1
|
The Dual Function of RhoGDI2 in Immunity and Cancer. Int J Mol Sci 2023; 24:ijms24044015. [PMID: 36835422 PMCID: PMC9960019 DOI: 10.3390/ijms24044015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation, where it can display a dual role. Despite its involvement in various biological processes, we still do not have a clear understanding of its mechanistic functions. This review sheds a light on the dual opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes ways to explain its intricate regulatory functions.
Collapse
|
2
|
Yi B, Hu Y, Zhu D, Yao J, Zhou J, Zhang Y, He Z, Zhang L, Zhang Z, Yang J, Tang Y, Huang Y, Li D, Liu Q. RhoGDI2 induced malignant phenotypes of pancreatic cancer cells via regulating Snail expression. Genes Genomics 2022; 44:561-569. [PMID: 35147897 DOI: 10.1007/s13258-022-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Rho GDP dissociation inhibitor 2 (RhoGDI2) has been shown to contribute to the aggressive phenotypes of human cancers, such as tumor metastasis and chemoresistance. OBJECTIVE This study aimed to assess the effects of RhoGDI2 on tumor progression and chemoresistance in pancreatic cancer cells. METHODS The expression of RhoGDI2 in pancreatic cancer cells was detected by Western blot analysis. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. The correlation between RhoGDI2 and Snail was also analyzed. RESULTS Differential expression of RhoGDI2 protein in pancreatic cancer cell lines was identified. Gain-of-function and loss-of-function experiments showed that RhoGDI2 induced the malignant phenotypes of pancreatic cancer cells, including proliferation, migration, invasion, and gemcitabine (GEM) chemoresistance. The upregulation of RhoGDI2 stimulated the expression of Snail, resulting in the altered expression of epithelial marker E-cadherin and mesenchymal marker Vimentin, which were characteristics of the tumorigenic activity of epithelial-mesenchymal transition. The expression of RhoGDI2 and Snail was upregulated in clinical tumor samples, and higher expression of RhoGDI2 or Snail was significantly associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). CONCLUSION The findings indicated that RhoGDI2 promoted GEM resistance and tumor progression in pancreatic cancer and that RhoGDI2 might be a potential therapeutic target in patients with PDAC.
Collapse
Affiliation(s)
- Bin Yi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - You Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Jun Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Zhilong He
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Zixiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Yuchen Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Yujie Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, People's Republic of China.
| | - Qiuhua Liu
- Department of General Surgery, The First People's Hospital of Zhangjiagang City, No. 68 Jiyang Western Road, Suzhou, People's Republic of China.
| |
Collapse
|
3
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Wang X, Bi X, Huang X, Wang B, Guo Q, Wu Z. Systematic investigation of biomarker-like role of ARHGDIB in breast cancer. Cancer Biomark 2021; 28:101-110. [PMID: 32176626 DOI: 10.3233/cbm-190562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND ARHGDIB, a Rho GDP dissociation inhibitor protein, has been reported playing critical roles in regulation of multiple biological responses. However, whether ARHGDIB serves as a valuable biomarker in cancer is little known so far, especially in breast cancer. OBJECTIVE In this study, we aimed to investigate the importance of ARHGDIB in breast cancer, including but not limited to biomarker-like role, as well as potential mechanisms. METHODS Total 100 breast cancer samples and 100 benign breast disease samples were enrolled and underwent detailed pathological assessment and IHC analysis. Human breast cancer cell lines and epithelial cell line were subjected to siRNA-mediated knock-down, RT-qPCR, western blot, MTT staining, cell cycle assay, transwell analysis respectively. RESULTS We observed the expression of ARHGDIB is significantly higher in human breast cancer tissues compared with the benign tissues. ARHGDIB expression was positively correlated with tumor size, lymph node metastasis and TNM stage in breast cancer patients. Moreover, ARHGDIB depletion decreased proliferation, migration and invasion of breast cancer cells. Furthermore, we found ARHGDIB mediated epithelial-mesenchymal transition, and MMP2 is the key downstream effector of ARHGDIB. CONCLUSIONS Hence, our results suggested the significance and predictive role of ARHGDIB in breast cancer. High expression of ARHGDIB indicated the poor prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Bi
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bijun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Effect of the Rho GTPase inhibitor-1 on the entry of dengue serotype 2 virus into EAhy926 cells. Mol Biol Rep 2020; 47:9739-9747. [PMID: 33200314 DOI: 10.1007/s11033-020-05980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Dengue virus (DV) is the most rapidly spreading arbovirus in the world. Our previous studies indicated that Rac1, a kind of Rho GTPase, was related with the increased vascular permeability in DV infection. However, the molecular mechanisms that regulate the activity of the Rac1 pathway during DV infection is not fully understood yet. Recently, Rho-specific guanine nucleotide dissociated inhibitors (Rho GDIs), as a pivotal upstream regulator of Rho GTPase, attract our attention. To identify the role of GDI-1 in DV2 infection, the expression of GDI in Eahy926 cells was detected. Moreover, a GDI-1 down-regulated cell line was constructed to explore the correlation between GDI-1 and Rac1 and to further evaluate the function of GDI in DV life cycle. Our results indicated that DV2 infection could up-regulate GDI-1 expression, and down-regulation of GDI enhanced the activity of Rac1. In addition, down-regulated GDI-1 significantly inhibited all steps of DV2 replication cycle. GDI-1 plays an important role in DV2 infection via negatively regulating the activation of the Rac1-actin pathway. These results not only contribute to our further understanding of the pathogenesis of severe dengue but also provide further insight into the development of antiviral drugs.
Collapse
|
6
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
7
|
Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 2019; 8:cells8091037. [PMID: 31492019 PMCID: PMC6769525 DOI: 10.3390/cells8091037] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Bo-Yeon Kim
- Anticancer Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
8
|
Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY, Yoo J, Hong KS, Min JK, Lee CH, Lim JS, Yoon SR, Choi I, Choe YK, Lee HG. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett 2018; 417:141-151. [DOI: 10.1016/j.canlet.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
|
9
|
Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 2017; 37:861-872. [PMID: 29059157 PMCID: PMC5814325 DOI: 10.1038/onc.2017.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Eph receptors and their corresponding ephrin ligands have been associated with regulating cell–cell adhesion and motility, and thus have a critical role in various biological processes including tissue morphogenesis and homeostasis, as well as pathogenesis of several diseases. Aberrant regulation of Eph/ephrin signaling pathways is implicated in tumor progression of various human cancers. Here, we show that a Rho family GTPase regulator, Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1), can interact with ephrinB1, and this interaction is enhanced upon binding the extracellular domain of the cognate EphB2 receptor. Deletion mutagenesis revealed that amino acids 327–334 of the ephrinB1 intracellular domain are critical for the interaction with RhoGDI1. Stimulation with an EphB2 extracellular domain-Fc fusion protein (EphB2-Fc) induces RhoA activation and enhances the motility as well as invasiveness of wild-type ephrinB1-expressing cells. These Eph-Fc-induced effects were markedly diminished in cells expressing the mutant ephrinB1 construct (Δ327–334) that is ineffective at interacting with RhoGDI1. Furthermore, ephrinB1 depletion by siRNA suppresses EphB2-Fc-induced RhoA activation, and reduces motility and invasiveness of the SW480 and Hs578T human cancer cell lines. Our study connects the interaction between RhoGDI1 and ephrinB1 to the promotion of cancer cell behavior associated with tumor progression. This interaction may represent a therapeutic target in cancers that express ephrinB1.
