1
|
Luo P, Huang JH, Lv JM, Wang GQ, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep 2024; 41:748-783. [PMID: 38265076 DOI: 10.1039/d3np00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Schifferer L, Stinglhamer M, Kaur K, Macheño OG. Halides as versatile anions in asymmetric anion-binding organocatalysis. Beilstein J Org Chem 2021; 17:2270-2286. [PMID: 34621390 PMCID: PMC8450959 DOI: 10.3762/bjoc.17.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
This review intends to provide an overview on the role of halide anions in the development of the research area of asymmetric anion-binding organocatalysis. Key early elucidation studies with chloride as counter-anion confirmed this type of alternative activation, which was then exploited in several processes and contributed to the advance and consolidation of anion-binding catalysis as a field. Thus, the use of the halide in the catalyst–anion complex as both a mere counter-anion spectator or an active nucleophile has been depicted, along with the new trends toward additional noncovalent contacts within the HB-donor catalyst and supramolecular interactions to both the anion and the cationic reactive species.
Collapse
Affiliation(s)
- Lukas Schifferer
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Martin Stinglhamer
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Kirandeep Kaur
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Olga García Macheño
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| |
Collapse
|
3
|
An GH, Han JG, Park HS, Sung GH, Kim OT. Identification of an Oxidosqualene Cyclase Gene Involved in Steroidal Triterpenoid Biosynthesis in Cordyceps farinosa. Genes (Basel) 2021; 12:genes12060848. [PMID: 34072640 PMCID: PMC8227516 DOI: 10.3390/genes12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Various fungi including Cordyceps farinosa, an entomopathogenic fungus, can produce steroidal triterpenoids. Protostadienol (protosta-17(20)Z,24-dien-3β-ol) is a precursor of steroidal triterpenoid compounds. To identify oxidosqualene cyclase (OSC) gene candidates involved in triterpenoid biosynthesis, genome mining was performed using Illumina sequencing platform. In the sequence database, two OSC genes, CfaOSC1 and CfaOSC2, in the genome of C. farinosa were identified. Predicted amino-acid sequences of CfaOSC2 shared 66% similarities with protostadienol synthase (OSPC) of Aspergillus fumigatus. Phylogenetic analysis showed a clear grouping of CfaOSC2 in the OSPC clade. Function of CfaOSC2 was examined using a yeast INVSc1 heterologous expression system to endogenously synthesize 2,3-oxidosqualene. GC-MS analysis indicated that CfaOSC2 produced protosta-13(17),24-dien-3β-ol and protostadienol at a 5:95 ratio. Our results demonstrate that CfaOSC2 is a multifunctional triterpene synthase yielding a predominant protostadienol together with a minor triterpenoid. These results will facilitate a greater understanding of biosynthetic mechanisms underlying steroidal triterpenoid biosynthesis in C. farinosa and other fungi.
Collapse
Affiliation(s)
- Gi-Hong An
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea; (G.-H.A.); (J.-G.H.); (H.-S.P.)
| | - Jae-Gu Han
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea; (G.-H.A.); (J.-G.H.); (H.-S.P.)
| | - Hye-Sung Park
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea; (G.-H.A.); (J.-G.H.); (H.-S.P.)
| | - Gi-Ho Sung
- Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Ok-Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea; (G.-H.A.); (J.-G.H.); (H.-S.P.)
- Correspondence: ; Tel.: +82-43-871-5730
| |
Collapse
|
4
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
5
|
Liang G, Ji Y, Liu H, Pang Y, Zhou B, Cheng M, Liu Y, Lin B, Liu Y. Silver Triflate/
N
‐Fluorobenzenesulfonimide‐Catalyzed Cycloisomerization of Tryptamine‐Ynamide to Spiro[indoline‐3,4′‐piperidine] Induced by Cation‐π‐π Interactions between Substrate and Metal Ligand. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guoduan Liang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yanjun Ji
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Hairui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yadong Pang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Bojun Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| |
Collapse
|
6
|
Rabelo VWH, Viegas DDJ, Tucci EMN, Romeiro NC, Abreu PA. Virtual screening and drug repositioning as strategies for the discovery of new antifungal inhibitors of oxidosqualene cyclase. J Steroid Biochem Mol Biol 2019; 185:189-199. [PMID: 30193921 DOI: 10.1016/j.jsbmb.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 01/11/2023]
Abstract
Candidiasis is the most common fungal infection in immunocompromised patients, and Candida albicans is the fourth leading agent of nosocomial infections. Mortality from this infection is significant; however, the therapeutic treatment is limited, which demands the search for new drugs and new targets. In this context, oxidosqualene cyclase (OSC) catalyzes the cyclization of the 2,3-oxidosqualene to form lanosterol, an intermediate of ergosterol biosynthesis. Therefore, this enzyme constitutes an attractive therapeutic target. Thus, the aim of this study is to identify potential inhibitors of C. albicans OSC (CaOSC) from a marketed drugs database in order to discover new antifungal agents. The CaOSC 3D model was constructed using the Swiss-Model server and important features for CaOSC inhibition were identified by molecular docking of known inhibitors using Autodock Vina 1.1.2. Subsequently, virtual screening helped to identify calcitriol, the active form of vitamin D, and other four drugs, as potential inhibitors of CaOSC. The selected drugs presented an interesting pattern of interactions with this enzyme, including hydrogen bond with Asp450, a key residue in the active site. Thus, the antifungal activity of calcitriol was evaluated in vitro against Candida spp strains. Calcitriol showed antifungal activity against C. albicans and C. tropicalis, which reinforces the potential of this compound as candidate of CaOSC inhibitor. In short, the present study provides important insights for the development of new oxidosqualene cyclase inhibitors as antifungals.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Daiane de Jesus Viegas
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Erline Machado Neves Tucci
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, LICC, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, 27965-045, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil.
