie et Santé des Populations (CESP) U1018, Assistance Publique–Hôpitaux de Paris (AP-HP), Department of Public Health, Bicêtre Hospital, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Olivier Lambotte
- Université Paris-Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Le Kremlin Bicêtre, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| |
Collapse
|
32
|
Guo X, Tang T, Duan M, Zhang L, Ge H. The nonequilibrium mechanism of noise-enhanced drug synergy in HIV latency reactivation. iScience 2022; 25:104358. [PMID: 35620426 PMCID: PMC9127169 DOI: 10.1016/j.isci.2022.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Noise-modulating chemicals can synergize with transcriptional activators in reactivating latent HIV to eliminate latent HIV reservoirs. To understand the underlying biomolecular mechanism, we investigate a previous two-gene-state model and identify two necessary conditions for the synergy: an assumption of the inhibition effect of transcription activators on noise enhancers; and frequent transitions to the gene non-transcription-permissive state. We then develop a loop-four-gene-state model with Tat transcription/translation and find that drug synergy is mainly determined by the magnitude and direction of energy input into the genetic regulatory kinetics of the HIV promoter. The inhibition effect of transcription activators is actually a phenomenon of energy dissipation in the nonequilibrium gene transition system. Overall, the loop-four-state model demonstrates that energy dissipation plays a crucial role in HIV latency reactivation, which might be useful for improving drug effects and identifying other synergies on lentivirus latency reactivation. The inhibition of Activator on Noise enhancer is necessary for their synergy in reactivating HIV The drug synergy is a nonequilibrium phenomenon in the gene regulatory system The magnitude and direction of energy input determine the drug synergy This nonequilibrium mechanism is general without regarding molecular details
Collapse
|
33
|
Luo Z, Health SL, Li M, Yang H, Wu Y, Collins M, Deeks SG, Martin JN, Scott A, Jiang W. Variation in blood microbial lipopolysaccharide (LPS) contributes to immune reconstitution in response to suppressive antiretroviral therapy in HIV. EBioMedicine 2022; 80:104037. [PMID: 35500539 PMCID: PMC9065923 DOI: 10.1016/j.ebiom.2022.104037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In HIV infection, even under long-term antiretroviral therapy (ART), up to 20% of HIV-infected individuals fail to restore CD4+ T cell counts to the levels similar to those of healthy controls. The mechanisms of poor CD4+ T cell reconstitution on suppressive ART are not fully understood. METHODS Here, we tested the hypothesis that lipopolysaccharide (LPS) from bacteria enriched in the plasma from immune non-responders (INRs) contributes to blunted CD4+ T cell recovery on suppressive ART in HIV. We characterized plasma microbiome in HIV INRs (aviremic, CD4+ T cell counts < 350 cells/μl), immune responders (IRs, CD4+ T cell counts > 500 cells/μl), and healthy controls. Next, we analyzed the structure of the lipid A domain of three bacterial species identified by mass spectrometry (MS) and evaluated the LPS function through LPS induced proinflammatory responses and CD4+ T cell apoptosis in PBMCs. In comparison, we also evaluated plasma levels of proinflammatory cytokine and chemokine patterns in these three groups. At last, to study the causality of microbiome-blunted CD4+ T cell recovery in HIV, B6 mice were intraperitoneally (i.p.) injected with heat-killed Burkholderia fungorum, Serratia marcescens, or Phyllobacterium myrsinacearum, twice per week for total of eight weeks. FINDINGS INRs exhibited elevated plasma levels of total microbial translocation compared to the IRs and healthy controls. The most enriched bacteria were Burkholderia and Serratia in INRs and were Phyllobacterium in IRs. Further, unlike P. myrsinacearum LPS, B. fungorum and S. marcescens LPS induced proinflammatory responses and CD4+ T cell apoptosis in PBMCs, and gene profiles of bacteria-mediated cell activation pathways in THP-1 cells in