Collapse
Affiliation(s)
- H J Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea.,Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Y-S Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - J Yoon
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - M Lee
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - H G Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - I O Daar
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
10
|
Ota T, Jiang YS, Fujiwara M, Tatsuka M. Apoptosis‑independent cleavage of RhoGDIβ at Asp19 during PMA‑stimulated differentiation of THP‑1 cells to macrophages. Mol Med Rep 2017; 15:1722-1726. [PMID: 28260067 PMCID: PMC5365007 DOI: 10.3892/mmr.2017.6199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Rho GDP-dissociation inhibitor β (RhoGDIβ), a regulator of the Rho family of proteins, is expressed abundantly in the hematopoietic cell lineage. During apoptosis of hematopoietic cells, RhoGDIβ is cleaved by caspase-3 at Asp19 and this cleaved form (Δ19-RhoGDIβ) has been implicated in the apoptotic pathway. To clarify the role of RhoGDIβ in hematopoietic cells, the present study performed immunoblotting and immunofluorescence staining to examine the expression of RhoGDIβ and ∆19-RhoGDIβ during phorbol 12-myristate 13-acetate (PMA)-stimulated differentiation of human THP-1 monocytic cells to macrophages. During differentiation of the THP-1 cells to macrophages, the expression of RhoGDIβ remained stable; however, the expression of Δ19-RhoGDIβ increased, particularly in well-spreading, non-apoptotic cells, which differentiated into macrophages. These results suggested that Δ19-RhoGDIβ has an apoptosis-independent role in the PMA-induced differentiation of THP-1 cells to macrophages.
Collapse
Affiliation(s)
- Takahide Ota
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920‑02, Japan
| | - Yong-Sheng Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mamoru Fujiwara
- Department of Life Sciences, Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 727‑0023, Japan
| | - Masaaki Tatsuka
- Department of Life Sciences, Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 727‑0023, Japan
| |
Collapse
|
11
|
Yan C, Wang X, Liu Y, Abdulnour RE, Wu M, Gao H. Protective Role of Rho Guanosine Diphosphate Dissociation Inhibitor, Ly-GDI, in Pulmonary Alveolitis. PLoS One 2015; 10:e0140804. [PMID: 26469087 PMCID: PMC4607448 DOI: 10.1371/journal.pone.0140804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Growing evidences indicate that Ly-GDI, an inhibitory protein of Rho GTPases, plays an essential role in regulating actin cytoskeletal alteration which is indispensible for the process such as phagocytosis. However, the role of Ly-GDI in inflammation remains largely unknown. In the current study, we found that Ly-GDI expression was significantly decreased in the IgG immune complex-injured lungs. To determine if Ly-GDI might regulate the lung inflammatory response, we constructed adenovirus vectors that could mediate ectopic expression of Ly-GDI (Adeno-Ly-GDI). In vivo mouse lung expression of Ly-GDI resulted in a significant attenuation of IgG immune complex-induced lung injury, which was due to the decreased pulmonary permeability and lung inflammatory cells, especially neutrophil accumulation. Upon IgG immune complex deposition, mice with Ly-GDI over-expression in the lungs produced significant less inflammatory mediators (TNF-α, IL-6, MCP-1, and MIP-1α) in bronchoalveolar lavage fluid when compared control mice receiving airway injection of Adeno-GFP. Mechanically, IgG immune complex-induced NF-κB activity was markedly suppressed by Ly-GDI in both alveolar macrophages and lungs as measured by luciferase assay and electrophoretic mobility shift assay. These findings suggest that Ly-GDI is a critical regulator of inflammatory injury after deposition of IgG immune complexes and that it negatively regulates the lung NF-κB activity.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Anesthesiology, Perioperative&Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Yanlan Liu
- Department of Anesthesiology, Perioperative&Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raja-Elie Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Hongwei Gao
- Department of Anesthesiology, Perioperative&Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Surgery, Tianjin Nankai Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|
12
|
Pont MJ, Hobo W, Honders MW, van Luxemburg-Heijs SAP, Kester MGD, van Oeveren-Rietdijk AM, Schaap N, de Boer HC, van Bergen CAM, Dolstra H, Falkenburg JHF, Griffioen M. LB-ARHGDIB-1R as a novel minor histocompatibility antigen for therapeutic application. Haematologica 2015; 100:e419-22. [PMID: 26069289 DOI: 10.3324/haematol.2015.125021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Margot J Pont
- Department of Hematology, Leiden University Medical Center, Nijmegen, the Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen
| | - Maria W Honders
- Department of Hematology, Leiden University Medical Center, Nijmegen, the Netherlands
| | | | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Nijmegen, the Netherlands
| | - Annemarie M van Oeveren-Rietdijk
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Nijmegen, the Netherlands
| | - Nicolaas Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hetty C de Boer
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Nijmegen, the Netherlands
| | | | - Harry Dolstra
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Ota T, Maeda M, Okamoto M, Tatsuka M. Positive regulation of Rho GTPase activity by RhoGDIs as a result of their direct interaction with GAPs. BMC SYSTEMS BIOLOGY 2015; 9:3. [PMID: 25628036 PMCID: PMC4312443 DOI: 10.1186/s12918-015-0143-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Background Rho GTPases function as molecular switches in many different signaling pathways and control a wide range of cellular processes. Rho GDP-dissociation inhibitors (RhoGDIs) regulate Rho GTPase signaling and can function as both negative and positive regulators. The role of RhoGDIs as negative regulators of Rho GTPase signaling has been extensively investigated; however, little is known about how RhoGDIs act as positive regulators. Furthermore, it is unclear how this opposing role of GDIs influences the Rho GTPase cycle. We constructed ordinary differential equation models of the Rho GTPase cycle in which RhoGDIs inhibit the regulatory activities of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) by interacting with them directly as well as by sequestering the Rho GTPases. Using this model, we analyzed the role of RhoGDIs in Rho GTPase signaling. Results The model constructed in this study showed that the functions of GEFs and GAPs are integrated into Rho GTPase signaling through the interactions of these regulators with GDIs, and that the negative role of GDIs is to suppress the overall Rho activity by inhibiting GEFs. Furthermore, the positive role of GDIs is to sustain Rho activation by inhibiting GAPs under certain conditions. The interconversion between transient and sustained Rho activation occurs mainly through changes in the affinities of GDIs to GAPs and the concentrations of GAPs. Conclusions RhoGDIs positively regulate Rho GTPase signaling primarily by interacting with GAPs and may participate in the switching between transient and sustained signals of the Rho GTPases. These findings enhance our understanding of the physiological roles of RhoGDIs and Rho GTPase signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0143-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahide Ota
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan.
| | | | | | | |
Collapse
|
14
|
Yi B, Hu Y, Qin G, Gu W, Zhu X, He S, Zhou J, Li D. Depletion of RhoGDI2 expression inhibits the ability of invasion and migration in pancreatic carcinoma. Int J Mol Med 2014; 34:205-12. [PMID: 24788627 DOI: 10.3892/ijmm.2014.1765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/24/2014] [Indexed: 11/05/2022] Open
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of tumor metastasis, although its role in tumor progression remains controversial. In this study, we examined the expression of RhoGDI2 in PC tissues and cell lines. To investigate the function of RhoGDI2 in PC cells, RhoGDI2 expression was depleted in PANC-1 and Patu8988 cells by small interfering RNA (siRNA). RhoGDI2 was found to be overexpressed in pancreatic carcinoma (PC) tissues and PC cell lines. Additionally, the results showed that depletion of RhoGDI2 significantly inhibited cell motility and invasion in vitro, but did not affect cell proliferation. The clinical study together with the experimental data confirmed that RhoGDI2 modulated the expression of matrix metalloproteinase 2 (MMP2). Taken together, findings of the present study indicated that RhoGDI2 is involved in pancreatic tumor malignancy and metastasis. Thus, RhoGDI2 is a potential target for the gene therapy of PC.
Collapse
Affiliation(s)
- Bin Yi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - You Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gongzhao Qin
- Department of Gynaecology and Obstetrics, Suzhou Municipal Hospital, Suzhou, Jiangsu 215003, P.R. China
| | - Wen Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
15
|
Li W, Wang H, Jin X, Zhao L. Loss of RhoGDI is a novel independent prognostic factor in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2535-2541. [PMID: 24228117 PMCID: PMC3816824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
RhoGDI (Rho GDP-dissociation inhibitor alpha or RhoGDIα) has been identified as a regulator of Rho GTPases, which are essential for tumor progression, but its role in cancer remains controversial and little is known in hepatocellular carcinoma (HCC). Using immunohistochemistry, we analyzed RhoGDI expression in 147 clinicopathologically characterized HCC cases. RhoGDI expression was detected in cytoplasm of HCC tissues. Statistical analysis showed that there was no relationship between RhoGDI expression and clinicopathological features. Importantly, a significant trend was identified between loss of RhoGDI expression in HCC and worsening clinical prognosis. Multivariate survival analysis showed that negative RhoGDI expression was recognized as an independent prognostic factor of patient's survival. Our results suggest that RhoGDI protein is a valuable marker of prognosis for patients with HCC.
