1
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Eshak MIY, Rubbenstroth D, Beer M, Pfaff F. Diving deep into fish bornaviruses: Uncovering hidden diversity and transcriptional strategies through comprehensive data mining. Virus Evol 2023; 9:vead062. [PMID: 38028148 PMCID: PMC10645145 DOI: 10.1093/ve/vead062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Recently, we discovered two novel orthobornaviruses in colubrid and viperid snakes using an in silico data-mining approach. Here, we present the results of a screening of more than 100,000 nucleic acid sequence datasets of fish samples from the Sequence Read Archive (SRA) for potential bornaviral sequences. We discovered the potentially complete genomes of seven bornavirids in datasets from osteichthyans and chondrichthyans. Four of these are likely to represent novel species within the genus Cultervirus, and we propose that one genome represents a novel genus within the family of Bornaviridae. Specifically, we identified sequences of Wǔhàn sharpbelly bornavirus in sequence data from the widely used grass carp liver and kidney cell lines L8824 and CIK, respectively. A complete genome of Murray-Darling carp bornavirus was identified in sequence data from a goldfish (Carassius auratus). The newly discovered little skate bornavirus, identified in the little skate (Leucoraja erinacea) dataset, contained a novel and unusual genomic architecture (N-Vp1-Vp2-X-P-G-M-L), as compared to other bornavirids. Its genome is thought to encode two additional open reading frames (tentatively named Vp1 and Vp2), which appear to represent ancient duplications of the gene encoding the viral glycoprotein (G). The datasets also provided insights into the possible transcriptional gradients of these bornavirids and revealed previously unknown splicing mechanisms.
Collapse
Affiliation(s)
- Mirette I Y Eshak
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Südufer 10, Greifswald—Insel Riems 17493, Germany
| | - Dennis Rubbenstroth
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Südufer 10, Greifswald—Insel Riems 17493, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Südufer 10, Greifswald—Insel Riems 17493, Germany
| | - Florian Pfaff
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Südufer 10, Greifswald—Insel Riems 17493, Germany
| |
Collapse
|
3
|
Kanda T, Tomonaga K. Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1. Viruses 2022; 14:v14102236. [PMID: 36298790 PMCID: PMC9612284 DOI: 10.3390/v14102236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus belonging to the family Bornaviridae within the order Mononegavirales. Whereas BoDV-1 causes neurological and behavioral disorders, called Borna disease (BD), in a wide range of mammals, its virulence in humans has been debated for several decades. However, a series of case reports in recent years have established the nature of BoDV-1 as a zoonotic pathogen that causes fatal encephalitis in humans. Although many virological properties of BoDV-1 have been revealed to date, the mechanism by which it causes fatal encephalitis in humans remains unclear. In addition, there are no effective vaccines or antiviral drugs that can be used in clinical practice. A reverse genetics approach to generating replication-competent recombinant viruses from full-length cDNA clones is a powerful tool that can be used to not only understand viral properties but also to develop vaccines and antiviral drugs. The rescue of recombinant BoDV-1 (rBoDV-1) was first reported in 2005. However, due to the slow nature of the replication of this virus, the rescue of high-titer rBoDV-1 required several months, limiting the use of this system. This review summarizes the history of the reverse genetics and artificial replication systems for orthobornaviruses and explores the recent progress in efforts to rescue rBoDV-1.
Collapse
Affiliation(s)
- Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Correspondence:
| |
Collapse
|
4
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
5
|
Kanda T, Sakai M, Makino A, Tomonaga K. Exogenous expression of both matrix protein and glycoprotein facilitates infectious viral particle production of Borna disease virus 1. J Gen Virol 2022; 103. [PMID: 35819821 DOI: 10.1099/jgv.0.001767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is a non-segmented, negative-strand RNA virus that is characterized by persistent infection in the nucleus and low production of progeny virions. This feature impedes not only the harvesting of infectious viral particles from infected cells but also the rescue of high titres of recombinant BoDV-1 (rBoDV-1) by reverse genetics. Here, we demonstrate that exogenous expression of both matrix protein (M) and glycoprotein (G), which are constituents of the viral lipid envelope, significantly facilitates the formation of infectious particles and propagation of BoDV-1 without affecting its viral RNA synthesis. Furthermore, simultaneous transfection of M and G expression plasmids with N, P and L helper plasmids by reverse genetics drastically enhances the rescue efficiency of rBoDV-1. On the other hand, we also show that overexpression of M induces obvious cytotoxicity similar to that of other Mononegaviruses. Together with our recent report showing that excess expression of G induces aberrant accumulation of immature G, a potential stimulator of the host innate immune response, it is conceivable that BoDV-1 may suppress excess expression of M and G to reduce the cytopathic effect, thereby leading to maintenance of persistent infection. Our results contribute not only to the establishment of an efficient method to recover high-titre BoDV-1 but also to understanding the unique mechanism of persistent BoDV-1 infection.
Collapse
Affiliation(s)
- Takehiro Kanda
- Laboratory of RNA viruses, Department of Virus Research, Institution for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Madoka Sakai
- Laboratory of RNA viruses, Department of Virus Research, Institution for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA viruses, Department of Virus Research, Institution for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA viruses, Department of Virus Research, Institution for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of RNA viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Guo Y, Xu X, Tang T, Sun L, Zhang X, Shen X, Li D, Wang L, Zhao L, Xie P. miR-505 inhibits replication of Borna disease virus 1 via inhibition of HMGB1-mediated autophagy. J Gen Virol 2022; 103. [PMID: 35060474 DOI: 10.1099/jgv.0.001713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus which was recently demonstrated to cause deadly human encephalitis. Viruses can modulate microRNA expression, in turn modulating cellular immune responses and regulating viral replication. A previous study indicated that BoDV-1 infection down-regulated the expression of miR-505 in rats. However, the underlying mechanism of miR-505 during BoDV-1 infection remains unknown. In this study, we found that miR-505 can inhibit autophagy activation by down-regulating the expression of its target gene HMGB1, and ultimately inhibit the replication of BoDV-1. Specifically, we found that the expression of miR-505 was significantly down-regulated in rat primary neurons stably infected with BoDV-1. Overexpression of miR-505 can inhibit the replication of BoDV-1 in cells. Bioinformatics analysis and dual luciferase reporter gene detection confirmed that during BoDV-1 infection, the high-mobility group protein B1 (HMGB1) that mediates autophagy is the direct target gene of miR-505. The expression of HMGB1 was up-regulated after BoDV-1 infection, and overexpression of miR-505 could inhibit the expression of HMGB1. Autophagy-related detection found that after infection with BoDV-1, the expression of autophagy-related proteins and autophagy-related marker LC3 in neuronal cells was significantly up-regulated. Autophagy flow experiments and transmission electron microscopy also further confirmed that BoDV-1 infection activated HMGB1-mediated autophagy. Further regulating the expression of miR-505 found that overexpression of miR-505 significantly inhibited HMGB1-mediated autophagy. The discovery of this mechanism may provide new ideas and directions for the prevention and treatment of BoDV-1 infection in the future.