| |
Collapse
|
7
|
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
8
|
Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Enantioselective Polyene Cyclization Catalyzed by a Chiral Brønsted Acid. Angew Chem Int Ed Engl 2018; 57:2115-2119. [DOI: 10.1002/anie.201711603] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Liwen Fan
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chunyu Han
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Xuerong Li
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Jiasheng Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Zhengning Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chaochao Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Weihao Chen
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Tao Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| | - Junfeng Zhao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| |
Collapse
|
9
|
Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Enantioselective Polyene Cyclization Catalyzed by a Chiral Brønsted Acid. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Liwen Fan
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chunyu Han
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Xuerong Li
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Jiasheng Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Zhengning Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chaochao Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Weihao Chen
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Tao Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| | - Junfeng Zhao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| |
Collapse
|
10
|
Rabelo VWH, Romeiro NC, Abreu PA. Design strategies of oxidosqualene cyclase inhibitors: Targeting the sterol biosynthetic pathway. J Steroid Biochem Mol Biol 2017; 171:305-317. [PMID: 28479228 DOI: 10.1016/j.jsbmb.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023]
Abstract
Targeting the sterol biosynthesis pathway has been explored for the development of new bioactive compounds. Among the enzymes of this pathway, oxidosqualene cyclase (OSC) which catalyzes lanosterol cyclization from 2,3-oxidosqualene has emerged as an attractive target. In this work, we reviewed the most promising OSC inhibitors from different organisms and their potential for the development of new antiparasitic, antifungal, hypocholesterolemic and anticancer drugs. Different strategies have been adopted for the discovery of new OSC inhibitors, such as structural modifications of the natural substrate or the reaction intermediates, the use of the enzyme's structural information to discover compounds with novel chemotypes, modifications of known inhibitors and the use of molecular modeling techniques such as docking and virtual screening to search for new inhibitors. This review brings new perspectives on structural insights of OSC from different organisms and reveals the broad structural diversity of OSC inhibitors which may help evidence lead compounds for further investigations with various therapeutic applications.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, LICC, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, 27965-045, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé 27965-045, RJ, Brazil.
| |
Collapse
|
11
|
Navarro Gallón SM, Elejalde-Palmett C, Daudu D, Liesecke F, Jullien F, Papon N, Dugé de Bernonville T, Courdavault V, Lanoue A, Oudin A, Glévarec G, Pichon O, Clastre M, St-Pierre B, Atehortùa L, Yoshikawa N, Giglioli-Guivarc'h N, Besseau S. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth. PLANTA 2017; 246:45-60. [PMID: 28349256 DOI: 10.1007/s00425-017-2681-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/17/2017] [Indexed: 05/24/2023]
Abstract
The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.
Collapse
Affiliation(s)
- Sandra M Navarro Gallón
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
- Laboratorio de Biotecnologıa, Sede de Investigacion Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Carolina Elejalde-Palmett
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Dimitri Daudu
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Franziska Liesecke
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Frédéric Jullien
- EA3061 Laboratoire de Biotechnologies Végétales appliquées aux plantes aromatiques et médicinales, Université Jean Monnet de Saint Etienne, Saint Etienne, France
| | - Nicolas Papon
- EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Université d'Angers, Angers, France
| | | | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Gaëlle Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Olivier Pichon
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Marc Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnologıa, Sede de Investigacion Universitaria, Universidad de Antioquia, Medellin, Colombia
| | | | | | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France.
| |
Collapse
|
12
|
Kennedy CR, Lin S, Jacobsen EN. The Cation-π Interaction in Small-Molecule Catalysis. Angew Chem Int Ed Engl 2016; 55:12596-624. [PMID: 27329991 PMCID: PMC5096794 DOI: 10.1002/anie.201600547] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/11/2022]
Abstract
Catalysis by small molecules (≤1000 Da, 10(-9) m) that are capable of binding and activating substrates through attractive, noncovalent interactions has emerged as an important approach in organic and organometallic chemistry. While the canonical noncovalent interactions, including hydrogen bonding, ion pairing, and π stacking, have become mainstays of catalyst design, the cation-π interaction has been comparatively underutilized in this context since its discovery in the 1980s. However, like a hydrogen bond, the cation-π interaction exhibits a typical binding affinity of several kcal mol(-1) with substantial directionality. These properties render it attractive as a design element for the development of small-molecule catalysts, and in recent years, the catalysis community has begun to take advantage of these features, drawing inspiration from pioneering research in molecular recognition and structural biology. This Review surveys the burgeoning application of the cation-π interaction in catalysis.