Collapse
Affiliation(s)
- Weidong Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Xuejun Jin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
16
|
Pu J, Mao Y, Lei X, Yan Y, Lu X, Tian J, Yin X, Zhao G, Zhang B. FERM domain containing protein 7 interacts with the Rho GDP dissociation inhibitor and specifically activates Rac1 signaling. PLoS One 2013; 8:e73108. [PMID: 23967341 PMCID: PMC3742540 DOI: 10.1371/journal.pone.0073108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 07/18/2013] [Indexed: 11/28/2022] Open
Abstract
The FERM domain containing protein 7 gene (FRMD7) associated with the X-linked disorder idiopathic congenital nystagmus (ICN) is involved in the regulation of neurite elongation during neuronal development. Members of the Rho family of small G-proteins (Rho GTPases) are key regulators of the actin cytoskeleton and are implicated in the control of neuronal morphology. The Rho GDP dissociation inhibitor alpha, RhoGDIα, the main regulator of Rho GTPases, can form a complex with the GDP-bound form of Rho GTPases and inhibit their activation. Here, we demonstrate that the full length of the mouse FRMD7, rather than the N-terminus or the C-terminus alone, directly interacts with RhoGDIα and specifically initiates Rac1 signaling in mouse neuroblastoma cell line (neuro-2a). Moreover, we show that wild-type human FRMD7 protein is able to activate Rac1 signaling by interacting with RhoGDIα and releasing Rac1 from Rac1-RhoGDIα complex. However, two missense mutations (c.781C>G and c.886G>C) of human FRMD7 proteins weaken the ability to interact with RhoGDIα and release less Rac1, that induce the activation of Rac1 to a lesser degree; while an additional mutant, c.1003C>T, which results in a C-terminal truncated protein, almost fails to interact with RhoGDIα and to activate Rac1 signaling. Collectively, these results suggest that FRMD7 interacts with one of the Rho GTPase regulators, RhoGDIα, and activates the Rho subfamily member Rac1, which regulates reorganization of actin filaments and controls neuronal outgrowth. We predict that human mutant FRMD7 thus influences Rac1 signaling activation, which can lead to abnormal neuronal outgrowth and cause the X-linked ICN.
Collapse
Affiliation(s)
- Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanfang Mao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoguang Lei
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiong Lu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guohua Zhao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
17
|
Shida A, Fujioka S, Takahashi N, Aoki H, Okamoto T, Mitsumori N, Omura N, Yanaga K. Reduced expression of Rho GDP dissociation inhibitor 2 mRNA is associated with lymph node metastasis in gastric carcinoma. Oncol Lett 2013; 6:463-467. [PMID: 24137348 PMCID: PMC3789053 DOI: 10.3892/ol.2013.1379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/20/2013] [Indexed: 12/29/2022] Open
Abstract
Small GTPase proteins, including RhoA, RhoB, RhoC, Rac1 and cdc42, are molecules that have significant roles in linking cell shape and cell cycle progression in cytoskeletal arrangements and mitogenic signaling. Rho GDP dissociation inhibitor 2 (RhoGDI2) has recently been identified as a metastasis suppressor gene in models of bladder cancer. RhoGDI2 has also been identified as a potential regulator of tumorigenesis and cancer progression. The present study aimed to clarify the significance of RhoGDI2 gene expression in gastric carcinoma and to evaluate the outcome of affected patients. A total of 46 pairs of normal mucosa and cancer specimens were obtained from patients who had undergone a gastrectomy for primary gastric carcinoma and were subjected to semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) for RhoGDI2. The expression of RhoGDI2 mRNA was significantly higher in early-stage gastric cancer specimens compared with the normal gastric epithelium samples. By contrast, the depth of the tumor was negatively correlated with RhoGDI2 mRNA expression. In addition, a reduced expression of RhoGDI2 mRNA was associated with venous system invasion and lymph node metastasis. RhoGDI2 mRNA was more frequently expressed in differentiated adenocarcinoma compared with poorly-differentiated adenocarcinoma. Although the statistical significance was not established, RhoGDI2-positive patients tended to have a superior oncological outcome compared with RhoGDI2-negative patients. The reduced expression of RhoGDI2 mRNA in gastric carcinoma is associated with venous system invasion and lymph node metastasis.
Collapse
Affiliation(s)
- Atsuo Shida
- Department of Surgery, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang YS, Maeda M, Okamoto M, Fujii M, Fukutomi R, Hori M, Tatsuka M, Ota T. Centrosomal localization of RhoGDIβ and its relevance to mitotic processes in cancer cells. Int J Oncol 2012; 42:460-8. [PMID: 23232495 PMCID: PMC3583720 DOI: 10.3892/ijo.2012.1730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022] Open
Abstract
Rho GDP-dissociation inhibitors (RhoGDIs) are regulators of Rho family GTPases. RhoGDIβ has been implicated in cancer progression, but its precise role remains unclear. We determined the subcellular localization of RhoGDIβ and examined the effects of its overexpression and RNAi knockdown in cancer cells. Immunofluorescence staining showed that RhoGDIβ localized to centrosomes in human cancer cells. In HeLa cells, exogenous GFP-tagged RhoGDIβ localized to centrosomes and its overexpression caused prolonged mitosis and aberrant cytokinesis in which the cell shape was distorted. RNAi knockdown of RhoGDIβ led to increased incidence of monopolar spindle mitosis resulting in polyploid cells. These results suggest that RhoGDIβ has mitotic functions, including regulation of cytokinesis and bipolar spindle formation. The dysregulated expression of RhoGDIβ may contribute to cancer progression by disrupting these processes.
Collapse
Affiliation(s)
- Yong-Sheng Jiang
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Regulation of neural stem cell differentiation by transcription factors HNF4-1 and MAZ-1. Mol Neurobiol 2012; 47:228-40. [PMID: 22944911 DOI: 10.1007/s12035-012-8335-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Neural stem cells (NSCs) are promising candidates for a variety of neurological diseases due to their ability to differentiate into neurons, astrocytes, and oligodentrocytes. During this process, Rho GTPases are heavily involved in neuritogenesis, axon formation and dendritic development, due to their effects on the cytoskeleton through downstream effectors. The activities of Rho GTPases are controlled by Rho-GDP dissociation inhibitors (Rho-GDIs). As shown in our previous study, these are also involved in the differentiation of NSCs; however, little is known about the underlying regulatory mechanism. Here, we describe how the transcription factors hepatic nuclear factor (HNF4-1) and myc-associated zinc finger protein (MAZ-1) regulate the expression of Rho-GDIγ in the stimulation of NSC differentiation. Using a transfection of cis-element double-stranded oligodeoxynucleotides (ODNs) strategy, referred to as "decoy" ODNs, we examined the effects of HNF4-1 and MAZ-1 on NSC differentiation in the NSC line C17.2. Our results show that HNF4-1 and MAZ-1 decoy ODNs significantly knock down Rho-GDIγ gene transcription, leading to NSC differentiation towards neurons. We observed that HNF4-1 and MAZ-1 decoy ODNs are able enter to the cell nucleolus and specifically bind to their target transcription factors. Furthermore, the expression of Rho-GDIγ-mediated genes was identified, suggesting that the regulatory mechanism for the differentiation of NSCs is triggered by the transcription factors MAZ-1 and HNF4-1. These findings indicate that HNF4-1 and MAZ-1 regulate the expression of Rho-GDIγ and contribute to the differentiation of NSCs. Our findings provide a new perspective within regulatory mechanism research during differentiation of NSCs, especially the clinical application of transcription factor decoys in vivo, suggesting potential therapeutic strategies for neurodegenerative disease.