Collapse
Affiliation(s)
- Yujie Guo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaoyan Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Tian Tang
- Department of Laboratory Medicine, Jintang First People’s Hospital, West China Hospital Sichuan University JinTang Hospital, Chengdu, Sichuan, PR China
| | - Lin Sun
- Department of Anaesthesia and Pain, The First People’s Hospital of Chongqing Liangjiang New Area, Chongqing, PR China
| | - Xiong Zhang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xia Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Dan Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Lixin Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
7
|
The Borna Disease Virus 2 (BoDV-2) Nucleoprotein Is a Conspecific Protein That Enhances BoDV-1 RNA-Dependent RNA Polymerase Activity. J Virol 2021; 95:e0093621. [PMID: 34406860 DOI: 10.1128/jvi.00936-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate an REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus. We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, conversely, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also to understanding of the molecular regulation of orthobornavirus polymerase activity. IMPORTANCE Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus, is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus, can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.
Collapse
|
8
|
Yanai M, Sakai M, Komorizono R, Makino A, Tomonaga K. Stability of Borna disease virus-based episomal vector under physical and chemical stimulation. Microbiol Immunol 2021; 66:24-30. [PMID: 34617609 DOI: 10.1111/1348-0421.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Borna disease virus (BoDV), a nonsegmented, negative-sense RNA virus, establishes persistent infection and replicates in the cell nucleus. Since BoDV genomic RNA exists as episomal RNA, the host genome is not invaded by BoDV infection. These unique features make BoDV a promising gene delivery system as an RNA virus-based episomal vector (REVec). Previously, the stable expression of genes of interest in vitro and in vivo using a REVec was reported. For the clinical application of a REVec, the fundamental properties under various physical and chemical conditions must be determined to develop purification processes, supply chains, and biosafety management. This study investigated the effects of the following conditions on the inducibility of transmission-defective ΔG-REVec: freeze-thaw cycles, dehydration, UV, temperature, pH, and reagents for virucides and laboratory experiments. Although the titer of ΔG-REVec was not influenced by the freeze-thaw process or 5 minute incubation at ≤50°C, ΔG-REVec was significantly inactivated by incubation at ≥70°C for 5 minutes. The induction titer of ΔG-REVec was decreased by long-term incubation, dehydration, and UV irradiation in a temperature- and time-dependent manner. ΔG-REVec was sensitive to lower pH and inactivated by chemical reagents under general conditions. These results provide important knowledge for developing the clinical use of REVec and biosafety management.
Collapse
Affiliation(s)
- Mako Yanai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Madoka Sakai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Rubbenstroth D, Briese T, Dürrwald R, Horie 堀江真行 M, Hyndman TH, Kuhn JH, Nowotny N, Payne S, Stenglein MD, Tomonaga 朝長啓造 K, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Bornaviridae. J Gen Virol 2021; 102. [PMID: 34227935 PMCID: PMC8491894 DOI: 10.1099/jgv.0.001613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Members of the family Bornaviridae produce enveloped virions containing a linear negative-sense non-segmented RNA genome of about 9 kb. Bornaviruses are found in mammals, birds, reptiles and fish. The most-studied viruses with public health and veterinary impact are Borna disease virus 1 and variegated squirrel bornavirus 1, both of which cause fatal encephalitis in humans. Several orthobornaviruses cause neurological and intestinal disorders in birds, mostly parrots. Endogenous bornavirus-like sequences occur in the genomes of various animals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bornaviridae, which is available at ictv.global/report/bornaviridae.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Germany
| | - Thomas Briese
- Center for Infection and Immunity and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | | | | | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| | - Jens H Kuhn
- NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick, Frederick, Maryland, USA
| | - Norbert Nowotny
- University of Veterinary Medicine Vienna, Vienna, Austria.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Susan Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Keizō Tomonaga 朝長啓造
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | | |
Collapse
|
10
|
Garcia BCB, Horie M, Kojima S, Makino A, Tomonaga K. BUD23-TRMT112 interacts with the L protein of Borna disease virus and mediates the chromosomal tethering of viral ribonucleoproteins. Microbiol Immunol 2021; 65:492-504. [PMID: 34324219 DOI: 10.1111/1348-0421.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 11/28/2022]
Abstract
Persistent intranuclear infection is an uncommon infection strategy among RNA viruses. However, Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, maintains viral infection in the cell nucleus by forming structured aggregates of viral ribonucleoproteins (vRNPs), and by tethering these vRNPs onto the host chromosomes. To better understand the nuclear infection strategy of BoDV-1, we determined the host protein interactors of the BoDV-1 large (L) protein. By proximity-dependent biotinylation, we identified several nuclear host proteins interacting with BoDV-1 L, one of which is TRMT112, a partner of several RNA methyltransferases (MTase). TRMT112 binds with BoDV-1 L at the RNA-dependent RNA polymerase domain, together with BUD23, an 18S rRNA MTase and 40S ribosomal maturation factor. We then discovered that BUD23-TRMT112 mediates the chromosomal tethering of BoDV-1 vRNPs, and that the MTase activity is necessary in the tethering process. These findings provide us a better understanding on how nuclear host proteins assist the chromosomal tethering of BoDV-1, as well as new prospects of host-viral interactions for intranuclear infection strategy of orthobornaviruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bea Clarise B Garcia
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto
| | - Masayuki Horie
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Hakubi Center for Advanced Research, Kyoto University, Kyoto
| | - Shohei Kojima
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto
| | - Akiko Makino
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences (inFRONT), Kyoto University, Kyoto.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Sigrist B, Geers J, Albini S, Rubbenstroth D, Wolfrum N. A New Multiplex Real-Time RT-PCR for Simultaneous Detection and Differentiation of Avian Bornaviruses. Viruses 2021; 13:v13071358. [PMID: 34372564 PMCID: PMC8310230 DOI: 10.3390/v13071358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.
Collapse
Affiliation(s)
- Brigitte Sigrist
- Department of Poultry and Rabbit Diseases, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (B.S.); (S.A.)
| | - Jessica Geers
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (J.G.); (D.R.)
| | - Sarah Albini
- Department of Poultry and Rabbit Diseases, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (B.S.); (S.A.)
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (J.G.); (D.R.)
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany
| | - Nina Wolfrum
- Department of Poultry and Rabbit Diseases, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (B.S.); (S.A.)
- Correspondence: ; Tel.: +41-44-635-86-36
| |
Collapse
|
12
|
Malbon AJ, Dürrwald R, Kolodziejek J, Nowotny N, Kobera R, Pöhle D, Muluneh A, Dervas E, Cebra C, Steffen F, Paternoster G, Gerspach C, Hilbe M. New World camelids are sentinels for the presence of Borna disease virus. Transbound Emerg Dis 2021; 69:451-464. [PMID: 33501762 DOI: 10.1111/tbed.14003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Borna disease (BD), a frequently fatal neurologic disorder caused by Borna disease virus 1 (BoDV-1), has been observed for decades in horses, sheep, and other mammals in certain regions of Europe. The bicoloured white-toothed shrew (Crocidura leucodon) was identified as a persistently infected species involved in virus transmission. Recently, BoDV-1 attracted attention as a cause of fatal encephalitis in humans. Here, we report investigations on BoDV-1-infected llamas from a farm in a BD endemic area of Switzerland, and alpacas from holdings in a region of Germany where BD was last seen in the 1960s but not thereafter. All New World camelids showed apathy and abnormal behaviour, necessitating euthanasia. Histologically, severe non-suppurative meningoencephalitis with neuronal Joest-Degen inclusion bodies was observed. BoDV-1 was confirmed by immunohistology, RT-qPCR, and sequencing in selected animals. Analysis of the llama herd over 20 years showed that losses due to clinically suspected BD increased within the last decade. BoDV-1 whole-genome sequences from one Swiss llama and one German alpaca and-for comparison-from one Swiss horse and one German shrew were established. They represent the first published whole-genome sequences of BoDV-1 clusters 1B and 3, respectively. Our analysis suggests that New World camelids may have a role as a sentinel species for BoDV-1 infection, even when symptomatic cases are lacking in other animal species.
