1
|
Balthazart J. Photoperiodism, testosterone and adult neurogenesis in canaries (Serinus canaria). J Neuroendocrinol 2024:e13449. [PMID: 39286957 DOI: 10.1111/jne.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Domestic strains of canaries (Serinus canaria) variably respond to photoperiod changes and apparently stay in breeding state for extended periods. Fife Fancy canaries are supposed to be similar to the native species living at 27-39° north where photoperiod significantly changes across the year. Our birds showed reproductive cycles when exposed to light regimes mimicking the annual cycle of photoperiod. However after 6 months in short days (SD: 8L:16D), males developed large testes, as observed by X-ray tomography, and intense singing. Switching to long days (LD: 16L:8D) did not further increase song rate nor testes size but increased song duration, number of syllables per song, and trill occurrence frequency. No sign of regression was observed after 12 weeks in LD but return to SD produced a rapid decrease in testes size and singing activity below values in birds maintained throughout in SD. Fife Fancy thus does not seem to develop absolute but only relative refractoriness. The relatively high singing activity expressed by SD-photosensitive males does not seem to depend on high testosterone (T) concentrations. Singing did not correlate with plasma testosterone (T). Treatment with ATD + Flutamide only marginally decreased song rate and did not affect song quality nor song control nuclei volume. These birds are either supersensitive to low T levels or their reproductive physiology is activated by other mechanisms. Neurogenesis is increased by T and by LD but the function of new neurons incorporated in HVC is poorly understood. We developed a procedure based on X-ray focal irradiation to deplete neural progenitors adjacent to HVC and study the functional consequences. The decrease in neurogenesis increased the variability of T-induced songs in females and decreased their bandwidth. Neurogenesis in HVC thus plays a role in song production and X-ray focal irradiation represents an excellent tool to analyze adult neurogenesis.
Collapse
|
2
|
Balthazart J. Steroid-dependent plasticity in the song control system: Perineuronal nets and HVC neurogenesis. Front Neuroendocrinol 2023; 71:101097. [PMID: 37611808 PMCID: PMC10841294 DOI: 10.1016/j.yfrne.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The vocal control nucleus HVC in songbirds has emerged as a widespread model system to study adult brain plasticity in response to changes in the hormonal and social environment. I review here studies completed in my laboratory during the last decade that concern two aspects of this plasticity: changes in aggregations of extracellular matrix components surrounding the soma of inhibitory parvalbumin-positive neurons called perineuronal nets (PNN) and the production/incorporation of new neurons. Both features are modulated by the season, age, sex and endocrine status of the birds in correlation with changes in song structure and stability. Causal studies have also investigated the role of PNN and of new neurons in the control of song. Dissolving PNN with chondroitinase sulfate, a specific enzyme applied directly on HVC or depletion of new neurons by focalized X-ray irradiation both affected song structure but the amplitude of changes was limited and deserves further investigations.
Collapse
|
3
|
Hayase S, Shao C, Kobayashi M, Mori C, Liu WC, Wada K. Seasonal regulation of singing-driven gene expression associated with song plasticity in the canary, an open-ended vocal learner. Mol Brain 2021; 14:160. [PMID: 34715888 PMCID: PMC8556994 DOI: 10.1186/s13041-021-00869-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
Songbirds are one of the few animal taxa that possess vocal learning abilities. Different species of songbirds exhibit species-specific learning programs during song acquisition. Songbirds with open-ended vocal learning capacity, such as the canary, modify their songs during adulthood. Nevertheless, the neural molecular mechanisms underlying open-ended vocal learning are not fully understood. We investigated the singing-driven expression of neural activity-dependent genes (Arc, Egr1, c-fos, Nr4a1, Sik1, Dusp6, and Gadd45β) in the canary to examine a potential relationship between the gene expression level and the degree of seasonal vocal plasticity at different ages. The expression of these genes was differently regulated throughout the critical period of vocal learning in the zebra finch, a closed-ended song learner. In the canary, the neural activity-dependent genes were induced by singing in the song nuclei throughout the year. However, in the vocal motor nucleus, the robust nucleus of the arcopallium (RA), all genes were regulated with a higher induction rate by singing in the fall than in the spring. The singing-driven expression of these genes showed a similar induction rate in the fall between the first year juvenile and the second year adult canaries, suggesting a seasonal, not age-dependent, regulation of the neural activity-dependent genes. By measuring seasonal vocal plasticity and singing-driven gene expression, we found that in RA, the induction intensity of the neural activity-dependent genes was correlated with the state of vocal plasticity. These results demonstrate a correlation between vocal plasticity and the singing-driven expression of neural activity-dependent genes in RA through song development, regardless of whether a songbird species possesses an open- or closed-ended vocal learning capacity.
Collapse
Affiliation(s)
- Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Kobayashi
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Mori
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo, Japan
| | - Wan-Chun Liu
- Department of Psychology, Colgate University, Hamilton, NY, USA
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan. .,Department of Biological Sciences, Hokkaido University, Sapporo, Hokkaido, Japan. .,Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
4
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
5
|
Larson TA, Thatra NM, Hou D, Hu RA, Brenowitz EA. Seasonal changes in neuronal turnover in a forebrain nucleus in adult songbirds. J Comp Neurol 2018; 527:767-779. [PMID: 30291632 DOI: 10.1002/cne.24552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023]
Abstract
Neuronal death and replacement, or neuronal turnover, in the adult brain are one of many fundamental processes of neural plasticity. The adult avian song control circuit provides an excellent model for exploring mature neuronal death and replacement by new neurons. In the song control nucleus, HVC of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelli) nearly 68,000 neurons are added each breeding season and die during the subsequent nonbreeding season. To accommodate large seasonal differences in HVC neuron number, the balance between neuronal addition and death in HVC must differ between seasons. To determine whether maintenance of new HVC neurons changes within and between breeding and nonbreeding conditions, we pulse-labeled two different cohorts of new HVC neurons under both conditions and quantified their maintenance. We show that the maintenance of new HVC neurons, as well as new nonneuronal cells, was higher at the onset of breeding conditions than at the onset of nonbreeding conditions. Once a steady-state HVC volume and neuronal number were attained in either breeding or nonbreeding conditions, neuronal and nonneuronal maintenance were similarly low. We found that new neuronal number correlated with a new nonneuronal number within each cohort of new neurons. Together, these data suggest that sex steroids promote the survival of an initial population of new neurons and nonneuronal cells entering HVC. However, once HVC is fully grown or regressed, neuronal and nonneuronal cell turnover is regulated by a common mechanism likely independent of direct sex steroid signaling.
