1
|
Abidov M, Sokolova K, Danilova I, Baykenova M, Gette I, Mychlynina E, Aydin Ozgur B, Gurol AO, Yilmaz MT. Hepatic insulin synthesis increases in rat models of diabetes mellitus type 1 and 2 differently. PLoS One 2023; 18:e0294432. [PMID: 38019818 PMCID: PMC10686419 DOI: 10.1371/journal.pone.0294432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Insulin-positive (+) cells (IPCs), detected in multiple organs, are of great interest as a probable alternative to ameliorate pancreatic beta-cells dysfunction and insulin deficiency in diabetes. Liver is a potential source of IPCs due to it common embryological origin with pancreas. We previously demonstrated the presence of IPCs in the liver of healthy and diabetic rats, but detailed description and analysis of the factors, which potentially can induced ectopic hepatic expression of insulin in type 1 (T1D) and type 2 diabetes (T2D), were not performed. In present study we evaluate mass of hepatic IPCs in the rat models of T1D and T2D and discuss factors, which may stimulate it generation: glycaemia, organ injury, involving of hepatic stem/progenitor cell compartment, expression of transcription factors and inflammation. Quantity of IPCs in the liver was up by 1.7-fold in rats with T1D and 10-fold in T2D compared to non-diabetic (ND) rats. We concluded that ectopic hepatic expression of insulin gene is activated by combined action of a number of factors, with inflammation playing a decision role.
Collapse
Affiliation(s)
- Musa Abidov
- Institute of Immunopathology and Preventive Medicine, Ljubljana, Slovenia
| | - Ksenia Sokolova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Irina Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Madina Baykenova
- Kostanay Oblast Tuberculosis Dispensary, Kostanay, Republic of Kazakhstan
| | - Irina Gette
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Elena Mychlynina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Burcin Aydin Ozgur
- Department of Medical Biology and Genetics, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
- Diabetes Application and Research Center, Demiroglu Bilim University, Istanbul, Turkey
| | - Ali Osman Gurol
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Diabetes Application and Research Center, Istanbul University, Istanbul, Turkey
| | - M. Temel Yilmaz
- International Diabetes Center, Acibadem University, Istanbul, Turkey
| |
Collapse
|
2
|
Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152:113217. [PMID: 35679719 DOI: 10.1016/j.biopha.2022.113217] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome. Diabetes has become more common in recent years. Chemically generated drugs are used to lessen the effects of DM and its following repercussions due to unpleasant side effects such as weight gain, gastrointestinal issues, and heart failure. On the other hand, medicinal plants could be a good source of anti-diabetic medications. This article aims to determine any plant matrix's positive potential. Food restriction, physical activity, and the use of antidiabetic plant-derived chemicals are all being promoted as effective ways to manage diabetes because they are less expensive and have fewer or no side effects. This review focuses on antidiabetic plants, along with their bioactive constituent, chemically characterization, and plant-based diets for diabetes management. There is minimal scientific data about the mechanism of action of the plant-based product has been found. The purpose of this article is to highlight anti-diabetic plants and plant-derived bioactive compounds that have anti-diabetic properties. It also provides researchers with data that may be used to build future strategies, such as identifying promising bioactive molecules to make diabetes management easier.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sumaia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nazneen Ahmeda Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Ovidiu Pop
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, KPK, Pakistan.
| |
Collapse
|
3
|
Chai S, Kim Y, Galivo F, Dorrell C, Wakefield L, Posey J, Ackermann AM, Kaestner KH, Hebrok M, Grompe M. Development of a beta cell-specific expression control element for rAAV. Hum Gene Ther 2022; 33:789-800. [PMID: 35297680 PMCID: PMC9419973 DOI: 10.1089/hum.2021.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus, caused by loss or dysfunction of the insulin producing beta cells of the pancreas, is a promising target for rAAV-mediated gene therapy. To target potential therapeutic payloads specifically to beta cells, a cell-type specific expression control element is needed. Here, we tested a series of rAAV vectors designed to express transgenes specifically in human beta cells using the islet-tropic rAAV-KP1 capsid. A small promoter, consisting of only 84 bp of the insulin core promoter was not beta cell-specific in AAV, but highly active in multiple cell types, including tissues outside the pancreas. A larger 363 bp fragment of the insulin promoter (INS) also lacked beta cell specificity. However, beta cell-specific expression was achieved by combining two regulatory elements, a promoter consisting of two copies of INS (INSx2) and microRNA (miRNA) regulatory elements (MREs). The INSx2 promoter alone showed some beta cell preference, but not tight specificity. To reduce unspecific transgene expression in alpha cells, negative regulation by miRNAs was applied. MREs that are recognized by miRNAs abundant in alpha cells effectively downregulated the transgene expression in these cells. The INS2x-MRE expression vector was highly specific to human beta cells and stem cell derived beta cells.
Collapse
Affiliation(s)
- Sunghee Chai
- Oregon Health & Science University, 6684, Oregon Stem cell center, 3181 SW Sam Jackson Park Road, LBRB Rm 753, Portland, Oregon, United States, 97239-3098;
| | - Youngjin Kim
- UCSF, 8785, UCSF Diabetes Center, San Francisco, California, United States;
| | - Feorillo Galivo
- Oregon Health & Science University, 6684, Oregon Stem cell center, Portland, Oregon, United States;
| | - Craig Dorrell
- OHSU, 6684, Oregon Stem Cell Center, Portland, Oregon, United States;
| | - Leslie Wakefield
- OHSU, 6684, Oregon Stem Cell Center, Portland, Oregon, United States;
| | - Jeffrey Posey
- OHSU, 6684, Oregon Stem Cell Center, Portland, Oregon, United States;
| | - Amanda M Ackermann
- Upenn, 6572, Department of Genetics, Philadelphia, Pennsylvania, United States;
| | - Klaus H Kaestner
- Upenn, 6572, Department of Genetics, Philadelphia, Pennsylvania, United States;
| | - Matthias Hebrok
- UCSF, 8785, UCSF Diabetes Center, San Francisco, California, United States;
| | - Markus Grompe
- OHSU, 6684, Oregon Stem Cell Center, Portland, Oregon, United States;
| |
Collapse
|
4
|
Song X, Sun X, Hao H, Han Q, Han W, Mu Y. Combined Treatment with Bone Marrow-Derived Mesenchymal Stem Cells and Exendin-4 Promotes Islet Regeneration in Streptozotocin-Induced Diabetic Rats. Stem Cells Dev 2021; 30:502-514. [PMID: 33677993 DOI: 10.1089/scd.2020.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to assess whether the combination of the glucagon-like peptide-1 (GLP-1) analog exendin-4 (Ex4) and bone marrow-derived mesenchymal stem cell (BM-MSC) could enhance β-cell action in streptozotocin (STZ)-induced diabetic rats. Forty male Sprague-Dawley rats were randomly assigned to five groups: the normal control group (Normal), diabetes mellitus (DM) group, MSC-treated group (MSC), Ex4-treated group (Ex4), and MSC plus Ex4-treated group (MSC+Ex4). Body weight, blood glucose level, intraperitoneal glucose tolerance test, and in vitro glucose-stimulated insulin secretion were used to assess the treatment efficacy. The expression level of insulin, glucagon, pancreatic duodenal homeobox-1 (PDX-1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), glucagon-like peptide-1 receptor (GLP-1R), and forkhead transcription factor 1 (FoxO1) was estimated by immunofluorescence analysis. Proliferation was assessed by Ki67 staining, and apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in β-cells. Glucose-induced insulin secretion in the MSC+Ex4 group was significantly increased compared to that in the MSC group in vitro and in vivo. Compared to that of the other groups, the number of insulin-immunopositive cells was increased in both the MSC and MSC+Ex4 groups. However, β-cell proliferation and apoptosis in the MSC group and MSC+Ex4 group were not significantly different. Importantly, the expression level of PDX-1, MafA, FoxO1, and GLP-1R in β-cells in the MSC+Ex4 group was significantly higher than those in the MSC group. The numbers of insulin+ glucagon+ double positive cells and glucagon+ GLP-1+ double positive cells were significantly increased after MSC treatment and MSC+Ex4 combined treatment, suggesting the enhanced function of newly formed islet β-cells. Our findings showed that the combination of MSC and Ex4 enhanced the function of newly formed β-cells in STZ-induced diabetic rats by acting on multiple insulin transcription factors. Thus, combined MSC and Ex4 therapy provides a feasible approach for future diabetes treatments.