Collapse
Affiliation(s)
- C Rose Kennedy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
| | - Song Lin
- Department of Chemistry, University of California, Berkeley, 535 Latimer Hall, Berkeley, CA, 94720, USA
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA.
| |
Collapse
|
13
|
Kennedy CR, Lin S, Jacobsen EN. Die Kation-π-Wechselwirkung in der Katalyse mit niedermolekularen Verbindungen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600547] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C. Rose Kennedy
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford St Cambridge MA 02138 USA
| | - Song Lin
- Department of Chemistry; University of California, Berkeley; 535 Latimer Hall Berkeley CA 94720 USA
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford St Cambridge MA 02138 USA
| |
Collapse
|
14
|
Reddy GR, Avadhani AS, Rajaram S. Activation of Benzyl Aryl Carbonates: The Role of Cation-π Interactions. J Org Chem 2016; 81:4134-41. [PMID: 27158833 DOI: 10.1021/acs.joc.6b00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzyl aryl carbonates can react with a nucleophile to yield an activated electrophile and an aryloxide anion. Previously, we had utilized this in the synthesis of α-nitro esters from nitroalkanes. To further understand the process of activation of these carbonates by nucleophiles, we have performed kinetic studies on the hydrolysis of carbonates using nucleophiles. Rate constants for the hydrolysis were obtained under pseudo-first-order conditions with DABCO as the nucleophile. A comparison of rate constant for hydrolysis of isobutyl phenyl carbonate with benzyl phenyl carbonate shows that the presence of benzyl group results in a 16-fold acceleration of hydrolysis rate. This indicates that the transition state for activation of carbonate is stabilized by cation-π interactions. A comparison of the rate constant for various aromatic rings indicates that electron-donating substituents on the benzyl groups accelerate the rate of hydrolysis. Studies were also carried out with DMAP as nucleophile and the results are presented. Our studies show that stable carbonates can be activated using nucleophiles. Activated acyl groups generated from acid anhydrides have been used in several enantioselective reactions. Our studies show that carbonates can be stable alternatives to acid anhydrides.
Collapse
Affiliation(s)
- Golipalli Ramana Reddy
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560064, India
| | - Anusha S Avadhani
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560064, India
| | - Sridhar Rajaram
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
15
|
Yoo SJ, Chung SY, Lee DJ, Kim H, Cheon SA, Kang HA. Use of the cysteine-repressible HpMET3 promoter as a novel tool to regulate gene expression in Hansenula polymorpha. Biotechnol Lett 2015; 37:2237-45. [PMID: 26169200 DOI: 10.1007/s10529-015-1902-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The promoter of HpMET3, encoding an ATP sulfurylase, was evaluated for its potential as a repressible promoter to downregulate the expression of target genes in the thermotolerant, methylotrophic yeast Hansenula polymorpha. RESULTS The expression of lacZ under the control of the 0.6 kb HpMET3 promoter was efficiently downregulated by cysteine, but not by methionine or sulfate. The HpMET3 promoter was used to generate a conditional mutant of the HpPMT2 gene encoding an O-mannosyltransferase, which is involved in post-translational protein modification. The addition of 0.5 mM cysteine adversely affected the growth of the conditional HpMET3(p)-Hppmt2 mutant strain by downregulating transcription of HpPMT2 to approx. 40 % of the normal levels, indicating that the HpPMT2 gene is essential for cell viability. However, the HpMET3 promoter was neither induced nor repressed in the heterologous host Saccharomyces cerevisiae. CONCLUSION Our results reveal that the cysteine-repressible HpMET3 promoter is a useful tool that downregulates the expression of various genes in H. polymorpha.
Collapse
Affiliation(s)
- Su Jin Yoo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Seung Yeon Chung
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Dong-Jik Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyunah Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Seon Ah Cheon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
16
|
Wang CW. Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 2015; 72:2677-95. [PMID: 25894691 PMCID: PMC11113813 DOI: 10.1007/s00018-015-1903-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan,
| |
Collapse
|
17
|
Abstract
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.
