1
|
Songsaeng A, Boonchuen P, Nareephot P, Piromyou P, Wongdee J, Greetatorn T, Inthaisong S, Tantasawat PA, Teamtisong K, Tittabutr P, Sato S, Boonkerd N, Songwattana P, Teaumroong N. Enhancing Resistance to Cercospora Leaf Spot in Mung Bean (Vigna radiata L.) through Bradyrhizobium sp. DOA9 Priming: Molecular Insights and Bio-Priming Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:2495. [PMID: 39273979 PMCID: PMC11396852 DOI: 10.3390/plants13172495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mung bean (Vigna radiata L.), a vital legume in Asia with significant nutritional benefits, is highly susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens, leading to significant yield losses. As an alternative to chemical fungicides, bio-priming with rhizobacteria can enhance plant resistance. This study explores the potential of Bradyrhizobium sp. strain DOA9 to augment resistance in mung bean against CLS via root priming. The results reveal that short (3 days) and double (17 and 3 days) priming with DOA9 before fungal infection considerably reduces lesion size on infected leaves by activating defense-related genes, including Pti1, Pti6, EDS1, NDR1, PR-1, PR-2, Prx, and CHS, or by suppressing the inhibition of PR-5 and enhancing peroxidase (POD) activity in leaves. Interestingly, the Type 3 secretion system (T3SS) of DOA9 may play a role in establishing resistance in V. radiata CN72. These findings suggest that DOA9 primes V. radiata CN72's defense mechanisms, offering an effective bio-priming strategy to alleviate CLS. Hence, our insights propose the potential use of DOA9 as a bio-priming agent to manage CLS in V. radiata CN72, providing a sustainable alternative to chemical fungicide applications.
Collapse
Affiliation(s)
- Apisit Songsaeng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongkeat Nareephot
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukanya Inthaisong
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
2
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
3
|
Nguyen NS, Poelstra JW, Stupar RM, McHale LK, Dorrance AE. Comparative Transcriptomics of Soybean Genotypes with Partial Resistance Toward Phytophthora sojae, Conrad, and M92-220 to Moderately Susceptible Fast Neutron Mutant Soybeans and Sloan. PHYTOPATHOLOGY 2024; 114:1851-1868. [PMID: 38772042 DOI: 10.1094/phyto-11-23-0436-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR toward P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan, and three mutants derived from fast neutron irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level but also defense pathways unique to each cultivar, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible fast neutron mutants lacked enrichment of three terpenoid-related pathways and two cell wall-related pathways at either one or both time points, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important Kyoto Encyclopedia of Genes and Genomes pathways at either one or both time points, including sesquiterpenoid and triterpenoid biosynthesis; thiamine metabolism; arachidonic acid; stilbenoid, diarylheptanoid, and gingerol biosynthesis; and monobactam biosynthesis. Additionally, 31 genes that were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins; valine, leucine, and isoleucine biosynthesis; and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and further our understanding of the complex network associated with QDR mechanisms in soybean toward P. sojae.
Collapse
Affiliation(s)
- Nghi S Nguyen
- Department of Plant Pathology, The Ohio State University, Wooster, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, College of Food, Agricultural, and Environmental Sciences, Wooster Campus, Wooster, OH
| | - Robert M Stupar
- Agronomy and Plant Genetics Department, University of Minnesota, Minneapolis, MN
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| |
Collapse
|
4
|
Jin G, Deng Z, Wang H, Zhang Y, Fu R. EpMYB2 positively regulates chicoric acid biosynthesis by activating both primary and specialized metabolic genes in purple coneflower. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:252-265. [PMID: 38596892 DOI: 10.1111/tpj.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Chicoric acid is the major active ingredient of the world-popular medicinal plant purple coneflower (Echinacea purpurea (L.) Menoch). It is recognized as the quality index of commercial hot-selling Echinacea products. While the biosynthetic pathway of chicoric acid in purple coneflower has been elucidated recently, its regulatory network remains elusive. Through co-expression and phylogenetic analysis, we found EpMYB2, a typical R2R3-type MYB transcription factor (TF) responsive to methyl jasmonate (MeJA) simulation, is a positive regulator of chicoric acid biosynthesis. In addition to directly regulating chicoric acid biosynthetic genes, EpMYB2 positively regulates genes of the upstream shikimate pathway. We also found that EpMYC2 could activate the expression of EpMYB2 by binding to its G-box site, and the EpMYC2-EpMYB2 module is involved in the MeJA-induced chicoric acid biosynthesis. Overall, we identified an MYB TF that positively regulates the biosynthesis of chicoric acid by activating both primary and specialized metabolic genes. EpMYB2 links the gap between the JA signaling pathway and chicoric acid biosynthesis. This work opens a new direction toward engineering purple coneflower with higher medicinal qualities.
Collapse
Affiliation(s)
- Ge Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zongbi Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hsihua Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Rao Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
5
|
Hurrah IM, Kumar A, Abbas N. Functional characterisation of Artemisia annua jasmonic acid carboxyl methyltransferase: a key enzyme enhancing artemisinin biosynthesis. PLANTA 2024; 259:152. [PMID: 38735012 DOI: 10.1007/s00425-024-04433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.
Collapse
Affiliation(s)
- Ishfaq Majid Hurrah
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
7
|
López-García CM, Ávila-Hernández CA, Quintana-Rodríguez E, Aguilar-Hernández V, Lozoya-Pérez NE, Rojas-Raya MA, Molina-Torres J, Araujo-León JA, Brito-Argáez L, González-Sánchez AA, Ramírez-Chávez E, Orona-Tamayo D. Extracellular Self- and Non-Self DNA Involved in Damage Recognition in the Mistletoe Parasitism of Mesquite Trees. Int J Mol Sci 2023; 25:457. [PMID: 38203628 PMCID: PMC10778891 DOI: 10.3390/ijms25010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - César Alejandro Ávila-Hernández
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Elizabeth Quintana-Rodríguez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Nancy Edith Lozoya-Pérez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Mariana Atzhiry Rojas-Raya
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | | | - Enrique Ramírez-Chávez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Domancar Orona-Tamayo
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| |
Collapse
|
8
|
Han S, Xu X, Yuan H, Li S, Lin T, Liu Y, Li S, Zhu T. Integrated Transcriptome and Metabolome Analysis Reveals the Molecular Mechanism of Rust Resistance in Resistant (Youkang) and Susceptive (Tengjiao) Zanthoxylum armatum Cultivars. Int J Mol Sci 2023; 24:14761. [PMID: 37834210 PMCID: PMC10573174 DOI: 10.3390/ijms241914761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiu Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Huan Yuan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Duan X, Chen L, Liu Y, Chen H, Wang F, Hu Y. Integrated physicochemical, hormonal, and transcriptomic analysis reveals the underlying mechanism of callus formation in Pinellia ternata hydroponic cuttings. FRONTIERS IN PLANT SCIENCE 2023; 14:1189499. [PMID: 37409296 PMCID: PMC10319145 DOI: 10.3389/fpls.2023.1189499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Introduction P. ternata is a perennial herb of the family Araceae that grows in China and has various medicinal properties and applications. At present, the artificial cultivation of P. ternata is constrained by seedling propagation. To address the problems of low seedling breeding propagation efficiency and high cost, our group has developed a highly efficient cultivation technology for "hydroponic cuttings of P. ternata "for the first time. P. ternata is used as the source material and is grown in a hydroponic system, increasing the seedling production rate 10-fold compared with the traditional cultivation mode. However, the callus formation mechanism in cuttings from hydroponic cultivation is still remains unclear. Methods In order to better understand the biological process of callus formation in cuttings from hydroponic P. ternata, anatomical characterization, endogenous hormone content determination and transcriptome sequencing were performed on five callus stages from early growth to early senescence. Results Regarding the four major hormones during the callus developmental stages of P. ternata hydroponic cuttings, cytokinins showed an increasing trend during callus formation. IAA(indole-3-acetic acid) and abscisic acid contents increased at 8d and then decreased, while jasmonic acid content gradually decreased. A total of 254137 unigenes were identified by transcriptome sequencing in five callus formation stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) that differentially expressed unigenes were involved in various plant hormone signaling and hormone synthesis-related pathways. The expression patterns of 7 genes were validated using quantitative real-time PCR. Discussion This study presented integrated transcriptomic and metabolic analysis approach to obtain insights into the underlying biosynthetic mechanisms and function of key hormones involved in the callus formation process from hydroponic P. ternata cuttings.