Collapse
Affiliation(s)
- Xiaoyan Song
- The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
- Institute of Basic Medicine Science, College of Life Science, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoya Sun
- Department of Endocrinology, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
- Institute of Basic Medicine Science, College of Life Science, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qingwang Han
- Institute of Basic Medicine Science, College of Life Science, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, the 1st Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Li Z, Zhou M, Cai Z, Liu H, Zhong W, Hao Q, Cheng D, Hu X, Hou J, Xu P, Xue Y, Zhou Y, Xu T. RNA-binding protein DDX1 is responsible for fatty acid-mediated repression of insulin translation. Nucleic Acids Res 2019; 46:12052-12066. [PMID: 30295850 PMCID: PMC6294501 DOI: 10.1093/nar/gky867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/14/2018] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanism in pancreatic β cells underlying hyperlipidemia and insulin insufficiency remains unclear. Here, we find that the fatty acid-induced decrease in insulin levels occurs due to a decrease in insulin translation. Since regulation at the translational level is generally mediated through RNA-binding proteins, using RNA antisense purification coupled with mass spectrometry, we identify a novel insulin mRNA-binding protein, namely, DDX1, that is sensitive to palmitate treatment. Notably, the knockdown or overexpression of DDX1 affects insulin translation, and the knockdown of DDX1 eliminates the palmitate-induced repression of insulin translation. Molecular mechanism studies show that palmitate treatment causes DDX1 phosphorylation at S295 and dissociates DDX1 from insulin mRNA, thereby leading to the suppression of insulin translation. In addition, DDX1 may interact with the translation initiation factors eIF3A and eIF4B to regulate translation. In high-fat diet mice, the inhibition of insulin translation happens at an early prediabetic stage before the elevation of glucose levels. We speculate that the DDX1-mediated repression of insulin translation worsens the situation of insulin resistance and contributes to the elevation of blood glucose levels in obese animals.
Collapse
Affiliation(s)
- Zonghong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.,Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Zhong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Hao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihao Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Knocking down Insulin Receptor in Pancreatic Beta Cell lines with Lentiviral-Small Hairpin RNA Reduces Glucose-Stimulated Insulin Secretion via Decreasing the Gene Expression of Insulin, GLUT2 and Pdx1. Int J Mol Sci 2018; 19:ijms19040985. [PMID: 29587416 PMCID: PMC5979368 DOI: 10.3390/ijms19040985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by beta cell dysfunction and insulin resistance in fat, muscle and liver cells. Recent studies have shown that the development of insulin resistance in pancreatic beta cell lines may contribute to beta cell dysfunction in T2D. However, there still is a lack of detailed investigations regarding the mechanisms by which insulin deficiency may contribute in diabetes. In this study, we firstly established a stable insulin receptor knockdown cell line in pancreatic beta cells INS-1 (InsRβKD cells) using anti InsRβ small hairpin RNA (InsRβ-shRNA) encoded by lentiviral vectors. The resultant InsRβKD cells demonstrated a significantly reduced expression of InsRβ as determined by real-time PCR and Western blotting analyses. Upon removing glucose from the medium, these cells exhibited a significant decrease in insulin gene expression and protein secretion in response to 20 mM glucose stimulation. In accordance with this insulin reduction, the glucose uptake efficiency as indicated by a 3[H]-2-deoxy-d-glucose assay also decreased. Furthermore, InsRβKD cells showed a dramatic decrease in glucose transporter 2 (GLUT2, encoded by SLC2A2) and pancreatic duodenal homeobox (Pdx1) mRNA expression compared to the controls. These data collectively suggest that pancreatic beta cell insulin resistance contributes to the development of beta cell dysfunction by impairing pancreatic beta cell glucose sensation through the Pdx1- GLUT2 pathway. InsRβKD cells provide a good model to further investigate the mechanism of β-cell dysfunction in T2D.
Collapse
|
7
|
Identification of miR-9 as a negative factor of insulin secretion from beta cells. J Physiol Biochem 2018; 74:291-299. [PMID: 29470815 DOI: 10.1007/s13105-018-0615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
MicroRNA is a novel class of small noncoding RNA that has been implicated in a variety of physiological and pathological processes, including glucose homeostasis and diabetes mellitus. So far, a few studies have reported that miRNAs may be an important regulator in glucose-stimulated insulin secretion (GSIS) pathway. However, the role of miRNAs in this process remains unclear. The levels of miRNAs in mouse islets and MIN6 cells were determined by quantitative RT-PCR. Concentration of insulin was determined by ELISA, and the expression of the target protein was determined with western blot assay. The overexpression and downregulation of miRNAs in MIN6 were conducted using cell transfection methods. And luciferase assay was used to measure the direct interaction between miRNAs and target messenger RNAs 3'UTR. miR-9 was screened out for it was downregulated under the effects of short-term high glucose, while long-term high glucose relatively increased miR-9 expression. The Stxbp1 expression was decreased with the overexpression of miR-9 in MIN6 cells and increased when miR-9 was downregulated. Moreover, it was verified by luciferase assay that miR-9 regulated Stxbp1 gene expression by directly targeting Stxbp1 messenger RNA 3'UTR. This study suggests that the pathway consisting of miR-9 and Stxbp1 plays a key role in β-cell function, thus contributing to the network of miRNA-insulin secretion and offering a new candidate for diabetes therapy.
Collapse
|
8
|
Psammomys obesus, a unique model of metabolic syndrome, inflammation and autophagy in the pathologic development of hepatic steatosis. C R Biol 2016; 339:475-486. [DOI: 10.1016/j.crvi.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
|
9
|
Wang W, Shi Q, Guo T, Yang Z, Jia Z, Chen P, Zhou C. PDX1 and ISL1 differentially coordinate with epigenetic modifications to regulate insulin gene expression in varied glucose concentrations. Mol Cell Endocrinol 2016; 428:38-48. [PMID: 26994512 DOI: 10.1016/j.mce.2016.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
The mechanism of insulin gene transcription control in response to glucose concentration is poorly defined. The islet-restricted transcription factors PDX1 and ISL1 interact with BETA2, activating insulin gene expression. However, their contribution and hierarchical organization in insulin expression control based on glucose concentration remain unknown. We investigated PDX1 and ISL1 regulation of insulin gene expression in pancreatic β cells cultured in normal (5 mM/L) and high (25 mM/L) glucose conditions. ISL1 interacted with BETA2 to maintain basic insulin gene transcriptional activity under normal glucose. The ISL1-recruited cofactors SET9 and JMJD3 facilitated insulin gene histone modifications under normal glucose. In high-glucose concentrations, PDX1 formed a complex with BETA2 to enhance insulin gene expression. PDX1 also recruited SET9 and JMJD3 to promote the activation of histone modulation on the insulin promoter. This is the first evidence transcription factors orchestrate epigenetic modifications to control insulin gene expression based on glucose concentration.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Qiong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Ting Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| |
Collapse
|
10
|
Lang H, Ai Z, You Z, Wan Y, Guo W, Xiao J, Jin X. Characterization of miR-218/322-Stxbp1 pathway in the process of insulin secretion. J Mol Endocrinol 2015; 54:65-73. [PMID: 25489007 DOI: 10.1530/jme-14-0305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MicroRNAs (miRNAs) have been implicated in a variety of physiological processes, however, the function of miRNAs in insulin secretion and type 2 diabetes is still unclear. Stxbp1 plays an essential role in exocytosis, and is crucial for insulin secretion. In this study, we focused on the molecular mechanism of Stxbp1 in insulin secretion by identifying its upstream regulators: miR-218 and miR-322. The expression of Stxbp1 was significantly increased in isolated mouse islets exposed to high levels of glucose within 1 h; while two of its predicted upstream miRNAs were found to be downregulated. Further study found that miR-218 and miR-322 directly interact with Stxbp1 by targeting the 3'UTR of its mRNA. MIN6 cells overexpressing the two miRNAs showed a sharp decline in insulin secretion and a decreased sensitivity to glucose; while the inhibition of the two miRNAs promoted insulin secretion. However, islets treated with prolonged high levels of glucose, which is known as glucolipotoxicity, displayed relatively high expression of miR-218 and miR-322, and a reduced level of expression of Stxbp1 accompanied by the blocking of insulin secretion. In summary, this study identified a pathway consisting of miR-218/322 and Stxbp1 in insulin secretion, contributing to a network of β-cell function involving miRNA.