vitro. Notably, LPS structural analysis by mass spectrometry revealed that lipid A from P. myrsinacearum exhibited a divergent structure consistent with weak toll-like receptor (TLR) 4 agonism, similar to the biological profile of probiotic bacteria. In contrast, lipid A from B. fungorum and S. marcescens showed structures more consistent with canonical TLR4 agonists stemming from proinflammatory bacterial strains. Finally, intraperitoneal (i.p.) injection of inactivated B. fungorum and S. marcescens but not P. myrsinacearum resulted in cell apoptosis in mesenteric lymph nodes of C57BL/6 mice in vivo. INTERPRETATION These results suggest that the microbial products are causally associated with INR phenotype. In summary, variation in blood microbial LPS immunogenicity may contribute to immune reconstitution in response to suppressive ART. Collectively, this work is consistent with immunologically silencing microbiome being causal and targetable with therapy in HIV. FUNDING This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID; R01 AI128864, Jiang) (NIAID; P30 AI027767, Saag/Health), the Medical Research Service at the Ralph H. Johnson VA Medical Center (merit grant VA CSRD MERIT I01 CX-002422, Jiang), and the National Institute of Aging (R21 AG074331, Scott). The SCOPE cohort was supported by the UCSF/Gladstone Institute of Virology & Immunology CFAR (P30 AI027763, Gandhi) and the CFAR Network of Integrated Clinical Systems (R24 AI067039, Saag). The National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR001450 (the pilot grant, Jiang). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA
| | - Sonya L Health
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Li
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650 W. Baltimore St. Office 9209, Baltimore, MD 21201, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA
| | - Michael Collins
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steven G Deeks
- University of California, San FranciscoDepartment of Epidemiology and Biostatistics
| | - Jeffrey N Martin
- University of California, San FranciscoDepartment of Epidemiology and Biostatistics
| | - Alison Scott
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650 W. Baltimore St. Office 9209, Baltimore, MD 21201, USA.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA; Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
34
|
Taura M, Frank JA, Takahashi T, Kong Y, Kudo E, Song E, Tokuyama M, Iwasaki A. APOBEC3A regulates transcription from interferon-stimulated response elements. Proc Natl Acad Sci U S A 2022; 119:e2011665119. [PMID: 35549556 PMCID: PMC9171812 DOI: 10.1073/pnas.2011665119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
APOBEC3A (A3A) is a cytidine deaminase that inactivates a variety of viruses through introduction of lethal mutations to the viral genome. Additionally, A3A can suppress HIV-1 transcription in a deaminase-independent manner by binding to the long terminal repeat of proviral HIV-1. However, it is unknown whether A3A targets additional host genomic loci for repression. In this study, we found that A3A suppresses gene expression by binding TTTC doublets that are in close proximity to each other. However, one TTTC motif is sufficient for A3A binding. Because TTTC doublets are present in interferon (IFN)-stimulated response elements (ISRE), we hypothesized that A3A may impact IFN-stimulated gene (ISG) expression. After scanning the human genome for TTTC doublet occurrences, we discovered that these motifs are enriched in the proximal promoters of genes associated with antiviral responses and type I IFN (IFN-I) signaling. As a proof of principle, we examined whether A3A can impact ISG15 expression. We found that A3A binding to the ISRE inhibits phosphorylated STAT-1 binding and suppresses ISG15 induction in response to IFN-I treatment. Consistent with these data, our RNA-sequencing analyses indicate that A3A loss results in increased IFN-I–dependent induction of several ISGs. This study revealed that A3A plays an unexpected role in ISG regulation and suggests that A3A contributes to a negative feedback loop during IFN signaling.