Collapse
Affiliation(s)
- Alexandra J Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Dietrich Pöhle
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Aemero Muluneh
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Eva Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher Cebra
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Frank Steffen
- Section of Neurology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Giulia Paternoster
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian Gerspach
- Farm Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Komatsu Y, Tomonaga K. Reverse genetics approaches of Borna disease virus: applications in development of viral vectors and preventive vaccines. Curr Opin Virol 2020; 44:42-48. [PMID: 32659515 DOI: 10.1016/j.coviro.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
The plasmid-based reverse genetics system, which involves generation of recombinant viruses from cloned cDNA, has accelerated the understanding of clinical and virological aspects of different viruses. Borna disease virus (BoDV) is a nonsegmented, negative-strand RNA virus that causes persistent intranuclear infection in various vertebrate species. Since its first report, reverse genetics approaches with modified strategies have greatly improved rescue efficiency of recombinant BoDV and enhanced the understanding of function of each viral protein and mechanism of intranuclear persistency. Here, we summarize different reverse genetics approaches of BoDV and recent developments in the use of reverse genetics for generation of viral vectors for gene therapy and virus-like particles for potential preventive vaccines.
Collapse
Affiliation(s)
- Yumiko Komatsu
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
15
|
Gosztonyi G, Ludwig H, Bode L, Kao M, Sell M, Petrusz P, Halász B. Obesity induced by Borna disease virus in rats: key roles of hypothalamic fast-acting neurotransmitters and inflammatory infiltrates. Brain Struct Funct 2020; 225:1459-1482. [PMID: 32394093 DOI: 10.1007/s00429-020-02063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Human obesity epidemic is increasing worldwide with major adverse consequences on health. Among other possible causes, the hypothesis of an infectious contribution is worth it to be considered. Here, we report on an animal model of virus-induced obesity which might help to better understand underlying processes in human obesity. Eighty Wistar rats, between 30 and 60 days of age, were intracerebrally inoculated with Borna disease virus (BDV-1), a neurotropic negative-strand RNA virus infecting an unusually broad host spectrum including humans. Half of the rats developed fatal encephalitis, while the other half, after 3-4 months, continuously gained weight. At tripled weights, rats were sacrificed by trans-cardial fixative perfusion. Neuropathology revealed prevailing inflammatory infiltrates in the median eminence (ME), progressive degeneration of neurons of the paraventricular nucleus, the entorhinal cortex and the amygdala, and a strikingly high-grade involution of the hippocampus with hydrocephalus. Immune histology revealed that major BDV-1 antigens were preferentially present at glutamatergic receptor sites, while GABAergic areas remained free from BDV-1. Virus-induced suppression of the glutamatergic system caused GABAergic predominance. In the hypothalamus, this shifted the energy balance to the anabolic appetite-stimulating side governed by GABA, allowing for excessive fat accumulation in obese rats. Furthermore, inflammatory infiltrates in the ME and ventro-medial arcuate nucleus hindered free access of appetite-suppressing hormones leptin and insulin. The hormone transport system in hypothalamic areas outside the ME became blocked by excessively produced leptin, leading to leptin resistance. The resulting hyperleptinemic milieu combined with suppressed glutamatergic mechanisms was a characteristic feature of the found metabolic pathology. In conclusion, the study provided clear evidence that BDV-1 induced obesity in the rat model is the result of interdependent structural and functional metabolic changes. They can be explained by an immunologically induced hypothalamic microcirculation-defect, combined with a disturbance of neurotransmitter regulatory systems. The proposed mechanism may also have implications for human health. BDV-1 infection has been frequently found in depressive patients. Independently, comorbidity between depression and obesity has been reported, either. Future studies should address the exciting question of whether BDV-1 infection could be a link, whatsoever, between these two conditions.
Collapse
Affiliation(s)
- Georg Gosztonyi
- Institute of Neuropathology, Charité, University Medicine Berlin, 10117, Berlin, Germany.
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Moujahed Kao
- Landesbetrieb Hessisches Landeslabor, 35392, Giessen, Germany
| | - Manfred Sell
- Division of Pathology, Martin Luther Hospital, 12351, Berlin, Germany
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Béla Halász
- Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
16
|
ADAR2 Is Involved in Self and Nonself Recognition of Borna Disease Virus Genomic RNA in the Nucleus. J Virol 2020; 94:JVI.01513-19. [PMID: 31852792 DOI: 10.1128/jvi.01513-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
Cells sense pathogen-derived double-stranded RNA (dsRNA) as nonself. To avoid autoimmune activation by self dsRNA, cells utilize A-to-I editing by adenosine deaminase acting on RNA 1 (ADAR1) to disrupt dsRNA structures. Considering that viruses have evolved to exploit host machinery, A-to-I editing could benefit innate immune evasion by viruses. Borna disease virus (BoDV), a nuclear-replicating RNA virus, may require escape from nonself RNA-sensing and immune responses to establish persistent infection in the nucleus; however, the strategy by which BoDV evades nonself recognition is unclear. Here, we evaluated the involvement of ADARs in BoDV infection. The infection efficiency of BoDV was markedly decreased in both ADAR1 and ADAR2 knockdown cells at the early phase of infection. Microarray analysis using ADAR2 knockdown cells revealed that ADAR2 reduces immune responses even in the absence of infection. Knockdown of ADAR2 but not ADAR1 significantly reduced the spread and titer of BoDV in infected cells. Furthermore, ADAR2 knockout decreased the infection efficiency of BoDV, and overexpression of ADAR2 rescued the reduced infectivity in ADAR2 knockdown cells. However, the growth of influenza A virus, which causes acute infection in the nucleus, was not affected by ADAR2 knockdown. Moreover, ADAR2 bound to BoDV genomic RNA and induced A-to-G mutations in the genomes of persistently infected cells. We finally demonstrated that BoDV produced in ADAR2 knockdown cells induces stronger innate immune responses than those produced in wild-type cells. Taken together, our results suggest that BoDV utilizes ADAR2 to edit its genome to appear as "self" RNA in order to maintain persistent infection in the nucleus.IMPORTANCE Cells use the editing activity of adenosine deaminase acting on RNA proteins (ADARs) to prevent autoimmune responses induced by self dsRNA, but viruses can exploit this process to their advantage. Borna disease virus (BoDV), a nuclear-replicating RNA virus, must escape nonself RNA sensing by the host to establish persistent infection in the nucleus. We evaluated whether BoDV utilizes ADARs to prevent innate immune induction. ADAR2 plays a key role throughout the BoDV life cycle. ADAR2 knockdown reduced A-to-I editing of BoDV genomic RNA, leading to the induction of a strong innate immune response. These data suggest that BoDV exploits ADAR2 to edit nonself genomic RNA to appear as self RNA for innate immune evasion and establishment of persistent infection.