Collapse
Affiliation(s)
- Hongmei Lang
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China
| | - Zhihua Ai
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China
| | - Zhiqing You
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China
| | - Yong Wan
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China
| | - Wei Guo
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China
| | - Jie Xiao
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China
| | - Xiaolan Jin
- Departments of EndocrinologyBlood TransfusionChengdu Military General Hospital, Rongdu Road 270, Chengdu, Sichuan 610083, China williamsjin@sinacom
| |
Collapse
|
11
|
Arcidiacono B, Iiritano S, Chiefari E, Brunetti FS, Gu G, Foti DP, Brunetti A. Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells. Front Endocrinol (Lausanne) 2014; 5:237. [PMID: 25628604 PMCID: PMC4292585 DOI: 10.3389/fendo.2014.00237] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 01/03/2023] Open
Abstract
The high-mobility group AT-hook 1 (HMGA1) protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called "enhanceosomes" on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increased susceptibility to type 2 diabetes mellitus in humans and mice. Interestingly, mice with disrupted HMGA1 gene had significantly smaller islets and decreased insulin content in their pancreata, suggesting that HMGA1 may have a direct role in insulin transcription and secretion. Herein, we investigate the regulatory roles of HMGA1 in insulin transcription. We provide evidence that HMGA1 physically interacts with PDX-1 and MafA, two critical transcription factors for insulin gene expression and beta-cell function, both in vitro and in vivo. We then show that the overexpression of HMGA1 significantly improves the transactivating activity of PDX-1 and MafA on human and mouse insulin promoters, while HMGA1 knockdown considerably decreased this transactivating activity. Lastly, we demonstrate that high glucose stimulus significantly increases the binding of HMGA1 to the insulin (INS) gene promoter, suggesting that HMGA1 may act as a glucose-sensitive element controlling the transcription of the INS gene. Together, our findings provide evidence that HMGA1, by regulating PDX-1- and MafA-induced transactivation of the INS gene promoter, plays a critical role in pancreatic beta-cell function and insulin production.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Iiritano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Center of Stem Cell Biology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Località Germaneto), Catanzaro 88100, Italy e-mail:
| |
Collapse
|
12
|
Semache M, Ghislain J, Zarrouki B, Tremblay C, Poitout V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets 2014; 6:e982376. [PMID: 25437380 PMCID: PMC4588559 DOI: 10.4161/19382014.2014.982376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, dulbecco's modified eagle medium
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HDAC, histone deacetylase
- HIT-T15
- INS832/13
- KRBH, krebs ringer bicarbonate hepes
- MIN6
- MODY, maturity-onset diabetes of the young
- PDX-1
- PDX-1, pancreatic and duodenal homeobox-1
- SEM, standard error of the mean
- SUMO, small ubiquitin-like modifier
- T2D, type 2 diabetes
- ZDF, zucker diabetic fatty
- glucose
- glucose-stimulated insulin secretion
- nucleo-cytoplasmic shuttling
- pancreatic β cells
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
| | | | - Vincent Poitout
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
- Correspondence to: Vincent Poitout;
| |
Collapse
|
13
|
Semache M, Zarrouki B, Fontés G, Fogarty S, Kikani C, Chawki MB, Rutter J, Poitout V. Per-Arnt-Sim kinase regulates pancreatic duodenal homeobox-1 protein stability via phosphorylation of glycogen synthase kinase 3β in pancreatic β-cells. J Biol Chem 2013; 288:24825-33. [PMID: 23853095 DOI: 10.1074/jbc.m113.495945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In pancreatic β-cells, glucose induces the binding of the transcription factor pancreatic duodenal homeobox-1 (PDX-1) to the insulin gene promoter to activate insulin gene transcription. At low glucose levels, glycogen synthase kinase 3β (GSK3β) is known to phosphorylate PDX-1 on C-terminal serine residues, which triggers PDX-1 proteasomal degradation. We previously showed that the serine/threonine Per-Arnt-Sim domain-containing kinase (PASK) regulates insulin gene transcription via PDX-1. However, the mechanisms underlying this regulation are unknown. In this study, we aimed to identify the role of PASK in the regulation of PDX-1 phosphorylation, protein expression, and stability in insulin-secreting cells and isolated rodent islets of Langerhans. We observed that glucose induces a decrease in overall PDX-1 serine phosphorylation and that overexpression of WT PASK mimics this effect. In vitro, PASK directly phosphorylates GSK3β on its inactivating phosphorylation site Ser(9). Overexpression of a kinase-dead (KD), dominant negative version of PASK blocks glucose-induced Ser(9) phosphorylation of GSK3β. Accordingly, GSK3β Ser(9) phosphorylation is reduced in islets from pask-null mice. Overexpression of WT PASK or KD GSK3β protects PDX-1 from degradation and results in increased PDX-1 protein abundance. Conversely, overexpression of KD PASK blocks glucose-induction of PDX-1 protein. We conclude that PASK phosphorylates and inactivates GSK3β, thereby preventing PDX-1 serine phosphorylation and alleviating GSK3β-mediated PDX-1 protein degradation in pancreatic β-cells.
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, Quebec City H1W4A4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab 2013; 15:503-12. [PMID: 23121289 DOI: 10.1111/dom.12029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 12/15/2022]
Abstract
Outside of the biological arena the term 'repression' often has a negative connotation. However, in the pancreatic β-cell a small group of genes, which are abundantly expressed in most if not all other mammalian tissues, are highly selectively repressed, with likely functional consequences. The two 'founder' members of this group, lactate dehydrogenase A (Ldha) and monocarboxylate transporter-1 (MCT-1/Slc16a1), are inactivated by multiple mechanisms including histone modifications and microRNA-mediated silencing. Their inactivation ensures that pyruvate and lactate, derived from muscle during exercise, do not stimulate insulin release inappropriately. Correspondingly, activating mutations in the MCT-1 promoter underlie 'exercise-induced hyperinsulinism' (EIHI) in man, a condition mimicked by forced over-expression of MCT-1 in the β-cell in mice. Furthermore, LDHA expression in the β-cell is upregulated in both human type 2 diabetes and in rodent models of the disease. Recent work by us and by others has identified a further ∼60 genes which are selectively inactivated in the β-cell, a list which we refine here up to seven by detailed comparison of the two studies. These genes include key regulators of cell proliferation and stimulus-secretion coupling. The present, and our earlier results, thus highlight the probable importance of shutting down a subset of 'disallowed' genes for the differentiated function of β-cells, and implicate previously unsuspected signalling pathways in the control of β-cell expansion and insulin secretion. Targeting of deregulated 'disallowed' genes in these cells may thus, in the future, provide new therapeutic avenues for type 2 diabetes.
Collapse
Affiliation(s)
- T J Pullen
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Abstract
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
16
|
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9:25-53. [PMID: 22974359 PMCID: PMC3934755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 11/11/2023]
Abstract
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
17
|
Inagaki T, Tajiri T, Tate G, Kunimura T, Morohoshi T. Dynamic morphologic change and differentiation from fetal to mature pancreatic acinar cells in rats. J NIPPON MED SCH 2012; 79:335-42. [PMID: 23123389 DOI: 10.1272/jnms.79.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Because of the notion that pancreatic and duodenal homeobox 1 (PdX-1)-positive cells are pancreatic stem cells that contribute to the differentiation and proliferation of exocrine cells, we examined PdX-1-associated changes in the morphology of rat pancreatic acinar cells that occur between the late fetal and early neonatal periods. METHODS Light and electron microscopy and PdX-1 and MIB-5 immunohistochemistry were used to examine pancreatic tissues obtained from fetal rats 22 days postconception (dpc), from newborn rats 48 and 72 hours after natural birth, and from rats 7 days after natural birth. RESULTS At 22 dpc, the cytoplasm of the acinar cells was large and eosinophilic due to accumulation of dense and numerous zymogen granules. Zymogen granules, rough endoplasmic reticulum, and other organelles were distributed throughout the cytoplasm. At 48 hours, i.e., just after feeding, the cytoplasm appeared smaller, less eosinophilic, and vacuolated. Electron microscopic examination showed cleaved nuclei and fewer zymogen granules. Expression of both PdX-1 and MIB-5 was increased at 48 hours. At 72 hours, acinar cell cytoplasm was decreased in size. At 7 days, the acinar cells were larger, biphasic distribution of zymogen granules was seen on the eosinophilic apical side, and rough endoplasmic reticulum and other ergastoplasms were seen on the basophilic basal side, typical of mature pancreatic acinar cells. Expression of PdX-1 and MIB-5 was markedly decreased in acinar cells. CONCLUSION Our findings indicate dynamic PdX-1-associated morphologic change from fetal to mature pancreatic acinar cells between 48 and 72 hours after birth.
Collapse
Affiliation(s)
- Tomoko Inagaki
- First Department of Pathology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Potter LA, Choi E, Hipkens SB, Wright CVE, Magnuson MA. A recombinase-mediated cassette exchange-derived cyan fluorescent protein reporter allele for Pdx1. Genesis 2012; 50:384-92. [PMID: 21913313 DOI: 10.1002/dvg.20804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023]
Abstract
Fluorescent protein (FP) reporter alleles are useful both for identifying and purifying specific cell populations in the mouse. Here, we report the generation of mouse embryonic stem cells that contain a pancreatic and duodenal homeobox 1 (Pdx1) loxed cassette acceptor (Pdx1(LCA)) allele and the use of recombinase-mediated cassette exchange to derive mice that contain a Pdx1(CFP) (Cerulean) reporter allele. Mice with this allele exhibited cyan fluorescence within the previously well-characterized Pdx1 expression domain in posterior foregut endoderm. Immunolabeling showed that endogenous Pdx1 was coexpressed with CFP at all time points examined. Furthermore, fluorescence-activated cell sorting was used to isolate CFP-positive cells from E11.5 and E18.5 embryonic tissues using both 405 and 445 nm lasers, although the latter resulted in a nearly 50-fold increase in emission intensity. The Pdx1(CFP) allele will enable the isolation of specific foregut endoderm and pancreatic cell populations, both alone and in combination with other FP reporter alleles.