Collapse
Affiliation(s)
- Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871 Suita, Japan
| | - John A. Frank
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520
| | - Eriko Kudo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
35
|
A Toxin-Conjugated Recombinant Protein Targeting gp120 and gp41 for Inactivating HIV-1 Virions and Killing Latency-Reversing Agent-Reactivated Latent Cells. mBio 2022; 13:e0338421. [PMID: 35038908 PMCID: PMC8764533 DOI: 10.1128/mbio.03384-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Application of the combination antiretroviral therapy (cART) has reduced AIDS to a manageable chronic infectious disease. However, HIV/AIDS cannot be cured because of the presence of latent reservoirs, thus calling for the development of antiretroviral drugs that can eliminate latency-reversing agent (LRA)-activated HIV-1 virions and latent cells. In this study, we conjugated a small-molecule toxin, DM1, to a gp120-binding protein, mD1.22, a mutated CD4 domain I, and found that mD1.22-DM1 could inactivate HIV-1 virions. However, it could not kill LRA-activated latent cells. We then designed and constructed a dual-targeting protein, DL35D, by linking mD1.22 and the single-chain variable fragment (scFv) of a gp41 NHR-specific antibody, D5, with a 35-mer linker. Subsequently, we conjugated DM1 to DL35D and found that DL35D-DM1 could inhibit HIV-1 infection, inactivate HIV-1 virions, kill HIV-1-infected cells and LRA-reactivated latent cells, suggesting that this toxin-conjugated dual-targeting recombinant protein is a promising candidate for further development as a novel antiviral drug with potential for HIV functional cure. IMPORTANCE Although HIV-1 replication was successfully controlled by antiretroviral drugs, cure strategy for HIV-1/AIDS is still lacking. The long-lived HIV reservoir is considered one of the major obstacles to an HIV/AIDS cure. CD4-PE40 was the first drug that designed to kill HIV-1 infected cells; however, lower efficiency and high immunogenicity have limited its further development. In this study, we designed several dual-targeting recombinant proteins DLDs by linking gp120-binding protein mD1.22 and gp41-binding antibody D5 scFv with different length of linkers. Among them, DL35D with 35-mer linker showed the best anti-HIV-1 activity. We further conjugated the DM1 toxin to DL35D to produce DL35D-DM1, which maintained DL35D's inhibitory and inactivation activity against cell-free HIV-1 strains. Most importantly, DL35D-DM1 could specifically kill HIV-1-infected cells and LRA-reactivated-latent infected cells, suggesting that it is a proper candidate for development as a novel antiviral drug for use in combination with an LRA for HIV functional cure.
Collapse
|
36
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
37
|
Matkovic R, Morel M, Lanciano S, Larrous P, Martin B, Bejjani F, Vauthier V, Hansen MMK, Emiliani S, Cristofari G, Gallois-Montbrun S, Margottin-Goguet F. TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nat Commun 2022; 13:66. [PMID: 35013187 PMCID: PMC8748822 DOI: 10.1038/s41467-021-27650-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
The Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.
Collapse
Affiliation(s)
- Roy Matkovic
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | - Marina Morel
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | - Pauline Larrous
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Benjamin Martin
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Fabienne Bejjani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Virginie Vauthier
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, 6525 AM, Nijmegen, The Netherlands
| | - Stéphane Emiliani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | | | | |
Collapse
|
38
|
Navarrete-Muñoz MA, Llorens C, Benito JM, Rallón N. Extracellular Vesicles as a New Promising Therapy in HIV Infection. Front Immunol 2022; 12:811471. [PMID: 35058938 PMCID: PMC8765339 DOI: 10.3389/fimmu.2021.811471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively blocks HIV replication but cannot completely eliminate HIV from the body mainly due to establishment of a viral reservoir. To date, clinical strategies designed to replace cART for life and alternatively to eliminate the HIV reservoir have failed. The reduced expression of viral antigens in the latently infected cells is one of the main reasons behind the failure of the strategies to purge the HIV reservoir. This situation has forced the scientific community to search alternative therapeutic strategies to control HIV infection. In this regard, recent findings have pointed out extracellular vesicles as therapeutic agents with enormous potential to control HIV infection. This review focuses on their role as pro-viral and anti-viral factors, as well as their potential therapeutic applications.