Collapse
Affiliation(s)
| | | | | | - Hongping Chen
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| | - Fu Wang
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| | - Yuan Hu
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| |
Collapse
|
10
|
Cunha AFA, Rodrigues PHD, Anghinoni AC, de Paiva VJ, Pinheiro DGDS, Campos ML. Mechanical wounding impacts the growth versus defense balance in tomato (Solanum lycopersicum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111601. [PMID: 36690279 DOI: 10.1016/j.plantsci.2023.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Plants have evolved elaborate surveillance systems that allow them to perceive the attack by pests and pathogens and activate the appropriate defenses. Mechanical stimulation, such as mechanical wounding, represents one of the most reliable cues for the perception of potential herbivore aggressors. Here we demonstrate that mechanical wounding disturbs the growth versus defense balance in tomato, a physiological condition where growth reduction arises as a pleiotropic consequence of the activation of defense responses (or vice-versa). We observed that multiple lesions on tomato leaves impairs the formation of several growth-related traits, including shoot elongation, leaf expansion and time for flowering, while concomitantly activating the production of defense responses such as trichome formation and the upregulation of defense-related genes. We also provide genetic evidence that this wound-induced growth repression is possibly a consequence of tomato plants sensing the injuries via jasmonates (JAs), a class of plant hormones known to be master regulators of the plant growth versus defense balance. Besides providing a mechanistic explanation on how the growth and defense balance is shifted when plants are subjected to a specific type of mechanical stimulus, our results may offer a practical explanation for why tomato productivity is so negatively impacted by herbivore attack.
Collapse
Affiliation(s)
- Ana Flavia Aparecida Cunha
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Pedro Henrique Duarte Rodrigues
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Ana Clara Anghinoni
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Vinicius Juliani de Paiva
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Daniel Gonçalves da Silva Pinheiro
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Lattarulo Campos
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| |
Collapse
|
11
|
Saunders J, Sikder K, Phillips E, Ishwar A, Mothy D, Margulies KB, Choi JC. Med25 Limits Master Regulators That Govern Adipogenesis. Int J Mol Sci 2023; 24:6155. [PMID: 37047128 PMCID: PMC10093881 DOI: 10.3390/ijms24076155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Mediator 25 (Med25) is a member of the mediator complex that relays signals from transcription factors to the RNA polymerase II machinery. Multiple transcription factors, particularly those involved in lipid metabolism, utilize the mediator complex, but how Med25 is involved in this context is unclear. We previously identified Med25 in a translatome screen of adult cardiomyocytes (CMs) in a novel cell type-specific model of LMNA cardiomyopathy. In this study, we show that Med25 upregulation is coincident with myocardial lipid accumulation. To ascertain the role of Med25 in lipid accumulation, we utilized iPSC-derived and neonatal CMs to recapitulate the in vivo phenotype by depleting lamins A and C (lamin A/C) in vitro. Although lamin A/C depletion elicits lipid accumulation, this effect appears to be mediated by divergent mechanisms dependent on the CM developmental state. To directly investigate Med25 in lipid accumulation, we induced adipogenesis in Med25-silenced 3T3-L1 preadipocytes and detected enhanced lipid accumulation. Assessment of pertinent mediators driving adipogenesis revealed that C/EBPα and PPARγ are super-induced by Med25 silencing. Our results indicate that Med25 limits adipogenic potential by suppressing the levels of master regulators that govern adipogenesis. Furthermore, we caution the use of early-developmental-stage cardiomyocytes to model adult-stage cells, particularly for dissecting metabolic perturbations emanating from LMNA mutations.
Collapse
Affiliation(s)
- Jasmine Saunders
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kunal Sikder
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elizabeth Phillips
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anurag Ishwar
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Mothy
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
13
|
Zheng K, Wang Z, Pang L, Song Z, Zhao H, Wang Y, Wang B, Han S. Systematic Identification of Methyl Jasmonate-Responsive Long Noncoding RNAs and Their Nearby Coding Genes Unveils Their Potential Defence Roles in Tobacco BY-2 Cells. Int J Mol Sci 2022; 23:ijms232415568. [PMID: 36555209 PMCID: PMC9778826 DOI: 10.3390/ijms232415568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are distributed in various species and play critical roles in plant growth, development, and defence against stimuli. However, the lncRNA response to methyl jasmonate (MeJA) treatment has not been well characterized in Nicotiana tabacum Bright Yellow-2 (BY-2) cells, and their roles in plant defence remain elusive. Here, 7848 reliably expressed lncRNAs were identified in BY-2 cells, of which 629 differentially expressed (DE) lncRNAs were characterized as MeJA-responsive lncRNAs. The lncRNAs in BY-2 cells had a strong genus specificity in Nicotiana. The combined analysis of the cis-regulated lncRNAs and their target genes revealed the potential up- and downregulated target genes that are responsible for different biological functions and metabolic patterns. In addition, some lncRNAs for response-associated target genes might be involved in plant defence and stress resistance via their MeJA- and defence-related cis-regulatory elements. Moreover, some MeJA-responsive lncRNA target genes were related to quinolinate phosphoribosyltransferase, lipoxygenases, and endopeptidase inhibitors, which may contribute to nicotine synthesis and disease and insect resistance, indicating that MeJA-responsive lncRNAs regulate nicotine biosynthesis and disease resistance by regulating their potential target genes in BY-2 cells. Therefore, our results provide more targets for genetically engineering the nicotine content and plant defence in tobacco plants.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zitao Wang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
- Correspondence: (B.W.); (S.H.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
- Correspondence: (B.W.); (S.H.)
| |
Collapse
|
14
|
Genome-Wide Analysis of Type-III Polyketide Synthases in Wheat and Possible Roles in Wheat Sheath-Blight Resistance. Int J Mol Sci 2022; 23:ijms23137187. [PMID: 35806194 PMCID: PMC9266324 DOI: 10.3390/ijms23137187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
The enzymes in the chalcone synthase family, also known as type-III polyketide synthases (PKSs), play important roles in the biosynthesis of various plant secondary metabolites and plant adaptation to environmental stresses. There have been few detailed reports regarding the gene and tissue expression profiles of the PKS (TaPKS) family members in wheat (Triticum aestivum L.). In this study, 81 candidate TaPKS genes were identified in the wheat genome, which were designated as TaPKS1–81. Phylogenetic analysis divided the TaPKS genes into two groups. TaPKS gene family expansion mainly occurred via tandem duplication and fragment duplication. In addition, we analyzed the physical and chemical properties, gene structures, and cis-acting elements of TaPKS gene family members. RNA-seq analysis showed that the expression of TaPKS genes was tissue-specific, and their expression levels differed before and after infection with Rhizoctonia cerealis. The expression levels of four TaPKS genes were also analyzed via qRT-PCR after treatment with methyl jasmonate, salicylic acid, abscisic acid, and ethylene. In the present study, we systematically identified and analyzed TaPKS gene family members in wheat, and our findings may facilitate the cloning of candidate genes associated with resistance to sheath blight in wheat.