Collapse
Affiliation(s)
- Leah A Potter
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0494, USA
| | | | | | | | | |
Collapse
|
19
|
Sampley ML, Ozcan S. Regulation of insulin gene transcription by multiple histone acetyltransferases. DNA Cell Biol 2011; 31:8-14. [PMID: 21774670 DOI: 10.1089/dna.2011.1336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated the role of the additional HAT proteins CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and general control of amino-acid synthesis 5 (GCN5) in regulation of glucose-stimulated insulin gene transcription. Utilizing quantitative chromatin immunoprecipitation analysis, we demonstrate that glucose regulates the binding of p300, CBP, PCAF, and GCN5 to the proximal insulin promoter. siRNA-mediated knockdown of each of these HAT proteins revealed that depletion of p300 and CBP leads to a drastic decrease in histone H4 acetylation at the insulin promoter and in insulin gene expression, whereas knockdown of PCAF and GCN5 leads to a more moderate decrease in histone H4 acetylation and insulin gene expression. These data suggest that high glucose mediates the recruitment of p300, CBP, PCAF, and GCN5 to the insulin promoter and that all four HATs are important for insulin gene expression.
Collapse
Affiliation(s)
- Megan L Sampley
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | | |
Collapse
|
20
|
Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 2011; 91:94-100. [PMID: 21146880 DOI: 10.1016/j.diabres.2010.11.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 10/23/2010] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
MicroRNAs are small noncoding RNAs that have been highly conserved during evolution and have been implicated to play an important role in many diseases, including diabetes. Several reports indicated the function of miRNAs in insulin production. However, the mechanisms by which miRNAs regulate this process remain poorly understood. Here we found that the expression of miR-15a was up-regulated in the presence of high glucose for 1h, whereas prolonged periods of high glucose exposure resulted in depressed expression of miR-15a, and the change in expression levels of miR-15a coincided with insulin biosynthesis. Moreover, ectopic expression of miR-15a promoted insulin biosynthesis in MIN6 cells, whereas its repression was sufficient to inhibit insulin biosynthesis. Further, we verified that miR-15a directly targeted and inhibited uncoupling protein-2 (UCP-2) gene expression. miR-15a mimics inhibited UCP-2 3'UTR luciferase reporter activity. Western blot analysis showed that miR-15a inhibited endogenous UCP-2 protein levels, and resulted in the increase in oxygen consumption and reduced ATP generation. This study suggests miR-15a is a mediator of β cell function and insulin biosynthesis, thus offering a new target for the development of preventive or therapeutic agents against diabetes.
Collapse
Affiliation(s)
- Liang-Liang Sun
- Department of Endocrinology & Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | | | |
Collapse
|
21
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Abstract
The biological responses of the transforming growth factor-β (TGF-β) superfamily, which includes Activins and Nodal, are induced by activation of a receptor complex and Smads. A type I receptor, which is a component of the complex, is known as an activin receptor-like kinase (ALK); currently seven ALKs (ALK1-ALK7) have been identified in humans. Activins signaling, which is mediated by ALK4 and 7 together with ActRIIA and IIB, plays a critical role in glucose-stimulated insulin secretion, development/neogenesis, and glucose homeostatic control of pancreatic endocrine cells; the insulin gene is regulated by these signaling pathways via ALK7, which is a receptor for Activins AB and B and Nodal. This review discusses signal transduction of ALKs in pancreatic endocrine cells and the role of ALKs in insulin gene regulation.
Collapse
Affiliation(s)
- Rie Watanabe
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Wong WPS, Tiano JP, Liu S, Hewitt SC, Le May C, Dalle S, Katzenellenbogen JA, Katzenellenbogen BS, Korach KS, Mauvais-Jarvis F. Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 2010; 107:13057-62. [PMID: 20616010 PMCID: PMC2919966 DOI: 10.1073/pnas.0914501107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen receptors (ERs) protect pancreatic islet survival in mice through rapid extranuclear actions. ERalpha also enhances insulin synthesis in cultured islets. Whether ERalpha stimulates insulin synthesis in vivo and, if so, through which mechanism(s) remain largely unknown. To address these issues, we generated a pancreas-specific ERalpha knockout mouse (PERalpha KO(-/-)) using the Cre-loxP strategy and used a combination of genetic and pharmacologic tools in cultured islets and beta cells. Whereas 17beta-estradiol (E2) treatment up-regulates pancreatic insulin gene and protein content in control ERalpha lox/lox mice, these E2 effects are abolished in PERalpha KO(-/-) mice. We find that E2-activated ERalpha increases insulin synthesis by enhancing glucose stimulation of the insulin promoter activity. Using a knock-in mouse with a mutated ERalpha eliminating binding to the estrogen response elements (EREs), we show that E2 stimulation of insulin synthesis is independent of the ERE. We find that the extranuclear ERalpha interacts with the tyrosine kinase Src, which activates extracellular signal-regulated kinases(1/2), to increase nuclear localization and binding to the insulin promoter of the transcription factor NeuroD1. This study supports the importance of ERalpha in beta cells as a regulator of insulin synthesis in vivo.
Collapse
Affiliation(s)
| | - Joseph P. Tiano
- Division of Endocrinology, Metabolism and Molecular Medicine and
| | - Suhuan Liu
- Division of Endocrinology, Metabolism and Molecular Medicine and
- Comprehensive Center on Obesity, Department of Medicine, Northwestern University School of Medicine, Chicago, IL 60611
| | - Sylvia C. Hewitt
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Cedric Le May
- Division of Endocrinology, Metabolism and Molecular Medicine and
| | - Stéphane Dalle
- Institut National de la Santé et de la Recherche Médicale U661, Institut de Génomique Fonctionnelle, Montpellier 34094, France; and
| | | | | | - Kenneth S. Korach
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Franck Mauvais-Jarvis
- Division of Endocrinology, Metabolism and Molecular Medicine and
- Comprehensive Center on Obesity, Department of Medicine, Northwestern University School of Medicine, Chicago, IL 60611
| |
Collapse
|
24
|
An R, da Silva Xavier G, Semplici F, Vakhshouri S, Hao HX, Rutter J, Pagano MA, Meggio F, Pinna LA, Rutter GA. Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun 2010; 399:155-61. [PMID: 20637728 PMCID: PMC2958310 DOI: 10.1016/j.bbrc.2010.07.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/12/2010] [Indexed: 01/04/2023]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1) regulates pancreatic development and mature beta-cell function. We demonstrate by mass spectrometry that serine residue at position 269 in the C-terminal domain of PDX1 is phosphorylated in beta-cells. Besides we show that the degree of phosphorylation, assessed with a phospho-Ser-269-specific antibody, is decreased by elevated glucose concentrations in both MIN6 beta-cells and primary mouse pancreatic islets. Homeodomain interacting protein kinase 2 (HIPK2) phosphorylates PDX1 in vitro; phosphate incorporation substantially decreases in PDX1 S269A mutant. Silencing of HIPK2 led to a 51+/-0.2% decrease in Ser-269 phosphorylation in MIN6 beta-cells. Mutation of Ser-269 to phosphomimetic residue glutamic acid (S269E) or de-phosphomimetic residue alanine (S269A) exerted no effect on PDX1 half-life. Instead, PDX1 S269E mutant displayed abnormal changes in subnuclear localization in response to high glucose. Our results suggest that HIPK2-mediated phosphorylation of PDX1 at Ser-269 might be a regulatory mechanism connecting signals generated by changes in extracellular glucose concentration to downstream effectors via changes in subnuclear localization of PDX1, thereby influencing islet cell differentiation and function.
Collapse
Affiliation(s)
- Rong An
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 2010; 5:e10843. [PMID: 20520763 PMCID: PMC2877094 DOI: 10.1371/journal.pone.0010843] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/06/2010] [Indexed: 01/09/2023] Open
Abstract
Background Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3′-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. Methodology/Principal Findings Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1β and IFN-γ, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. Conclusion Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction.
Collapse
Affiliation(s)
- Rikard G. Fred
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Thomas Mandrup-Poulsen
- Hagedorn Research Institute, Gentofte, Denmark
- Core Unit for Medical Research Methodology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars G. Grunnet
- Core Unit for Medical Research Methodology, University of Copenhagen, Copenhagen, Denmark
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
26
|
Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta Mol Basis Dis 2010; 1802:363-72. [PMID: 20060466 DOI: 10.1016/j.bbadis.2010.01.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/23/2009] [Accepted: 01/04/2010] [Indexed: 10/20/2022]
|
27
|
Ogihara T, Chuang JC, Vestermark GL, Garmey JC, Ketchum RJ, Huang X, Brayman KL, Thorner MO, Repa JJ, Mirmira RG, Evans-Molina C. Liver X receptor agonists augment human islet function through activation of anaplerotic pathways and glycerolipid/free fatty acid cycling. J Biol Chem 2010; 285:5392-404. [PMID: 20007976 PMCID: PMC2820768 DOI: 10.1074/jbc.m109.064659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies in rodent models suggest that liver X receptors (LXRs) may play an important role in the maintenance of glucose homeostasis and islet function. To date, however, no studies have comprehensively examined the role of LXRs in human islet biology. Human islets were isolated from non-diabetic donors and incubated in the presence or absence of two synthetic LXR agonists, TO-901317 and GW3965, under conditions of low and high glucose. LXR agonist treatment enhanced both basal and stimulated insulin secretion, which corresponded to an increase in the expression of genes involved in anaplerosis and reverse cholesterol transport. Furthermore, enzyme activity of pyruvate carboxylase, a key regulator of pyruvate cycling and anaplerotic flux, was also increased. Whereas LXR agonist treatment up-regulated known downstream targets involved in lipogenesis, we observed no increase in the accumulation of intra-islet triglyceride at the dose of agonist used in our study. Moreover, LXR activation increased expression of the genes encoding hormone-sensitive lipase and adipose triglyceride lipase, two enzymes involved in lipolysis and glycerolipid/free fatty acid cycling. Chronically, insulin gene expression was increased after treatment with TO-901317, and this was accompanied by increased Pdx-1 nuclear protein levels and enhanced Pdx-1 binding to the insulin promoter. In conclusion, our data suggest that LXR agonists have a direct effect on the islet to augment insulin secretion and expression, actions that should be considered either as therapeutic or unintended side effects, as these agents are developed for clinical use.