Collapse
Affiliation(s)
- Tracy A Larson
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| | - Nivretta M Thatra
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| | - Daren Hou
- Department of Psychology, University of Washington, Seattle, Washington
| | - Rachael A Hu
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| | - Eliot A Brenowitz
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Recurrent development of song idiosyncrasy without auditory inputs in the canary, an open-ended vocal learner. Sci Rep 2018; 8:8732. [PMID: 29880843 PMCID: PMC5992164 DOI: 10.1038/s41598-018-27046-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
Complex learned behaviors, like bird song and human speech, develop under the influence of both genetic and environmental factors. Accordingly, learned behaviors comprise species specificity and individual variability. Auditory information plays a critical role in vocal learning by songbirds, both to memorize tutor songs and to monitor own vocalizations. Nevertheless, audition-deprived songbirds develop structured, species-specific song patterns. It remains to be elucidated how the auditory input contributes to the development of individual variability of song characteristics. Here we show that an open-ended vocal learner, the canary, annually recapitulates individually unique songs without audition. Although the total number of syllable types was reduced by auditory deprivation, other vocal phenotypes examined in the syllable, phrase, and syntax of songs were conserved between the 1st and 2nd years, both in deafened and intact birds. In deafened canaries, approximately 60% of the syllables were yearly reproduced with consistent acoustic features, whereas the remaining syllables were replaced with new ones in an annual cycle of song development. These results indicate that the open-ended vocal learning of canaries involves an audition-independent mechanism for the development of recurrent song idiosyncrasy.
Collapse
|
7
|
Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol 2018; 170:53-66. [PMID: 29631023 DOI: 10.1016/j.pneurobio.2018.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades, evidence has accumulated that neurogenesis can occur in both the juvenile and adult mammalian hypothalamus. Levels of hypothalamic neurogenesis can be regulated by dietary, environmental and hormonal signals. Since the hypothalamus has a central role in controlling a broad range of homeostatic physiological processes, these findings may have far ranging behavioral and medical implications. However, many questions in the field remain unresolved, including the cells of origin of newborn hypothalamic neurons and the extent to which these cells actually regulate hypothalamic-controlled behaviors. In this manuscript, we conduct a critical review of the literature on postnatal hypothalamic neurogenesis in mammals, lay out the main outstanding controversies in the field, and discuss how best to advance our knowledge of this fascinating but still poorly understood process.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Adult Neurogenesis Leads to the Functional Reconstruction of a Telencephalic Neural Circuit. J Neurosci 2017; 36:8947-56. [PMID: 27559175 DOI: 10.1523/jneurosci.0553-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/08/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Seasonally breeding songbirds exhibit pronounced annual changes in song behavior, and in the morphology and physiology of the telencephalic neural circuit underlying production of learned song. Each breeding season, new adult-born neurons are added to the pallial nucleus HVC in response to seasonal changes in steroid hormone levels, and send long axonal projections to their target nucleus, the robust nucleus of the arcopallium (RA). We investigated the role that adult neurogenesis plays in the seasonal reconstruction of this circuit. We labeled newborn HVC neurons with BrdU, and RA-projecting HVC neurons (HVCRA) with retrograde tracer injected in RA of adult male white-crowned sparrows (Zonotrichia leucophrys gambelii) in breeding or nonbreeding conditions. We found that there were many more HVCRA neurons in breeding than nonbreeding birds. Furthermore, we observed that more newborn HVC neurons were back-filled by the tracer in breeding animals. Behaviorally, song structure degraded as the HVC-RA circuit degenerated, and recovered as the circuit regenerated, in close correlation with the number of new HVCRA neurons. These results support the hypothesis that the HVC-RA circuit degenerates in nonbreeding birds, and that newborn neurons reconstruct the circuit in breeding birds, leading to functional recovery of song behavior. SIGNIFICANCE STATEMENT We investigated the role that adult neurogenesis plays in the seasonal reconstruction of a telencephalic neural circuit that controls song behavior in white-crowned sparrows. We showed that nonbreeding birds had a 36%-49% reduction in the number of projection neurons compared with breeding birds, and the regeneration of the circuit in the breeding season is due to the integration of adult-born projection neurons. Additionally, song structure degraded as the circuit degenerated and recovered as the circuit regenerated, in close correlation with new projection neuron number. This study demonstrates that steroid hormones can help reestablish functional neuronal circuits following degeneration in the adult brain and shows non-injury-induced degeneration and reconstruction of a neural circuit critical for producing a learned behavior.
Collapse
|
9
|
Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone-induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. Eur J Neurosci 2017; 45:886-900. [DOI: 10.1111/ejn.13530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Olesya T. Shevchouk
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Samar Ghorbanpoor
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Gregory F. Ball
- Department of Psychology; University of Maryland; College Park MD USA
| | - Charlotte A. Cornil
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Jacques Balthazart
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| |
Collapse
|
10
|
Balthazart J, Ball GF. Endocrine and social regulation of adult neurogenesis in songbirds. Front Neuroendocrinol 2016; 41:3-22. [PMID: 26996818 DOI: 10.1016/j.yfrne.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
The identification of pronounced seasonal changes in the volume of avian song control nuclei stimulated the discovery of adult neurogenesis in songbirds as well as renewed studies in mammals including humans. Neurogenesis in songbirds is modulated by testosterone and other factors such as photoperiod, singing activity and social environment. Adult neurogenesis has been widely studied by labeling, with tritiated thymidine or its analog BrdU, cells duplicating their DNA in anticipation of their last mitotic division and following their fate as new neurons. New methods based on endogenous markers of cell cycling or of various stages of neuronal life have allowed for additional progress. In particular immunocytochemical visualization of the microtubule-associated protein doublecortin has provided an integrated view of neuronal replacement in the song control nucleus HVC. Multiple questions remain however concerning the specific steps in the neuronal life cycle that are modulated by various factors and the underlying cellular mechanisms.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
11
|
Larson TA, Lent KL, Bammler TK, MacDonald JW, Wood WE, Caras ML, Thatra NM, Budzillo A, Perkel DJ, Brenowitz EA. Network analysis of microRNA and mRNA seasonal dynamics in a highly plastic sensorimotor neural circuit. BMC Genomics 2015; 16:905. [PMID: 26545368 PMCID: PMC4636775 DOI: 10.1186/s12864-015-2175-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/31/2015] [Indexed: 12/31/2022] Open
Abstract
Background Adult neurogenesis and the incorporation of adult-born neurons into functional circuits requires precise spatiotemporal coordination across molecular networks regulating a wide array of processes, including cell proliferation, apoptosis, neurotrophin signaling, and electrical activity. MicroRNAs (miRs) - short, non-coding RNA sequences that alter gene expression by post-transcriptional inhibition or degradation of mRNA sequences - may be involved in the global coordination of such diverse biological processes. To test the hypothesis that miRs related to adult neurogenesis and related cellular processes are functionally regulated in the nuclei of the avian song control circuit, we used microarray analyses to quantify changes in expression of miRs and predicted target mRNAs in the telencephalic nuclei HVC, the robust nucleus of arcopallium (RA), and the basal ganglia homologue Area X in breeding and nonbreeding Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelli). Results We identified 46 different miRs that were differentially expressed across seasons in the song nuclei. miR-132 and miR-210 showed the highest differential expression in HVC and Area X, respectively. Analyzing predicted mRNA targets of miR-132 identified 33 candidate target genes that regulate processes including cell cycle control, calcium signaling, and neuregulin signaling in HVC. Likewise, miR-210 was predicted to target 14 mRNAs differentially expressed across seasons that regulate serotonin, GABA, and dopamine receptor signaling and inflammation. Conclusions Our results identify potential miR–mRNA regulatory networks related to adult neurogenesis and provide opportunities to discover novel genetic control of the diverse biological processes and factors related to the functional incorporation of new neurons to the adult brain. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2175-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tracy A Larson
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.,Present Address: Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Karin L Lent
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - William E Wood
- Department of Otolaryngology, University of Washington, Seattle, WA, 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA.,Present address: Centre National de la Recherche Scientifique, Laboratoire de Neurophysique et Physiologie, UMR 8119, Université Paris Descartes, 45, rue des Saints Pères, 75006, Paris, France
| | - Melissa L Caras
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA.,Present address: Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Nivretta M Thatra
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.,Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Agata Budzillo
- Department of Otolaryngology, University of Washington, Seattle, WA, 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA
| | - David J Perkel
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.,Department of Otolaryngology, University of Washington, Seattle, WA, 98195, USA
| | - Eliot A Brenowitz
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol 2015; 524:646-64. [PMID: 26417888 DOI: 10.1002/cne.23896] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022]
Abstract
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn F Sorrells
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA.,University of California, San Francisco, CA, 94143, USA
| | - Jose M Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
13
|
Abstract
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| | - Tracy A Larson
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
14
|
Brenowitz EA. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity. Front Neuroendocrinol 2015; 37:119-28. [PMID: 25285401 PMCID: PMC4385747 DOI: 10.1016/j.yfrne.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022]
Abstract
The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Psychology and Biology, and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, United States.