Collapse
|
20
|
Cho HJ, Baek KE, Kim IK, Park SM, Choi YL, Nam IK, Park SH, Im MJ, Yoo JM, Ryu KJ, Oh YT, Hong SC, Kwon OH, Kim JW, Lee CW, Yoo J. Proteomics-based strategy to delineate the molecular mechanisms of RhoGDI2-induced metastasis and drug resistance in gastric cancer. J Proteome Res 2012; 11:2355-64. [PMID: 22364609 DOI: 10.1021/pr2011186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) was initially identified as a regulator of the Rho family of GTPases. Our recent works suggest that RhoGDI2 promotes tumor growth and malignant progression, as well as enhances chemoresistance in gastric cancer. Here, we delineate the mechanism by which RhoGDI2 promotes gastric cancer cell invasion and chemoresistance using two-dimensional gel electrophoresis (2-DE) on proteins derived from a RhoGDI2-overexpressing SNU-484 human gastric cancer cell line and control cells. Differentially expressed proteins were identified using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 47 differential protein spots were identified; 33 were upregulated, and 14 were downregulated by RhoGDI2 overexpression. Upregulation of SAE1, Cathepsin D, Cofilin1, CIAPIN1, and PAK2 proteins was validated by Western blot analysis. Loss-of-function analysis using small interference RNA (siRNA) directed against candidate genes reveals the need for CIAPIN1 and PAK2 in RhoGDI2-induced cancer cell invasion and Cathepsin D and PAK2 in RhoGDI2-mediated chemoresistance in gastric cancer cells. These data extend our understanding of the genes that act downstream of RhoGDI2 during the progression of gastric cancer and the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Hee Jun Cho
- Department of Microbiology/Research Institute of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boulter E, Garcia-Mata R. Analysis of the role of RhoGDI1 and isoprenylation in the degradation of RhoGTPases. Methods Mol Biol 2012; 827:97-105. [PMID: 22144270 DOI: 10.1007/978-1-61779-442-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RhoGDI1 is one of the three major regulators of the Rho switch along with RhoGEFs and RhoGAPs. RhoGDI1 extracts prenylated Rho proteins from lipid membranes, sequesters them in the cytosol, and prevents nucleotide exchange or hydrolysis. In addition, RhoGDI1 protects prenylated Rho proteins from degradation. Here, we describe techniques to monitor Rho proteins degradation upon depletion of RhoGDI1 and their dependence upon prenylation for degradation.
Collapse
Affiliation(s)
- Etienne Boulter
- Institut National de la Santé et de la Recherche Mé dicale Avenir Team, U634, Sophia-Antipolis University, Nice, France
| | | |
Collapse
|
22
|
Li X, Wang J, Zhang X, Zeng Y, Liang L, Ding Y. Overexpression of RhoGDI2 correlates with tumor progression and poor prognosis in colorectal carcinoma. Ann Surg Oncol 2011; 19:145-53. [PMID: 21861235 DOI: 10.1245/s10434-011-1944-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND RhoGDI2 has been identified as a regulator of tumor metastasis but its role in cancer remains controversial. The aims of this study were to analyze the function of RhoGDI2 in colorectal carcinoma (CRC), and to determine its possible signaling pathway in CRC. METHODS The expression of RhoGDI2 was detected in CRC cell lines, and 20 matched pairs of fresh CRC tissues, and 120 cases of clinical paraffin-embedded CRC tissues by real-time RT-PCR, Western blot, RT-PCR, or immunohistochemistry. The levels of activations of p-PI3K, p-Akt, p-MAPK, and p-MEK were then examined in RhoGDI2-overexpressing cells by Western blot. A series of assays were finally performed to evaluate the effect of RhoGDI2 on CRC cell behaviors in vitro. RESULTS RhoGDI2 expression was higher in highly metastatic CRC cell lines than in lowly metastatic ones. RhoGDI2 expression was up-regulated in CRC or lymphatic metastatic tissues relative to normal mucosa (P < 0.05). RhoGDI2 expression was correlated strongly with tumor size, differentiation, and Duke's stage (P < 0.05). Patients with lower RhoGDI2 expression had better overall survival (P = 0.012), and RhoGDI2 could predict prognosis only in patients with early-stage disease. High levels of activations of p-PI3K and p-Akt were observed in RhoGDI2-overexpressing cells. LY294002 inhibitor could abrogate the activation of PI3K/Akt pathway in those cells. Over-expression of RhoGDI2 enhanced CRC cell proliferation, motility, and invasion in vitro. CONCLUSIONS Over-expression of RhoGDI2 is associated with poor overall survival in CRC patients, especially those presenting in early-stage. RhoGDI2 contributes to cell proliferation, motility, and invasion of CRC, at least in part, by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xianzheng Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Garcia-Mata R, Boulter E, Burridge K. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 2011; 12:493-504. [PMID: 21779026 DOI: 10.1038/nrm3153] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.
Collapse
Affiliation(s)
- Rafael Garcia-Mata
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.
| | | | | |
Collapse
|
24
|
Cho HJ, Baek KE, Park SM, Kim IK, Nam IK, Choi YL, Park SH, Im MJ, Choi J, Ryu J, Kim JW, Lee CW, Kang SS, Yoo J. RhoGDI2 confers gastric cancer cells resistance against cisplatin-induced apoptosis by upregulation of Bcl-2 expression. Cancer Lett 2011; 311:48-56. [PMID: 21752536 DOI: 10.1016/j.canlet.2011.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/07/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022]
Abstract
Rho GDP dissociation inhibitor (RhoGDI)2 has been identified as a regulator of Rho family GTPase. Recently, we suggested that RhoGDI2 could promote tumor growth and malignant progression in gastric cancer. In this study, we demonstrate that RhoGDI2 contributes to another important feature of aggressive cancers, i.e., resistance to chemotherapeutic agents such as cisplatin. Forced expression of RhoGDI2 attenuated cisplatin-induced apoptosis, whereas RhoGDI2 depletion showed opposite effects in vitro. Moreover, the increased anti-apoptotic effect of RhoGDI2 on cisplatin was further validated in RhoGDI2-overexpressing SNU-484 xenograft model in nude mice. Furthermore, we identified Bcl-2 as a major determinant of RhoGDI2-mediated cisplatin resistance in gastric cancer cells. Depletion of Bcl-2 expression significantly increased cisplatin-induced apoptosis in RhoGDI2-overexpressing gastric cancer cells, whereas overexpression of Bcl-2 blocked cisplatin-induced apoptosis in RhoGDI2-depleted gastric cancer cells. Overall, these findings establish RhoGDI2 as an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk in gastric cancer.
Collapse
Affiliation(s)
- Hee Jun Cho
- Department of Microbiology/Research Institute of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mehta P, Wavreille AS, Justiniano SE, Marsh RL, Yu J, Burry RW, Jarjoura D, Eubank T, Caligiuri MA, Butchar JP, Tridandapani S. LyGDI, a novel SHIP-interacting protein, is a negative regulator of FcγR-mediated phagocytosis. PLoS One 2011; 6:e21175. [PMID: 21695085 PMCID: PMC3114867 DOI: 10.1371/journal.pone.0021175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 05/23/2011] [Indexed: 12/28/2022] Open
Abstract
SHIP and SHIP-2 are inositol phosphatases that regulate FcγR-mediated phagocytosis through catalytic as well as non-catalytic mechanisms. In this study we have used two-dimensional fluorescence difference gel electrophoresis (DIGE) analysis to identify downstream signaling proteins that uniquely associate with SHIP or SHIP-2 upon FcγR clustering in human monocytes. We identified LyGDI as a binding partner of SHIP, associating inducibly with the SHIP/Grb2/Shc complex. Immunodepletion and competition experiments with recombinant SHIP domains revealed that Grb2 and the proline-rich domain of SHIP were necessary for SHIP-LyGDI association. Functional studies in primary human monocytes showed that LyGDI sequesters Rac in the cytosol, preventing it from localizing to the membrane. Consistent with this, suppression of LyGDI expression resulted in significantly enhanced FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Payal Mehta
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Anne-Sophie Wavreille
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven E. Justiniano
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rachel L. Marsh
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jianhua Yu
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard W. Burry
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, Ohio, United States of America
| | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy Eubank
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael A. Caligiuri
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
26
|
Zazueta-Novoa V, Martínez-Cadena G, Wessel GM, Zazueta-Sandoval R, Castellano L, García-Soto J. Concordance and interaction of guanine nucleotide dissociation inhibitor (RhoGDI) with RhoA in oogenesis and early development of the sea urchin. Dev Growth Differ 2011; 53:427-39. [PMID: 21492154 DOI: 10.1111/j.1440-169x.2011.01261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rho GTPases are Ras-related GTPases that regulate a variety of cellular processes. In the sea urchin Strongylocentrotus purpuratus, RhoA in the oocyte associates with the membrane of the cortical granules and directs their movement from the cytoplasm to the cell cortex during maturation to an egg. RhoA also plays an important role regulating the Na(+) -H(+) exchanger activity, which determines the internal pH of the cell during the first minutes of embryogenesis. We investigated how this activity may be regulated by a guanine-nucleotide dissociation inhibitor (RhoGDI). The sequence of this RhoA regulatory protein was identified in the genome on the basis of its similarity to other RhoGDI species, especially for key segments in the formation of the isoprenyl-binding pocket and in interactions with the Rho GTPase. We examined the expression and the subcellular localization of RhoGDI during oogenesis and in different developmental stages. We found that RhoGDI mRNA levels were high in eggs and during cleavage divisions until blastula, when it disappeared, only to reappear in gastrula stage. RhoGDI localization overlaps the presence of RhoA during oogenesis and in embryonic development, reinforcing the regulatory premise of the interaction. By use of recombinant protein interactions in vitro, we also find that these two proteins selectively interact. These results support the hypothesis of a functional relationship in vivo and now enable mechanistic insight for the cellular and organelle rearrangements that occur during oogenesis and embryonic development.