Collapse
Affiliation(s)
- Takeshi Ogihara
- From the Herman B Wells Center for Pediatric Research and
- the Departments of Pediatrics and
| | | | | | | | - Robert J. Ketchum
- the Department of Structural Medicine, Rocky Vista University, Parker, Colorado 80134
| | - Xiaolun Huang
- Surgery, University of Virginia, Charlottesville, Virginia 22904, and
| | | | | | - Joyce J. Repa
- the Departments of Physiology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Raghavendra G. Mirmira
- From the Herman B Wells Center for Pediatric Research and
- the Departments of Pediatrics and
- Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carmella Evans-Molina
- From the Herman B Wells Center for Pediatric Research and
- Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- To whom correspondence should be addressed: Indiana University School of Medicine, 635 Barnhill Dr., MS 2031A, Indianapolis, IN 46202. Tel.: 317-274-4145; Fax: 317-274-4107; E-mail:
| |
Collapse
|
28
|
Won JC, Rhee BD, Ko KS. Glucose-responsive gene expression system for gene therapy. Adv Drug Deliv Rev 2009; 61:633-40. [PMID: 19394377 DOI: 10.1016/j.addr.2009.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/25/2009] [Indexed: 12/30/2022]
Abstract
Regulation of gene expression by glucose is an important mechanism for mammals in adapting to their nutritional environment. Glucose, the primary fuel for most cells, modulates gene expression that is crucial in the cellular adaptation to glycemic variation. Transcription of the genes for insulin and glycolytic and lipogenic enzymes is stimulated by glucose in pancreatic beta-cells and liver. Recent findings further support the key role of the carbohydrate-responsive element binding protein in the regulation of glycolytic and lipogenic genes by glucose and dietary carbohydrates. Herein, we review the transcriptional regulation of glucose-responsive genes, and recent advances in the gene therapy using glucose-responsive gene expression for diabetes.
Collapse
Affiliation(s)
- Jong Chul Won
- Department of Internal Medicine, Sanggye Paik Hospital, Mitochondrial Research Group, Inje University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
29
|
Burkhardt BR, Cook JR, Young RA, Wolf BA. PDX-1 interaction and regulation of the Pancreatic Derived Factor (PANDER, FAM3B) promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:645-51. [PMID: 18708173 DOI: 10.1016/j.bbagrm.2008.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 11/29/2022]
Abstract
Pancreatic Derived Factor (PANDER) is a novel cytokine-like protein dominantly expressed within the endocrine pancreas. Our previous study demonstrated that the PANDER promoter was both tissue-specific and glucose-responsive. Surrounding the PANDER transcriptional start site are several putative A- and E-Box elements that may bind to the various pancreatic transcriptional factors of MafA, BETA2/NeuroD, and Pancreatic Duodenal Homeobox-1 (PDX-1). To characterize the transcriptional regulatory factors involved in PANDER gene expression, we performed co-transfection reporter gene analysis and demonstrated upregulation by all three transcription factors, with the greatest individual increase stemming from PDX-1. Potential binding of PDX-1 to A box (TAAT) regions of the PANDER promoter was demonstrated by chromatin immunoprecipitation (ChIP) and further corroborated by electrophoretic mobility shift assay (EMSA). Binding of PDX-1 to the A box regions was inhibited by mutagenized (TAGT) oligonucleotides. Site-directed mutagenesis of the three PDX-1 A box binding motifs revealed that A box sites 2 and 3 in combination were critical for maximal gene expression and deletion resulted in a 82% reduction in promoter activity. Furthermore, deletion of A box sites 2 and 3 completely diminished the glucose-responsiveness of the PANDER promoter. Our findings demonstrate that PANDER is a potential PDX-1 target gene and the A box sites within the promoter region are critical for basal and glucose-stimulated PANDER expression.
Collapse
Affiliation(s)
- Brant R Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA.
| | | | | | | |
Collapse
|
30
|
Rosanas-Urgell A, Garcia-Fernàndez J, Marfany G. ParaHox genes in pancreatic cell cultures: effects on the insulin promoter regulation. Int J Biol Sci 2008; 4:48-57. [PMID: 18274620 PMCID: PMC2238182 DOI: 10.7150/ijbs.4.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/04/2008] [Indexed: 11/29/2022] Open
Abstract
The gene encoding PDX1 (pancreatic duodenum homeobox 1), the main transcription factor regulating the glucose-dependent transactivation of the insulin promoter in pancreatic β-cells, clusters with two closely related homeobox genes (Gsh1 and Cdx2/3), all of them belonging to the ParaHox gene family. The ParaHox gene evolutionary history in the vertebrate lineage involved duplications of the cluster and subsequent loss of some members, so that eventually, the human and murine genomes contain only 6 ParaHox genes. The crucial role of PDX1 in pancreas development, beta-cell formation and insulin transcription regulation has long been established. There is some data on CDX2/3 function in α-cells, but remarkably, nothing is known on the role of the other ParaHox genes, which are also expressed in the endocrine pancreas. Homeobox transcription factors that belong to the same family show high conservation of the homeodomain and share similar target sites and oligomeric partners, and thus may act redundantly, synergistically or antagonistically on the same promoters. Therefore, we explored the effects of the Parahox proteins (GSH1, GSH2, CDX1, CDX2/3 and CDX4) on the regulation of the insulin promoter in transfected α- and β- cultured cell lines at different glucose concentrations and compared them to those of PDX1. Noticeably, several ParaHox transcription factors are able to transactivate or inhibit the insulin promoter, depending on the cell type and glucose concentration, thus suggesting their possible participation in the regulation of similar target genes, such as insulin, either by silencing or activating them, in the absence of PDX1.
Collapse
Affiliation(s)
- Anna Rosanas-Urgell
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
31
|
Hrytsenko O, Wright JR, Pohajdak B. Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 2008; 155:328-40. [PMID: 17618629 DOI: 10.1016/j.ygcen.2007.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/25/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Compared to mammals, little is known about insulin gene expression in fish. Using transient transfection experiments and mammalian insulinoma cell lines we demonstrate that transcription of the Nile tilapia (Oreochromis niloticus) insulin gene is (a) regulated in a beta-cell-specific manner; and (b) not sensitive to the glucose stimulations. Deletion analysis of the 1575 bp 5' insulin gene flanking sequence revealed that cooperative interactions between regulatory elements within the proximal (-1 to -396 bp) and the distal (-396 bp to -1575 bp) promoter regions were necessary for induction of the beta-cell-specific transcription. Effects of glucose and arginine on endogenous insulin secretion, translation, and transcription in isolated tilapia Brockmann bodies were determined using Northern hybridization, Western analysis, and quantitative RT-PCR. Similar to the regulation of mammalian insulin, we found that increases of glucose (1-70 mM) and arginine (0.4-25 mM) induced insulin secretion. However, transcription of the insulin gene was activated only by extremely high concentrations of glucose and arginine added simultaneously. When stimulated for 24 h with low concentrations of both inducers or with either of them added separately, tilapia beta-cells were able to replenish secreted insulin and to maintain insulin stores at a constant level without elevations of the insulin mRNA levels. Since the basal level of insulin mRNA was approximately 3.7-fold higher in tilapia beta-cells than it is in mammalian beta-cells, insulin production in tilapia cells probably relies on an enlarged intracellular insulin mRNA pool and does not require the transcriptional activation of the insulin gene.