| |
Collapse
|
15
|
Asik K, Rao JL, Kirn JR. A method for exploring adult neurogenesis in the songbird brain. Cold Spring Harb Protoc 2014; 2014:1259-66. [PMID: 25342069 DOI: 10.1101/pdb.prot084590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The avian brain is a valuable model for exploring adult neurogenesis. Here we use immunohistochemical methods to detect cell division and the incorporation of new neurons in the adult zebra finch brain. The nonradioactive, relatively inexpensive thymidine analog bromodeoxyuridine (BrdU) is used to label replicating DNA in dividing cells. The brain is harvested, fixed, and dehydrated before being embedded in polyethylene glycol (PEG), which results in superior histology compared to frozen specimens. After the PEG-embedded brain tissue is sectioned and mounted on slides, standard immunohistochemical procedures are used to detect both BrdU and the neuron-specific marker Hu.
Collapse
Affiliation(s)
- Kemal Asik
- Department of Biology, Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jiang Liu Rao
- Department of Biology, Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut 06459
| | - John R Kirn
- Department of Biology, Neuroscience & Behavior Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
16
|
Makantasi P, Dermon CR. Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain. Neuroscience 2014; 277:306-20. [PMID: 25034512 DOI: 10.1016/j.neuroscience.2014.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/20/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
While estrogens are known to play a crucial role in the neurogenesis of the mammalian and avian brain, their role in teleost adult proliferation pattern is not yet fully understood. The present study aimed to determine the estrogen effects in adult brain proliferation zones, using zebrafish, as a model organism. Indeed, teleost fish brain provides a unique adult neurogenesis model, based on its extensive proliferation, contrasting the restricted adult telencephalic neurogenesis observed in birds and mammals. To determine the effect of estrogens, 17-β estradiol was administrated for 7 days in adult female zebrafish, followed by bromodeoxyuridine (BrdU)-immunohistochemistry and double immunofluorescence. Stereological analyses of the BrdU-positive cells within the neurogenic zones, showed region-specific decreases of actively proliferating cells in the estrogen-treated animals, compared to matched controls. Interestingly, the most prominent estradiol effects were found in the number of cycling cells of the ventral nucleus of ventral telencephalic area (Vv) and cerebellar areas. Significant decreases were also determined in the dorso-lateral telencephalic, preoptic and dorsal hypothalamic areas. In contrast, medial dorsal telencephalic, caudal (Hc) and ventral (Hv) hypothalamic areas were unaffected by estrogen treatment. The majority of the BrdU-labeled cells were found to co-express PCNA proliferating marker in Hc, Hv and Vv. Additionally, a population of proliferating cells co-expressed the early neuronal marker TOAD in all areas studied. These results provide significant evidence on the 17-β estradiol impact on adult neurogenesis, down-regulating the fast-cycling and post-mitotic cells within the female zebrafish brain neurogenetic zones.
Collapse
Affiliation(s)
- P Makantasi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece
| | - C R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece.
| |
Collapse
|
17
|
Ottem EN, Bailey DJ, Jordan CL, Breedlove SM. With a little help from my friends: androgens tap BDNF signaling pathways to alter neural circuits. Neuroscience 2012; 239:124-38. [PMID: 23262234 DOI: 10.1016/j.neuroscience.2012.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022]
Abstract
Gonadal androgens are critical for the development and maintenance of sexually dimorphic regions of the male nervous system, which is critical for male-specific behavior and physiological functioning. In rodents, the motoneurons of the spinal nucleus of the bulbocavernosus (SNB) provide a useful example of a neural system dependent on androgen. Unless rescued by perinatal androgens, the SNB motoneurons will undergo apoptotic cell death. In adulthood, SNB motoneurons remain dependent on androgen, as castration leads to somal atrophy and dendritic retraction. In a second vertebrate model, the zebra finch, androgens are critical for the development of several brain nuclei involved in song production in males. Androgen deprivation during a critical period during postnatal development disrupts song acquisition and dimorphic size-associated nuclei. Mechanisms by which androgens exert masculinizing effects in each model system remain elusive. Recent studies suggest that brain-derived neurotrophic factor (BDNF) may play a role in androgen-dependent masculinization and maintenance of both SNB motoneurons and song nuclei of birds. This review aims to summarize studies demonstrating that BDNF signaling via its tyrosine receptor kinase (TrkB) receptor may work cooperatively with androgens to maintain somal and dendritic morphology of SNB motoneurons. We further describe studies that suggest the cellular origin of BDNF is of particular importance in androgen-dependent regulation of SNB motoneurons. We review evidence that androgens and BDNF may synergistically influence song development and plasticity in bird species. Finally, we provide hypothetical models of mechanisms that may underlie androgen- and BDNF-dependent signaling pathways.
Collapse
Affiliation(s)
- E N Ottem
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA.
| | | | | | | |
Collapse
|
18
|
Testosterone and brain-derived neurotrophic factor interactions in the avian song control system. Neuroscience 2012; 239:115-23. [PMID: 23123886 DOI: 10.1016/j.neuroscience.2012.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/20/2022]
Abstract
Interaction between steroid sex hormones and brain-derived neurotrophic factor (BDNF) is a common feature of vertebrate brain organization. The avian song control system provides an excellent model for studying such interactions in neural circuits that regulate song, a learned sensorimotor behavior that is often sexually dimorphic and restricted to reproductive contexts. Testosterone (T) and its steroid metabolites interact with BDNF during development of the song system and in adult plasticity, including the addition of newborn neurons to the pallial nucleus HVC and seasonal changes in structure and function of these circuits. T and BDNF interact locally within HVC to influence cell proliferation and survival. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released on to postsynaptic cells in the robust nucleus of the arcopallium (RA) where it has trophic effects. The interaction between sex steroids and BDNF is an example of molecular exploitation, with the evolutionarily ancient steroid-receptor complex having been captured by the more recently evolved BDNF. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin in sexually dimorphic and reproductively relevant contexts.