Collapse
Affiliation(s)
- Maria A. Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - Carlos Llorens
- Biotechvana, Madrid Scientific Park Foundation, Madrid, Spain
| | - José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
39
|
Siliciano JD, Siliciano RF. In Vivo Dynamics of the Latent Reservoir for HIV-1: New Insights and Implications for Cure. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:271-294. [PMID: 34736342 DOI: 10.1146/annurev-pathol-050520-112001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
40
|
Siliciano JD, Siliciano RF. Low Inducibility of Latent Human Immunodeficiency Virus Type 1 Proviruses as a Major Barrier to Cure. J Infect Dis 2021; 223:13-21. [PMID: 33586775 DOI: 10.1093/infdis/jiaa649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting CD4+ T cells is a major barrier to cure. The dimensions of the reservoir problem can be defined with 2 assays. A definitive minimal estimate of the frequency of latently infected cells is provided by the quantitative viral outgrowth assay (QVOA), which detects cells that can be induced by T-cell activation to release infectious virus. In contrast, the intact proviral DNA assay (IPDA) detects all genetically intact proviruses and provides a more accurate upper limit on reservoir size than standard single-amplicon polymerase chain reaction assays which mainly detect defective proviruses. The frequency of cells capable of initiating viral rebound on interruption of antiretroviral therapy lies between the values produced by the QVOA and the IPDA. We argue here that the 1-2-log difference between QVOA and IPDA values in part reflects that the fact that many replication-competent proviruses are not readily induced by T-cell activation. Findings of earlier studies suggest that latently infected cells can be activated to proliferate in vivo without expressing viral genes. The proliferating cells nevertheless retain the ability to produce virus on subsequent stimulation. The low inducibility of latent proviruses is a major problem for the shock-and-kill strategy for curing HIV-1 infection, which uses latency-reversing agents to induce viral gene expression and render infected cells susceptible to immune clearance. The latency-reversing agents developed to date are much less effective at reversing latency than T-cell activation. Taken together, these results indicate that HIV-1 eradication will require the discovery of much more effective ways to induce viral gene expression.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
42
|
Liu R, Yeh YHJ, Varabyou A, Collora JA, Sherrill-Mix S, Talbot CC, Mehta S, Albrecht K, Hao H, Zhang H, Pollack RA, Beg SA, Calvi RM, Hu J, Durand CM, Ambinder RF, Hoh R, Deeks SG, Chiarella J, Spudich S, Douek DC, Bushman FD, Pertea M, Ho YC. Single-cell transcriptional landscapes reveal HIV-1-driven aberrant host gene transcription as a potential therapeutic target. Sci Transl Med 2021; 12:12/543/eaaz0802. [PMID: 32404504 DOI: 10.1126/scitranslmed.aaz0802] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/29/2019] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Understanding HIV-1-host interactions can identify the cellular environment supporting HIV-1 reactivation and mechanisms of clonal expansion. We developed HIV-1 SortSeq to isolate rare HIV-1-infected cells from virally suppressed, HIV-1-infected individuals upon early latency reversal. Single-cell transcriptome analysis of HIV-1 SortSeq+ cells revealed enrichment of nonsense-mediated RNA decay and viral transcription pathways. HIV-1 SortSeq+ cells up-regulated cellular factors that can support HIV-1 transcription (IMPDH1 and JAK1) or promote cellular survival (IL2 and IKBKB). HIV-1-host RNA landscape analysis at the integration site revealed that HIV-1 drives high aberrant host gene transcription downstream, but not upstream, of the integration site through HIV-1-to-host aberrant splicing, in which HIV-1 RNA splices into the host RNA and aberrantly drives host RNA transcription. HIV-1-induced aberrant transcription was driven by the HIV-1 promoter as shown by CRISPR-dCas9-mediated HIV-1-specific activation and could be suppressed by CRISPR-dCas9-mediated inhibition of HIV-1 5' long terminal repeat. Overall, we identified cellular factors supporting HIV-1 reactivation and HIV-1-driven aberrant host gene transcription as potential therapeutic targets to disrupt HIV-1 persistence.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Yang-Hui Jimmy Yeh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ales Varabyou
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06519, USA
| | - Kristen Albrecht
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haiping Hao
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ross A Pollack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachela M Calvi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jianfei Hu
- Vaccine Research Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard F Ambinder
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA 94110, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA 94110, USA
| | - Jennifer Chiarella
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mihaela Pertea
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
43
|
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, Sengupta R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202100773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | | | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Surupa Chakraborty
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| |
Collapse
|
44
|