Collapse
Affiliation(s)
- Olga Hrytsenko
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | | | |
Collapse
|
32
|
Kim JW, Cho JH, Ko SH, Park HS, Ha J, Song KH, Son HY, Kim SS, Yoon KH, Suh-Kim H. Transcriptional mechanism of suppression of insulin gene expression by AMP-activated protein kinase activator 5-amino-4-imidazolecarboxamide riboside (AICAR) in beta-cells. Biochem Biophys Res Commun 2007; 365:614-20. [PMID: 18035054 DOI: 10.1016/j.bbrc.2007.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/04/2007] [Indexed: 11/29/2022]
Abstract
It is well known that the activation of AMP-activated protein kinase (AMPK) represses insulin gene expression and glucose-stimulated insulin secretion. However, how this effect is achieved and the effects of AMPK activation on glucolipotoxicity-induced beta-cell dysfunction have not been elucidated. We investigate whether BETA2 gene expression are involved in the AMPK-mediated regulation of insulin gene expression in normal and dysfunctional beta-cells. BETA2 gene expression and protein levels were significantly decreased by AICAR treatment and those were associated with the suppression of BETA2 promoter activity and DNA binding activity. These results demonstrate that the expressions of BETA2 and insulin gene are positively regulated by glucose and negatively by AMPK. Therefore, AMPK may function as a key molecule, which conveys extracellular metabolic signals into the cells and finely tunes expression of beta-cell specific transcription factors in response to glucose level.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Endocrinology and Metabolism, The Catholic University of Korea, 505, Ban-po-Dong, Seocho-Gu, Seoul 137-090, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsuoka TA, Kaneto H, Stein R, Miyatsuka T, Kawamori D, Henderson E, Kojima I, Matsuhisa M, Hori M, Yamasaki Y. MafA regulates expression of genes important to islet beta-cell function. Mol Endocrinol 2007; 21:2764-74. [PMID: 17636040 DOI: 10.1210/me.2007-0028] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin transcription factor MafA is unique in being exclusively expressed at the secondary and principal phase of insulin-expressing cell production during pancreas organogenesis and is the only transcriptional activator present exclusively in islet beta-cells. Here we show that ectopic expression of MafA is sufficient to induce a small amount of endogenous insulin expression in a variety of non-beta-cell lines. Insulin mRNA and protein expression was induced to a much higher level when MafA was provided with two other key insulin activators, pancreatic and duodenal homeobox (PDX-1) and BETA2. Potentiation by PDX-1 and BETA2 was entirely dependent upon MafA, and MafA binding to the insulin enhancer region was increased by PDX-1 and BETA2. Treatment with activin A and hepatocyte growth factor induced even larger amounts of insulin in AR42J pancreatic acinar cells, compared with other non-beta endodermal cells. The combination of PDX-1, BETA2, and MafA also induced the expression of other important regulators of islet beta-cell activity. These results support a critical role of MafA in islet beta-cell function.
Collapse
Affiliation(s)
- Taka-aki Matsuoka
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ren J, Jin P, Wang E, Liu E, Harlan DM, Li X, Stroncek DF. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. J Transl Med 2007; 5:1. [PMID: 17201925 PMCID: PMC1769476 DOI: 10.1186/1479-5876-5-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/03/2007] [Indexed: 01/28/2023] Open
Abstract
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Liu
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Harlan
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Li
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Fukazawa T, Matsuoka J, Naomoto Y, Nakai T, Durbin ML, Kojima I, Lakey JRT, Tanaka N. Development of a novel beta-cell specific promoter system for the identification of insulin-producing cells in in vitro cell cultures. Exp Cell Res 2006; 312:3404-12. [PMID: 16934249 DOI: 10.1016/j.yexcr.2006.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 07/07/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Recently, it has been reported that islet transplantation into patients with Type 1 diabetes may achieve insulin independence for a year or longer [Shapiro et al., Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, N Engl J Med. 343 (2000) 230-238]. However, the amount of donor islet tissue is limited, therefore, multiple approaches are being explored to generate insulin-producing cells in vitro. Some promising results have been obtained using mouse and human stem cells and progenitor cells [Soria et al., From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus, Diabetologia. 4 (2001) 407-415; Lechner et al., Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus, Am J Physiol Endocrinol Metab. 284 (2003) 259-266; Bonner-Weir et al., In vitro cultivation of human islets from expanded ductal tissue, Proc Natl Acad Sci U S A, 97 (2000) 7999-8004; Assady et al., Insulin production by human embryonic stem cells, 50 (2001) Diabetes 1691-1697]. However, the efficiency of obtaining populations with high numbers of differentiated cells has been poor. In order to improve the efficiency of producing and selecting insulin-producing cells from undifferentiated cells, we have designed a novel beta-cell specific and glucose responsive promoter system designated pGL3.hINS-363 3x. This artificial promoter system exhibits significant luciferase activity not only in insulin-producing MIN6 m9 cells but also in isolated human islets. The pGL3.hINS-363 3x construct shows no activity in non-insulin-producing cells in low glucose conditions (2 mM glucose) but demonstrates significant activity and beta-cell specificity in high glucose conditions (16 mM glucose). Furthermore, pGL3.hINS-363 3x shows significant promoter activity in differentiated AR42J cells that can produce insulin after activin A and betacellulin treatment. Here, we describe a novel beta-cell specific and glucose responsive artificial promoter system designed for analyzing and sorting beta-like insulin-producing cells that have differentiated from stem cells or other progenitor cells.
Collapse
Affiliation(s)
- Takuya Fukazawa
- First Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho 2-5-1, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Eto K, Kaur V, Thomas MK. Regulation of insulin gene transcription by the immediate-early growth response gene Egr-1. Endocrinology 2006; 147:2923-35. [PMID: 16543365 DOI: 10.1210/en.2005-1336] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in extracellular glucose levels regulate the expression of the immediate-early response gene and zinc finger transcription factor early growth response-1 (Egr-1) in insulin-producing pancreatic beta-cells, but key target genes of Egr-1 in the endocrine pancreas have not been identified. We found that overexpression of Egr-1 in clonal (INS-1) beta-cells increased transcriptional activation of the rat insulin I promoter. In contrast, reductions in Egr-1 expression levels or function with the introduction of either small interfering RNA targeted to Egr-1 (siEgr-1) or a dominant-negative form of Egr-1 decreased insulin promoter activation, and siEgr-1 suppressed insulin gene expression. Egr-1 did not directly interact with insulin promoter sequences, and mutagenesis of a potential G box recognition sequence for Egr-1 did not impair the Egr-1 responsiveness of the insulin promoter, suggesting that regulation of insulin gene expression by Egr-1 is probably mediated through additional transcription factors. Overexpression of Egr-1 increased, and reduction of Egr-1 expression decreased, transcriptional activation of the glucose-responsive FarFlat minienhancer within the rat insulin I promoter despite the absence of demonstrable Egr-1-binding activity to FarFlat sequences. Notably, augmenting Egr-1 expression levels in insulin-producing cells increased the mRNA and protein expression levels of pancreas duodenum homeobox-1 (PDX-1), a major transcriptional regulator of glucose-responsive activation of the insulin gene. Increasing Egr-1 expression levels enhanced PDX-1 binding to insulin promoter sequences, whereas mutagenesis of PDX-1-binding sites reduced the capacity of Egr-1 to activate the insulin promoter. We propose that changes in Egr-1 expression levels in response to extracellular signals, including glucose, can regulate PDX-1 expression and insulin production in pancreatic beta-cells.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
37
|
Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS. Regulation of the insulin gene by glucose and fatty acids. J Nutr 2006; 136:873-6. [PMID: 16549443 PMCID: PMC1853259 DOI: 10.1093/jn/136.4.873] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The insulin gene is expressed almost exclusively in pancreatic beta-cells. Metabolic regulation of insulin gene expression enables the beta-cell to maintain adequate stores of intracellular insulin to sustain the secretory demand. Glucose is the major physiologic regulator of insulin gene expression; it coordinately controls the recruitment of transcription factors [e.g., pancreatic/duodenal homeobox-1 (PDX-1), mammalian homologue of avian MafA/L-Maf (MafA), Beta2/Neuro D (B2), the rate of transcription, and the stability of insulin mRNA. However, chronically elevated levels of glucose (glucotoxicity) and lipids (lipotoxicity) also contribute to the worsening of beta-cell function in type 2 diabetes, in part via inhibition of insulin gene expression. The mechanisms of glucotoxicity, which involve decreased binding activities of PDX-1 and MafA and increased activity of C/EBPbeta, are mediated by high-glucose-induced generation of oxidative stress. On the other hand, lipotoxicity is mediated by de novo ceramide synthesis and involves inhibition of PDX-1 nuclear translocation and MafA gene expression. Glucotoxicity and lipotoxicity have common targets, which makes their combination particularly harmful to insulin gene expression and beta-cell function in type 2 diabetes.