Collapse
Affiliation(s)
- Vanesa Zazueta-Novoa
- Department of Biology, Natural and Exact Sciences Division, Guanajuato Campus, University of Guanajuato, Box 187, Guanajuato, Gto. 36000, Mèxico
| | | | | | | | | | | |
Collapse
|
27
|
Di Michele M, Thys C, Waelkens E, Overbergh L, D'Hertog W, Mathieu C, De Vos R, Peerlinck K, Van Geet C, Freson K. An integrated proteomics and genomics analysis to unravel a heterogeneous platelet secretion defect. J Proteomics 2011; 74:902-13. [PMID: 21406263 DOI: 10.1016/j.jprot.2011.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 01/14/2023]
Abstract
Eight patients with clinical bleeding problems have evidence for platelet storage pool disease as they present with impaired platelet aggregation and secretion with low concentrations of ADP and collagen and an absence of second phase aggregation with epinephrine. Electron microscopy analysis further showed a reduced but not absent amount of platelet dense granules, and CD63 staining was decreased compared to healthy controls. The presence of alpha granules and CD62P expression after platelet activation was normal. This work aimed at identifying differentially expressed proteins in the platelet releasate and its remaining pellet after activation with A23187 and TRAP in patients and controls using DIGE-based proteomic technology. We identified 44 differentially expressed proteins in patients and the altered expression for some of them was confirmed by immunoblot analysis. Most of these proteins belong to the class of cytoskeleton-related proteins. In addition, 29 cytoskeleton-related genes showed an altered expression in platelet mRNA from patients using a real-time PCR array. In conclusion, our study shows that the dense granule secretion defect in patients with platelet storage pool disease is highly heterogeneous with evidence of an underlying cytoskeleton defect.
Collapse
Affiliation(s)
- Michela Di Michele
- Center for Molecular and Vascular Biology, University Hospital Leuven, KULeuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Park YJ, Ahn HJ, Kim YS, Cho Y, Joo DJ, Ju MK. Illumina-microarray analysis of mycophenolic acid-induced cell death in an insulin-producing cell line and primary rat islet cells: New insights into apoptotic pathways involved. Cell Signal 2010; 22:1773-82. [DOI: 10.1016/j.cellsig.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
|
29
|
Thanthrige-Don N, Parvizi P, Sarson AJ, Shack LA, Burgess SC, Sharif S. Proteomic analysis of host responses to Marek's disease virus infection in spleens of genetically resistant and susceptible chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:699-704. [PMID: 20138080 DOI: 10.1016/j.dci.2010.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/26/2010] [Indexed: 05/28/2023]
Abstract
Resistance to Marek's disease (MD) in chickens is genetically regulated and there are lines of chickens with differential susceptibility or resistance to this disease. The present study was designed to study comparative changes in the spleen proteomes of MD-susceptible B19 and MD-resistant B21 chickens in response to MDV infection. Spleen proteomes were examined at 4, 7, 14 and 21 days post-infection (d.p.i.) using two-dimensional gel electrophoresis and subsequently the protein spots were identified by one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). On average, there were 520+/-27 distinct protein spots on each gel and 1.6+/-0.7% of the spots differed quantitatively in their expression (p< or =0.05 and fold change > or =2) between infected B19 and B21 chickens. There was one spot at 4d.p.i. and three spots each at the rest of the time points, which had a qualitative difference in expression. Most of the differentially expressed proteins at 4 and 7d.p.i. displayed increased expression in B21 chickens; conversely the differentially expressed proteins at 14 and 21d.p.i. showed an increase in expression in B19 chickens. The differentially expressed proteins identified in the present study included antioxidants, molecular chaperones, proteins involved in the formation of cytoskeleton, protein degradation and antigen presentation, signal transduction, protein translation and elongation, RNA processing and cell proliferation. These findings shed light on some of the underlying processes of genetic resistance or susceptibility to MD.
Collapse
|
30
|
Harding MA, Theodorescu D. RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 2010; 46:1252-9. [PMID: 20347589 PMCID: PMC11207191 DOI: 10.1016/j.ejca.2010.02.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 12/20/2022]
Abstract
Rho GDP-Dissociation Inhibitors (RhoGDIs) are important regulators of the Rho family of small GTPases. The expression of RhoGDIs is altered in a variety of cancers and they have been shown to mediate several processes during tumorigenesis and cancer progression. Using examples of RhoGDI-mediated signaling and expression patterns in endothelial cells as well as pancreatic, breast, and bladder cancer, the multitude of potential cancer therapeutic targets presented by a better understanding of their function is illustrated. Several novel therapeutic strategies are proposed for intervening in RhoGDI signaling, and potential complications arising from their implementation are discussed.
Collapse
Affiliation(s)
- Michael A Harding
- Department of Urology, University of Virginia, Charlottesville, Virginia, USA.
| | | |
Collapse
|
31
|
Zhen H, Yang S, Wu H, Wang S, Lv J, Ma L, Zhang X. LyGDI is a Promising Biomarker for Ovarian Cancer. Int J Gynecol Cancer 2010; 20:316-22. [DOI: 10.1111/igc.0b013e3181d0b02d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Cho HJ, Baek KE, Yoo J. RhoGDI2 as a therapeutic target in cancer. Expert Opin Ther Targets 2010; 14:67-75. [PMID: 20001211 DOI: 10.1517/14728220903449251] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE OF THE FIELD Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of Rho GTPases that play important roles in the development of numerous aspects of the malignant phenotype, including cell cycle progression, resistance to apoptotic stimuli, neovascularization, tumor cell motility, invasiveness, and metastasis. Although RhoGDI2 has been known to be expressed only in hematopoietic tissues, recent studies suggest that this protein is also aberrantly expressed in several human cancers and contributes to aggressive phenotypes, such as invasion and metastasis. Hence, RhoGDI2 appears to be a target of interest for therapeutic manipulation. AREAS COVERED IN THIS REVIEW Here, we summarize the role of RhoGDI2 in human cancers, specifically metastasis-related processes, and discuss its potential as a therapeutic target. WHAT THE READER WILL GAIN RhoGDI2 modulates the invasiveness and metastatic ability of cancer cells through regulation of Rac1 activity. TAKE HOME MESSAGE RhoGDI2 may be a useful marker for tumor progression in human cancers, and interruption of the RhoGDI2-mediated cancer cell invasion and metastasis by an interfacial inhibitor may be a powerful therapeutic approach to cancer.