Collapse
|
17
|
Pham PH, Leacy A, Deng L, Nagy É, Susta L. Isolation of Ontario aquatic bird bornavirus 1 and characterization of its replication in immortalized avian cell lines. Virol J 2020; 17:16. [PMID: 32005267 PMCID: PMC6995091 DOI: 10.1186/s12985-020-1286-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aquatic bird bornavirus 1 (ABBV-1) has been associated with neurological diseases in wild waterfowls. In Canada, presence of ABBV-1 was demonstrated by RT-qPCR and immunohistochemistry in tissues of waterfowls with history of neurological disease and inflammation of the central and peripheral nervous tissue, although causation has not been proven by pathogenesis experiments, yet. To date, in vitro characterization of ABBV-1 is limited to isolation in primary duck embryo fibroblasts. The objectives of this study were to describe isolation of ABBV-1 in primary duck embryonic fibroblasts (DEF), and characterize replication in DEF and three immortalized avian fibroblast cell lines (duck CCL-141, quail QT-35, chicken DF-1) in order to evaluate cellular permissivity and identify suitable cell lines for routine virus propagation. METHODS The virus was sequenced, and phylogenetic analysis performed on a segment of the N gene coding region. Virus spread in cell cultures, viral RNA and protein production, and titres were evaluated at different passages using immunofluorescence, RT-qPCR, western blotting, and tissue culture dose 50% (TCID50) assay, respectively. RESULTS The isolated ABBV-1 showed 97 and 99% identity to European ABBV-1 isolate AF-168 and North American ABBV-1 isolates 062-CQ and CG-N1489, and could infect and replicate in DEF, CCL-141, QT-35 and DF-1 cultures. Viral RNA was detected in all four cultures with highest levels observed in DEF and CCL-141, moderate in QT-35, and lowest in DF-1. N protein was detected in western blots from infected DEF, CCL-141 and QT-35 at moderate to high levels, but minimally in infected DF-1. Infectious titre was highest in DEF (between approximately 105 to 106 FFU / 106 cells). Regarding immortalized cell lines, CCL-141 showed the highest titre between approximately 104 to 105 FFU / 106 cells. DF-1 produced minimal infectious titre. CONCLUSIONS This study confirms the presence of ABBV-1 among waterfowl in Canada and reported additional in vitro characterization of this virus in different avian cell lines. ABBV-1 replicated to highest titre in DEF, followed by CCL-141 and QT-35, and poorly in DF-1. Our results showed that CCL-141 can be used instead of DEF for routine ABBV-1 production, if a lower titre is an acceptable trade-off for the simplicity of using immortalized cell line over primary culture.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Alexander Leacy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Li Deng
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
18
|
Genome-wide profiling of long noncoding RNA expression patterns and CeRNA analysis in mouse cortical neurons infected with different strains of borna disease virus. Genes Dis 2019; 6:147-158. [PMID: 31193942 PMCID: PMC6545444 DOI: 10.1016/j.gendis.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 12/05/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is neurotropic prototype of Bornaviruses causing neurological diseases and maintaining persistent infection in brain cells of mammalian species. Long non-coding RNA (lncRNA) is transcript of more than 200 nucleotides without protein-coding function regulating various biological processes as proliferation, apoptosis, cell migration and viral infection. However, regulatory of lncRNAs in BoDV-1 infection remains unknown. To identify differential expression profiles and predict functions of lncRNA in BoDV-1 infection, microarray data showed that 3528 lncRNAs and 2661 lncRNAs were differentially expressed in Strain V and Hu-H1 BoDV-infected groups compared with control groups, respectively. Gene Ontology (GO) and pathway analysis suggested that differential lncRNAs may be involved in regulation of metabolic, biological regulation, cellular process, endocytosis, viral infections and cell adhesion processes, cancer in both BoDV-infected strains. ENSMUST00000128469 was found down-regulated in both BoDV-infected groups compared with control groups consistent with microarray (p < 0.05). ceRNA analysis indicated possible interaction networks as ENSMUST00000128469/miR-22-5p, miR-206-3p, miR-302b-5p, miR-302c-3p, miR-1a-3p/Igf1. Igf1 was found up-regulated in both BoDV-infected groups compared with control groups (p < 0.05). Possible functions of predicted target mRNAs and miRNAs of ENSMUST00000128469 were involved in cell proliferation, transcriptional misregulation and proteoglycan pathways enriched in cancer. lncRNA may be involved in regulation of Hu-H1 inhibited cell proliferation and promoted apoptosis through NF-kB, JNK/MAPK signaling, BCL2 and CDK6/E2F1 pathways different from Strain V. Possible interaction networks as ENSMUST00000128469/miR-22-5p, miR-206-3p, miR-302b-5p, miR-302c-3p, miR-1a-3p/Igf1 may involve in regulation of cell proliferation, apoptosis, and cancer.
Collapse
|
19
|
Bornavirus. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:519-532. [DOI: 10.1007/s00103-019-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Økland AL, Nylund A, Øvergård AC, Skoge RH, Kongshaug H. Genomic characterization, phylogenetic position and in situ localization of a novel putative mononegavirus in Lepeophtheirus salmonis. Arch Virol 2019; 164:675-689. [PMID: 30535526 PMCID: PMC6394706 DOI: 10.1007/s00705-018-04119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsNSRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference (RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate the influence of secreted LsNSRV-1 on the salmon immune response.
Collapse
Affiliation(s)
- Arnfinn Lodden Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Renate Hvidsten Skoge
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
21
|
Hirai Y, Domae E, Yoshikawa Y, Okamura H, Makino A, Tomonaga K. Intracellular dynamics of actin affects Borna disease virus replication in the nucleus. Virus Res 2019; 263:179-183. [PMID: 30769121 DOI: 10.1016/j.virusres.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Borna disease virus (BoDV) is a nonsegmented, negative-strand RNA virus that uniquely replicates and establishes persistent infection in cell nucleus. Recent studies have demonstrated the presence of actin in the nucleus and its role in intranuclear phenomena such as transcription and DNA repair. Although nuclear actin is involved in the life cycle of some intranuclear DNA viruses, the interaction between BoDV and nuclear actin has not been reported. In this study, we show that the inhibition of the nucleocytoplasmic transport of actin affects the replication of BoDV in the nucleus. The knockdown of a nuclear export factor of actin, exportin 6, results in the induction of structural aberration in intranuclear viral factories of BoDV. Furthermore, the inhibition of the nuclear export of actin promotes accumulation of viral matrix protein in the cytoplasm and periphery of the infected cells. These results suggest that the dynamics of actin affect the replication of BoDV by disturbing the structure of viral factories in the nucleus.
Collapse
Affiliation(s)
- Yuya Hirai
- Department of Biology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Eisuke Domae
- Department of Biochemistry, Osaka Dental University, Hirakata, Osaka, 573-1121, Japan
| | - Yoshihiro Yoshikawa
- Department of Biochemistry, Osaka Dental University, Hirakata, Osaka, 573-1121, Japan
| | - Hideyuki Okamura
- Department of Biology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8507, Japan; Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Fujino K, Yamamoto Y, Daito T, Makino A, Honda T, Tomonaga K. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes. Microbiol Immunol 2018; 61:380-386. [PMID: 28776750 DOI: 10.1111/1348-0421.12505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 11/30/2022]
Abstract
Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.
Collapse
Affiliation(s)
- Kan Fujino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Yusuke Yamamoto
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Japan
| | - Takuji Daito
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Tomoyuki Honda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
23
|
Sakai M, Ueda S, Daito T, Asada-Utsugi M, Komatsu Y, Kinoshita A, Maki T, Kuzuya A, Takahashi R, Makino A, Tomonaga K. Degradation of amyloid β peptide by neprilysin expressed from Borna disease virus vector. Microbiol Immunol 2018; 62:467-472. [PMID: 29771464 DOI: 10.1111/1348-0421.12602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/24/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
Abstract
Accumulation of amyloid β (Aβ40 and Aβ42) in the brain is a characteristic of Alzheimer's disease (AD). Because neprilysin (NEP) is a major Aβ-degrading enzyme, NEP delivery in the brain is a promising gene therapy for AD. Borna disease virus (BoDV) vector enables long-term transduction of foreign genes in the central nerve system. Here, we evaluated the proteolytic ability of NEP transduced by the BoDV vector and found that the amounts of Aβ40 and Aβ42 significantly decreased, which suggests that NEP expressed from the BoDV vector is functional to degrade Aβ.