Collapse
|
15
|
Shi Z, Wang H, Zhang Y, Jia L, Pang H, Feng H, Wang X. The involvement of extracellular ATP in regulating the stunted growth of Arabidopsis plants by repeated wounding. BMC PLANT BIOLOGY 2022; 22:279. [PMID: 35676637 PMCID: PMC9175478 DOI: 10.1186/s12870-022-03656-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Extracellular ATP (exATP) has been shown to act as a signal molecule for regulating growth, development, and responses of plants to the external environment. RESULTS In this study, we investigated the possible involvement of exATP in regulating the stunted growth caused by repeated wounding. The present work showed that the repeated wounding caused the decreases in leaf area, fresh weight, dry weight, and root length of Arabidopsis seedlings, while the exATP level was enhanced by the repeated wounding. Repeated application of exogenous ATP had similar effects on the plant growth, as the repeated wounding. Through the comparison of p2k1-3 mutant (in which T-DNA disrupted the gene coding P2K1, as exATP receptor) and wide type (WT) plants, it was found that the mutation in P2K1 decreased the sensitivity of plant growth to the repeated wounding and exogenous ATP application. Further works showed that the ibuprofen (IBU, an inhibitor of jasmonate biosynthesis) partially rescued the wound-induced growth degradation. In comparison, the P2K1 mutation partly rescued the wound-induced growth degradation, whereas this mutation failed to do so in the wounded seedlings treated with IBU, indicating that the role of exATP in regulating the growth degradation by repeated wounding could be linked to the JA signaling pathway. CONCLUSIONS In conclusion, these results indicate that exATP could be a regulator for the stunted growth of plants by repeated wounding.
Collapse
Affiliation(s)
- Zhenzhen Shi
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Lingyun Jia
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hailong Pang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Xin Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
16
|
Kabir N, Zhang X, Liu L, Qanmber G, Zhang L, Wang YX, Sun Z, Zhao N, Wang G. RAD gene family analysis in cotton provides some key genes for flowering and stress tolerance in upland cotton G. hirsutum. BMC Genomics 2022; 23:40. [PMID: 35012446 PMCID: PMC8744286 DOI: 10.1186/s12864-021-08248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background RADIALIS (RAD), belongs to the MYB gene family and regulates a variety of functions including floral dorsoventral asymmetry in Antirrhinum majus and development of fruit proteins in Solanum lycopersicum. RAD genes contain an SNF2_N superfamily domain. Here, we comprehensively identified 68 RAD genes from six different species including Arabidopsis and five species of cotton. Results Phylogenetic analysis classified RAD genes into five groups. Gene structure, protein motifs and conserved amino acid residues indicated that GhRAD genes were highly conserved during the evolutionary process. Chromosomal location information showed that GhRAD genes were distributed unevenly on different chromosomes. Collinearity and selection pressure analysis indicated RAD gene family expansion in G. hirsutum and G. barbadense with purifying selection pressure. Further, various growth and stress related promotor cis-acting elements were observed. Tissue specific expression level indicated that most GhRAD genes were highly expressed in roots and flowers (GhRAD2, GhRAD3, GhRAD4 and GhRAD11). Next, GhRAD genes were regulated by phytohormonal stresses (JA, BL and IAA). Moreover, Ghi-miRN1496, Ghi-miR1440, Ghi-miR2111b, Ghi-miR2950a, Ghi-miR390a, Ghi-miR390b and Ghi-miR7495 were the miRNAs targeting most of GhRAD genes. Conclusions Our study revealed that RAD genes are evolutionary conserved and might be involved in different developmental processes and hormonal stress response. Data presented in our study could be used as the basis for future studies of RAD genes in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08248-z.
Collapse
Affiliation(s)
- Nosheen Kabir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Le Liu
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Yu Xuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhuojing Sun
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100122, China
| | - Na Zhao
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China.
| | - Gang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Henan, 450001, Zhengzhou, China.
| |
Collapse
|
17
|
Liu L, Wang D, Zhang C, Liu H, Guo H, Cheng H, Liu E, Su X. The heat shock factor GhHSFA4a positively regulates cotton resistance to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:1050216. [PMID: 36407619 PMCID: PMC9669655 DOI: 10.3389/fpls.2022.1050216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 05/16/2023]
Abstract
Heat shock factors (HSFs) play a crucial role in the environmental stress responses of numerous plant species, including defense responses to pathogens; however, their role in cotton resistance to Verticillium dahliae remains unclear. We have previously identified several differentially expressed genes (DEGs) in Arabidopsis thaliana after inoculation with V. dahliae. Here, we discovered that GhHSFA4a in Gossypium hirsutum (cotton) after inoculation with V. dahliae shares a high identity with a DEG in A. thaliana in response to V. dahliae infection. Quantitative real-time PCR (qRT-PCR) analysis indicated that GhHSFA4a expression was rapidly induced by V. dahliae and ubiquitous in cotton roots, stems, and leaves. In a localization analysis using transient expression, GhHSFA4a was shown to be localized to the nucleus. Virus-induced gene silencing (VIGS) revealed that downregulation of GhHSFA4a significantly increased cotton susceptibility to V. dahliae. To investigate GhHSFA4a-mediated defense, 814 DEGs were identified between GhHSFA4a-silenced plants and controls using comparative RNA-seq analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched in "flavonoid biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis", "linoleic acid metabolism" and "alpha-linolenic acid metabolism". The expression levels of marker genes for these four pathways were triggered after inoculation with V. dahliae. Moreover, GhHSFA4a-overexpressing lines of A. thaliana displayed enhanced resistance against V. dahliae compared to that of the wild type. These results indicate that GhHSFA4a is involved in the synthesis of secondary metabolites and signal transduction, which are indispensable for innate immunity against V. dahliae in cotton.
Collapse
Affiliation(s)
- Lu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding, China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Enliang Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural ScienceS, Urumqi, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| |
Collapse
|
18
|
Lanka SK, Elderd BD, Davis JA, Stout MJ. Jasmonic acid-induced resistance to fall armyworm in soybeans: Variation among genotypes and tradeoffs with constitutive resistance. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhang R, Tan S, Zhang B, Hu P, Li L. Cerium-Promoted Ginsenosides Accumulation by Regulating Endogenous Methyl Jasmonate Biosynthesis in Hairy Roots of Panax ginseng. Molecules 2021; 26:5623. [PMID: 34577094 PMCID: PMC8467428 DOI: 10.3390/molecules26185623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Among rare earth elements, cerium has the unique ability of regulating the growth of plant cells and the biosynthesis of metabolites at different stages of plant development. The signal pathways of Ce3+-mediated ginsenosides biosynthesis in ginseng hairy roots were investigated. At a low concentration, Ce3+ improved the elongation and biomass of hairy roots. The Ce3+-induced accumulation of ginsenosides showed a high correlation with the reactive oxygen species (ROS), as well as the biosynthesis of endogenous methyl jasmonate (MeJA) and ginsenoside key enzyme genes (PgSS, PgSE and PgDDS). At a Ce3+ concentration of 20 mg L-1, the total ginsenoside content was 1.7-fold, and the total ginsenosides yield was 2.7-fold that of the control. Malondialdehyde (MDA) content and the ROS production rate were significantly higher than those of the control. The activity of superoxide dismutase (SOD) was significantly activated within the Ce3+ concentration range of 10 to 30 mg L-1. The activity of catalase (CAT) and peroxidase (POD) strengthened with the increasing concentration of Ce3+ in the range of 20-40 mg L-1. The Ce3+ exposure induced transient production of superoxide anion (O2•-) and hydrogen peroxide (H2O2). Together with the increase in the intracellular MeJA level and enzyme activity for lipoxygenase (LOX), there was an increase in the gene expression level of MeJA biosynthesis including PgLOX, PgAOS and PgJMT. Our results also revealed that Ce3+ did not directly influence PgSS, PgSE and PgDDS activity. We speculated that Ce3+-induced ROS production could enhance the accumulation of ginsenosides in ginseng hairy roots via the direct stimulation of enzyme genes for MeJA biosynthesis. This study demonstrates a potential approach for understanding and improving ginsenoside biosynthesis that is regulated by Ce3+-mediated signal transduction.