Collapse
Affiliation(s)
- Maureen B Quin
- University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
18
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
19
|
Chang CH, Wen HY, Shie WS, Lu CT, Li ME, Liu YT, Li WH, Wu TK. Protein engineering of oxidosqualene-lanosterol cyclase into triterpene monocyclase. Org Biomol Chem 2013; 11:4214-9. [PMID: 23680980 DOI: 10.1039/c3ob40493e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational modeling/protein engineering approach was applied to probe H234, C457, T509, Y510, and W587 within Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase (ERG7), which spatially affects the C-10 cation of lanosterol formation. Substitution of Trp587 to aromatic residues supported the "aromatic hypothesis" that the π-electron-rich pocket is important for the stabilization of electron-deficient cationic intermediates. The Cys457 to Gly and Thr509 to Gly mutations disrupted the pre-existing H-bond to the protonating Asp456 and the intrinsic His234 : Tyr510 H-bond network, respectively, and generated achilleol A as the major product. An H234W/Y510W double mutation altered the ERG7 function to achilleol A synthase activity and generated achilleol A as the sole product. These results support the concept that a few-ring triterpene synthase can be derived from polycyclic cyclases by reverse evolution, and exemplify the power of computational modeling coupled with protein engineering both to study the enzyme's structure-function-mechanism relationships and to evolve new enzymatic activity.
Collapse
Affiliation(s)
- Cheng-Hsiang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 775] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
21
|
Chang CH, Chen YC, Tseng SW, Liu YT, Wen HY, Li WH, Huang CY, Ko CY, Wang TT, Wu TK. The cysteine 703 to isoleucine or histidine mutation of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae generates an iridal-type triterpenoid. Biochimie 2012; 94:2376-81. [DOI: 10.1016/j.biochi.2012.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
22
|
Ta MT, Kapterian TS, Fei W, Du X, Brown AJ, Dawes IW, Yang H. Accumulation of squalene is associated with the clustering of lipid droplets. FEBS J 2012; 279:4231-44. [DOI: 10.1111/febs.12015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Minh T. Ta
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| | - Tamar S. Kapterian
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| | - Weihua Fei
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| | - Andrew J. Brown
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; Australia
| |
Collapse
|
23
|
Layer JV, Barnes BM, Yamasaki Y, Barbuch R, Li L, Taramino S, Balliano G, Bard M. Characterization of a mutation that results in independence of oxidosqualene cyclase (Erg7) activity from the downstream 3-ketoreductase (Erg27) in the yeast ergosterol biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:361-9. [PMID: 23022663 DOI: 10.1016/j.bbalip.2012.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/03/2012] [Accepted: 09/17/2012] [Indexed: 01/05/2023]
Abstract
In yeast, deletion of ERG27, which encodes the sterol biosynthetic enzyme, 3-keto-reductase, results in a concomitant loss of the upstream enzyme, Erg7p, an oxidosqualene cyclase (OSC). However, this phenomenon occurs only in fungi, as mammalian Erg27p orthologues are unable to rescue yeast Erg7p activity. In this study, an erg27 mutant containing the mouse ERG27 orthologue was isolated that was capable of growing without sterol supplementation (FGerg27). GC/MS analysis of this strain showed an accumulation of squalene epoxides, 3-ketosterones, and ergosterol. This strain which was crossed to a wildtype and daughter segregants showed an accumulation of squalene epoxides as well as ergosterol indicating that the mutation entailed a leaky block at ERG7. Upon sequencing the yeast ERG7 gene an A598S alteration was found in a conserved alpha helical region. We theorize that this mutation stabilizes Erg7p in a conformation that mimics Erg27p binding. This mutation, while decreasing OSC activity still retains sufficient residual OSC activity such that the strain in the presence of the mammalian 3-keto reductase enzyme functions and no longer requires the yeast Erg27p. Because sterol biosynthesis occurs in the ER, a fusion protein was synthesized combining Erg7p and Erg28p, a resident ER protein and scaffold of the C-4 demethyation complex. Both FGerg27 and erg27 strains containing this fusion plasmid and the mouse ERG27 orthologue showed restoration of ergosterol biosynthesis with minimal accumulation of squalene epoxides. These results indicate retention of Erg7p in the ER increases its activity and suggest a novel method of regulation of ergosterol biosynthesis.
Collapse
Affiliation(s)
- Jacob V Layer
- Biology Department, Indiana University-Purdue University, Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Racolta S, Juhl PB, Sirim D, Pleiss J. The triterpene cyclase protein family: a systematic analysis. Proteins 2012; 80:2009-19. [PMID: 22488823 DOI: 10.1002/prot.24089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 01/12/2023]
Abstract
Triterpene cyclases catalyze a broad range of cyclization reactions to form polycyclic triterpenes. Triterpene cyclases that convert squalene to hopene are named squalene-hopene cyclases (SHC) and triterpene cyclases that convert oxidosqualene are named oxidosqualene cyclases (OSC). Many sequences have been published, but there is only one structure available for each of SHCs and OSCs. Although they catalyze a similar reaction, the sequence similarity between SHCs and OSCs is low. A family classification based on phylogenetic analysis revealed 20 homologous families which are grouped into two superfamilies, SHCs and OSCs. Based on this family assignment, the Triterpene Cyclase Engineering Database (TTCED) was established. It integrates available information on sequence and structure of 639 triterpene cyclases as well as on structurally and functionally relevant amino acids. Family specific multiple sequence alignments were generated to identify the functionally relevant residues. Based on sequence alignments, conserved residues in SHCs and OSCs were analyzed and compared to experimentally confirmed mutational data. Functional schematic models of the central cavities of OSCs and SHCs were derived from structure comparison and sequence conservation analysis. These models demonstrate the high similarity of the substrate binding cavity of SHCs and OSCs and the equivalences of the respective residues. The TTCED is a novel source for comprehensive information on the triterpene cyclase family, including a compilation of previously described mutational data. The schematic models present the conservation analysis in a readily available fashion and facilitate the correlation of residues to a specific function or substrate interaction.