Collapse
|
19
|
Adult neuron addition to the zebra finch song motor pathway correlates with the rate and extent of recovery from botox-induced paralysis of the vocal muscles. J Neurosci 2012; 31:16958-68. [PMID: 22114266 DOI: 10.1523/jneurosci.2971-11.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In adult songbirds, neurons are continually incorporated into the telencephalic nucleus HVC (used as a proper name), a premotor region necessary for the production of learned vocalizations. Previous studies have demonstrated that neuron addition to HVC is highest when song is most variable: in juveniles during song learning, in seasonally singing adults during peaks in plasticity that precede the production of new song components, or during seasonal reestablishment of a previously learned song. These findings suggest that neuron addition provides motor flexibility for the transition from a variable song to a target song. Here we test the association between the quality of song structure and HVC neuron addition by experimentally manipulating syringeal muscle control with Botox, which produces a transient partial paralysis. We show that the quality of song structure covaries with new neuron addition to HVC. Both the magnitude of song distortion and the rate of song recovery after syringeal Botox injections were correlated with the number of new neurons incorporated into HVC. We suggest that the quality of song structure is either a cause or consequence of the number of new neurons added to HVC. Birds with naturally high rates of neuron addition may have had the greatest success in recovering song. Alternatively, or in addition, new neuron survival in the song motor pathway may be regulated by the quality of song-generated feedback as song regains its original stereotyped structure. Present results are the first to show a relationship between peripheral muscle control and adult neuron addition to cortical premotor circuits.
Collapse
|
20
|
Barker JM, Boonstra R, Wojtowicz JM. From pattern to purpose: how comparative studies contribute to understanding the function of adult neurogenesis. Eur J Neurosci 2012; 34:963-77. [PMID: 21929628 DOI: 10.1111/j.1460-9568.2011.07823.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The study of adult neurogenesis has had an explosion of fruitful growth. Yet numerous uncertainties and challenges persist. Our review begins with a survey of species that show evidence of adult neurogenesis. We then discuss how neurogenesis varies across brain regions and point out that regional specializations can indicate functional adaptations. Lifespan and aging are key life-history traits. Whereas 'adult neurogenesis' is the common term in the literature, it does not reflect the reality of neurogenesis being primarily a 'juvenile' phenomenon. We discuss the sharp decline with age as a universal trait of neurogenesis with inevitable functional consequences. Finally, the main body of the review focuses on the function of neurogenesis in birds and mammals. Selected examples illustrate how our understanding of avian and mammalian neurogenesis can complement each other. It is clear that although the two phyla have some common features, the function of adult neurogenesis may not be similar between them and filling the gaps will help us understand neurogenesis as an evolutionarily conserved trait to meet particular ecological pressures.
Collapse
Affiliation(s)
- Jennifer M Barker
- GIGA Neurosciences, University of Liège, 1 avenue de l'Hôpital, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
21
|
Androgens and estrogens synergistically regulate the expression of doublecortin and enhance neuronal recruitment in the song system of adult female canaries. J Neurosci 2011; 31:9649-57. [PMID: 21715630 DOI: 10.1523/jneurosci.0088-11.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic (17β-estradiol; E(2)) metabolites. In male canaries, T regulates expression of the microtubule-associated protein doublecortin (DCX), a marker of neurogenesis. We examined the effect of T and its two metabolites alone or in combination on DCX expression in adult female canaries. Treatment with T or with DHT+E(2) increased HVC volume and neuron numbers as well as the total numbers of fusiform (migrating) and round (differentiating) DCX neurons in the nucleus but generally not in adjacent areas. DHT or E(2) alone did not increase these measures but increased the density of fusiform DCX cells per section. Similar results were observed in area X, although some effects did not reach significance, presumably because plasticity in X is mediated transsynaptically and follows HVC changes with some delay. There was no effect of any treatment on the total number of neurons in area X, and no change in DCX cell densities was detected in the lateral magnocellular nucleus of the anterior nidopallium, nor in other parts of the nidopallium. DHT and E(2) by themselves thus increase density of DCX cells migrating through HVC but are not sufficient in isolation to induce the recruitment of these newborn neurons in the nucleus. These effects are generally not observed in the rest of the nidopallium, implying that steroids only act on the attraction and recruitment of new neurons in HVC without having any major effects on their production at the ventricle wall.
Collapse
|
22
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|
23
|
Cheng MF, Alexander K, Zhou S, Bonder E, Chuang LS. Newborn GnRH neurons in the adult forebrain of the ring dove. Horm Behav 2011; 60:94-104. [PMID: 21443878 DOI: 10.1016/j.yhbeh.2011.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 03/15/2011] [Accepted: 03/19/2011] [Indexed: 10/18/2022]
Abstract
The preoptic area of the hypothalamus is a key area that produces gonadotrophin-releasing hormone (GnRH). In birds, the chicken GnRH-I-form neurons are responsible for the hypothalamus-pituitary-gonadal system, which controls reproduction. In the ring dove, electrolytic lesion in the adult hypothalamus induces neurogenesis. In this study, we determined whether adult neurogenesis is involved in repairing GnRH neurons, specifically by generating newborn cells exhibiting GnRH-I immunoreactive properties. We selectively applied electrolytic lesions to three different regions of the diencephalon, including the preoptic area, which contains GnRH-I neurons, and identified new cells (BrdU-positive cells) that co-labeled with GnRH-I-immunoreactive cells. The BrdU(+)/GnRH(+) double labeled cells were then confirmed with confocal laser analysis. In brains of both male and female ring doves we found new neurons at the lesion site of the preoptic region that were GnRH-I immunoreactive. However, the total number of GnRH neurons in the lesioned brains was less than that of sham-lesioned brains. When two other regions of the diencephalon that contain GnRH-I neurons were damaged, no recruitment of new GnRH-I neurons was detected. The rate of neurogenesis depends on the bird's reproductive phase when the lesion was applied. We found BrdU(+)/GnRH(+) double-labeled cells almost exclusively during the pre-laying phase when birds are engaged in active courtship that leads to egg laying. Our observations suggest that recruitment of GnRH immunoreactive new neurons is restricted to the hypothalamic region and is sensitive to the reproductive stage of the birds.
Collapse
Affiliation(s)
- Mei-Fang Cheng
- Department of Psychology, Rutgers University, Newark, NJ 07102, USA.
| | | | | | | | | |
Collapse
|
24
|
Gunaratne PH, Lin YC, Benham AL, Drnevich J, Coarfa C, Tennakoon JB, Creighton CJ, Kim JH, Milosavljevic A, Watson M, Griffiths-Jones S, Clayton DF. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics 2011; 12:277. [PMID: 21627805 PMCID: PMC3118218 DOI: 10.1186/1471-2164-12-277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs) may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. RESULTS In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192) and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p). We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan) to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. CONCLUSIONS The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.
Collapse
Affiliation(s)
- Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vellema M, van der Linden A, Gahr M. Area-specific migration and recruitment of new neurons in the adult songbird brain. J Comp Neurol 2010; 518:1442-59. [DOI: 10.1002/cne.22281] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Matsunaga E, Okanoya K. Evolution and diversity in avian vocal system: An Evo-Devo model from the morphological and behavioral perspectives. Dev Growth Differ 2009; 51:355-67. [DOI: 10.1111/j.1440-169x.2009.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Kaslin J, Ganz J, Brand M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2008; 363:101-22. [PMID: 17282988 PMCID: PMC2605489 DOI: 10.1098/rstb.2006.2015] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.