Collapse
Affiliation(s)
- Madoka Sakai
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuji Daito
- Research Center for Zoonosis Control, Biologics Development, Hokkaido University, Sapporo 001-0020, Japan
| | - Megumi Asada-Utsugi
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yumiko Komatsu
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- K-CONNEX, Kyoto University, Kyoto 606-8507, Japan
| | - Ayae Kinoshita
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akiko Makino
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
24
|
Horie M, Tomonaga K. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res 2018; 262:2-9. [PMID: 29630909 DOI: 10.1016/j.virusres.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023]
Abstract
Endogenous viral elements (EVEs) are virus-derived sequences embedded in eukaryotic genomes formed by germline integration of viral sequences. As many EVEs were integrated into eukaryotic genomes millions of years ago, EVEs are considered molecular fossils of viruses. EVEs can be valuable informational sources about ancient viruses, including their time scale, geographical distribution, genetic information, and hosts. Although integration of viral sequences is not required for replications of viruses other than retroviruses, many non-retroviral EVEs have been reported to exist in eukaryotes. Investigation of these EVEs has expanded our knowledge regarding virus-host interactions, as well as provided information on ancient viruses. Among them, EVEs derived from bornaviruses, non-retroviral RNA viruses, have been relatively well studied. Bornavirus-derived EVEs are widely distributed in animal genomes, including the human genome, and the history of bornaviruses can be dated back to more than 65 million years. Although there are several reports focusing on the biological significance of bornavirus-derived sequences in mammals, paleovirology of bornaviruses has not yet been well described and summarized. In this paper, we describe what can be learned about bornaviruses from endogenous bornavirus-like elements from the view of paleovirology using published results and our novel data.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan; Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Hyndman TH, Shilton CM, Stenglein MD, Wellehan JFX. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog 2018; 14:e1006881. [PMID: 29462190 PMCID: PMC5834213 DOI: 10.1371/journal.ppat.1006881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue samples from Australian carpet pythons (Morelia spilota) with neurological disease were screened for viruses using next-generation sequencing. Coding complete genomes of two bornaviruses were identified with the gene order 3'-N-X-P-G-M-L, representing a transposition of the G and M genes compared to other bornaviruses and most mononegaviruses. Use of these viruses to search available vertebrate genomes enabled recognition of further endogenous bornavirus-like elements (EBLs) in diverse placental mammals, including humans. Codivergence patterns and shared integration sites revealed an ancestral laurasiatherian EBLG integration (77 million years ago [MYA]) and a previously identified afrotherian EBLG integration (83 MYA). The novel python bornaviruses clustered more closely with these EBLs than with other exogenous bornaviruses, suggesting that these viruses diverged from previously known bornaviruses prior to the end-Cretaceous (K-Pg) extinction, 66 MYA. It is possible that EBLs protected mammals from ancient bornaviral disease, providing a selective advantage in the recovery from the K-Pg extinction. A degenerate PCR primer set was developed to detect a highly conserved region of the bornaviral polymerase gene. It was used to detect 15 more genetically distinct bornaviruses from Australian pythons that represent a group that is likely to contain a number of novel species.
Collapse
Affiliation(s)
- Timothy H. Hyndman
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Catherine M. Shilton
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
26
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Yanai M, Sakai M, Makino A, Tomonaga K. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein. Virol J 2017; 14:126. [PMID: 28693611 PMCID: PMC5504739 DOI: 10.1186/s12985-017-0793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. RESULTS BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. CONCLUSIONS Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.
Collapse
Affiliation(s)
- Mako Yanai
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Madoka Sakai
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Keizo Tomonaga
- Laboratory of RNA virus, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Hirai Y, Hirano Y, Matsuda A, Hiraoka Y, Honda T, Tomonaga K. Borna Disease Virus Assembles Porous Cage-like Viral Factories in the Nucleus. J Biol Chem 2016; 291:25789-25798. [PMID: 27803166 DOI: 10.1074/jbc.m116.746396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Animal-derived RNA viruses frequently generate viral factories in infected cells. However, the details of how RNA viruses build such intracellular structures are poorly understood. In this study, we examined the structure and formation of the viral factories, called viral speckle of transcripts (vSPOTs), that are produced in the nuclei of host cells by Borna disease virus (BDV). Super-resolution microscopic analysis showed that BDV assembled vSPOTs as intranuclear cage-like structures with 59-180-nm pores. The viral nucleoprotein formed the exoskeletons of vSPOTs, whereas the other viral proteins appeared to be mainly localized within these structures. In addition, stochastic optical reconstruction microscopy revealed that filamentous structures resembling viral ribonucleoprotein complexes (RNPs) appeared to protrude from the outer surfaces of the vSPOTs. We also found that vSPOTs disintegrated into RNPs concurrently with the breakdown of the nuclear envelope during mitosis. These observations demonstrated that BDV generates viral replication factories whose shape and formation are regulated, suggesting the mechanism of the integrity of RNA virus persistent infection in the nucleus.
Collapse
Affiliation(s)
- Yuya Hirai
- From the Department of Biology, Osaka Dental University, Hirakata 573-1121.,the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT)
| | - Yasuhiro Hirano
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and
| | - Atsushi Matsuda
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and.,the Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- the Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, and.,the Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tomoyuki Honda
- the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT)
| | - Keizo Tomonaga
- the Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), .,Departments of Molecular Virology, Graduate School of Medicine, and.,Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507
| |
Collapse
|
29
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
30
|
Stoyloff R, Bode L, Wendt H, Mulzer J, Ludwig H. The Hydrophobic Mannose Derivative 1B6TM Efficiently Inhibits Borna Disease Virus in Vitro. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029600700404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
α-D-Mannnose occupies the terminal position on the N-linked carbohydrate side chain of BDV-specific gp17 (Stoyloff et al., 1994). A hydrophobic derivative of this sugar residue, the 1-0-benzyl-6-0-trityl-α-D-mannnopyranoside (1B6TM), showed a potent and selective inhibition of BDV-replication in vitro, using a range of host-cell/virus systems. When tested in comparison with the unmodified sugar, 1B6TM inhibited the infection in a dose-dependent manner up to 100% without effecting cell viability. After removal of the compound, the antiviral effect remained for several hours. These results suggest that simple modified carbohydrate molecules of BDV-specific sugar residues are able to interfere with virus replication.