Collapse
Affiliation(s)
- Silvia Racolta
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | | | | |
Collapse
|
25
|
Thibodeaux CJ, Chang WC, Liu HW. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev 2012; 112:1681-709. [PMID: 22017381 PMCID: PMC3288687 DOI: 10.1021/cr200073d] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Wei-chen Chang
- College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Hung-wen Liu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
26
|
Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100203] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Brendolise C, Yauk YK, Eberhard ED, Wang M, Chagne D, Andre C, Greenwood DR, Beuning LL. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica. FEBS J 2011; 278:2485-99. [DOI: 10.1111/j.1742-4658.2011.08175.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Abstract
Hopanoids and sterols are members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms. They are biochemically synthesized from linear precursors (squalene, 2,3-oxidosqualene) in only one enzymatic step that is catalyzed by squalene-hopene cyclase (SHC) or oxidosqualene cyclase (OSC). SHCs and OSCs are related in amino acid sequences and probably are derived from a common ancestor. The SHC reaction requires the formation of five ring structures, 13 covalent bonds, and nine stereo centers and therefore is one of the most complex one-step enzymatic reactions. We summarize the knowledge of the properties of triterpene cyclases and details of the reaction mechanism of Alicyclobacillus acidocaldarius SHC. Properties of other SHCs are included.
Collapse
Affiliation(s)
| | - Dieter Jendrossek
- Institute for Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
29
|
Mo Y, Bao P, Gao J. Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Phys Chem Chem Phys 2011; 13:6760-75. [PMID: 21369567 PMCID: PMC3719994 DOI: 10.1039/c0cp02206c] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interaction energy decomposition analysis method based on the block-localized wavefunction (BLW-ED) approach is described. The first main feature of the BLW-ED method is that it combines concepts of valence bond and molecular orbital theories such that the intermediate and physically intuitive electron-localized states are variationally optimized by self-consistent field calculations. Furthermore, the block-localization scheme can be used both in wave function theory and in density functional theory, providing a useful tool to gain insights on intermolecular interactions that would otherwise be difficult to obtain using the delocalized Kohn-Sham DFT. These features allow broad applications of the BLW method to energy decomposition (BLW-ED) analysis for intermolecular interactions. In this perspective, we outline theoretical aspects of the BLW-ED method, and illustrate its applications in hydrogen-bonding and π-cation intermolecular interactions as well as metal-carbonyl complexes. Future prospects on the development of a multistate density functional theory (MSDFT) are presented, making use of block-localized electronic states as the basis configurations.
Collapse
Affiliation(s)
- Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA.
| | - Peng Bao
- Department of Chemistry, Smith Hall, Digital Technology Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Jiali Gao
- Department of Chemistry, Smith Hall, Digital Technology Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
30
|
Wu TK, Chang YC, Liu YT, Chang CH, Wen HY, Li WH, Shie WS. Mutation of isoleucine 705 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae affects lanosterol's C/D-ring cyclization and 17α/β-exocyclic side chain stereochemistry. Org Biomol Chem 2011; 9:1092-7. [DOI: 10.1039/c0ob00582g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
A new thiourea catalyst is reported for the enantioselective cationic polycyclization of hydroxylactams. Both the yield and enantioselectivity of this transformation were found to vary strongly with the identity of a single aromatic residue on a common catalyst framework, with more expansive and polarizable arenes proving optimal. Evidence is presented for a mechanism in which stabilizing cation-pi interactions are a principal determinant of enantioselectivity.