Collapse
Affiliation(s)
| | | | - Michael Brand
- Biotechnology Centre and Centre for Regenerative Therapies Dresden, Dresden University of TechnologyTatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
28
|
Scotto-Lomassese S, Rochefort C, Nshdejan A, Scharff C. HVC interneurons are not renewed in adult male zebra finches. Eur J Neurosci 2007; 25:1663-8. [PMID: 17408434 DOI: 10.1111/j.1460-9568.2007.05418.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adult neurogenesis is a widespread phenomenon in many species, from invertebrates to humans. In songbirds, the telencephalic region, high vocal center (HVC), continuously integrates new neurons in adulthood. This nucleus consists of a heterogenous population of inhibitory interneurons (HVC(IN)) and two populations of projection neurons that send axons towards either the robust nucleus of the arcopallium (HVC(RA)) or the striatal nucleus area X (HVC(X)). New HVC neurons were initially inferred to be interneurons, because they lacked retrograde labelling from the HVC's targets. Later studies using different tracers demonstrated that HVC(RA) are replaced but HVC(X) are not. Whether interneurons are also renewed became an open question. As the HVC's neuronal populations display different physiological properties and functions, we asked whether adult HVC indeed recruits two neuronal populations or whether only the HVC(RA) undergo renewal in adult male zebra finches. We show that one month after being born in the lateral ventricle, 42% of the newborn HVC neurons were retrogradely labelled by tracer injections into the RA. However, the remaining 58% were not immunoreactive for the neurotransmitter GABA, nor for the calcium-binding proteins, parvalbumin (PA), calbindin (CB) and calretinin (CR) that characterize different classes of HVC(IN). We further established that simultaneous application of parvalbumin, calbindin and calretinin antibodies to HVC revealed approximately the same fraction of HVC neurons, i.e. 10%, as could be detected by GABA immunoreactivity. This implies that the sum of HVC(IN) expressing the different calcium-binding proteins constitute all inhibitory HVC(IN). Together these results strongly suggest that only HVC(RA) are recruited into the adult HVC.
Collapse
|
29
|
Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 2006; 295:263-77. [PMID: 16682018 DOI: 10.1016/j.ydbio.2006.03.040] [Citation(s) in RCA: 421] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 03/28/2006] [Accepted: 03/30/2006] [Indexed: 02/06/2023]
Abstract
Lifelong neurogenesis in vertebrates relies on stem cells producing proliferation zones that contain neuronal precursors with distinct fates. Proliferation zones in the adult zebrafish brain are located in distinct regions along its entire anterior-posterior axis. We show a previously unappreciated degree of conservation of brain proliferation patterns among teleosts, suggestive of a teleost ground plan. Pulse chase labeling of proliferating populations reveals a centrifugal movement of cells away from their places of birth into the surrounding mantle zone. We observe tangential migration of cells born in the ventral telencephalon, but only a minor rostral migratory stream to the olfactory bulb. In contrast, the lateral telencephalic area, a domain considered homologous to the mammalian dentate gyrus, shows production of interneurons and migration as in mammals. After a 46-day chase, newborn highly mobile cells have moved into nuclear areas surrounding the proliferation zones. They often show HuC/D immunoreactivity but importantly also more specific neuronal identities as indicated by immunoreactivity for tyrosine hydroxylase, serotonin and parvalbumin. Application of a second proliferation marker allows us to recognize label-retaining, actively cycling cells that remain in the proliferation zones. The latter population meets two key criteria of neural stem cells: label retention and self renewal.
Collapse
Affiliation(s)
- Heiner Grandel
- Biotechnology Center and Center for Regenerative Therapies, University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
30
|
Abstract
Neurons continue to be produced and replaced throughout life in songbirds. Proliferation in the walls of the lateral ventricles gives rise to neurons that migrate long distances to populate many diverse telencephalic regions, including nuclei dedicated to the perception and production of song, a learned behavior. Many projection neurons are incorporated into the efferent motor pathway for song control. Replacement of these neurons is regulated, in part, by neuron death. Underlying mechanisms include gonadal steroids and BDNF, but are likely to involve other trophic factors as well. The functional significance of neuronal replacement remains unclear. However, recent experiments suggest a link between cell turnover and one or more specific attributes of song learning and production. Several hypotheses are critically examined, including the possibility that neuronal replacement provides motor flexibility to allow for error correction-a capacity needed for juvenile and adult song learning, but also likely to be important for the maintenance of song stereotypy. We highlight important gaps in our knowledge and discuss future directions that may bring us closer to solving the riddle of why neurons are produced and replaced in adulthood.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Svoboda Laboratory, Cold Spring Harbor Laboratory, NY 11724, USA
| | | |
Collapse
|
31
|
Nottebohm F. The Road We Travelled: Discovery, Choreography, and Significance of Brain Replaceable Neurons. Ann N Y Acad Sci 2004; 1016:628-58. [PMID: 15313798 DOI: 10.1196/annals.1298.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurons are constantly added to the telencephalon of songbirds. In the high vocal center (HVC), where this has been studied, new neurons replace older ones that died. Peaks in replacement are seasonal and affect some neuronal classes but not others. Peaks in replacement coincide with peaks in information acquisition. The new neurons are produced by division of cells in the wall of the lateral ventricle. Where studied closely, the neuronal stem cells proved to be radial glia. Life expectancy of the new neurons ranges from weeks to months. New neuron survival is regulated by vacancies, hormones, and activity. The immediate agent of new neuron survival is, in some cases, brain-derived neurotrophic factor (BDNF). The effect of BDNF is maximal 14-20 days after the cells are born, when they are establishing their connections. These observations are now being extended to other vertebrates and may apply, to varying degrees, to all of them. The function of neuronal replacement in healthy adult brain remains unclear. If synaptic number and efficacy sufficed as mechanisms for long-term memory storage and could be adjusted again and again to incorporate new memories, then neuronal replacement would seem unnecessary. Since it occurs, it seems reasonable to suppose that replacement serves to maintain learning potential in a way that could not be done just by synaptic change. Long-term memories may be encoded by long-term changes in gene expression akin to a last step in cell differentiation. If so, neuronal replacement may be the adult brain's way of striking a balance between limited memory space and the need to acquire new memories. The testing of this hypothesis remains in the future. This chapter tells how neuronal replacement was discovered in the adult songbird brain.
Collapse
Affiliation(s)
- Fernando Nottebohm
- The Rockefeller University, Field Research Center, Tyrrel Road, Millbrook, NY 12545, USA.
| |
Collapse
|
32
|
Alvarez-Borda B, Haripal B, Nottebohm F. Timing of brain-derived neurotrophic factor exposure affects life expectancy of new neurons. Proc Natl Acad Sci U S A 2004; 101:3957-61. [PMID: 15004273 PMCID: PMC374351 DOI: 10.1073/pnas.0308118101] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The high vocal center (HVC) of adult male canaries, Serinus canaria, is necessary for the production of learned song. New neurons are added to HVC every day, where they replace older neurons that have died, but the length of their survival depends on the time of year when they are born. A great number of HVC neurons born in the fall, when adult canaries learn a new song, are still present 8 mo later, when this song is used during the breeding season. By contrast, most of the neurons born in HVC in the spring, when little song learning takes place, disappear much sooner. Here we show that infusion of brain-derived neurotrophic factor into HVC during days 14-20 after new HVC neurons are born in the spring confers on them a life expectancy comparable to that of fall-born neurons; this extension on life is not seen when infusion occurs 10 days earlier or later. We suggest that there is, in the adult HVC, a subset of neurons whose life expectancy is determined by brain-derived neurotrophic factor during a sensitive period soon after these neurons reach destination and start forming connections.