Collapse
Affiliation(s)
- Ru Zhang
- Hunan Institute of Engineering, College of Materials and Chemical Engineering, Xiangtan 411104, China; (S.T.); (B.Z.); (P.H.); (L.L.)
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, Hunan Institute of Engineering, Xiangtan 411104, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shiquan Tan
- Hunan Institute of Engineering, College of Materials and Chemical Engineering, Xiangtan 411104, China; (S.T.); (B.Z.); (P.H.); (L.L.)
| | - Bianling Zhang
- Hunan Institute of Engineering, College of Materials and Chemical Engineering, Xiangtan 411104, China; (S.T.); (B.Z.); (P.H.); (L.L.)
| | - Pengcheng Hu
- Hunan Institute of Engineering, College of Materials and Chemical Engineering, Xiangtan 411104, China; (S.T.); (B.Z.); (P.H.); (L.L.)
| | - Ling Li
- Hunan Institute of Engineering, College of Materials and Chemical Engineering, Xiangtan 411104, China; (S.T.); (B.Z.); (P.H.); (L.L.)
| |
Collapse
|
20
|
Matrose NA, Obikeze K, Belay ZA, Caleb OJ. Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Bika R, Baysal-Gurel F, Jennings C. Botrytis cinereamanagement in ornamental production: a continuous battle. CANADIAN JOURNAL OF PLANT PATHOLOGY 2021; 43:345-365. [PMID: 0 DOI: 10.1080/07060661.2020.1807409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 05/26/2023]
Affiliation(s)
- Ravi Bika
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN 37110, USA
| | - Fulya Baysal-Gurel
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN 37110, USA
| | - Christina Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN 37110, USA
| |
Collapse
|
22
|
Wang Y, Liu M, Ge D, Akhter Bhat J, Li Y, Kong J, Liu K, Zhao T. Hydroperoxide lyase modulates defense response and confers lesion-mimic leaf phenotype in soybean (Glycine max (L.) Merr.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1315-1333. [PMID: 32996255 DOI: 10.1111/tpj.15002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/20/2023]
Abstract
Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are two important members of P450 enzymes metabolizing hydroperoxy fatty acid to produce jasmonates and aldehydes respectively, which function in response to diverse environmental and developmental stimuli. However, their exact roles in soybean have not been clarified. In present study, we identified a lesion-mimic mutant in soybean named NT302, which exhibits etiolated phenotype together with chlorotic and spontaneous lesions on leaves at R3 podding stage. The underlying gene was identified as GmHPL encoding hydroperoxide lyase by map-based cloning strategy. Sequence analysis demonstrated that a single nucleotide mutation created a premature termination codon (Gln20-Ter), which resulted in a truncated GmHPL protein in NT302. GmHPL RNA was significantly reduced in NT302 mutant, while genes in AOS branch of the 13-LOX pathway were up-regulated in NT302. The mutant exhibited higher susceptibility to bacterial leaf pustule (BLP) disease, but increased resistance against common cutworm (CCW) pest. GmHPL was significantly induced in response to MeJA, wounding, and CCW in wild type soybean. Virus induced gene silencing (VIGS) of GhHPL genes gave rise to similar lesion-mimic leaf phenotypes in upland cotton, coupled with upregulation of the expression of JA biosynthesis and JA-induced genes. Our study provides evidence that competition exist between HPL and AOS branches in 13-LOX pathway of the oxylipin metabolism in soybean, thereby plays essential roles in modulation of plant development and defense.
Collapse
Affiliation(s)
- Yaqi Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meifeng Liu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongdong Ge
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Javaid Akhter Bhat
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiejie Kong
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, National Center for Soybean Improvement (Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|
24
|
Erickson BJ, Staples NC, Hess N, Staples MA, Weissert C, Finkelstein RR, Cooper JB. PRPs localized to the middle lamellae are required for cortical tissue integrity in Medicago truncatula roots. PLANT MOLECULAR BIOLOGY 2020; 102:571-588. [PMID: 31927659 DOI: 10.1007/s11103-019-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
A family of repetitive proline-rich proteins interact with acidic pectins and play distinct roles in legume root cell walls affecting cortical and vascular structure. A proline-rich protein (PRP) family, composed of tandemly repeated Pro-Hyp-Val-X-Lys pentapeptide motifs, is found primarily in the Leguminosae. Four distinct size classes within this family are encoded by seven tightly linked genes: MtPRP1, MtPRP2 and MtPRP3, and four nearly identical MtPRP4 genes. Promoter fusions to β-glucuronidase showed strong expression in the stele of hairy roots for all 4 PRP genes tested, with additional expression in the cortex for PRP1, PRP2 and PRP4. All except MtPRP4 are strongly expressed in non-tumorous roots, and secreted and ionically bound to root cell walls. These PRPs are absent from root epidermal cell walls, and PRP accumulation is highly localized within the walls of root cortical and vascular tissues. Within xylem tissue, PRPs are deposited in secondary thickenings where it is spatially exclusive to lignin. In newly differentiating xylem, PRPs are deposited in the regularly spaced paired-pits and pit membranes that hydraulically connect neighboring xylem elements. Hairpin-RNA knock-down constructs reducing PRP expression in Medicago truncatula hairy root tumors disrupted cortical and vascular patterning. Immunoblots showed that the knockdown tumors had potentially compensating increases in the non-targeted PRPs, all of which cross-react with the anti-PRP antibodies. However, PRP3 knockdown differed from knockdown of PRP1 and PRP2 in that it greatly reduced viability of hairy root tumors. We hypothesize that repetitive PRPs interact with acidic pectins to form block-copolymer gels that can play distinct roles in legume root cell walls.
Collapse
Affiliation(s)
- B Joy Erickson
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biological Sciences Department, Santa Rosa Junior College, Santa Rosa, CA, 95401, USA
| | - Nathan C Staples
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biological Sciences Department, Cañada College, Redwood City, CA, 94061, USA
| | - Nicole Hess
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Michelle A Staples
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Christian Weissert
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biology Department, Universität Hamburg, 22609, Hamburg, Germany
| | - Ruth R Finkelstein
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - James B Cooper
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
25
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
26
|
Qi J, Zhao X, Li Z. iTRAQ-Based Quantitative Proteomic Analysis of the Arabidopsis Mutant opr3-1 in Response to Exogenous MeJA. Int J Mol Sci 2020; 21:ijms21020571. [PMID: 31963133 PMCID: PMC7013738 DOI: 10.3390/ijms21020571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Jasmonates (JAs) regulate the defense of biotic and abiotic stresses, growth, development, and many other important biological processes in plants. The comprehensive proteomic profiling of plants under JAs treatment provides insights into the regulation mechanism of JAs. Isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis was performed on the Arabidopsis wild type (Ws) and JA synthesis deficiency mutant opr3-1. The effects of exogenous MeJA treatment on the proteome of opr3-1, which lacks endogenous JAs, were investigated. A total of 3683 proteins were identified and 126 proteins were differentially regulated between different genotypes and treatment groups. The functional classification of these differentially regulated proteins showed that they were involved in metabolic processes, responses to abiotic stress or biotic stress, the defense against pathogens and wounds, photosynthesis, protein synthesis, and developmental processes. Exogenous MeJA treatment induced the up-regulation of a large number of defense-related proteins and photosynthesis-related proteins, it also induced the down-regulation of many ribosomal proteins in opr3-1. These results were further verified by a quantitative real-time PCR (qRT-PCR) analysis of 15 selected genes. Our research provides the basis for further understanding the molecular mechanism of JAs’ regulation of plant defense, photosynthesis, protein synthesis, and development.