Collapse
Affiliation(s)
- Robert R. Knowles
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Song Lin
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Eric N. Jacobsen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
32
|
Wu TK, Chang CH, Wen HY, Liu YT, Li WH, Wang TT, Shie WS. Alteration of the Substrate’s Prefolded Conformation and Cyclization Stereochemistry of Oxidosqualene-Lanosterol Cyclase of Saccharomyces cerevisiae by Substitution at Phenylalanine 699. Org Lett 2010; 12:500-3. [DOI: 10.1021/ol902694y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tung-Kung Wu
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Cheng-Hsiang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Hao-Yu Wen
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Yuan-Ting Liu
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Wen-Hsuan Li
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Tsai-Ting Wang
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Wen-Shiang Shie
- Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
33
|
Godio RP, Martín JF. Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: Biosynthesis of the antitumor clavaric acid. Fungal Genet Biol 2009; 46:232-42. [DOI: 10.1016/j.fgb.2008.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
34
|
Wu TK, Wen HY, Chang CH, Liu YT. Protein Plasticity: A Single Amino Acid Substitution in the Saccharomyces cerevisiae Oxidosqualene−Lanosterol Cyclase Generates Protosta-13(17),24-dien-3β-ol, a Rearrangement Product. Org Lett 2008; 10:2529-32. [DOI: 10.1021/ol800799n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tung-Kung Wu
- Department of Biological Science and Technology, Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Hao-Yu Wen
- Department of Biological Science and Technology, Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Cheng-Hsiang Chang
- Department of Biological Science and Technology, Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| | - Yuan-Ting Liu
- Department of Biological Science and Technology, Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
35
|
Wu TK, Chang CH, Liu YT, Wang TT. Saccharomyces cerevisiaeoxidosqualene-lanosterol cyclase: A chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. CHEM REC 2008; 8:302-25. [DOI: 10.1002/tcr.20157] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Soteras I, Orozco M, Luque FJ. Induction effects in metal cation–benzene complexes. Phys Chem Chem Phys 2008; 10:2616-24. [DOI: 10.1039/b719461g] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Carbocation–π interaction with Car–Parrinello molecular dynamics: Ab initio molecular dynamics investigation of complex of methyl cation with benzene. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.12.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Suzuki M, Xiang T, Ohyama K, Seki H, Saito K, Muranaka T, Hayashi H, Katsube Y, Kushiro T, Shibuya M, Ebizuka Y. Lanosterol Synthase in Dicotyledonous Plants. ACTA ACUST UNITED AC 2006; 47:565-71. [PMID: 16531458 DOI: 10.1093/pcp/pcj031] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sterols are important as structural components of plasma membranes and precursors of steroidal hormones in both animals and plants. Plant sterols show a wide structural variety and significant structural differences from those of animals. To elucidate the origin of structural diversity in plant sterols, their biosynthesis has been extensively studied [Benveniste (2004) Annu. Rev. Plant. Biol. 55: 429, Schaller (2004) Plant Physiol. Biochem. 42: 465]. The differences in the biosynthesis of sterols between plants and animals begin at the step of cyclization of 2,3-oxidosqualene, which is cyclized to lanosterol in animals and to cycloartenol in plants. However, here we show that plants also have the ability to synthesize lanosterol directly from 2,3-oxidosqualene, which may lead to a new pathway to plant sterols. The Arabidopsis gene At3g45130, designated LAS1, encodes a functional lanosterol synthase in plants. A phylogenetic tree showed that LAS1 belongs to the previously uncharacterized branch of oxidosqualene cyclases, which differs from the cycloartenol synthase branch. Panax PNZ on the same branch was also shown to be a lanosterol synthase in a yeast heterologous expression system. The higher diversity of plant sterols may require two biosynthetic routes in steroidal backbone formation.
Collapse
Affiliation(s)
- Masashi Suzuki
- RIKEN Plant Science Center, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kolesnikova MD, Xiong Q, Lodeiro S, Hua L, Matsuda SPT. Lanosterol biosynthesis in plants. Arch Biochem Biophys 2006; 447:87-95. [PMID: 16445886 DOI: 10.1016/j.abb.2005.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Plants biosynthesize sterols from cycloartenol using a pathway distinct from the animal and fungal route through lanosterol. Described herein are genome-mining experiments revealing that Arabidopsis encodes, in addition to cycloartenol synthase, an accurate lanosterol synthase (LSS)--the first example of lanosterol synthases cloned from a plant. The coexistence of cycloartenol synthase and lanosterol synthase implies specific roles for both cyclopropyl and conventional sterols in plants. Phylogenetic reconstructions reveal that lanosterol synthases are broadly distributed in eudicots but evolved independently from those in animals and fungi. Novel catalytic motifs establish that plant lanosterol synthases comprise a third catalytically distinct class of lanosterol synthase.
Collapse
Affiliation(s)
- Mariya D Kolesnikova
- Department of Chemistry, Rice University, 6100 S. Main Street, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
40
|
Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Substrate access to the active-site cavity of squalene-hopene cyclase from Alicyclobacillus acidocaldarious and lanosterol synthase [OSC (oxidosqualene cyclase)] from Saccharomyces cerevisiae was studied by an inhibition, mutagenesis and homology-modelling approach. Crystal structure and homology modelling indicate that both enzymes possess a narrow constriction that separates an entrance lipophilic channel from the active-site cavity. The role of the constriction as a mobile gate that permits substrate passage was investigated by experiments in which critically located Cys residues, either present in native protein or inserted by site-directed mutagenesis, were labelled with specifically designed thiol-reacting molecules. Some amino acid residues of the yeast enzyme, selected on the basis of sequence alignment and a homology model, were individually replaced by residues bearing side chains of different lengths, charges or hydrophobicities. In some of these mutants, substitution severely reduced enzymatic activity and thermal stability. Homology modelling revealed that in these mutants some critical stabilizing interactions could no longer occur. The possible critical role of entrance channel and constriction in specific substrate recognition by eukaryotic OSC is discussed.