Collapse
|
33
|
Abstract
Despite their high lifetime energy expenditures, most birds can be characterized as long-lived homeotherms with moderately slow aging. A growing body of research confirms the prediction that birds have special adaptations for preventing aging-related oxidative and glycoxidative damage. Nonetheless, biogerontologists have been slow to develop avian laboratory models. A number of domestic poultry and cage bird species represent either established or very promising animal models for studies of basic aging processes and their prevention, including degenerative neurobiological, behavioral and reproductive processes. Several kinds of birds have also been used in studies of cellular resistance to oxidative stressors in vitro. Results of preliminary studies on chickens and quail suggest that caloric restriction may extend the reproductive life span of hens, but its long-term effects on life span remain unstudied. Birds' innate anti-aging mechanisms may actually make them more suitable in some respects as models of longevity than short-lived laboratory rodents, and bird studies may ultimately reveal routes for therapeutic intervention in diseases of human aging and infertility.
Collapse
Affiliation(s)
- D J Holmes
- Department of Biological Sciences, University of Idaho, P.O. Box 443051, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
34
|
Radmilovich M, Fernández A, Trujillo-Cenóz O. Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. J Exp Biol 2003; 206:3085-93. [PMID: 12878675 DOI: 10.1242/jeb.00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spinal cords and brains--comprising dorsal cortex (DC), medial cortex (MC) and diencephalon (Dien)--of juvenile turtles acclimated to warm temperature [27-30 degrees C; warm-acclimated turtles (WATs)] revealed higher density values of bromodeoxyuridine-labeled cells (BrdU-LCs) than those acclimated to a cooler environment [5-14 degrees C; cold-acclimated turtles (CATs)]. Both populations were under the influence of the seasonal daily light-dark rhythms. Pronounced differences between WATs and CATs (independent t-test; confidence level, P<0.01) were found in the central area of the spinal gray matter and in the ependymal epithelium lining the brain ventricles. Forebrain regions (DC, MC and Dien) also revealed significant differences between WATs and CATs (independent t-test; confidence level, P<0.01-0.05). Unexplored biological clocks that may be affecting cell proliferation were equalized by performing paired experiments involving one WAT and one CAT. Both animals were injected on the same day at the same time and both were sacrificed 24 h later. These experiments confirmed that a warm environment increased cell proliferation in the CNS of turtles. Double- and triple-labeling experiments involving anti-BrdU antibody together with anti-glial protein antibodies revealed that temperature modulates not only cell populations expressing glial markers but also other cells that do not express them. As expected, in the case of short post-injection (BrdU) surviving time points, no cells were found colabeling for BrdU and NeuN (neuronal marker). The probable direct effect of temperature on the cell division rate should be analyzed together with potential indirect effects involving increased motor activity and increased food intake. The fate of the increased BrdU-LCs (death, permanence as progenitor cells or differentiation following neuronal or glial lines) remains a matter for further investigation. Results are discussed in the light of current opinions concerned with post-natal neurogenesis in vertebrates.
Collapse
Affiliation(s)
- Milka Radmilovich
- Departamento de Histología y Embriología, Facultad de Medicina, Montevideo, Uruguay ZC 11800
| | | | | |
Collapse
|
35
|
Absil P, Pinxten R, Balthazart J, Eens M. Effects of testosterone on Reelin expression in the brain of male European starlings. Cell Tissue Res 2003; 312:81-93. [PMID: 12712319 DOI: 10.1007/s00441-003-0701-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 01/10/2003] [Indexed: 02/03/2023]
Abstract
Reelin, a large glycoprotein defective in reeler mice, is assumed to determine the final location of migrating neurons in the developing brain. We studied the expression of Reelin in the brain of adult male European starlings that had been treated or not with exogenous testosterone. Reelin-immunoreactive cells and fibers were widely distributed in the forebrain including areas in and around the song control nucleus, HVC. No labeling was detected in other song control nuclei with the exception of nucleus uvaeformis, which was delineated by a dense cluster of Reelin-immunoreactive perikarya. Reelin is thus expressed in areas incorporating new neurons in adulthood, such as HVC. Reelin expression was sharply decreased by testosterone in HVC, nucleus uvaeformis and dorsal thalamus but not in other brain regions. These results are consistent with the idea that seasonal changes in Reelin expression modulate the incorporation of neurons within HVC. The presence of Reelin in other brain areas that do not incorporate new neurons in adulthood indicates, however, that this protein must play other unrelated roles in the adult brain. Additional studies should now be carried out to determine the specific role played by this protein in the seasonal plasticity of the songbird brain.
Collapse
Affiliation(s)
- Philippe Absil
- Ethology Research Group, Department of Biology, U.I.A., University of Antwerp, Wilrijk, Belgium
| | | | | | | |
Collapse
|
36
|
Abstract
In adult male zebra finches, high vocal center (HVC) neurons continuously die and are replaced. Many of these cells are projection neurons that form part of the efferent pathway controlling learned song production. Although it is known that HVC receives new neurons well into adulthood, it is unknown whether this occurs at a constant rate or declines with adult age. We used [3H]thymidine to label new HVC neurons in male zebra finches that were 3-36 months of age. Birds were killed 4 months after 3H injections to measure the long-term incorporation of new HVC neurons. HVC neurons projecting to the robust nucleus of the archistriatum (HVC-RA) were retrogradely labeled with Fluoro-Gold 4 d before death. We found a dramatic age-related decline in the number of 3H-labeled HVC-RA neurons present 4 months after cell birth dating. A similar decline in new HVC neurons was found as soon as 1 month after their formation. These results indicate that the production or early survival of adult-formed neurons decreases with age. HVC volume and total neuron number did not change with bird age, suggesting that the age-related decrease in new neuron addition was balanced by increased survivorship of neurons incorporated previously. Reliance of song structure on auditory feedback also wanes with age. We propose that with aging, fewer new cells are added as the numbers of functionally appropriate cells increase, a process that may be linked to age-related increases in motor program stability.
Collapse
|
37
|
Wang N, Hurley P, Pytte C, Kirn JR. Vocal control neuron incorporation decreases with age in the adult zebra finch. J Neurosci 2002; 22:10864-70. [PMID: 12486180 PMCID: PMC6758455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
In adult male zebra finches, high vocal center (HVC) neurons continuously die and are replaced. Many of these cells are projection neurons that form part of the efferent pathway controlling learned song production. Although it is known that HVC receives new neurons well into adulthood, it is unknown whether this occurs at a constant rate or declines with adult age. We used [3H]thymidine to label new HVC neurons in male zebra finches that were 3-36 months of age. Birds were killed 4 months after 3H injections to measure the long-term incorporation of new HVC neurons. HVC neurons projecting to the robust nucleus of the archistriatum (HVC-RA) were retrogradely labeled with Fluoro-Gold 4 d before death. We found a dramatic age-related decline in the number of 3H-labeled HVC-RA neurons present 4 months after cell birth dating. A similar decline in new HVC neurons was found as soon as 1 month after their formation. These results indicate that the production or early survival of adult-formed neurons decreases with age. HVC volume and total neuron number did not change with bird age, suggesting that the age-related decrease in new neuron addition was balanced by increased survivorship of neurons incorporated previously. Reliance of song structure on auditory feedback also wanes with age. We propose that with aging, fewer new cells are added as the numbers of functionally appropriate cells increase, a process that may be linked to age-related increases in motor program stability.