Collapse
|
27
|
Hernandez-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 2020; 21:28. [PMID: 31914917 PMCID: PMC6950806 DOI: 10.1186/s12864-019-6444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo de Arkaute, Apdo 46, 01080, Vitoria-Gasteiz, Spain
| | - Rosa Raposo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Instituto de Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid/INIA, Valladolid, Spain
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
28
|
Hu Z, Fu Q, Zheng J, Zhang A, Wang H. Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis. HORTICULTURE RESEARCH 2020; 7:79. [PMID: 32528691 PMCID: PMC7261800 DOI: 10.1038/s41438-020-0293-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/03/2020] [Accepted: 03/20/2020] [Indexed: 05/17/2023]
Abstract
Melatonin has been shown to alleviate the effects of abiotic stress and to regulate plant development. Copper, a common heavy metal and soil pollutant, can suppress plant growth and development. In this work, we explored the protective effects of exogenous melatonin on lateral root formation in response to copper stress using melon seeds subjected to three germination treatments: CK1 (control), CK2 (300 μmol/L CuSO4), and MT3 (300 μmol/L melatonin + 300 μmol/L CuSO4). Melatonin pretreatment increased the antioxidant enzyme activities and root vigor, and decreased the proline and malondialdehyde (MDA) contents in the roots of copper-stressed melon seedlings. We then used transcriptomic and metabolomic analyses to explore the mechanisms by which exogenous melatonin protects against copper stress. There were 70 significant differentially expressed genes (DEGs) (28 upregulated, 42 downregulated) and 318 significantly differentially expressed metabolites (DEMs) (168 upregulated, 150 downregulated) between the MT3 and CK2 treatments. Melatonin pretreatment altered the expression of genes related to redox and cell wall formation processes. In addition, we found that members of the AP2/ERF, BBR/BPC, GRAS, and HD-ZIP transcription factor families may have vital roles in lateral root development. Melatonin also increased the level of Glutathione (GSH), which chelates excess Cu2+. The combined transcriptomic and metabolomic analysis revealed DEGs and DEMs involved in jasmonic acid (JA) biosynthesis, including four lipoxygenase-related genes and two metabolites (linoleic acid and lecithin) related to melatonin's alleviation effect on copper toxicity. This research elucidated the molecular mechanisms of melatonin's protective effects in copper-stressed melon.
Collapse
Affiliation(s)
- Zhicheng Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qiushi Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jing Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Aiai Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
29
|
Hoermayer L, Friml J. Targeted cell ablation-based insights into wound healing and restorative patterning. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:124-130. [PMID: 31585333 PMCID: PMC6900583 DOI: 10.1016/j.pbi.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
30
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
31
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
32
|
Fooladi Vanda G, Shabani L, Razavizadeh R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. BOTANICAL STUDIES 2019; 60:26. [PMID: 31624938 PMCID: PMC6797681 DOI: 10.1186/s40529-019-0274-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/03/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Chitosan is a polycationic polysaccharide derived from chitin that has been recognized as an effective elicitor in the production of secondary metabolites of many medicinal plants. In this study, the effect of abiotic elicitor (chitosan) at various concentrations on rosmarinic acid (RA) and total phenolic accumulation in shoot cultures of lemon balm was investigated. RESULTS Treatment of shoots by chitosan led to a noticeable induction of phenylalanine ammonia-lyase (PAL), catalase (CAT), guaiacol peroxidase (GPX) and lipoxygenase (LOX) activities. Besides, the expression of PAL1, TAT and RAS genes and accumulation of RA and phenolic compound increased in chitosan-treated lemon balm shoots. Chitosan treatment also increased H2O2 accumulation and the expression of RBOH, an essential gene implicated in ROS production. Also, the up-regulation of the OPR gene by exogenous chitosan was associated with the induction of endogenous JA determined by GC-MASS. CONCLUSION The present study showed that the induced production of rosmarinic acid by chitosan involves the trigger of defense-related enzymes, up-regulated expression of TAT and RAS genes, and stimulation of JA biosynthesis.
Collapse
Affiliation(s)
| | - Leila Shabani
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.
| | - Roya Razavizadeh
- Department of Biology, Payame Noor University, 19395-3697, Tehran, Iran
| |
Collapse
|
33
|
Wu A, Hao P, Wei H, Sun H, Cheng S, Chen P, Ma Q, Gu L, Zhang M, Wang H, Yu S. Genome-Wide Identification and Characterization of Glycosyltransferase Family 47 in Cotton. Front Genet 2019; 10:824. [PMID: 31572442 PMCID: PMC6749837 DOI: 10.3389/fgene.2019.00824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/09/2019] [Indexed: 01/06/2023] Open
Abstract
The glycosyltransferase (GT) 47 family is involved in the biosynthesis of xylose, pectin and xyloglucan and plays a significant role in maintaining the normal morphology of the plant cell wall. However, the functions of GT47s are less well known in cotton. In the present study, a total of 53, 53, 105 and 109 GT47 genes were detected by genome-wide identification in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. All the GT47s were classified into six major groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GT47 genes was highly conserved. Collinearity analysis showed that GT47 gene family expansion occurred in Gossypium spp. mainly through whole-genome duplication and that segmental duplication mainly promoted GT47 gene expansion within the A and D subgenomes. The Ka/Ks values suggested that the GT47 gene family has undergone purifying selection during the long-term evolutionary process. Transcriptomic data and qRT-PCR showed that GhGT47 genes exhibited different expression patterns in each tissue and during fiber development. Our results suggest that some genes in the GhGT47 family might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GT47 genes in cotton.