Collapse
Affiliation(s)
- Hee Jun Cho
- Gyeongsang National University, College of Natural Sciences, Research Institute of Life Science, Department of Microbiology, Jinju 660-701, Korea
| | | | | |
Collapse
|
33
|
Gene expression profiles of a mouse congenic strain carrying an obesity susceptibility QTL under obesigenic diets. GENES AND NUTRITION 2009; 5:237-50. [PMID: 20020228 DOI: 10.1007/s12263-009-0163-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/24/2009] [Indexed: 12/25/2022]
Abstract
Genetic factors are strongly involved in the development of obesity, likely through the interactions of susceptibility genes with obesigenic environments, such as high-fat, high-sucrose (HFS) diets. Previously, we have established a mouse congenic strain on C57BL/6 J background, carrying an obesity quantitative trait locus (QTL), tabw2, derived from obese diabetic TALLYHO/JngJ mice. The tabw2 congenic mice exhibit increased adiposity and hyperleptinemia, which becomes exacerbated upon feeding HFS diets. In this study, we conducted genome-wide gene expression profiling to evaluate differentially expressed genes between tabw2 and control mice fed HFS diets, which may lead to identification of candidate genes as well as insights into the mechanisms underlying obesity mediated by tabw2. Both tabw2 congenic mice and control mice were fed HFS diets for 10 weeks beginning at 4 weeks of age, and total RNA was isolated from liver and adipose tissue. Whole-genome microarray analysis was performed and verified by real-time quantitative RT-PCR. At False Discovery Rate adjusted P < 0.05, 1026 genes were up-regulated and 308 down-regulated in liver, whereas 393 were up-regulated and 187 down-regulated in adipose tissue in tabw2 congenic mice compared to controls. Within the tabw2 QTL interval, 70 genes exhibited differential expression in either liver or adipose tissue. A comprehensive pathway analysis revealed a number of biological pathways that may be perturbed in the diet-induced obesity mediated by tabw2.
Collapse
|
34
|
CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol 2009; 10:1208-14. [PMID: 19767757 DOI: 10.1038/ni.1788] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/31/2009] [Indexed: 12/15/2022]
Abstract
In response to invading microorganisms, macrophages engage in phagocytosis and rapidly release reactive oxygen species (ROS), which serve an important microbicidal function. However, how phagocytosis induces ROS production remains largely unknown. CARD9, a caspase-recruitment domain (CARD)-containing protein, is important for resistance to fungal and bacterial infection. The mechanism of CARD9-mediated bacterial clearance is still mostly unknown. Here we show that CARD9 is required for killing intracellular bacteria in macrophages. CARD9 associated with the GDP-dissociation inhibitor LyGDI in phagosomes after bacterial and fungal infection and binding of CARD9 suppressed LyGDI-mediated inhibition of the GTPase Rac1, thereby leading to ROS production and bacterial killing in macrophages. Thus, our studies identify a key pathway that leads to microbe-elicited ROS production.
Collapse
|
35
|
Bielek H, Anselmo A, Dermardirossian C. Morphological and proliferative abnormalities in renal mesangial cells lacking RhoGDI. Cell Signal 2009; 21:1974-83. [PMID: 19765647 DOI: 10.1016/j.cellsig.2009.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 11/28/2022]
Abstract
The regulation of Rho GTPase activities and expression is critical in the development and function of the kidney. Rho GTPase activities and cytosol-membrane cycling are regulated by Rho GDP Dissociation Inhibitor (RhoGDI), and RhoGDI knockout mice develop defects in kidney structure and function that lead to death due to renal failure. It is therefore important to understand the changes in RhoGDI-regulated Rho GTPase activities and cell morphology that lead to kidney failure in RhoGDI (-/-) mice. Here, we characterize a renal mesangial cell line derived from the RhoGDI (-/-) mouse in which we verify the absence of GDI proteins. In the absence of RhoGDI, we show an increase in the specific activity of Rac1, and to a lesser extent, RhoA and Cdc42 GTPases in these cells. This is accompanied by a compensatory decrease in the steady-state protein levels of Rho GTPases. Morphological analysis of RhoGDI (-/-) mesangial cells reveals a decrease in cell spreading and in focal contacts compared to wild-type cells. Finally, RhoGDI (-/-) mesangial cells show a decreased ability to proliferate and survive. These functional and structural changes are likely to contribute to the defects in renal architecture and function observed in the RhoGDI (-/-) mouse.
Collapse
Affiliation(s)
- Heike Bielek
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
36
|
Daryadel A, Yousefi S, Troi D, Schmid I, Schmidt-Mende J, Mordasini C, Dahinden CA, Ziemiecki A, Simon HU. RhoH/TTF negatively regulates leukotriene production in neutrophils. THE JOURNAL OF IMMUNOLOGY 2009; 182:6527-32. [PMID: 19414807 DOI: 10.4049/jimmunol.0803846] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukotriene B(4) (LTB(4)) is an important proinflammatory lipid mediator generated by neutrophils upon activation. GM-CSF stimulation is known to enhance agonist-mediated LTB(4) production of neutrophils within minutes, a process called "priming". In this study, we demonstrate that GM-CSF also limits the production of LTB(4) by neutrophils via a transcriptional mechanism at later time points. We identified hemopoietic-specific Ras homologous (RhoH)/translocation three four (TTF), which was induced following GM-CSF stimulation in neutrophils, as a key regulator in this process. Neutrophils derived from RhoH/TTF-deficient (Rhoh(-/-)) mice demonstrated increased LTB(4) production upon activation compared with normal mouse neutrophils. Moreover, neutrophils from cystic fibrosis patients expressed enhanced levels of RhoH/TTF and generated less LTB(4) upon activation compared with normal human neutrophils. Taken together, these data suggest that RhoH/TTF represents an inducible feedback inhibitor in neutrophils that is involved in the limitation of innate immune responses.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cho HJ, Baek KE, Park SM, Kim IK, Choi YL, Cho HJ, Nam IK, Hwang EM, Park JY, Han JY, Kang SS, Kim DC, Lee WS, Lee MN, Oh GT, Kim JW, Lee CW, Yoo J. RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res 2009; 15:2612-9. [PMID: 19351766 DOI: 10.1158/1078-0432.ccr-08-2192] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of Rho family GTPase. However, there is currently no direct evidence suggesting whether RhoGDI2 activates or inhibits Rho family GTPase in vivo (and which type), and the role of RhoGDI2 in tumor remains controversial. Here, we assessed the effects of RhoGDI2 expression on gastric tumor growth and metastasis progression. EXPERIMENTAL DESIGN Proteomic analysis was done to investigate the tumor-specific protein expression in gastric cancer and RhoGDI2 was selected for further study. Immunohistochemistry was used to detect RhoGDI2 expression in clinical samples of primary gastric tumor tissues which have different pathologic stages. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. RESULTS RhoGDI2 expression was correlated positively with tumor progression and metastasis potential in human gastric tumor tissues, as well as cell lines. The forced expression of RhoGDI2 caused a significant increase in gastric cancer cell invasion in vitro, and tumor growth, angiogenesis, and metastasis in vivo, whereas RhoGDI2 depletion evidenced opposite effects. CONCLUSION Our findings indicate that RhoGDI2 is involved in gastric tumor growth and metastasis, and that RhoGDI2 may be a useful marker for tumor progression of human gastric cancer.