Collapse
Affiliation(s)
- R. Stoyloff
- Institut für Virologie, Freie Universtät Berlin, Königin-Luise-Str. 49, D-14195 Berlin, Germany
| | - L. Bode
- Robert Koch-Institut, Berlin, Germany
| | - H. Wendt
- Institut für Organische Chemie, Freie Universtät Berlin, Berlin, Germany
| | - J. Mulzer
- Institut für Organische Chemie, Freie Universtät Berlin, Berlin, Germany
| | - H. Ludwig
- Institut für Virologie, Freie Universtät Berlin, Königin-Luise-Str. 49, D-14195 Berlin, Germany
| |
Collapse
|
31
|
Gillich N, Kuwata R, Isawa H, Horie M. Persistent natural infection of a Culex tritaeniorhynchus cell line with a novel Culex tritaeniorhynchus rhabdovirus strain. Microbiol Immunol 2016; 59:562-6. [PMID: 26112738 DOI: 10.1111/1348-0421.12279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/29/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022]
Abstract
Culex tritaeniorhynchus rhabdovirus (CTRV) is a mosquito virus that establishes persistent infection without any obvious cell death. Therefore, occult infection by CTRV can be present in mosquito cell lines. In this study, it is shown that NIID-CTR cells, which were derived from Cx. tritaeniorhynchus, are persistently infected with a novel strain of CTRV. Complete genome sequencing of the infecting strain revealed that it is genetically similar but distinct from the previously isolated CTRV strain, excluding the possibility of contamination. These findings raise the importance of further CTRV studies, such as screening of CTRV in other mosquito cell lines.
Collapse
Affiliation(s)
- Nadine Gillich
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065.,Institute of Virology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Ryusei Kuwata
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
32
|
An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci Rep 2016; 6:25873. [PMID: 27174689 PMCID: PMC4865735 DOI: 10.1038/srep25873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Endogenous bornavirus-like L (EBLL) elements are inheritable sequences derived from ancient bornavirus L genes that encode a viral RNA-dependent RNA polymerase (RdRp) in many eukaryotic genomes. Here, we demonstrate that bats of the genus Eptesicus have preserved for more than 11.8 million years an EBLL element named eEBLL-1, which has an intact open reading frame of 1,718 codons. The eEBLL-1 coding sequence revealed that functional motifs essential for mononegaviral RdRp activity are well conserved in the EBLL-1 genes. Genetic analyses showed that natural selection operated on eEBLL-1 during the evolution of Eptesicus. Notably, we detected efficient transcription of eEBLL-1 in tissues from Eptesicus bats. To the best of our knowledge, this study is the first report showing that the eukaryotic genome has gained a riboviral polymerase gene from an ancient virus that has the potential to encode a functional RdRp.
Collapse
|
33
|
Lennartz F, Bayer K, Czerwonka N, Lu Y, Kehr K, Hirz M, Steinmetzer T, Garten W, Herden C. Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell. Cell Microbiol 2016; 18:340-54. [PMID: 26332529 PMCID: PMC7162304 DOI: 10.1111/cmi.12515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/24/2015] [Accepted: 08/21/2015] [Indexed: 12/01/2022]
Abstract
Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.
Collapse
Affiliation(s)
- Frank Lennartz
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Karen Bayer
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Nadine Czerwonka
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yinghui Lu
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Kristine Kehr
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Manuela Hirz
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Wolfgang Garten
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
34
|
A novel intranuclear RNA vector system for long-term stem cell modification. Gene Ther 2015; 23:256-62. [PMID: 26632671 PMCID: PMC4777691 DOI: 10.1038/gt.2015.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/05/2015] [Indexed: 11/29/2022]
Abstract
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction.
Collapse
|
35
|
The genome sequence of parrot bornavirus 5. Virus Genes 2015; 51:430-3. [PMID: 26403158 DOI: 10.1007/s11262-015-1251-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
Although several new avian bornaviruses have recently been described, information on their evolution, virulence, and sequence are often limited. Here we report the complete genome sequence of parrot bornavirus 5 (PaBV-5) isolated from a case of proventricular dilatation disease in a Palm cockatoo (Probosciger aterrimus). The complete genome consists of 8842 nucleotides with distinct 5' and 3' end sequences. This virus shares nucleotide sequence identities of 69-74 % with other bornaviruses in the genomic regions excluding the 5' and 3' terminal sequences. Phylogenetic analysis based on the genomic regions demonstrated this new isolate is an isolated branch within the clade that includes the aquatic bird bornaviruses and the passerine bornaviruses. Based on phylogenetic analyses and its low nucleotide sequence identities with other bornavirus, we support the proposal that PaBV-5 be assigned to a new bornavirus species:- Psittaciform 2 bornavirus.
Collapse
|
36
|
Hirai Y, Honda T, Makino A, Watanabe Y, Tomonaga K. X-linked RNA-binding motif protein (RBMX) is required for the maintenance of Borna disease virus nuclear viral factories. J Gen Virol 2015; 96:3198-3203. [PMID: 26333388 DOI: 10.1099/jgv.0.000273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that establishes persistent infection in the nucleus. Although BDV forms viral inclusion bodies, termed viral speckles of transcripts (vSPOTs), which are associated with chromatin in the nucleus, the host factors involved in the maintenance of vSPOTs remain largely unknown. In this study, we identified X-linked RNA-binding motif protein (RBMX) as a nuclear factor interacting with BDV nucleoprotein. Interestingly, knockdown of RBMX led to disruption of the formation of vSPOTs and reduced both transcription and replication of BDV. Our results indicate that RBMX is involved in the maintenance of the structure of the virus factory in the nucleus.
Collapse
Affiliation(s)
- Yuya Hirai
- Department of Biology, Osaka Dental University, Osaka, Japan.,Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan.,Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yuzo Watanabe
- Department of Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan.,Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Makino A, Fujino K, Parrish NF, Honda T, Tomonaga K. Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene. Sci Rep 2015; 5:8696. [PMID: 25733193 PMCID: PMC4649702 DOI: 10.1038/srep08696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-stranded RNA genome and causes persistent infection in many animal species. Previous study has shown that the activation of the IκB kinase (IKK)/NF-κB pathway is reduced by BDV infection even in cells expressing constitutively active mutant IKK. This result suggests that BDV directly interferes with the IKK/NF-κB pathway. To elucidate the mechanism for the inhibition of NF-κB activation by BDV infection, we evaluated the cross-talk between BDV infection and the NF-κB pathway. Using Multiple EM for Motif Elicitation analysis, we found that the nucleoproteins of BDV (BDV-N) and NF-κB1 share a common ankyrin-like motif. When THP1-CD14 cells were pre-treated with the identified peptide, NF-κB activation by Toll-like receptor ligands was suppressed. The 20S proteasome assay showed that BDV-N and BDV-N-derived peptide inhibited the processing of NF-κB1 p105 into p50. Furthermore, immunoprecipitation assays showed that BDV-N interacted with NF-κB1 but not with NF-κB2, which shares no common motif with BDV-N. These results suggest BDV-N inhibits NF-κB1 processing by the 20S proteasome through its ankyrin-like peptide sequence, resulting in the suppression of IKK/NF-κB pathway activation. This inhibitory effect of BDV on the induction of the host innate immunity might provide benefits against persistent BDV infection.