Collapse
Affiliation(s)
- Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Singh UB, Malviya D, Singh S, Kumar M, Sahu PK, Singh HV, Kumar S, Roy M, Imran M, Rai JP, Sharma AK, Saxena AK. Trichoderma harzianum- and Methyl Jasmonate-Induced Resistance to Bipolaris sorokiniana Through Enhanced Phenylpropanoid Activities in Bread Wheat ( Triticum aestivum L.). Front Microbiol 2019; 10:1697. [PMID: 31417511 PMCID: PMC6685482 DOI: 10.3389/fmicb.2019.01697] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to evaluate the impact of Trichoderma harzianum UBSTH-501- and methyl jasmonate-induced systemic resistance and their integration on the spot blotch pathogen, Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). It was found that the application of MeJA (>100 mg L-1) inhibits the germination of B. sorokiniana spores under controlled laboratory conditions. To assess the effect of MeJA (150 mg L-1) in combination with the biocontrol agent T. harzianum UBSTH-501 in vivo, a green house experiment was conducted. For this, biocontrol agent T. harzianum UBSTH-501 was applied as seed treatment, whereas MeJA (150 mg L-1) was applied 5 days prior to pathogen inoculation. Results indicated that application of MeJA (150 mg L-1) did not affect the root colonization of wheat by T. harzianum UBSTH-501 in the rhizosphere. The combined application of T. harzianum UBSTH-501 and MeJA also enhanced indole acetic acid production in the rhizosphere (4.92 μg g-1 of soil) which in turn helps in plant growth and development. Further, the combined application found to enhance the activities of defense related enzymes viz. catalase (5.92 EU min-1 g-1 fresh wt.), ascorbate peroxidase [μmol ascorbate oxidized (mg prot)-1 min-1], phenylalanine ammonia lyase (102.25 μmol cinnamic acid h-1 mg-1 fresh wt.) and peroxidase (6.95 Unit mg-1 min-1 fresh wt.) significantly in the plants under treatment which was further confirmed by assessing the transcript level of PAL and peroxidase genes using semi-quantitative PCR approach. The results showed manifold increase in salicylic acid (SA) along with enhanced accumulation of total free phenolics, ferulic acid, caffeic acid, coumaric acid, and chlorogenic acid in the leaves of the plants treated with the biocontrol agent alone or in combination with MeJA. A significant decrease in the disease severity (17.46%) and area under disease progress curve (630.32) were also observed in the treatments with biocontrol agent and MeJA in combination as compared to B. sorokiniana alone treated plant (56.95% and 945.50, respectively). Up-regulation of phenylpropanoid cascades in response to exogenous application of MeJA and the biocontrol agent was observed. It was depicted from the results that PAL is the primary route for lignin production in wheat which reduces cell wall disruption and tissue disintegration and increases suberization and lignification of the plant cell as seen by Scanning Electron microphotographs. These results clearly indicated that exogenous application of MeJA with T. harzianum inducing JA- and/or SA-dependent defense signaling after pathogen challenge may increase the resistance to spot blotch by stimulating enzymatic activities and the accumulation of phenolic compounds in a cooperative manner. This study apparently provides the evidence of biochemical cross-talk and physiological responses in wheat following MeJA and biocontrol agent treatment during the bio-trophic infection.
Collapse
Affiliation(s)
- Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Manoj Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Pramod K Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - H V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Sunil Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Manish Roy
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Mohd Imran
- Department of Bioscience, Faculty of Applied Science, Integral University, Lucknow, India
| | - Jai P Rai
- Department of Mycology and Plant Pathology (Krishi Vigyan Kendra), Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - A K Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - A K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
35
|
Senthil-Nathan S. Effect of methyl jasmonate (MeJA)-induced defenses in rice against the rice leaffolder Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2019; 75:460-465. [PMID: 29998605 DOI: 10.1002/ps.5139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Methyl jasmonate (MeJA) activates host defense mechanisms against insect pests of agricultural importance, and regulates defense responses against living and non-living stresses in various plant species. Rice leaf-folder (Cnaphalocrocis medinalis Guenèe, Lepidoptera: Pyralidae) feeding activity and mortality were evaluated after MeJA treatment of rice plants ASD-16. RESULTS Rice plant resistance was activated through the topical application of MeJA to rice leaves. Feeding deterrence occurred with application of 2.5 and 5 mm MeJA solution. Feeding activity and consumption rates were significantly different, being reduced compared with controls post MeJA treatment. Significantly greater mortality was seen in second instars post treatment with 2.5 and 5 mm MeJA. Survival was significantly reduced for larvae and adults post treatment. CONCLUSION Application of MeJA as a topical spray onto rice plants significantly altered the biology and survival of the leaf-folder, having an effect on all life stages. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
| |
Collapse
|
36
|
Li S, Zhang Y, Ding C, Gao X, Wang R, Mo W, Lv F, Wang S, Liu L, Tang Z, Tian H, Zhang J, Zhang B, Huang Q, Lu M, Wuyun TN, Hu Z, Xia Y, Su X. Proline-rich protein gene PdPRP regulates secondary wall formation in poplar. JOURNAL OF PLANT PHYSIOLOGY 2019; 233:58-72. [PMID: 30599461 DOI: 10.1016/j.jplph.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Proline-rich protein (PRP) is a plant cell wall associated protein. Its distinct patterns of regulation and localization studied in a number of plants indicate that it may play important roles in growth and development. However, the mechanism of how these genes control secondary cell wall development in tree species is largely unknown. Here, we report that a Populus deltoides (Marsh.) proline-rich protein gene PdPRP was preferentially expressed in immature/mature phloem and immature xylem in P. deltoides. PdPRP overexpression increased poplar plant height and diameter as well as the radial width of the phloem and xylem regions, facilitated secondary wall deposition, and induced expression of genes related to microfibril angle (MFA) and secondary wall biosynthesis. Downregulation of PdPRP retarded poplar growth, decreased the radial width of the secondary phloem and secondary xylem regions, reduced secondary wall thickening in fibers and vessels, and decreased the expression of genes related to MFA and secondary wall biosynthesis. These results suggest that PdPRP might positively regulate secondary cell wall formation by promoting secondary wall thickening and expansion in poplar. PdPRP-overexpressing poplar had a lower MFA, indicating that PdPRP may be useful for improving wood stiffness and properties in plants. Together, our results demonstrate that PdPRP is a proline-rich protein associated with cell wall development, playing a critical role in regulating secondary cell wall formation in poplar.
Collapse
Affiliation(s)
- Shaofeng Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Yaoxiang Zhang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xu Gao
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Ran Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Wenjuan Mo
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Fuling Lv
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Shaoli Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Liang Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Zhimin Tang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Hua Tian
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China
| | - Jianhui Zhang
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Ta-Na Wuyun
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, PR China.
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
37
|
Reig C, Martínez-Fuentes A, Mesejo C, Agustí M. Hormonal control of parthenocarpic fruit set in 'Rojo Brillante' persimmon (Diospyros kaki Thunb.). JOURNAL OF PLANT PHYSIOLOGY 2018; 231:96-104. [PMID: 30248556 DOI: 10.1016/j.jplph.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/08/2018] [Accepted: 09/09/2018] [Indexed: 05/23/2023]
Abstract
In persimmon (Diospyros kaki Thunb.), one to three waves of fruit abscission can occur. The parthenocarpic cv. Rojo Brillante may abscise close to 50% of flowers, which implies a major economic losses. In order to study this process, 700 flowers were labelled, 600 had the lobes of the calyx removed at three stages to promote abscission. Half of them were also treated with gibberellic acid (GA3; 10 mg l-1) to counteract the effect, and 100 were used as control. In the second year, GA3 (25 mg l-1) was applied to whole trees. Calyx lobe removal (CLR) reduced fruit growth rates and advanced and increased fruitlet abscission, whereas GA3 counteracted this effect. Furthermore, when GA3 was applied to the whole tree, fruit set was increased. The time-course of fruit abscission paralleled a decreased in hormonal and carbohydrate contents. Control fruit showed a peak of gibberellin (GA1 and GA4) and IAA concentration at anthesis. Hexose concentrations remained almost constant from flower bud to fruit set, whereas that of sucrose diminished with time. A peak in ethylene production occurred at anthesis, which increased when CLR was performed prior to or at anthesis, but not when performed at fruit set, when ethylene was markedly smaller. GA3 also counteracted it. Accordingly, we suggest that fruit set depends on the induction of gibberellin (GA) and IAA responses in the persimmon, and since there is no shortage of hormones or carbohydrates at anthesis, ethylene production at anthesis seems the most plausible cause of the physiological fruitlet abscission.