Collapse
Affiliation(s)
- Niangui Wang
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The discovery of spontaneous neuronal replacement in the adult vertebrate brain has changed the way in which we think about the biology of memory. This is because neuronal replacement is likely to have an impact on what a brain remembers and what it learns. Neuronal replacement has also changed the way in which we go about exploring new strategies for brain repair. Our new outlook on both these matters is all the more remarkable because of the pervasiveness of the earlier dogma, which for warm-blooded vertebrates relegated neurogenesis to embryonic development and, for a few neuronal classes, early postnatal life. The discovery of constant neuronal replacement in the adult brain was remarkable, too, in that it was not required by what we thought to be the logic of nervous system function. Moreover, no previous facts prepared us for it. Much of the modern theory of learning embraced the view of modifiable synapses as the key players in learning and as the repositories of memory. But if this were so, what would be the point of neuronal replacement in healthy brain tissue? In what follows, I will briefly review the work of Joseph Altman, because he was the first one to challenge the notion that new neurons were not produced in adulthood. I will then review what we know about neuronal replacement in the song system of birds, which my laboratory has studied for many years. In closing, I will offer a general theory of long-term memory that, if true, might explain why adult nervous systems constantly replace some of their neurons.
Collapse
|
39
|
García-Verdugo JM, Ferrón S, Flames N, Collado L, Desfilis E, Font E. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 2002; 57:765-75. [PMID: 12031273 DOI: 10.1016/s0361-9230(01)00769-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although evidence accumulated during the last decades has advanced our understanding of adult neurogenesis in the vertebrate brain, many aspects of this intriguing phenomenon remain controversial. Here we review the organization and cellular composition of the ventricular wall of reptiles, birds, and mammals in an effort to identify differences and commonalities among these vertebrate classes. Three major cell types have been identified in the ventricular zone of reptiles and birds: migrating (Type A) cells, radial glial (Type B) cells, and ependymal (Type E) cells. Cells similar anatomically and functionally to Types A, B, and E have also been described in the ventricular wall of mammals, which contains an additional cell type (Type C) not found in reptiles or birds. The bulk of the evidence points to a role of Type B cells as primary neural precursors (stem cells) in the three classes of living amniotic vertebrates. This finding may have implications for the development of strategies for the possible treatment of human neurological disorders.
Collapse
Affiliation(s)
- Jose Manuel García-Verdugo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Valencia, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Riters LV, Eens M, Pinxten R, Ball GF. Seasonal changes in the densities of alpha(2) noradrenergic receptors are inversely related to changes in testosterone and the volumes of song control nuclei in male European starlings. J Comp Neurol 2002; 444:63-74. [PMID: 11835182 DOI: 10.1002/cne.10131] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The functions of song and the contextual cues that elicit song change seasonally in parallel with testosterone (T) concentrations in male European starlings. T is high in spring when at least one function of male song is that of immediate mate attraction, and low outside the context of breeding, when starlings primarily use song for dominance or flock maintenance. Several brain nuclei that control song contain high densities of alpha(2)adrenergic receptors. T can regulate the density of alpha(2)adrenergic receptors in the avian brain, indicating that the density of alpha(2) adrenergic receptors within the song system might change seasonally. Although the function of seasonal brain variation is not entirely clear, in many songbirds the volumes of song nuclei are largest when T is high and males sing most. Male starlings, however, sing both when T is high and when T is low. Therefore, exploring seasonal changes in T and the volumes of song nuclei could provide insight into the function of these changes. The present study was performed to explore the relationships among T, the volumes of song nuclei, and the densities of alpha(2) adrenergic receptors within the song system of male starlings. Song nuclei (the high vocal center [HVc], robust nucleus of the archistriatum [RA], and Area X) were largest, T was highest, and the density of alpha(2) adrenergic receptors (within HVc and RA) was lowest during the breeding season. The reverse pattern was observed outside of the breeding season. These results suggest that changes in T, volumes of song nuclei, and alpha(2) receptor densities might regulate seasonal changes in song behavior or the context that will elicit song in male starlings.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
41
|
Wennstrom KL, Reeves BJ, Brenowitz EA. Testosterone treatment increases the metabolic capacity of adult avian song control nuclei. JOURNAL OF NEUROBIOLOGY 2001; 48:256-64. [PMID: 11500839 DOI: 10.1002/neu.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In songbirds, the size of brain nuclei that control song learning and production change seasonally. These changes are mainly controlled by seasonal changes in plasma testosterone (T) concentration. One hypothesis to explain why it may be adaptive for these areas to regress in the fall is that this would decrease the metabolic demand of maintaining a large song system when singing is reduced or absent. We used a marker for cellular metabolism to examine birds with regressed song nuclei and compared them to birds whose song nuclei were induced to grow by administration of exogenous T. Photorefractory male Gambel's white-crowned sparrows were captured during their autumnal migration and kept in outdoor aviaries on a natural photoperiod. We implanted birds with Silastic capsules containing T or with empty implants. Three weeks later the birds were sacrificed. We assayed the brains for cytochrome oxidase (CO) activity and measured the volume of four song nuclei: HVc, RA, 1MAN, and area X. All four nuclei increased in volume in response to T treatment. T treatment increased the metabolic capacity of area X, HVc, and RA relative to surrounding tissue but had no effect on the metabolic capacity of 1MAN. These results support the hypothesis that song nuclei are more metabolically active under the influence of T than they are when plasma T levels are low.
Collapse
Affiliation(s)
- K L Wennstrom
- Department of Psychology, University of Washington, Seattle 98195-1525, USA.
| | | | | |
Collapse
|
42
|
Leitner S, Voigt C, Garcia-Segura LM, Van't Hof T, Gahr M. Seasonal activation and inactivation of song motor memories in wild canaries is not reflected in neuroanatomical changes of forebrain song areas. Horm Behav 2001; 40:160-8. [PMID: 11534977 DOI: 10.1006/hbeh.2001.1700] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seasonal, testosterone-dependent changes in sexual behaviors are common in male vertebrates. In songbirds such seasonal changes occur in a learned behavior--singing. Domesticated male canaries (Serinus canaria) appear to lose song units (syllables) after the breeding season and learn new ones until the next breeding season. Here we demonstrate in a longitudinal field study of individual, free-living nondomesticated (wild) canaries (S. canaria) a different mode of seasonal behavioral plasticity, seasonal activation, and inactivation of auditory-motor memories. The song repertoire composition of wild canaries changes seasonally: about 25% of the syllables are sung seasonally; the remainder occur year-round, despite seasonal changes in the temporal patterns of song. In the breeding season, males sing an increased number of fast frequency-modulated syllables, which are sexually attractive for females, in correlation with seasonally increased testosterone levels. About 50% of the syllables that were lost after one breeding season reappear in the following breeding season. Furthermore, some identical syllable sequences are reactivated on an annual basis. The seasonal plasticity in vocal behavior occurred despite the gross anatomical and ultrastructural stability of the forebrain song control areas HVc and RA that are involved in syllable motor control.