Collapse
Affiliation(s)
- Akiko Makino
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan
| | | | - Tomoyuki Honda
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3] Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Kuhn JH, Dürrwald R, Bào Y, Briese T, Carbone K, Clawson AN, deRisi JL, Garten W, Jahrling PB, Kolodziejek J, Rubbenstroth D, Schwemmle M, Stenglein M, Tomonaga K, Weissenböck H, Nowotny N. Taxonomic reorganization of the family Bornaviridae. Arch Virol 2015; 160:621-32. [PMID: 25449305 PMCID: PMC4315759 DOI: 10.1007/s00705-014-2276-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Knowledge of bornaviruses has expanded considerably during the last decade. A possible reservoir of mammalian Borna disease virus has been identified, divergent bornaviruses have been detected in birds and reptiles, and endogenous bornavirus-like elements have been discovered in the genomes of vertebrates of several species. Previous sequence comparisons and alignments have indicated that the members of the current family Bornaviridae are phylogenetically diverse and are not adequately classified in the existing bornavirus taxonomy supported by the International Committee on Taxonomy of Viruses (ICTV). We provide an update of these analyses and describe their implications for taxonomy. We propose retaining the family name Bornaviridae and the genus Bornavirus but reorganizing species classification. PAirwise Sequence Comparison (PASC) of bornavirus genomes and Basic Local Alignment Search Tool (BLAST) comparison of genomic and protein sequences, in combination with other already published phylogenetic analyses and known biological characteristics of bornaviruses, indicate that this genus should include at least five species: Mammalian 1 bornavirus (classical Borna disease virus and divergent Borna disease virus isolate No/98), Psittaciform 1 bornavirus (avian/psittacine bornaviruses 1, 2, 3, 4, 7), Passeriform 1 bornavirus (avian/canary bornaviruses C1, C2, C3, LS), Passeriform 2 bornavirus (estrildid finch bornavirus EF), and Waterbird 1 bornavirus (avian bornavirus 062CG). This classification is also in line with biological characteristics of these viruses and their vertebrate hosts. A snake bornavirus, proposed to be named Loveridge's garter snake virus 1, should be classified as a member of an additional species (Elapid 1 bornavirus), unassigned to a genus, in the family Bornaviridae. Avian bornaviruses 5, 6, MALL, and another "reptile bornavirus" ("Gaboon viper virus") should stay unclassified until further information becomes available. Finally, we propose new virus names and abbreviations when necessary to achieve clear differentiation and unique identification.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | | | - Yīmíng Bào
- Information Engineering Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Anna N. Clawson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Joseph L. deRisi
- Departments of Medicine, Biochemistry and Biophysics, and Microbiology, University of California, San Francisco, CA, USA
| | - Wolfgang Garten
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jolanta Kolodziejek
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dennis Rubbenstroth
- Institute for Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute for Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Keizo Tomonaga
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
39
|
Rubbenstroth D, Brosinski K, Rinder M, Olbert M, Kaspers B, Korbel R, Staeheli P. No contact transmission of avian bornavirus in experimentally infected cockatiels (Nymphicus hollandicus) and domestic canaries (Serinus canaria forma domestica). Vet Microbiol 2014; 172:146-56. [DOI: 10.1016/j.vetmic.2014.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 11/29/2022]
|
40
|
Borna disease virus infection in cats. Vet J 2013; 201:142-9. [PMID: 24480411 DOI: 10.1016/j.tvjl.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023]
Abstract
Bornaviruses are known to cause neurological disorders in a number of animal species. Avian Bornavirus (ABV) causes proventricular dilatation disease (PDD) in birds and Borna disease virus (BDV) causes Borna disease in horses and sheep. BDV also causes staggering disease in cats, characterised by ataxia, behavioural changes and loss of postural reactions. BDV-infection markers in cats have been reported throughout the world. This review summarizes the current knowledge of Borna disease viruses in cats, including etiological agent, clinical signs, pathogenesis, epidemiology and diagnostics, with comparisons to Bornavirus infections in other species.
Collapse
|
41
|
Abstract
The pace of pathogen discovery is rapidly accelerating. This reflects not only factors that enable the appearance and globalization of new microbial infections, but also improvements in methods for ascertaining the cause of a new disease. Innovative molecular diagnostic platforms, investments in pathogen surveillance (in wildlife, domestic animals and humans) and the advent of social media tools that mine the World Wide Web for clues indicating the occurrence of infectious-disease outbreaks are all proving to be invaluable for the early recognition of threats to public health. In addition, models of microbial pathogenesis are becoming more complex, providing insights into the mechanisms by which microorganisms can contribute to chronic illnesses like cancer, peptic ulcer disease and mental illness. Here, I review the factors that contribute to infectious-disease emergence, as well as strategies for addressing the challenges of pathogen surveillance and discovery.
Collapse
|
42
|
Wensman JJ, Munir M, Thaduri S, Hörnaeus K, Rizwan M, Blomström AL, Briese T, Lipkin WI, Berg M. The X proteins of bornaviruses interfere with type I interferon signalling. J Gen Virol 2012; 94:263-269. [PMID: 23100370 DOI: 10.1099/vir.0.047175-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Borna disease virus (BDV) is a neurotropic, negative-stranded RNA virus causing persistent infection and progressive neurological disorders in a wide range of warm-blooded animals. The role of the small non-structural X protein in viral pathogenesis is not completely understood. Here we investigated whether the X protein of BDV and avian bornavirus (ABV) interferes with the type I interferon (IFN) system, similar to other non-structural proteins of negative-stranded RNA viruses. In luciferase reporter assays, we found that the X protein of various bornaviruses interfered with the type I IFN system at all checkpoints investigated, in contrast to previously reported findings, resulting in reduced type I IFN secretion.
Collapse
Affiliation(s)
- Jonas Johansson Wensman
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Division of Ruminant Medicine and Veterinary Epidemiology, PO Box 7054, SE-750 07 Uppsala, Sweden
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| | - Muhammad Munir
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| | - Srinivas Thaduri
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| | - Katarina Hörnaeus
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| | - Muhammad Rizwan
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| | - Anne-Lie Blomström
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| | - Thomas Briese
- Columbia University, Mailman School of Public Health, Center for Infection and Immunity, 722 West 168th Street, 10032 New York, NY, USA
| | - W Ian Lipkin
- Columbia University, Mailman School of Public Health, Center for Infection and Immunity, 722 West 168th Street, 10032 New York, NY, USA
| | - Mikael Berg
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, PO Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
43
|
Herrel M, Hoefs N, Staeheli P, Schneider U. Tick-borne Nyamanini virus replicates in the nucleus and exhibits unusual genome and matrix protein properties. J Virol 2012; 86:10739-47. [PMID: 22837209 PMCID: PMC3457285 DOI: 10.1128/jvi.00571-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/07/2012] [Indexed: 12/21/2022] Open
Abstract
Tick-borne Nyamanini virus (NYMV) is the prototypic member of a recently discovered genus in the order Mononegavirales, designated Nyavirus. The NYMV genome codes for six distinct genes. Sequence similarity and structural properties suggest that genes 1, 5, and 6 encode the nucleoprotein (N), the glycoprotein (G), and the viral polymerase (L), respectively. The function of the other viral genes has been unknown to date. We found that the third NYMV gene codes for a protein which, when coexpressed with N and L, can reconstitute viral polymerase activity, suggesting that it represents a polymerase cofactor. The second viral gene codes for a small protein that inhibits viral polymerase activity and further strongly enhances the formation of virus-like particles when coexpressed with gene 4 and the viral glycoprotein G. This suggests that two distinct proteins serve a matrix protein function in NYMV as previously described for members of the family Filoviridae. We further found that NYMV replicates in the nucleus of infected cells like members of the family Bornaviridae. NYMV is a poor inducer of beta interferon, presumably because the viral genome is 5' monophosphorylated and has a protruding 3' terminus as observed for bornaviruses. Taken together, our results demonstrate that NYMV possesses biological properties previously regarded as typical for filoviruses and bornaviruses, respectively.