Collapse
Affiliation(s)
- C Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - A Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - C Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - M Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| |
Collapse
|
38
|
Wang Z, Yu Q, Shen W, El Mohtar CA, Zhao X, Gmitter FG. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC PLANT BIOLOGY 2018; 18:189. [PMID: 30208944 PMCID: PMC6134715 DOI: 10.1186/s12870-018-1418-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Citrus flavonoids are considered as the important secondary metabolites because of their biological and pharmacological activities. Chalcone synthase (CHS) is a key enzyme that catalyses the first committed step in the flavonoid biosynthetic pathway. CHS genes have been isolated and characterized in many plants. Previous studies indicated that CHS is a gene superfamily. In citrus, the number of CHS members and their contribution to the production of flavonoids remains a mystery. In our previous study, the copies of CitCHS2 gene were found in different citrus species and the sequences are highly conserved, but the flavonoid content varied significantly among those species. RESULTS From seventy-seven CHS and CHS-like gene sequences, ten CHS members were selected as candidates according to the features of their sequences. Among these candidates, expression was detected from only three genes. A predicted CHS sequence was identified as a novel CHS gene. The structure analysis showed that the gene structure of this novel CHS is very similar to other CHS genes. All three CHS genes were highly conserved and had a basic structure that included one intron and two exons, although they had different expression patterns in different tissues and developmental stages. These genes also presented different sensitivities to methyl jasmonate (MeJA) treatment. In transgenic plants, the expression of CHS genes was significantly correlated with the production of flavonoids. The three CHS genes contributed differently to the production of flavonoids. CONCLUSION Our study indicated that CitCHS is a gene superfamily including at least three functional members. The expression levels of the CHS genes are highly correlated to the biosynthesis of flavonoids. The CHS enzyme is dynamically produced from several CHS genes, and the production of total flavonoids is regulated by the overall expression of CHS family genes.
Collapse
Affiliation(s)
- Zhibin Wang
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Wanxia Shen
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Choaa A. El Mohtar
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Fredrick G. Gmitter
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| |
Collapse
|
39
|
Deng Y, Li C, Li H, Lu S. Identification and Characterization of Flavonoid Biosynthetic Enzyme Genes in Salvia miltiorrhiza (Lamiaceae). Molecules 2018; 23:E1467. [PMID: 29914175 PMCID: PMC6099592 DOI: 10.3390/molecules23061467] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a class of important secondary metabolites with a broad spectrum of pharmacological functions. Salviamiltiorrhiza Bunge (Danshen) is a well-known traditional Chinese medicinal herb with a broad diversity of flavonoids. However, flavonoid biosynthetic enzyme genes have not been systematically and comprehensively analyzed in S.miltiorrhiza. Through genome-wide prediction and molecular cloning, twenty six flavonoid biosynthesis-related gene candidates were identified, of which twenty are novel. They belong to nine families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), respectively. Analysis of intron/exon structures, features of deduced proteins and phylogenetic relationships revealed the conservation and divergence of S.miltiorrhiza flavonoid biosynthesis-related proteins and their homologs from other plant species. These genes showed tissue-specific expression patterns and differentially responded to MeJA treatment. Through comprehensive and systematic analysis, fourteen genes most likely to encode flavonoid biosynthetic enzymes were identified. The results provide valuable information for understanding the biosynthetic pathway of flavonoids in medicinal plants.
Collapse
Affiliation(s)
- Yuxing Deng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Heqin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
40
|
Wang K, Guo Q, Froehlich JE, Hersh HL, Zienkiewicz A, Howe GA, Benning C. Two Abscisic Acid-Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthesis in Arabidopsis thaliana. THE PLANT CELL 2018; 30:1006-1022. [PMID: 29666162 PMCID: PMC6002186 DOI: 10.1105/tpc.18.00250] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 05/18/2023]
Abstract
Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A1 that contributes to seed oil biosynthesis. The Arabidopsis thaliana genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A1 lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of PLIP2 or PLIP3 severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the PLIP2/3-overexpressing plants. The expression of PLIP2 and PLIP3, but not PLIP1, was induced by abscisic acid (ABA), and plip1 plip2 plip3 triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The plip triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
| | - Qiang Guo
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - John E Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
| | - Hope Lynn Hersh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823
| | - Gregg A Howe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823
| |
Collapse
|
41
|
Matsuoka K, Yanagi R, Yumoto E, Yokota T, Yamane H, Satoh S, Asahina M. RAP2.6L and jasmonic acid-responsive genes are expressed upon Arabidopsis hypocotyl grafting but are not needed for cell proliferation related to healing. PLANT MOLECULAR BIOLOGY 2018; 96:531-542. [PMID: 29344830 DOI: 10.1007/s11103-018-0702-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 05/15/2023]
Abstract
Jasmonic acid and RAP2.6L are induced upon wounding but are not involved in cell proliferation during healing in Arabidopsis hypocotyls. Plants produce jasmonic acid in response to wounding, but its role in healing, if any, has not been determined. Previously, the jasmonic acid-induced transcription factor, RAP2.6L, related to APETALA 2.6-like, was identified as a spatially expressed factor involved in tissue reunion in partially incised flowering stems of Arabidopsis. In the present study, we investigated the function of JA and RAP2.6L on wound healing using an Arabidopsis hypocotyl-grafting system, in which separated tissues are reattached by vascular tissue cell proliferation. The jasmonic acid-responsive genes AOS and JAZ10 were transiently expressed immediately after grafting. We confirmed that the endogenous content of jasmonic acid-Ile, which is the bioactive form of jasmonic acid, increased in hypocotyls 1 h after grafting. Morphological analysis of the grafted tissue revealed that vascular tissue cell proliferation occurred in a similar manner in wild-type Arabidopsis, the jasmonic acid-deficient mutant aos, the jasmonic acid-insensitive mutant coi1, and in Arabidopsis that had been exogenously treated with jasmonic acid. RAP2.6L expression was also induced during graft healing. Because RAP2.6L expression occurred during graft healing in aos and coi1, its expression must be regulated via a jasmonic acid-independent pathway. The rap2.6L mutant and dominant repressor transformants for RAP2.6L showed normal cell proliferation during graft healing. Taken together, our results suggest that JA and RAP2.6L, induced by grafting, are not necessary for cell proliferation process in healing.
Collapse
Affiliation(s)
- Keita Matsuoka
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Raiki Yanagi
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Emi Yumoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Shinobu Satoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
| |
Collapse
|
42
|
Schaeffer RN, Wang Z, Thornber CS, Preisser EL, Orians CM. Two invasive herbivores on a shared host: patterns and consequences of phytohormone induction. Oecologia 2018; 186:973-982. [PMID: 29362885 DOI: 10.1007/s00442-018-4063-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
Abstract
Herbivore-induced changes in host quality mediate indirect interactions between herbivores. The nature of these indirect interactions can vary depending on the identity of herbivores involved, species-specific induction of defense-signaling pathways, and sequence of attack. However, our understanding of the role of these signaling pathways in the success of multiple exotic herbivores is less known. Eastern hemlock (Tsuga canadensis) is attacked by two invasive herbivores [elongate hemlock scale (EHS; Fiorinia externa) and hemlock woolly adelgid (HWA; Adelges tsugae)] throughout much of its range, but prior attack by EHS is known to deter HWA. The potential role of phytohormones in this interaction is poorly understood. We measured endogenous levels of phytohormones in eastern hemlock in response to attack by these invasive herbivores. We also used exogenous application of methyl jasmonate (MJ) and acibenzolar-S-methyl (ASM), a salicylic acid (SA) pathway elicitor, to test the hypothesis that defense-signaling phytohormones typically induced by herbivores could deter HWA. Resistance to adelgid attack was assessed using a behavioral assay. Adelgid feeding significantly elevated both abscisic acid (ABA) and SA in local tissues, while EHS feeding had no detectable effect on either phytohormone. HWA progrediens and sistens crawlers preferred to settle on ASM-treated foliage. In contrast, HWA crawlers actively avoided settlement on MJ-treated foliage. We suggest that induction of ABA- and SA-signaling pathways, in concert with defense-signaling interference, may aid HWA invasion success, and that defense-signaling interference, induced by exotic competitors, may mediate resistance of native hosts.