Collapse
Affiliation(s)
- Vincent Poitout
- Department of Medicine, University of Montréal, Montréal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Nishimura W, Salameh T, Kondo T, Sharma A. Regulation of insulin gene expression by overlapping DNA-binding elements. Biochem J 2006; 392:181-9. [PMID: 16050808 PMCID: PMC1317677 DOI: 10.1042/bj20050970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor MafA/RIPE3b1 is an important regulator of insulin gene expression. MafA binds to the insulin enhancer element RIPE3b (C1-A2), now designated as insulin MARE (Maf response element). The insulin MARE element shares an overlapping DNA-binding region with another insulin enhancer element A2. A2.2, a beta-cell-specific activator, like the MARE-binding factor MafA, binds to the overlapping A2 element. Our previous results demonstrated that two nucleotides in the overlapping region are required for the binding of both factors. Surprisingly, instead of interfering with each other's binding activity, the MafA and the A2-binding factors co-operatively activated insulin gene expression. To understand the molecular mechanisms responsible for this functional co-operation, we have determined the nucleotides essential for the binding of the A2.2 factor. Using this information, we have constructed non-overlapping DNA-binding elements and their derivatives, and subsequently analysed the effect of these modifications on insulin gene expression. Our results demonstrate that the overlapping binding site is essential for maximal insulin gene expression. Furthermore, the overlapping organization is critical for MafA-mediated transcriptional activation, but has a minor effect on the activity of A2-binding factors. Interestingly, the binding affinities of both MafA and A2.2 to the overlapping or non-overlapping binding sites were not significantly different, implying that the overlapping binding organization may increase the activation potential of MafA by physical/functional interactions with A2-binding factors. Thus our results demonstrate a novel mechanism for the regulation of MafA activity, and in turn beta-cell function, by altering expression and/or binding of the A2.2 factor. Our results further suggest that the major downstream targets of MafA will in addition to the MARE element have a binding site for the A2.2 factor.
Collapse
Affiliation(s)
- Wataru Nishimura
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Therese Salameh
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Takuma Kondo
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Arun Sharma
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
- To whom correspondence should be addressed, at Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, U.S.A. (email )
| |
Collapse
|
39
|
Barrow J, Hay CW, Ferguson LA, Docherty HM, Docherty K. Transcription factor cycling on the insulin promoter. FEBS Lett 2005; 580:711-5. [PMID: 16412423 DOI: 10.1016/j.febslet.2005.12.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/16/2005] [Accepted: 12/16/2005] [Indexed: 11/30/2022]
Abstract
Using MIN6 beta-cells and chromatin immunoprecipitation (ChIP) assays, the chronological sequence of binding of MafA, E47/beta2 and PDX-1 to the insulin promoter in living beta-cells were investigated. All four factors were shown to bind to the mouse insulin 2 promoter in a cyclical manner with a periodicity of approximately 10-15 min. The cyclical binding of MafA, E47 and beta2 was largely unaffected by the glucose or insulin concentration in the media. However, the binding and cycling of PDX-1 was markedly abolished in low glucose (1 mM), and this was reversed in the presence of low concentrations of insulin.
Collapse
Affiliation(s)
- John Barrow
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
40
|
Magnan C, Ktorza A. Production et sécrétion de l'insuline par la cellule β pancréatique. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.emcend.2005.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 2005; 280:32413-8. [PMID: 15944145 PMCID: PMC1361267 DOI: 10.1074/jbc.m506000200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormalities in lipid metabolism have been proposed as contributing factors to both defective insulin secretion from the pancreatic beta cell and peripheral insulin resistance in type 2 diabetes. Previously, we have shown that prolonged exposure of isolated rat islets of Langerhans to excessive fatty acid levels impairs insulin gene transcription. This study was designed to assess whether palmitate alters the expression and binding activity of the key regulatory factors pancreas-duodenum homeobox-1 (PDX-1), MafA, and Beta2, which respectively bind to the A3, C1, and E1 elements in the proximal region of the insulin promoter. Nuclear extracts of isolated rat islets cultured with 0.5 mm palmitate exhibited reduced binding activity to the A3 and C1 elements but not the E1 element. Palmitate did not affect the overall expression of PDX-1 but reduced its nuclear localization. In contrast, palmitate blocked the stimulation of MafA mRNA and protein expression by glucose. Combined adenovirus-mediated overexpression of PDX-1 and MafA in islets completely prevented the inhibition of insulin gene expression by palmitate. These results demonstrate that prolonged exposure of islets to palmitate inhibits insulin gene transcription by impairing nuclear localization of PDX-1 and cellular expression of MafA.
Collapse
Affiliation(s)
- Derek K. Hagman
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
| | - Lori B. Hays
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
| | - Susan D. Parazzoli
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
| | - Vincent Poitout
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
- Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
42
|
Leibowitz G, Khaldi MZ, Shauer A, Parnes M, Oprescu AI, Cerasi E, Jonas JC, Kaiser N. Mitochondrial regulation of insulin production in rat pancreatic islets. Diabetologia 2005; 48:1549-59. [PMID: 15986240 DOI: 10.1007/s00125-005-1811-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The study was designed to identify the key metabolic signals of glucose-stimulated proinsulin gene transcription and translation, focusing on the mechanism of succinate stimulation of insulin production. METHODS Wistar rat islets were incubated in 3.3 mmol/l glucose with and without esters of different mitochondrial metabolites or with 16.7 mmol/l glucose. Proinsulin biosynthesis was analysed by tritiated leucine incorporation into newly synthesised proinsulin. Preproinsulin gene transcription was evaluated following transduction with adenoviral vectors expressing the luciferase reporter gene under the control of the rat I preproinsulin promoter. Steady-state preproinsulin mRNA was determined using relative quantitative PCR. The mitochondrial membrane potential was measured by microspectrofluorimetry using rhodamine-123. RESULTS Succinic acid monomethyl ester, but not other mitochondrial metabolites, stimulated preproinsulin gene transcription and translation. Similarly to glucose, succinate increased specific preproinsulin gene transcription and biosynthesis. The inhibitor of succinate dehydrogenase (SDH), 3-nitropropionate, abolished glucose- and succinate-stimulated mitochondrial membrane hyperpolarisation and proinsulin biosynthesis, indicating that stimulation of proinsulin translation depends on SDH activity. Partial inhibition of SDH activity by exposure to fumaric acid monomethyl ester abolished the stimulation of preproinsulin gene transcription, but only partially inhibited the stimulation of proinsulin biosynthesis by glucose and succinate, suggesting that SDH activity is particularly important for the transcriptional response to glucose. CONCLUSIONS/INTERPRETATION Succinate is a key metabolic mediator of glucose-stimulated preproinsulin gene transcription and translation. Moreover, succinate stimulation of insulin production depends on its metabolism via SDH. The differential effect of fumarate on preproinsulin gene transcription and translation suggests that these processes have different sensitivities to metabolic signals.
Collapse
Affiliation(s)
- G Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Amemiya-Kudo M, Oka J, Ide T, Matsuzaka T, Sone H, Yoshikawa T, Yahagi N, Ishibashi S, Osuga JI, Yamada N, Murase T, Shimano H. Sterol regulatory element-binding proteins activate insulin gene promoter directly and indirectly through synergy with BETA2/E47. J Biol Chem 2005; 280:34577-89. [PMID: 16055439 DOI: 10.1074/jbc.m506718200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin gene expression is regulated by pancreatic beta cell-specific factors, PDX-1 and BETA2/E47. Here we have demonstrated that the insulin promoter is a novel target for SREBPs established as lipid-synthetic transcription factors. Promoter analyses of rat insulin I gene in non-beta cells revealed that nuclear SREBP-1c activates the insulin promoter through three novel SREBP-binding sites (SREs), two of which overlap with E-boxes, binding sites for BETA2/E47. SREBP-1c activation of the insulin promoter was markedly enhanced by co-expression of BETA2/E47. This synergistic activation by SREBP-1c/BETA2/E47 was not mediated through SREs but through the E-boxes on which BETA2/E47 physically interacts with SREBP-1c, suggesting a novel function of SREBP as a co-activator. These two cis-DNA regions, E1 and E2, with an appropriate distance separating them, were mandatory for the synergism, which implicates formation of SREBP-1c.BETA2.E47 complex in a DNA looping structure for efficient recruitment of CREB-binding protein/p300. However, in the presence of PDX1, the synergistic action of SREBP-1c with BETA2/E47 was canceled. SREBP-1c-mediated activation of the insulin promoter and expression became overt in beta cell lines and isolated islets when endogenous PDX-1 expression was low. This cryptic SREBP-1c action might play a compensatory role in insulin expression in diabetes with beta cell lipotoxicity.