Collapse
Affiliation(s)
- Marieke Herrel
- Department of Virology, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
44
|
Lipkin WI, Briese T, Hornig M. Borna disease virus - fact and fantasy. Virus Res 2011; 162:162-72. [PMID: 21968299 DOI: 10.1016/j.virusres.2011.09.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/25/2011] [Indexed: 11/26/2022]
Abstract
The occasion of Brian Mahy's retirement as editor of Virus Research provides an opportunity to reflect on the work that led one of the authors (Lipkin) to meet him shortly after the molecular discovery and characterization of Borna disease virus in the late 1980s, and work with authors Briese and Hornig to investigate mechanisms of pathogenesis and its potential role in human disease. This article reviews the history, molecular biology, epidemiology, and pathobiology of bornaviruses.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St., 17th Floor, New York, NY 10032, United States.
| | | | | |
Collapse
|
45
|
Wünschmann A, Honkavuori K, Briese T, Lipkin WI, Shivers J, Armien AG. Antigen tissue distribution of Avian bornavirus (ABV) in psittacine birds with natural spontaneous proventricular dilatation disease and ABV genotype 1 infection. J Vet Diagn Invest 2011; 23:716-26. [PMID: 21908314 DOI: 10.1177/1040638711408279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tissues of 10 psittacines from aviary 1 ("case birds") and 5 psittacines from different aviaries were investigated for the presence of Avian bornavirus (ABV) antigen by immunohistochemistry using a polyclonal serum specific for the viral nucleocapsid (N) protein. Seven of 10 case birds had clinical signs, and necropsy findings consistent with proventricular dilatation disease (PDD) while 3 case birds and the 5 birds from other aviaries did not exhibit signs and lesions of this disease. In birds with clinical signs of PDD, ABV antigen was largely limited to neuroectodermal cells including neurons, astroglia, and ependymal cells of the central nervous system, neurons of the peripheral nervous system, and adrenal cells. ABV antigen was present in the nuclei and cytoplasm of infected cells. In 2 case birds that lacked signs and lesions of PDD, viral antigen had a more widespread distribution and was present in nuclei and cytoplasm of epithelial cells of the alimentary and urogenital tract, retina, heart, skeletal muscle, and skin in addition to the mentioned neuroectodermal cells. ABV RNA was identified by reverse transcription polymerase chain reaction (RT-PCR) in tissues of all 7 case birds available for testing from aviary 1, including 4 birds with PDD lesions and the 3 birds without PDD lesions. Sequencing and phylogenetic analysis indicated the presence of ABV genotype 1 in all cases. Findings further substantiate a role of ABV in PDD of psittacine bird species.
Collapse
Affiliation(s)
- Arno Wünschmann
- University of Minnesota, Department of Veterinary Population Medicine, 1333 Gortner Avenue, St. Paul, MN 55108, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Genomic RNAs of Borna disease virus are elongated on internal template motifs after realignment of the 3' termini. Proc Natl Acad Sci U S A 2011; 108:7206-11. [PMID: 21482759 DOI: 10.1073/pnas.1016759108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The terminal structures of the Borna disease virus (BDV) genome (vRNA) and antigenome (cRNA) differ from those of other negative strand RNA viruses, as both molecules possess four nucleotides at the 3' terminus without an apparent template at the 5' end of the opposite strand. Consequently, the v- and cRNA molecules are not perfect mirror images, a situation that is not compatible with conventional strategies to maintain genetic information. We show here that recombinant viruses recovered from cDNA lacking the nontemplated nucleotides efficiently reconstitute the 3' overhangs. Analyses of recombinant viruses encoding genetic markers in potential alternative template sequences demonstrated that the BDV v- and cRNA molecules are extended by a realign-and-elongation process on internal template motifs located in close proximity to the 3' ends of v- and cRNA, respectively. The data further suggest that cRNA elongation is restricted to a single template motif of the nascent strand, whereas elongation of vRNA might use multiple template motifs. We propose that the elongation of the 3' termini supports the terminal integrity of the genomic RNA molecules during BDV persistence, and furthermore provides an elegant strategy to eliminate the triphosphate groups from the 5' termini of the BDV v- and cRNA without compromising the genetic information of the virus.
Collapse
|
47
|
Abstract
Recent advances in nucleic acid diagnostic technologies have revolutionized microbiology by facilitating rapid, sensitive pathogen surveillance and differential diagnosis of infectious diseases. With the expansion and dissemination of genomic sequencing technology scientists are discovering new microbes at an accelerating pace. In this article we review recent progress in the field of pathogen surveillance and discovery with a specific focus on applications in the field of laboratory animal research. We discuss the challenges in proving a causal relationship between the presence of a candidate organism and disease. We also discuss the strengths and limitations of various assay platforms and describe a staged strategy for viral diagnostics. To illustrate the complexity of pursuing pathogen discovery research, we include examples from our own work that are intended to provide insights into the process that led to the selection of particular strategies.
Collapse
Affiliation(s)
- Gustavo Palacio
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
48
|
Hoppes S, Gray PL, Payne S, Shivaprasad HL, Tizard I. The isolation, pathogenesis, diagnosis, transmission, and control of avian bornavirus and proventricular dilatation disease. Vet Clin North Am Exot Anim Pract 2010; 13:495-508. [PMID: 20682432 PMCID: PMC7110554 DOI: 10.1016/j.cvex.2010.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proventricular dilatation disease (PDD) is a common infectious neurologic disease of birds comprising a dilatation of the proventriculus by ingested food as a result of defects in intestinal motility, which affects more than 50 species of psittacines, and is also known as Macaw wasting disease, neuropathic ganglioneuritis, or lymphoplasmacytic ganglioneuritis. Definitive diagnosis of PDD has been problematic due to the inconsistent distribution of lesions. Since its discovery, avian bornavirus (ABV) has been successfully cultured from the brains of psittacines diagnosed with PDD, providing a source of antigen for serologic assays and nucleic acid for molecular assays. This article provides evidence that ABV is the etiologic agent of PDD. Recent findings on the transmission, epidemiology, pathogenesis, diagnosis, and control of ABV infection and PDD are also reviewed.
Collapse
Affiliation(s)
- Sharman Hoppes
- Small Animal Clinical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
49
|
Gray P, Hoppes S, Suchodolski P, Mirhosseini N, Payne S, Villanueva I, Shivaprasad HL, Honkavuori KS, Lipkin WI, Briese T, Reddy SM, Tizard I. Use of avian bornavirus isolates to induce proventricular dilatation disease in conures. Emerg Infect Dis 2010; 16:473-9. [PMID: 20202423 PMCID: PMC3322028 DOI: 10.3201/eid1603.091257] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fulfillment of Koch’s postulates shows that the virus causes proventricular dilatation disease in parrots. Avian bornavirus (ABV) is a newly discovered member of the family Bornaviridae that has been associated with the development of a lethal neurologic syndrome in birds, termed proventricular dilatation disease (PDD). We successfully isolated and characterized ABV from the brains of 8 birds with confirmed PDD. One isolate was passed 6 times in duck embryo fibroblasts, and the infected cells were then injected intramuscularly into 2 healthy Patagonian conures (Cyanoliseus patagonis). Clinical PDD developed in both birds by 66 days postinfection. PDD was confirmed by necropsy and histopathologic examination. Reverse transcription–PCR showed that the inoculated ABV was in the brains of the 2 infected birds. A control bird that received uninfected tissue culture cells remained healthy until it was euthanized at 77 days. Necropsy and histopathologic examinations showed no abnormalities; PCR did not indicate ABV in its brain tissues.
Collapse
Affiliation(s)
- Patricia Gray
- Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Protein kinase C-dependent phosphorylation of Borna disease virus P protein is required for efficient viral spread. Arch Virol 2010; 155:789-93. [DOI: 10.1007/s00705-010-0645-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
|