Collapse
Affiliation(s)
- Robert N Schaeffer
- Department of Biology, Tufts University, Medford, MA, 02155, USA. .,Department of Entomology, Washington State University, Pullman, WA, 99164, USA.
| | - Zhou Wang
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Carol S Thornber
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Natural Resources Science, University of Rhode Island, Kingston, RI, 02881, USA
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Colin M Orians
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
43
|
Tripathi D, Zhang T, Koo AJ, Stacey G, Tanaka K. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense. PLANT PHYSIOLOGY 2018; 176:511-523. [PMID: 29180381 PMCID: PMC6108377 DOI: 10.1104/pp.17.01477] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/22/2017] [Indexed: 05/20/2023]
Abstract
Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis (Arabidopsis thaliana) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1-3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1, but not in the JA biosynthesis mutant, aos, or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Tong Zhang
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Abraham J Koo
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| |
Collapse
|
44
|
Roles of C-Repeat Binding Factors-Dependent Signaling Pathway in Jasmonates-Mediated Improvement of Chilling Tolerance of Postharvest Horticultural Commodities. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8517018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C-repeat binding factor- (CBF-) dependent signaling pathway is proposed to be a key responder to low temperature stress in plant. Jasmonates (JAs), the endogenous signal molecules in plant, participate in plant defense against (a)biotic stresses; however, the mechanism has not been fully clarified so far. With the progress made in JAs biopathway, signal transduction, and their relationship with CBF-dependent signaling pathway, our knowledge of the roles of the CBF-dependent signaling pathway in JAs-mediated improvement of chilling tolerance accumulates. In this review, we firstly briefly review the chilling injury (CI) characteristics of postharvest horticultural commodities, then introduce the biopathway and signal transduction of JAs, subsequently summarize the roles of the CBF-dependent signaling pathway under low temperature stress, and finally describe the linkage between JAs signal transduction and the CBF-dependent signaling pathway.
Collapse
|
45
|
Abouzeid S, Beutling U, Surup F, Abdel Bar FM, Amer MM, Badria FA, Yahyazadeh M, Brönstrup M, Selmar D. Treatment of Vinca minor Leaves with Methyl Jasmonate Extensively Alters the Pattern and Composition of Indole Alkaloids. JOURNAL OF NATURAL PRODUCTS 2017; 80:2905-2909. [PMID: 29131648 DOI: 10.1021/acs.jnatprod.7b00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alkaloids extracted from mature Vinca minor leaves were fractionated by preparative HPLC. By means of HRMS and NMR data, the main alkaloids were identified as vincamine, strictamine, 10-hydroxycathofoline, and vincadifformine. Upon treatment with methyl jasmonate (MeJA), the pattern and composition of the indole alkaloids changed extensively. While 10-hydroxycathofoline and strictamine concentrations remained unaltered, vincamine and vincadifformine levels showed a dramatic reduction. Upon MeJA treatment, four other indole alkaloids were detected in high quantities. Three of these alkaloids have been identified as minovincinine, minovincine, and 9-methoxyvincamine. Whereas minovincinine and minovincine are known to occur in trace amounts in V. minor, 9-methoxyvincamine represents a novel natural product. Based on the high similarities of vincamine and 9-methoxyvincamine and their inverse changes in concentrations, it is postulated that vincamine is a precursor of 9-methoxyvincamine. Similarly, vincadifformine seems to be converted first to minovincinine and finally to minovincine. Because MeJA treatment greatly altered the alkaloidal composition of V. minor, it could be used as a potential elicitor of alkaloids that are not produced under normal conditions.
Collapse
Affiliation(s)
- Sara Abouzeid
- Institute for Plant Biology, TU Braunschweig , 38106 Braunschweig, Germany
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | | | | | - Fatma M Abdel Bar
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Mohamed M Amer
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Farid A Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Mahdi Yahyazadeh
- Institute for Plant Biology, TU Braunschweig , 38106 Braunschweig, Germany
| | | | - Dirk Selmar
- Institute for Plant Biology, TU Braunschweig , 38106 Braunschweig, Germany
| |
Collapse
|
46
|
Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H, Sugimoto K. Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes. PLANT PHYSIOLOGY 2017; 175:1158-1174. [PMID: 28904073 PMCID: PMC5664475 DOI: 10.1104/pp.17.01035] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation.
Collapse
Affiliation(s)
- Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Alice Lambolez
- Ecole Normale Supérieure of Paris, Paris cedex 05 75230, France
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
47
|
Savchenko T, Yanykin D, Khorobrykh A, Terentyev V, Klimov V, Dehesh K. The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis. PLANTA 2017; 245:1179-1192. [PMID: 28303390 DOI: 10.1007/s00425-017-2674-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions. Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites-does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia.
- All-Russian Research Institute of Phytopathology, Institute st., 5, Odintsovo District, B. Vyazyomy, 143050, Moscow Region, Russia.
| | - Denis Yanykin
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
- All-Russian Research Institute of Phytopathology, Institute st., 5, Odintsovo District, B. Vyazyomy, 143050, Moscow Region, Russia
| | - Andrew Khorobrykh
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Vasily Terentyev
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Vyacheslav Klimov
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
48
|
Wang C, Zhi S, Liu C, Xu F, Zhao A, Wang X, Tang X, Li Z, Huang P, Yu M. Isolation and characterization of a novel chalcone synthase gene family from mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:107-118. [PMID: 28355585 DOI: 10.1016/j.plaphy.2017.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 05/02/2023]
Abstract
Chalcone synthase (CHS) is the pivotal enzyme that catalyzes the first committed step of the phenylpropanoid pathway leading to flavonoids. Here, five CHS genes were determined in mulberry (Morus atropurpurea Roxb.). Interestingly, phylogenetic analysis tended to group three MaCHSs in the stilbene synthase (STS) family and initially annotated these as MaSTSs. A co-expression system that harbored a 4-coumarate:CoA ligase gene and one of the candidate genes was established to determine the functions of this novel gene family. The fermentation result demonstrated that MaSTS in fact encoded a CHS enzyme, and was consequently retermed MaCHS. Tissue-specific expression analysis indicated that MaCHS1/MaCHS2 was highly abundant in fruit, and MaCHS4 had significant expression in root bark, stem bark and old leaves, while MaCHS3 and MaCHS5 were more expressed in old leaves. Subcellular localization experiments showed that MaCHS was localized to the cytoplasm. Transcription levels suggested MaCHS genes were involved in a series of defense responses. Over-expression of MaCHS in transgenic tobacco modified the metabolite profile, and resulted in elevated tolerance to a series of environmental stresses. This study comprehensively evaluated the function of MaCHS genes and laid the foundation for future research on MaCHS in mulberry.
Collapse
Affiliation(s)
- Chuanhong Wang
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Shuang Zhi
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Changying Liu
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Fengxiang Xu
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Aichun Zhao
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Xiling Wang
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Xing Tang
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan 661100, China
| | - Ping Huang
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan 661100, China
| | - Maode Yu
- College of Biotechnology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400716, China.
| |
Collapse
|
49
|
Identification and functional characterization of three type III polyketide synthases from Aquilaria sinensis calli. Biochem Biophys Res Commun 2017; 486:1040-1047. [DOI: 10.1016/j.bbrc.2017.03.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/24/2023]
|
50
|
Ye ZW, Lung SC, Hu TH, Chen QF, Suen YL, Wang M, Hoffmann-Benning S, Yeung E, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. PLANT MOLECULAR BIOLOGY 2016; 92:717-730. [PMID: 27645136 DOI: 10.1007/s11103-016-0541-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yung-Lee Suen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Edward Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|