Tong O, Duette G, O’Neil TR, Royle CM, Rana H, Johnson B, Popovic N, Dervish S, Brouwer MAE, Baharlou H, Patrick E, Ctercteko G, Palmer S, Lee E, Hunter E, Harman AN, Cunningham AL, Nasr N. Plasmacytoid dendritic cells have divergent effects on HIV infection of initial target cells and induce a pro-retention phenotype. PLoS Pathog 2021; 17:e1009522. [PMID: 33872331 PMCID: PMC8084337 DOI: 10.1371/journal.ppat.1009522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/29/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, pDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance. IFNs constitute one of the first and most important innate immune controls to restrict initial viral replication and spread. As HIV has evolved mechanisms to block IFN-I induction in its target cells, but not in infiltrating pDCs, understanding how pDCs influence HIV infection of target cells upon initial transmission is critical to prevent or control initial infection. Therefore, we modelled the early events occurring immediately as HIV enters the human genital mucosa. We showed that IFNα secreting pDC compensated for HIV inhibition of IFN-I production in its target cells in two different ways: i) reduced infection in DCs and macrophages which would limit viral spread to resident or newly infiltrating memory CD4 T cells; ii) reactivation of latent HIV in all subsets of resting memory CD4 T cell subsets, accompanied by limited viral spread, upregulation of MHC-I and induction of a tissue retention phenotype. The increased HIV protein, MHC-I expression and retention may enhance exposure to CD8 T cell surveillance. This model suggests that IFNα reactivation of latent HIV combined with adoptive immunotherapy using CD8 T cells or those expressing chimeric antigen receptors (CAR) could provide a novel ‘kick and kill’ approach to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Caroline M. Royle
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Blake Johnson
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Nicole Popovic
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Suat Dervish
- Westmead research Hub, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Michelle A. E. Brouwer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Internal Medicine, Radboud Centre for Infectious Diseases, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, School of Mathematics and Statistics, Faculty of Science, Sydney, New South Wales, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eric Hunter
- Emory Vaccine Centre, Atlanta, Georgia, United States of America
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- * E-mail: (ALC); (NN)
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- * E-mail: (ALC); (NN)
| |
Collapse
|
45
|
Du P, Arpadi SM, Muscat J, Richie JP. Glutathione Deficiency in HIV-1-Infected Children with Short Stature. J PEDIAT INF DIS-GER 2021. [DOI: 10.1055/s-0041-1722973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Objective This study was aimed to determine if glutathione (GSH) deficiency occurs in children with HIV infection and whether GSH deficiency is associated with HIV-related short stature.
Methods We conducted a cross-sectional study with two age-matched comparison groups in an inner city hospital-based pediatric AIDS/HIV outpatient clinic. Ten perinatally HIV-infected children aged 6 to 49 months with short stature (height–age percentile ≤5) were studied together with age-matched 10 HIV-infected children with normal height and 10 HIV-seronegative children with normal height. Total erythrocyte GSH (GSH and GSH disulfide) levels were determined by a modification of the 5,5′-dithiobis-2-nitrobenzoic acid glutathione disulfide reductase method. Other measures included complete blood counts, lymphocyte subset analysis, plasma albumin, cholesterol, vitamins A and E, and determination of HIV disease stage.
Discussion Erythrocyte GSH levels were lower in HIV-infected children with short stature (mean ± standard deviation [SD]: 0.639 µmol/mL ± 0.189) compared with HIV-infected children with normal height (mean ± SD: 0.860 µmol/mL ± 0.358; p < 0.05) and HIV-negative controls (mean ± SD: 0.990 µmol/mL ± 0.343; p < 0.05). Plasma levels of cholesterol, albumin, and vitamins A and E did not differ between the short-stature group and either the HIV-infected normal-height group or HIV-negative controls.
Conclusion These results demonstrate a GSH deficiency in HIV-infected children with short stature and support the hypothesis that GSH balance is important in growth among HIV-infected children.
Collapse
Affiliation(s)
- Ping Du
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - Stephen M. Arpadi
- Department of Pediatrics, Mailman School of Public Health, Columbia University, New York, New York, United States
| | - Joshua Muscat
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - John P. Richie
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
46
|
Heinson AI, Woo J, Mukim A, White CH, Moesker B, Bosque A, Spina CA, Woelk CH, Macarthur BD, Beliakova-Bethell N. Micro RNA Targets in HIV Latency: Insights into Novel Layers of Latency Control. AIDS Res Hum Retroviruses 2021; 37:109-121. [PMID: 33045840 PMCID: PMC7876363 DOI: 10.1089/aid.2020.0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the considerable progress that has been made in identifying cellular factors and pathways that contribute to establishment and maintenance of the latent HIV reservoir, it remains the major obstacle to eradicating this virus. Most recently, noncoding genes have been implicated in regulation of HIV expression. In this study, small RNA sequencing was used to profile expression of microRNAs (miRNAs) in a primary CD4+ T cell in vitro model of HIV latency. Previously, we have shown that protein-coding genes dysregulated in this model were enriched for the p53 signaling pathway, which was confirmed experimentally. We further found a link between p53 signaling and dysregulated long noncoding RNAs. In this study, we hypothesized that miRNAs may provide an additional level of regulation of the p53 signaling pathway during HIV latency. Twenty-six miRNAs were identified to be dysregulated in our latency model. A subset of these miRNAs was validated by real-time quantitative polymerase chain reaction. Predicted messenger RNA (mRNA) targets and cellular pathways enriched for mRNA targets were identified using several analytical methods. Our analyses showed that many protein-coding genes and pathways targeted by dysregulated miRNAs have relevance to regulation of HIV expression or establishment of HIV latency. The p53 signaling pathway was found among pathways that were targeted by dysregulated miRNAs at a greater level than expected by chance. This study provides a mechanistic insight into regulation of the p53 pathway through miRNAs that may contribute to the establishment of latency.