Collapse
Affiliation(s)
- S Leitner
- Max-Planck-Institut für Verhaltensphysiologie, D-82319 Seewiesen, Germany
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Steven N. Austad
- Department of Biological Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
44
|
Fusani L, Van't Hof T, Hutchison JB, Gahr M. Seasonal expression of androgen receptors, estrogen receptors, and aromatase in the canary brain in relation to circulating androgens and estrogens. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-4695(20000605)43:3<254::aid-neu4>3.0.co;2-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Scott LL, Nordeen EJ, Nordeen KW. The relationship between rates of HVc neuron addition and vocal plasticity in adult songbirds. JOURNAL OF NEUROBIOLOGY 2000; 43:79-88. [PMID: 10756068 DOI: 10.1002/(sici)1097-4695(200004)43:1<79::aid-neu7>3.0.co;2-p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In adulthood, songbird species vary considerably in the extent to which they rely on auditory feedback to maintain a stable song structure. The continued recruitment of new neurons into vocal motor circuitry may contribute to this lack of resiliency in song behavior insofar as new neurons that are not privy to auditory instruction could eventually corrupt established neural function. In a first step to explore this possibility, we used a comparative approach to determine if species differences in the rate of vocal change after deafening in adulthood correlate positively with the extent of HVc neuron addition. We confirmed previous reports that deafening in adulthood changes syllable phonology much more rapidly in bengalese finches than in zebra finches. Using [(3)H]thymidine autoradiography to identify neurons generated in adulthood, we found that the proportion of new neurons in the HVc one month after labeling was nearly twice as great in bengalese than in zebra finches. Moreover, among the subset of HVc vocal motor neurons that project to the robust nucleus of the archistriatum, the incidence of [(3)H]thymidine-labeled neurons was nearly three times as great in bengalese than in zebra finches. This correlation between the proportion of newly added neurons and the rate of song deterioration supports the hypothesis that HVc neuron addition may disrupt stable adult song production if new neurons cannot be "trained" via auditory feedback.
Collapse
Affiliation(s)
- L L Scott
- Neuroscience Program and Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
46
|
Deafening alters neuron turnover within the telencephalic motor pathway for song control in adult zebra finches. J Neurosci 1999. [PMID: 10575051 DOI: 10.1523/jneurosci.19-23-10554.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the telencephalon of adult songbirds, projection neurons are lost and replaced within the efferent pathway controlling learned vocal behavior. We examined the potential role of auditory experience in regulating the addition and long-term survival of vocal control neurons in adult male zebra finches. Deafened and control birds were injected with the cell birth marker [(3)H]thymidine and then killed 1 or 4 months later. At the 1 month survival time, the number of [(3)H]-labeled neurons present in the high vocal center (HVC) was 70% lower in deafened birds compared with controls. This was true for all [(3)H]-labeled HVC neurons, as well as the subset that projected to the robust nucleus of the archistriatum. Over the next 3 months, two-thirds of the [(3)H]-labeled HVC neurons in control birds were lost, presumably through cell death. Surprisingly, deafened birds showed no loss over this interval. The total number of HVC neurons did not differ between control and deafened birds at either survival time. Nuclear diameters of [(3)H]-labeled HVC neurons decreased with cell age in both control and deafened birds, a process that may relate to the eventual death and replacement of these cells. These results suggest that experience influences the addition and also the longer-term fate of neurons formed in adulthood. We propose that auditory deprivation decreases the incorporation of new neurons and prolongs their life span. Alterations in the neuronal replacement cycle may relate to the gradual deterioration in song that occurs after deafening in adult zebra finches.
Collapse
|
47
|
Wang N, Aviram R, Kirn JR. Deafening alters neuron turnover within the telencephalic motor pathway for song control in adult zebra finches. J Neurosci 1999; 19:10554-61. [PMID: 10575051 PMCID: PMC6782419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
In the telencephalon of adult songbirds, projection neurons are lost and replaced within the efferent pathway controlling learned vocal behavior. We examined the potential role of auditory experience in regulating the addition and long-term survival of vocal control neurons in adult male zebra finches. Deafened and control birds were injected with the cell birth marker [(3)H]thymidine and then killed 1 or 4 months later. At the 1 month survival time, the number of [(3)H]-labeled neurons present in the high vocal center (HVC) was 70% lower in deafened birds compared with controls. This was true for all [(3)H]-labeled HVC neurons, as well as the subset that projected to the robust nucleus of the archistriatum. Over the next 3 months, two-thirds of the [(3)H]-labeled HVC neurons in control birds were lost, presumably through cell death. Surprisingly, deafened birds showed no loss over this interval. The total number of HVC neurons did not differ between control and deafened birds at either survival time. Nuclear diameters of [(3)H]-labeled HVC neurons decreased with cell age in both control and deafened birds, a process that may relate to the eventual death and replacement of these cells. These results suggest that experience influences the addition and also the longer-term fate of neurons formed in adulthood. We propose that auditory deprivation decreases the incorporation of new neurons and prolongs their life span. Alterations in the neuronal replacement cycle may relate to the gradual deterioration in song that occurs after deafening in adult zebra finches.
Collapse
Affiliation(s)
- N Wang
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA.
| | | | | |
Collapse
|
48
|
Tramontin AD, Brenowitz EA. A field study of seasonal neuronal incorporation into the song control system of a songbird that lacks adult song learning. JOURNAL OF NEUROBIOLOGY 1999; 40:316-26. [PMID: 10440732 DOI: 10.1002/(sici)1097-4695(19990905)40:3<316::aid-neu4>3.0.co;2-s] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult songbirds can incorporate new neurons into HVc, a telencephalic song control nucleus. Neuronal incorporation into HVc is greater in the fall than in the spring in adult canaries (open-ended song learners) and is temporally related to seasonal song modification. We used the western song sparrow, a species that does not modify its adult song, to test the hypothesis that neuronal incorporation into adult HVc is not seasonally variable in age-limited song learners. Wild song sparrows were captured during the fall and the spring, implanted with osmotic pumps containing [3H]thymidine, released onto their territories, and recaptured after 30 days. The density, proportion, and number of new HVc neurons were all significantly greater in the fall than in the spring. There was also a seasonal change in the incorporation of new neurons into the adjacent neostriatum that was less pronounced than the change in HVc. This is the first study of neuronal recruitment into the song control system of freely ranging wild songbirds. These results indicate that seasonal changes in HVc neuronal incorporation are not restricted to open-ended song learners. The functional significance of neuronal recruitment into HVc therefore remains elusive.
Collapse
Affiliation(s)
- A D Tramontin
- Department of Zoology, University of Washington, Box 351800, Seattle, Washington 98195-1800, USA
| | | |
Collapse
|
49
|
|
50
|
Wieraszko A. Avian hippocampus as a model to study spatial orientation-related synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:107-29. [PMID: 10079840 DOI: 10.1007/978-1-4615-4869-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- A Wieraszko
- Department of Biology/Program in Neuroscience, College of Staten Island/CUNY, New York 10314, USA.
| |
Collapse
|