Collapse
|
41
|
Wu TK, Liu YT, Chang CH. Histidine Residue at Position 234 of Oxidosqualene-Lanosterol Cyclase from Saccharomyces cerevisiae Simultaneously Influences Cyclization, Rearrangement, and Deprotonation Reactions. Chembiochem 2005; 6:1177-81. [PMID: 15915534 DOI: 10.1002/cbic.200500084] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tung-Kung Wu
- Department of Biological Science and Technology, Center for Interdisciplinary Molecular Science, National Chiao Tung University, 300 Hsin-Chu, Taiwan, Republic of China.
| | | | | |
Collapse
|
42
|
Lodeiro S, Segura MJR, Stahl M, Schulz-Gasch T, Matsuda SPT. Oxidosqualene Cyclase Second-Sphere Residues Profoundly Influence the Product Profile. Chembiochem 2004; 5:1581-5. [PMID: 15515077 DOI: 10.1002/cbic.200400086] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvia Lodeiro
- Department of Chemistry, Rice University, 6100 S. Main Street, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The triterpenoids are a large group of natural products derived from C(30) precursors. Nearly 200 different triterpene skeletons are known from natural sources or enzymatic reactions that are structurally consistent with being cyclization products of squalene, oxidosqualene, or bis-oxidosqualene. This review categorizes each of these structures and provides mechanisms for their formation.
Collapse
Affiliation(s)
- Ran Xu
- Department of Chemistry, Rice University, 6100 S Main Street, Houston, TX 77005, USA
| | | | | |
Collapse
|
44
|
Abstract
In recent years, the impressive development of molecular genetics tools, the sequencing of the Arabidopsis thaliana genome, the availability of DNA or transposon tagged mutants, and the multiple possibilities offered by stable transformation with DNA in sense and antisense orientation have enabled the application of a strategy of gain or loss of function to study the sterol biosynthesis pathway. Here we describe the results obtained with these techniques. The results essentially confirm data obtained previously with sterol biosynthesis inhibitors (SBIs) and enable the precise dissection of biosynthetic pathways. We discuss the advantages and disadvantages of molecular genetics techniques as applied to sterol metabolism. The greater selectivity of these techniques constitutes an invaluable advantage and has led to the discovery of a role for sterols in plant development.
Collapse
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogenese et Fonctions des Isoprenoides, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
45
|
Wu TK, Huang CY, Ko CY, Chang CH, Chen YJ, Liao HK. Purification, tandem mass characterization, and inhibition studies of oxidosqualene-lanosterol cyclase enzyme from bovine liver. Arch Biochem Biophys 2004; 421:42-53. [PMID: 14678783 DOI: 10.1016/j.abb.2003.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The oxidosqualene-lanosterol cyclase (OSC) from bovine liver has been isolated from the microsomal membrane fraction and purified to homogeneity by ultracentrifugation, Q-Sepharose, hydroxyapatite, and HiTrap heparin chromatographies. The purified protein required Triton X-100 to retain its highest activity. The cyclase had a molecular mass of approximately 70 and approximately 140 kDa, as evidenced by a single protein band on silver-stained SDS-PAGE and Coomassie-stained PAGE, respectively. Results from Edman degradation of OSC suggested that it might have a blocked N-terminus. Further peptide mapping coupled with tandem mass spectrometric determination identified three peptide fragments, ILGVGPDDPDLVR, LSAEEGPLVQSLR, and NPDGGFATYETK, which are highly homologous to human, rat, and mouse OSCs. The purified cyclase showed pH and temperature optima at pH 7.4 and 37 degrees C, respectively. The apparent K(M) and k(cat)/K(M) values were estimated to be 11 microM and 1.45 mM(-1)min(-1), respectively. Inhibition studies using both Ro48-8071 and N-(4-methylenebenzophenonyl)pyridinium bromide showed potent inhibition of OSC with an IC(50) of 11 nM and 0.79 microM, respectively. Results from DTNB modification and DTNB coupled with Ro48-8071 competition study suggest that two sulfhydryl groups are involved in the catalysis but not located in the substrate binding pocket or catalytic active site. The purified OSC was maximally inactivated by diethyl pyrocarbonate near neutral pH and re-activated by hydroxylamine, indicating the modification of histidine residues. The stoichiometry of histidine modification and the extent of inactivation showed that two essential histidine residues per active site are necessary for complete bovine liver OSC activity.