Collapse
Affiliation(s)
- Hee Jun Cho
- Department of Microbiology/Research Institute of Life Science, College of Natural Sciences, Physiology, Anatomy and Neurobiology, Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang Y, Rivera Rosado LA, Moon SY, Zhang B. Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by activation of Rac-dependent p38 and JNK signaling. J Biol Chem 2009; 284:12956-65. [PMID: 19269969 DOI: 10.1074/jbc.m807845200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GDP dissociation inhibitor D4-GDI is overexpressed in some human breast cancer cell lines (Zhang, Y., and Zhang, B. (2006) Cancer Res. 66, 5592-5598). Here, we show that silencing of D4-GDI by RNA interference abrogates tumor growth and lung metastasis of otherwise highly invasive MDA-MB-231 breast cancer cells. Under anchorage-independent culture conditions, D4-GDI-depleted cells undergo rapid apoptosis (anoikis), which is known to hinder metastasis. We also found that D4-GDI associates with Rac1 and Rac3 in breast cancer cells, but not with other Rho GTPases tested (Cdc42, RhoA, RhoC, and TC10). Silencing of D4-GDI results in constitutive Rac1 activation and translocation from the cytosol to cellular membrane compartments and in sustained activation of p38 and JNK kinases. Rac1 blockade inhibits p38/JNK kinase activities and the spontaneous anoikis of D4-GDI knockdown cells. These results suggest that D4-GDI regulates cell function by interacting primarily with Rac GTPases and may play an integral role in breast cancer tumorigenesis. D4-GDI could prove to be a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Yaqin Zhang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
39
|
Salvagiotto G, Zhao Y, Vodyanik M, Ruotti V, Stewart R, Marra M, Thomson J, Eaves C, Slukvin I. Molecular profiling reveals similarities and differences between primitive subsets of hematopoietic cells generated in vitro from human embryonic stem cells and in vivo during embryogenesis. Exp Hematol 2008; 36:1377-89. [PMID: 18922365 DOI: 10.1016/j.exphem.2008.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Cellular and molecular changes that occur during the genesis of the hematopoietic system and hematopoietic stem cells in the human embryo are mostly inaccessible to study and remain poorly understood. To address this gap we have exploited the human embryonic stem cell (hESC) system to molecularly characterize the global transcriptomes of the two functionally discreet and phenotypically separable populations of multipotent hematopoietic cells that first appear when hESCs are induced to differentiate on OP9 cells. MATERIALS AND METHODS We prepared long serial analysis of gene expression libraries from lin-CD34+CD43+CD45- and lin-CD34+CD43+CD45+ subsets of primitive hematopoietic cells derived in vitro from hESCs, sequenced them to a depth of 200,000 tags and compared their content with similar libraries prepared from highly purified populations of very primitive human fetal liver and cord blood hematopoietic cells. RESULTS Comparison of libraries obtained from hESC-derived lin-CD34+CD43+CD45- and lin-CD34+CD43+CD45+ revealed differences in their expression of genes associated with myeloid development, cellular biosynthetic processes, and cell-cycle regulation. Further comparisons with analogous data for primitive hematopoietic cells isolated from first-trimester human fetal liver and newborn cord blood showed an apparent similarity between the transcriptomes of the most primitive hESC- and in vivo-derived populations, with the main differences involving genes that regulate HSC self-renewal and homing, chromatin remodeling, AP1 transcription complex genes, and noncoding RNAs. CONCLUSION These data suggest that primitive hematopoietic cells are generated from hESCs in vitro by processes similar to those operative during human embryogenesis in vivo, although some differences were also detected.
Collapse
Affiliation(s)
- Giorgia Salvagiotto
- WiCell Research Institute, Terry Fox Laboratory, Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kondoh K, Nakata Y, Yamaoka T, Itakura M, Hayashi M, Yamada K, Hata JI, Yamada T. Altered cellular immunity in transgenic mice with T cell-specific expression of human D4-guanine diphosphate-dissociation inhibitor (D4-GDI). Int Immunol 2008; 20:1299-311. [DOI: 10.1093/intimm/dxn084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
41
|
Zhao L, Wang H, Li J, Liu Y, Ding Y. Overexpression of Rho GDP-Dissociation Inhibitor Alpha Is Associated with Tumor Progression and Poor Prognosis of Colorectal Cancer. J Proteome Res 2008; 7:3994-4003. [PMID: 18651761 DOI: 10.1021/pr800271b] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China, State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China, and Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China, State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China, and Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianming Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China, State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China, and Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yawei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China, State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China, and Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China, State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China, and Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Ma L, Xu G, Sotnikova A, Szczepanowski M, Giefing M, Krause K, Krams M, Siebert R, Jin J, Klapper W. Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma. Br J Haematol 2008; 139:217-23. [PMID: 17897297 DOI: 10.1111/j.1365-2141.2007.06782.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The guanosine triphosphatase (GTPase) inhibitor LyGDI (ARHGDIB, Ly/D4-GDI, RhoGDIb or RhoGDI 2) is abundantly expressed in haematopoetic cells and possibly plays a role in the onset of apoptosis. Gene expression profiling of Hodgkin cell lines revealed that LyGDI expression was downregulated in these cell lines. The present study evaluated the expression of LyGDI in Hodgkin cells in vivo and studied the function of LyGDI in Hodgkin cell lines in vitro. Our results showed that virtually all Hodgkin and Reed-Sternberg cells in classical Hodgkin lymphoma lacked LyGDI protein expression. On the other hand, almost all non-Hodgkin lymphomas, except for anaplastic large cell lymphomas, expressed LyGDI protein. Transfection of the classical Hodgkin cell line L428 with a vector containing full-length LyGDI-induced apoptosis in a subset of cells. However, the majority of Hodgkin cells with transgenic expression of LyGDI escaped apoptosis. Our data show that lack of LyGDI expression is a frequent feature of cHL but that it is not of vital importance for the growth and survival of these cells.
Collapse
Affiliation(s)
- Liya Ma
- Department of Pathology, Schleswig-Holstein University Hospitals, Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maddala R, Reneker LW, Pendurthi B, Rao PV. Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival. Dev Biol 2008; 315:217-31. [PMID: 18234179 DOI: 10.1016/j.ydbio.2007.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/06/2023]
Abstract
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (Rho GDI alpha), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of delta-crystallin enhancer and alpha A-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine Rho GDI alpha disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the Rho GDI alpha Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
44
|
Nakata Y, Kondoh K, Fukushima S, Hashiguchi A, Du W, Hayashi M, Fujimoto JI, Hata JI, Yamada T. Mutated D4-guanine diphosphate-dissociation inhibitor is found in human leukemic cells and promotes leukemic cell invasion. Exp Hematol 2007; 36:37-50. [PMID: 18037226 DOI: 10.1016/j.exphem.2007.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 07/23/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Rho GTPase may be involved in human cancer invasion via the augmentation of cell motility and adhesion. We report on two point mutations of the D4-guanine diphosphate (GDP)-dissociation inhibitor (GDI) gene, one of the Rho-GDIs, which were found in a human leukemic cell line, Reh, and the mutated D4-GDI functions as an accelerator of leukemic cell invasion. MATERIAL AND METHODS We investigated the altered activity of GDP dissociation by mutated (mt) D4-GDI and the functions of this mt and wild-type (wt) D4-GDI in invasion. The mice inoculated with wt or mt D4-GDI vector-transfected Raji cells were observed and examined pathologically. Adhesiveness and cell motility of wt or mt D4-GDI vector-transfected Raji cells were examined. Finally, it was examined whether Rho activation was changed by mutation of D4-GDI under the condition of Rho-GDI knockdown. RESULTS Two point mutations of the D4-GDI gene were found in Reh cells. The region of mutations is conserved among members of the Rho-GDI family at the amino acid level. D4-GDI with two mutations (V68L and V69A) functioned in a dominant negative manner in the inhibition of GDP dissociation from Rho. Severe combined immune-deficient mice inoculated with Raji cells developed hemiparalysis. The Raji cells were present in bone marrow and peripheral blood, and hepatic invasion was observed in 20% of the mice. Mice inoculated with wt D4-GDI vector-transfected Raji cells (wt D4) showed later paralysis and none developed hepatic invasion. Mice inoculated with mt D4-GDI-transfected Raji cells (mt D4) showed a 5-day reduction in the time to paraplegia and death. In addition, hepatic invasion was evident in 80% of mice transplanted with mt D4 cells. There were no differences in growth rates and amounts of guanine triphosphate (GTP)-bound Rho, cdc42, or Rac among all clones, however, GTP-bound Rho in mt D4 clone with short hairpin RNA (shRNA) vector for Rho-GDI knockdown was increased compared with wt D4 clone with shRNA vector for Rho-GDI knockdown. The mt D4 cells showed an augmentation of adhesiveness and cell motility. On the other hand, wt D4 cells showed a decreased ability of cell motility. CONCLUSION These results suggest the mutated D4-GDI functions as a dominant negative molecule against the wt D4-GDI and accelerates invasion via regulation of cytoskeletal machinery.