Collapse
Affiliation(s)
- Ashley I. Heinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jeongmin Woo
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Amey Mukim
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
| | - Cory H. White
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bastiaan Moesker
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Celsa A. Spina
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | | | - Ben D. Macarthur
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
47
|
The XPB Subunit of the TFIIH Complex Plays a Critical Role in HIV-1 Transcription and XPB Inhibition by Spironolactone Prevents HIV-1 Reactivation from Latency. J Virol 2021; 95:JVI.01247-20. [PMID: 33239456 PMCID: PMC7851559 DOI: 10.1128/jvi.01247-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV transcription requires assembly of cellular transcription factors at the HIV-1promoter. The TFIIH general transcription factor facilitates transcription initiation by opening the DNA strands around the transcription start site and phosphorylating the C-terminal domain for RNA polymerase II (RNAPII) for activation. Spironolactone (SP), an FDA approved aldosterone antagonist, triggers the proteasomal degradation of the XPB subunit of TFIIH, and concurrently suppresses acute HIV infection in vitro Here we investigated SP as a possible block-and-lock agent for a functional cure aimed at the transcriptional silencing of the viral reservoir. The long-term activity of SP was investigated in primary and cell line models of HIV-1 latency and reactivation. We show that SP rapidly inhibits HIV-1 transcription by reducing RNAPII recruitment to the HIV-1 genome. shRNA knockdown of XPB confirmed XPB degradation as the mechanism of action. Unfortunately, long-term pre-treatment with SP does not result in epigenetic suppression of HIV upon SP treatment interruption, since virus rapidly rebounds when XPB reemerges; however, SP alone without ART maintains the transcriptional suppression. Importantly, SP inhibits HIV reactivation from latency in both cell line models and resting CD4+T cells isolated from aviremic infected individuals upon cell stimulation with latency reversing agents. Furthermore, long-term treatment with concentrations of SP that potently degrade XPB does not lead to global dysregulation of cellular mRNA expression. Overall, these results suggest that XPB plays a key role in HIV transcriptional regulation and XPB degradation by SP strengthens the potential of HIV transcriptional inhibitors in block-and-lock HIV cure approaches.IMPORTANCE Antiretroviral therapy (ART) effectively reduces an individual's HIV loads to below the detection limit, nevertheless rapid viral rebound immediately ensues upon treatment interruption. Furthermore, virally suppressed individuals experience chronic immune activation from ongoing low-level virus expression. Thus, the importance of identifying novel therapeutics to explore in block-and-lock HIV functional cure approaches, aimed at the transcriptional and epigenetic silencing of the viral reservoir to block reactivation from latency. We investigated the potential of repurposing the FDA-approved spironolactone (SP), as one such drug. SP treatment rapidly degrades a host transcription factor subunit, XPB, inhibiting HIV transcription and blocking reactivation from latency. Long-term SP treatment does not affect cellular viability, cell cycle progression or global cellular transcription. SP alone blocks HIV transcription in the absence of ART but does not delay rebound upon drug removal as XPB rapidly reemerges. This study highlights XPB as a novel drug target in block-and-lock therapeutic approaches.