Collapse
Affiliation(s)
- Michiyo Amemiya-Kudo
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Toranomon 2-2-2, Minato-ku, Tokyo 105-8470, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stanojevic V, Yao KM, Thomas MK. The coactivator Bridge-1 increases transcriptional activation by pancreas duodenum homeobox-1 (PDX-1). Mol Cell Endocrinol 2005; 237:67-74. [PMID: 15885879 DOI: 10.1016/j.mce.2005.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 03/07/2005] [Indexed: 11/30/2022]
Abstract
Well-orchestrated transcriptional regulation of pancreatic beta cells is essential for insulin production and glucose homeostasis. Pancreas duodenum homeobox-1 (PDX-1) is a key regulator of glucose-dependent insulin production and glucose metabolism. We find that PDX-1 interacts with the PDZ-domain coactivator Bridge-1 in yeast interaction trap assays. Rat Bridge-1 and PDX-1 interact directly in GST pull-down assays via Bridge-1 interactions with the amino-terminal transactivation domain of PDX-1. Bridge-1 also interacts with wild-type and mutant human PDX-1 (IPF-1) proteins and strongly interacts with the amino-terminal PDX-1 P63fsdelC (MODY4) mutant protein. Transcriptional activation by PDX-1 is increased by addition of Bridge-1 in multiple contexts, including synergistic activation of a Gal4 reporter by Gal4-Bridge-1 and Gal4-PDX-1 fusion proteins, activation of the somatostatin promoter TAAT1 enhancer, and synergistic activation of the rat insulin I promoter FarFlat enhancer by PDX-1, E12, and E47. We propose that the coactivator Bridge-1 modulates PDX-1 functions in the regulation of its target genes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Wellman 340, 50 Blossom Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
45
|
Taguchi M, Otsuki M. Co-localization of nestin and PDX-1 in small evaginations of the main pancreatic duct in adult rats. J Mol Histol 2005; 35:785-9. [PMID: 15609091 DOI: 10.1007/s10735-004-0948-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 05/16/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Pancreatic stem cells are powerful tools for future gene/cell therapy for diabetes, pancreatic carcinoma and chronic pancreatitis. However, it is unclear where the pancreatic stem cells exist in adult pancreas. To identify the pancreatic stem cells, we have focused on a homeodomain-containing transcription factor, pancreatic/duodenal homeobox-1 (PDX-1), and an intermediate filament protein, nestin, which are important candidates of pancreatic stem cell markers. METHODS AND RESULTS We investigated the immunohistological localization for PDX-1 and nestin in adult rat pancreas. PDX-1 staining was detected in small evaginations of the main pancreatic duct and in nuclei of islet cells. Nestin staining was also detected in small evaginations of the main duct, islets and spindle-shaped cells in the connective tissue around the main duct. These spindle-shaped cells were also positive for alpha-smooth muscle actin, the marker of myofibroblasts. Confocal laser microscopy study showed that nestin and PDX-1 are co-localized not only in a subset of cells in small evaginations of the main duct but also in a few cells in the islets. These cells of the main duct were also positive for the ductal cell marker, cytokeratin 19. CONCLUSION Our results suggest that the double positive cells for PDX-1 and nestin might be important candidates for pancreatic stem cells in adult rats.
Collapse
Affiliation(s)
- Masashi Taguchi
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Japan 5 School of Medicine, Kitakyushu 807-8555, Japan
| | | |
Collapse
|
46
|
Abstract
Considerable progress has been made in the understanding of the sequential activation of signal transduction pathways and the expression of transcription factors during pancreas development. Much of this understanding has been obtained by analyses of the phenotypes of mice in which the expression of key genes has been disrupted (knockout mice). Knockout of the genes for Pdx1, Hlxb9, Isl1, or Hex results in an arrest of pancreas development at a very early stage (embryonic d 8-9). Disruption of genes encoding components of the Notch signaling pathway, e.g. Hes1 or neurogenin-3, abrogates development of the endocrine pancreas (islets of Langerhans). Disruption of transcription factor genes expressed more downstream in the developmental cascade (Beta2/NeuroD, Pax4, NKx2.2, and Nkx6.1) curtails the formation of insulin-producing beta-cells. An understanding of the importance of transcription factor genes during pancreas development has provided insights into the pathogenesis of diabetes, in which the mass of insulin-producing beta-cells is reduced.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, 55 Fruit Street, WEL320, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
47
|
Shiau MY, Huang CN, Liao JH, Chang YH. Missense mutations in the human insulin promoter factor-1 gene are not a common cause of type 2 diabetes mellitus in Taiwan. J Endocrinol Invest 2004; 27:1076-80. [PMID: 15754742 DOI: 10.1007/bf03345313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disorder characterized by a hyperglycemia resulting from defect in insulin secretion and insulin action. Recent studies showed that dominant negative mutations in the insulin promoter factor-1 (IPF-1), a pancreatic beta-cell specific transcription factor, cause maturity-onset diabetes of the young (MODY), a subtype of T2DM with early onset and monogenic autosomal inheritance. In addition to MODY, IPF-1 mutations are suggested to predispose to common late-onset T2DM with different penetration of the mutations reflected in their in vitro activity. Thus, we investigated IPF-1 C18R, Q59L, D76N and R197H mutations in Taiwanese patients with common late-onset T2DM, because research into IPF-1 variants in Taiwanese diabetic patients--a population with the lowest range of diabetic incidence--has never been documented. Peripheral blood samples were collected and genomic DNA was extracted from 434 patients with T2DM and 194 non-diabetes control study subjects. IPF-1 genetic variations were analyzed by PCR and restriction fragment length polymorphism (RFLP) analysis. We did not find any of these four IPF-1 mutations in our patients. Our results suggested that IPF-1 mutations were not a common cause associated with Taiwanese T2DM.
Collapse
|
48
|
Hussain K, Aynsley-Green A. Hyperinsulinaemic hypoglycaemia in infancy and childhood--resolving the enigma. J Pediatr Endocrinol Metab 2004; 17:1375-84. [PMID: 15526715 DOI: 10.1515/jpem.2004.17.10.1375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Children with severe hypoglycaemia due to persistent hyperinsulinism in infancy (HI) generate some of the most formidable problems of management in contemporary paediatric endocrinology. Until recently its pathophysiology was an enigma, although it was thought to be due to an anatomical abnormality in the islets of Langerhans (so called 'nesidioblastosis'). During the last 6 years there has been an explosion of knowledge providing fundamental insights into the pathological mechanisms underpinning the abnormal insulin secretion. This knowledge has been facilitated by ENRHI, a programme of research funded by the European Union, which brings together clinicians and basic scientists from 14 different countries. This collaboration encompasses clinical paediatric endocrinology, intracellular biochemistry, membrane physiology and molecular biology. This collaboration has resulted in numerous publications generating new insights into the pathophysiology of HI and represents a paradigm for collaboration in paediatric endocrinology. This review article is based on a plenary lecture delivered at the European Society for Paediatric Endocrinology meeting in Montreal on behalf of the European Network for Research into Hyperinsulinism of Infancy (ENRHI).
Collapse
Affiliation(s)
- K Hussain
- The London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children, UK.
| | | |
Collapse
|
49
|
Stanojevic V, Habener JF, Thomas MK. Pancreas duodenum homeobox-1 transcriptional activation requires interactions with p300. Endocrinology 2004; 145:2918-28. [PMID: 15001545 DOI: 10.1210/en.2003-1188] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The homeodomain transcription factor, pancreas duodenum homeobox (PDX)-1, is essential for pancreas development, insulin production, and glucose homeostasis. Mutations in pdx-1(ipf-1) are associated both with maturity-onset diabetes of the young and type 2 diabetes. PDX-1 interacts with multiple transcription factors and coregulators, including the coactivator p300, to activate the transcription of the insulin gene and other target genes within pancreatic beta-cells. In characterizing the protein-protein interactions of PDX-1 and p300, we identified mutations in PDX-1 that disrupt its function and are associated with increased or decreased interactions with p300. Several mutant PDX-1 proteins that are associated with heritable forms of diabetes in humans, in particular the mutant P63fsdelC, exhibited increased binding to a carboxy-terminal segment of p300 in the setting of decreased DNA-binding activities, suggesting that sequestration of p300 by mutant PDX-1 proteins may be an additional mechanism by which insulin gene expression is reduced in heterozygous carriers of pdx-1(ipf-1) mutations. The introduction of the point mutations S66A/Y68A in the highly conserved amino-terminal PDX-1 transactivation domain reduced the ability of PDX-1 to interact with p300, substantially diminished the transcriptional activation of PDX-1, and reduced the synergistic activation of glucose-responsive insulin promoter enhancer sequences by PDX-1, E12, and E47. We propose that interactions of PDX-1 with p300 are required for the transcriptional activation of PDX-1 target genes. Impairment of interactions between PDX-1 and p300 in pancreatic beta-cells may limit insulin production and lead to the development of diabetes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, Wellman 340, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
50
|
Melloul D. Transcription Factors in Islet Development and Physiology: Role of PDX-1 in Beta-Cell Function. Ann N Y Acad Sci 2004; 1014:28-37. [PMID: 15153417 DOI: 10.1196/annals.1294.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Differentiation of early foregut endoderm into pancreatic endocrine and exocrine cells depends on a cascade of gene activation events controlled by various transcription factors. The first molecular marker identified that specifies the early pancreatic epithelium is the homeodomain-containing transcription factor PDX-1. Its absence in mice and humans during development leads to agenesis of the pancreas. Later, it becomes restricted primarily to beta cells where it regulates the expression of beta cell-specific genes, and, most importantly, mediates the glucose effect on insulin gene transcription. Although exposure of beta cells to high glucose concentrations for relatively short periods stimulates insulin gene expression, chronic exposure has adverse effects on many beta-cell functions, including insulin gene transcription. These events appear to correlate with pdx-1 gene expression and its ability to bind the insulin gene. We consider that loss of PDX-1 function or altered pdx-1 gene expression due to mutations or functional impairment of transcription factors controlling its expression can lead to diabetes.
Collapse
Affiliation(s)
- Danielle Melloul
- Department of Endocrinology and Metabolism, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|