Collapse
Affiliation(s)
- Tung-Kung Wu
- Department of Biological Science and Technology, National Chiao Tung University, 300 Hsin-Chu, Taiwan, China.
| | | | | | | | | | | |
Collapse
|
46
|
Mo C, Milla P, Athenstaedt K, Ott R, Balliano G, Daum G, Bard M. In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1633:68-74. [PMID: 12842197 DOI: 10.1016/s1388-1981(03)00088-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, the 3-keto reductase (Erg27p) encoded by ERG27 gene is one of the key enzymes involved in the C-4 demethylation of the sterol intermediate, 4,4-dimethylzymosterol. The oxidosqualene cyclase (Erg7p) encoded by the ERG7 gene converts oxidosqualene to lanosterol, the first cyclic component of sterol biosynthesis. In a previous study, we found that erg27 strains grown on cholesterol- or ergosterol-supplemented media did not accumulate lanosterol or 3-ketosterols but rather squalene, oxidosqualene, and dioxidosqualene intermediates normally observed in ERG7 (oxidosqualene cyclase) mutants. These results suggested a possible interaction between these two enzymes. In this study, we present evidence that Erg27p interacts with Erg7p, facilitating the association of Erg7p with lipid particles (LPs) and preventing digestion of Erg7p both in the endoplasmic reticulum (ER) and LPs. We demonstrate that Erg27p is required for oxidosqualene cyclase (Erg7p) activity in LPs, and that Erg27p co-immunoprecipitates with Erg7p in LPs but not in microsomal fractions. While Erg27p is essentially a component of the ER, it can also be detected in LPs. In erg27 strains, a truncated Erg7p mislocalizes to microsomes. Restoration of Erg7p enzyme activity and LPs localization was achieved in an erg27 strain transformed with a plasmid containing a wild-type ERG27 allele. We suggest that the physical interaction of Erg27p with Erg7p is an essential regulatory tool in yeast sterol biosynthesis.
Collapse
Affiliation(s)
- C Mo
- Biology Department, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Segura MJR, Jackson BE, Matsuda SPT. Mutagenesis approaches to deduce structure-function relationships in terpene synthases. Nat Prod Rep 2003; 20:304-17. [PMID: 12828369 DOI: 10.1039/b008338k] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights mutagenesis studies of terpene synthases, specifically sesquiterpene synthases and oxidosqualene cyclases. Mutagenesis studies of these enzymes have provided mechanistic insights, structure-function relationships for specific enzymatic residues, novel terpene structures and enzymes with novel activities. The literature through 2002 is reviewed and 113 references cited.
Collapse
|
48
|
Abstract
Peptide dendrimers are radial or wedge-like branched macromolecules consisting of a peptidyl branching core and/or covalently attached surface functional units. The multimeric nature of these constructs, the unambiguous composition and ease of production make this type of dendrimer well suited to various biotechnological and biochemical applications. Applications include use as biomedical diagnostic reagents, protein mimetics, anticancer and antiviral agents, vaccines and drug and gene delivery vehicles. This review focuses on the different types of peptide dendrimers currently in use and the synthetic methods commonly employed to generate peptide dendrimers ranging from stepwise solid-phase synthesis to chemoselective and orthogonal ligation.
Collapse
Affiliation(s)
- Kristen Sadler
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
49
|
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogénèse et Fonctions des Isoprénoides, UPR-CNRS 2357, 28 rue Goethe, 67083-Strasbourg, France
| |
Collapse
|
50
|
Haralampidis K, Trojanowska M, Osbourn AE. Biosynthesis of triterpenoid saponins in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 75:31-49. [PMID: 11783842 DOI: 10.1007/3-540-44604-4_2] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many different plant species synthesise triterpenoid saponins as part of their normal programme of growth and development. Examples include plants that are exploited as sources of drugs, such as liquorice and ginseng, and also crop plants such as legumes and oats. Interest in these molecules stems from their medicinal properties, antimicrobial activity, and their likely role as determinants of plant disease resistance. Triterpenoid saponins are synthesised via the isoprenoid pathway by cyclization of 2,3-oxidosqualene to give primarily oleanane (beta-amyrin) or dammarane triterpenoid skeletons. The triterpenoid backbone then undergoes various modifications (oxidation, substitution and glycosylation), mediated by cytochrome P450-dependent monooxygenases, glycosyltransferases and other enzymes. In general very little is known about the enzymes and biochemical pathways involved in saponin biosynthesis. The genetic machinery required for the elaboration of this important family of plant secondary metabolites is as yet largely uncharacterised, despite the considerable commercial interest in this important group of natural products. This is likely to be due in part to the complexity of the molecules and the lack of pathway intermediates for biochemical studies. Considerable advances have recently been made, however, in the area of 2,3-oxidosqualene cyclisation, and a number of genes encoding the enzymes that give rise to the diverse array of plant triterpenoid skeletons have been cloned. Progress has also been made in the characterisation of saponin glucosyltransferases. This review outlines these developments, with particular emphasis on triterpenoid saponins.
Collapse
|