Collapse
|
48
|
Epigenetic Compound Screening Uncovers Small Molecules for Reactivation of Latent HIV-1. Antimicrob Agents Chemother 2020; 65:AAC.01815-20. [PMID: 33139279 DOI: 10.1128/aac.01815-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
During infection with the human immunodeficiency virus type 1 (HIV-1), latent reservoirs are established that circumvent full eradication of the virus by antiretroviral therapy (ART) and are the source for viral rebound after cessation of therapy. As these reservoirs are phenotypically indistinguishable from infected cells, current strategies aim to reactivate these reservoirs, followed by pharmaceutical and immunological destruction of the cells. Here, we employed a simple and convenient cell-based reporter system, which enables sample handling under biosafety level (BSL)-1 conditions, to screen for compounds that were able to reactivate latent HIV-1. The assay showed a high dynamic signal range and reproducibility with an average Z-factor of 0.77, classifying the system as robust. The assay was used for high-throughput screening (HTS) of an epigenetic compound library in combination with titration and cell-toxicity studies and revealed several potential new latency-reversing agents (LRAs). Further validation in well-known latency model systems verified earlier studies and identified two novel compounds with very high reactivation efficiencies and low toxicity. Both drugs, namely, N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) and 2',3'-difluoro-[1,1'-biphenyl]-4-carboxylic acid, 2-butylhydrazide (SR-4370), showed comparable performances to other already known LRAs, did not activate CD4+ T cells, and did not cause changes in the composition of peripheral blood mononuclear cells (PBMCs), as shown by flow cytometry analyses. Both compounds may represent effective new treatment possibilities for reversal of latency in HIV-1-infected individuals.
Collapse
|
49
|
Zhao Z, Zhang Z, Li J, Dong Q, Xiong J, Li Y, Lan M, Li G, Zhu B. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife 2020; 9:61965. [PMID: 33155547 PMCID: PMC7704108 DOI: 10.7554/elife.61965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional memory allows certain genes to respond to previously experienced signals more robustly. However, whether and how the key proinflammatory cytokine TNF-α mediates transcriptional memory are poorly understood. Using HEK293F cells as a model system, we report that sustained TNF-α stimulation induces transcriptional memory dependent on TET enzymes. The hypomethylated status of transcriptional regulatory regions can be inherited, facilitating NF-κB binding and more robust subsequent activation. A high initial methylation level and CpG density around κB sites are correlated with the functional potential of transcriptional memory modules. Interestingly, the CALCB gene, encoding the proven migraine therapeutic target CGRP, exhibits the best transcriptional memory. A neighboring primate-specific endogenous retrovirus stimulates more rapid, more strong, and at least 100-fold more sensitive CALCB induction in subsequent TNF-α stimulation. Our study reveals that TNF-α-mediated transcriptional memory is governed by active DNA demethylation and greatly sensitizes memory genes to much lower doses of inflammatory cues. Genes are the instruction manuals of life and contain the information needed to build the building blocks that keep cells alive. To read these instructions, cells use specific signals that activate genes. The process, known as gene expression, is tightly controlled and for the most part, fairly stable. But gene expression can be modified in various ways. Epigenetics is a broad term for describing reversible changes made to genes to switch them on and off. Sometimes, certain genes even develop a kind of ‘transcriptional memory’ where over time, their expression is enhanced and speeds up with repeated activation signals. But this may also have harmful effects. For example, the signalling molecule called tumour necrosis factor α (TNF-α) is an essential part of the immune system. But it is also implicated in chronic inflammatory diseases, such as rheumatoid arthritis. In these conditions, cell signalling pathways triggering inflammation are overactive. One possibility is that TNF-α could be inducing the transcriptional memory of certain genes, amplifying their expression. But little is known about which fraction of genes exhibits transcriptional memory, and what differentiates memory genes from genes with stable expression. Here, Zhao et al. treated cells grown in the laboratory with TNF-α to investigate its role in transcriptional memory and find out what epigenetic features might govern the process. The experiments showed that mimicking a sustained inflammation by stimulating TNF-α, triggered a transcriptional memory in some genes, and enabled them to respond to much lower levels of TNF-α on subsequent exposure. Zhao et al. also discovered that genes tagged with methyl groups are more likely to show transcriptional memory when stimulated by TNF-α. However, they also found that these groups must be removed to consolidate any transcriptional memory. This work shows how TNF-α influences can alter the expression of certain genes. It also suggests that transcriptional memory, stimulated by TNF-α, may be a possible mechanism underlying chronic inflammatory conditions. This could help future research in identifying more genes with transcriptional memory.
Collapse
Affiliation(s)
- Zuodong Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengying Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|