Collapse
Affiliation(s)
- Yuji Nakata
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ota T, Maeda M, Sakita-Suto S, Zhou X, Murakami M, Takegami T, Tatsuka M. RhoGDIbeta lacking the N-terminal regulatory domain suppresses metastasis by promoting anoikis in v-src-transformed cells. Clin Exp Metastasis 2006; 23:323-34. [PMID: 17111235 DOI: 10.1007/s10585-006-9041-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 09/29/2006] [Indexed: 10/23/2022]
Abstract
Rho guanine nucleotide dissociation inhibitors (RhoGDIs) regulate the activity of Rho family GTPases. RhoGDIbeta (LyGDI/GDID4/RhoGDI2) has two caspase cleavage sites after Asp19 and Asp55. The resulting cleavage products, DeltaN(1-19)RhoGDIbeta and DeltaN(1-55)RhoGDIbeta, are expressed in cells under conditions that activate caspases. DeltaN(1-19)RhoGDIbeta, which can inhibit GDP dissociation, is implicated in the process of apoptosis, whereas the physiological roles for DeltaN(1-55)RhoGDIbeta, which lacks the ability to inhibit GDP dissociation, are largely unknown. To explore the roles of DeltaN(1-55)RhoGDIbeta, we examined the phenotypes of v-src-transformed metastatic fibroblasts transfected with plasmids for expressing DeltaN(1-55)RhoGDIbeta. Although the expression of DeltaN(1-55)RhoGDIbeta had no effect on the rate of growth in vitro, it suppressed experimental metastasis and decreased the rate of growth in vivo. In addition, DeltaN(1-55)RhoGDIbeta-expressing cells had enhanced adhesion to fibronectin, laminin, and collagens but reduced retention in the lung after intravenous injection. Also, the expression of DeltaN(1-55)RhoGDIbeta promoted anoikis without affecting the levels of activated Rac1 or Cdc42. Furthermore, DeltaN(1-55)RhoGDIbeta did not affect the expression or phosphorylation of focal adhesion kinase, p44/p42 mitogen-activated protein kinases, or Akt1 before or after induction of anoikis. Thus, DeltaN(1-55)RhoGDIbeta appears to promote anoikis by undefined mechanisms, thereby suppressing metastasis in v-src-transformed fibroblasts.
Collapse
Affiliation(s)
- Takahide Ota
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
D4-GDI is a Rho GDP dissociation inhibitor that is widely expressed in hematopoietic cells. Its possible expression and function in breast cancer cells has not been described. Here, we found that D4-GDI is expressed in a panel of breast cancer cell lines, but not in benign-derived mammary epithelial cells. Knockdown of D4-GDI expression in MDA-MB-231 cells by RNA interference blocks cell motility and invasion. The cells lacking D4-GDI grown on Matrigel revert to a normal breast epithelial phenotype characterized by the formation of cavitary structures. Silencing D4-GDI expression inhibits beta1-integrin expression and cell-matrix adhesion. Reintroduction of D4-GDI fully restored both beta1-integrin expression and cellular invasion. Knockdown of D4-GDI in BT549 cells results in a similar effect. These results show that D4-GDI modulates breast cancer cell invasive activities.
Collapse
Affiliation(s)
- Yaqin Zhang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | | |
Collapse
|
47
|
Abstract
Rho GTPase activation is partially regulated at the level of guanine nucleotide dissociation inhibitors, or GDIs. The binding of Rho GTPases to GDIs has been shown to dramatically reduce the action of guanine nucleotide exchange factors (GEFs) to initiate Rho GTPase activation. The GDI-GTPase complex thus serves as a major point of regulation of Rho GTPase activity and function. It is likely that specific mechanisms exist to dissociate individual members of the Rho GTPase family from cytosolic Rho GDI complexes to facilitate the activation process. Such dissociation would likely be tightly coupled to GEF-mediated guanine nucleotide exchange and membrane association of the activated GTPase, resulting in effector binding and functional responses. Accumulating evidence suggests that the phosphorylation of either the Rho GTPases themselves and/or phosphorylation of GDIs might serve as a mechanism for regulating the formation and/or dissociation of Rho GTPase-GDI complexes. Indeed, the selective release of Rac1 from RhoGDI complexes induced by the p21-activated kinase-regulated phosphorylation of RhoGDI has been reported. We describe here methods for the analysis of RhoGDI phosphorylation and regulation by p21-activated kinase 1 (Pak1).
Collapse
|
48
|
DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 2005; 15:356-63. [PMID: 15921909 DOI: 10.1016/j.tcb.2005.05.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/11/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
The GDP dissociation inhibitors (GDIs) are pivotal regulators of Rho GTPase function. GDIs control the access of Rho GTPases to regulatory guanine nucleotide exchange factors and GTPase-activating proteins, to effector targets and to membranes where such effectors reside. We discuss here our current understanding of how Rho GTPase-GDI complexes are regulated by various proteins, lipids and enzymes that exert GDI displacement activity. We propose that phosphorylation mediated by diverse kinases might provide a means of controlling and coordinating Rho GTPase activation.
Collapse
Affiliation(s)
- Céline DerMardirossian
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Abstract
Small GTP-binding proteins of the Rho/Rac/Cdc42 family combine their GDP/GTP cycle, regulated by guanine nucleotide-exchange factors and GTPase-activating proteins, to a cytosol/membrane cycle, regulated by guanine nucleotide dissociation inhibitors (rhoGDIs). RhoGDIs are endowed with dual functions in the cytosol where they form soluble complexes with geranylgeranylated GDP-bound Rho proteins and at membrane interfaces where they monitor the delivery and extraction of Rho proteins to/from their site of action. They have little diversity compared with other Rho protein regulators and therefore have been regarded mostly as housekeeping regulators that distribute Rho proteins equally to any membranes. Recently, acquired data show that rhoGDIs, by interacting with candidate receptors/displacement factors or by phosphorylation, may in fact have active contributions to targeting Rho proteins to specific subcellular membranes and signaling pathways. In addition, the GDP/GTP and membrane/cytosol cycles can be uncoupled in certain cases, with Rho proteins either escaping the membrane/cytosol cycle or being regulated by rhoGDIs in their GTP-bound form. Here, we survey recent structure-function relationships and cellular studies on rhoGDIs and revisit their classical housekeeping role into novel and more specific functions. We also review their involvement in diseases.
Collapse
Affiliation(s)
- Estelle Dransart
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
50
|
Ferland RJ, Li X, Buhlmann JE, Bu X, Walsh CA, Lim B. Characterization of Rho-GDIγ and Rho-GDIα mRNA in the developing and mature brain with an analysis of mice with targeted deletions of Rho-GDIγ. Brain Res 2005; 1054:9-21. [PMID: 16054116 DOI: 10.1016/j.brainres.2005.04.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/26/2005] [Accepted: 04/28/2005] [Indexed: 11/15/2022]
Abstract
Rho-GDIs are a family of Rho GDP-dissociation inhibitors that are critical in modulating the activity of the small GTPases, Cdc42 and RhoA. Two Rho-GDI isoforms are expressed in the brain, Rho-GDIgamma and Rho-GDIalpha. Here, we describe the expression of both of these isoforms in the developing and mature brain. The mRNA expression patterns of Rho-GDIgamma and Rho-GDIalpha were almost identical in the brain with expression in the developing and mature cerebral cortex, striatum, and hippocampus. In addition, we generated mice with targeted deletions of Rho-GDIgamma that are viable and fertile and have no obvious phenotypic abnormalities. Mutant brains looked histologically normal and demonstrated normal patterns of dendritogenesis and neuronal layering as determined by Golgi staining. Mutant mice had normal sleep/wake patterns and sleep EEGs and showed normal hippocampal-dependent learning as assayed by the Morris water maze task. Based on the co-expression of Rho-GDIalpha and Rho-GDIgamma in identical populations of cells in the brain, the lack of phenotype caused by targeted deletion of Rho-GDIgamma may not be surprising given that Rho-GDIalpha may compensate for the loss of Rho-GDIgamma. Whether deletion of both Rho-GDIalpha and Rho-GDIgamma, thereby eliminating all GDI activity in the brain, would produce an observable phenotype remains to be determined.
Collapse
Affiliation(s)
- Russell J Ferland
- Department of Neurology, Beth Israel Deaconess Medical Center, Howard Hughes Medical Institute, Harvard Medical School, NRB 266, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|