1
|
Thyroid hormone receptor phosphorylation regulates acute fasting-induced suppression of the hypothalamic-pituitary-thyroid axis. Proc Natl Acad Sci U S A 2021; 118:2107943118. [PMID: 34544870 DOI: 10.1073/pnas.2107943118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Fasting induces profound changes in the hypothalamic-pituitary-thyroid (HPT) axis. After binding thyroid hormone (TH), the TH receptor beta 2 isoform (THRB2) represses Trh and Tsh subunit genes and is the principle negative regulator of the HPT axis. Using mass spectrometry, we identified a major phosphorylation site in the AF-1 domain of THRB2 (serine 101, S101), which is conserved among many members of the nuclear hormone receptor superfamily. More than 50% of THRB2 is phosphorylated at S101 in cultured thyrotrophs (TαT1.1) and in the mouse pituitary. All other THR isoforms lack this site and exhibit limited overall levels of phosphorylation. To determine the importance of THRB2 S101 phosphorylation, we used the TαT1.1 cell line and S101A mutant knock-in mice (Thrb2 S101A ). We found that TH promoted S101 THRB2 phosphorylation and was essential for repression of the axis at physiologic TH concentrations. In mice, THRB2 phosphorylation was also increased by fasting and mimicked Trh and Tshb repression by TH. In vitro studies demonstrated that a master metabolic sensor, AMP-activated kinase (AMPK) induced phosphorylation at the same site and caused Tshb repression independent of TH. Furthermore, we identified cyclin-dependent kinase 2 (CDK2) as a direct kinase phosphorylating THRB2 S101 and propose that AMPK or TH increase S101 phosphorylation through the activity of CDK2. This study provides a physiologically relevant function for THR phosphorylation, which permits nutritional deprivation and TH to use a common mechanism for acute suppression of the HPT axis.
Collapse
|
2
|
Abstract
Thyroid hormone has a broad range of biological effects, both during development and in the adult. Nuclear thyroid hormone action is mediated by thyroid hormone receptor (TR) α and β. Thyroid hormone also has nongenomic actions at the membrane, which are less well characterized. Both TRα and TRβ undergo posttranslational modification, including phosphorylation, acetylation, and recently identified sumoylation. These posttranslational modifications have been shown to influence thyroid hormone signaling by altering TR DNA binding, TR interaction with cofactors, and TR-mediated transcription. The best characterized modification, with respect to gene regulation, is sumoylation, which plays an important role in nutrient regulators-mediated gene expression. We present an approach to study posttranslational modification of TR by small ubiquitin-like modifier (SUMO), a process referred to as sumoylation.
Collapse
|
3
|
Liu YY, Brent GA. Posttranslational Modification of Thyroid Hormone Nuclear Receptor by Phosphorylation. Methods Mol Biol 2018; 1801:39-46. [PMID: 29892815 DOI: 10.1007/978-1-4939-7902-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TR phosphorylation promotes TR binding to DNA and heterodimerization with RXR. TRβ phosphorylation is induced by thyroid hormone on the cell membrane and phosphorylation by extracellular signal-regulated kinases (ERK), presumably at serine 142. TRα1 N-termini harbors two phosphorylation sites at serine 12 and serine 28/29. Serine 12 is phosphorylated by casein 2 and serine 28/29 by protein kinase A. Mutation analysis of TRα2 identified 2 serine sites, S472 and S473, as the substrates for casein kinase II. Phosphorylated TRα2 does not bind to DNA and dephosphorylated TRα binds to DNA and antagonizes TRα1 binding. Phosphorylation of TR is critical for TR function and T3 signaling and approaches to detection and analysis of phosphorylated TR are described.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Department of Medicine, David Geffen School of Medicine at UCLA and VA Greater Los Angles Healthcare System, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine at UCLA and VA Greater Los Angles Healthcare System, Los Angeles, CA, USA.
| | - Gregory A Brent
- Department of Medicine, David Geffen School of Medicine at UCLA and VA Greater Los Angles Healthcare System, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine at UCLA and VA Greater Los Angles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Radenne A, Akpa M, Martel C, Sawadogo S, Mauvoisin D, Mounier C. Hepatic regulation of fatty acid synthase by insulin and T3: evidence for T3 genomic and nongenomic actions. Am J Physiol Endocrinol Metab 2008; 295:E884-94. [PMID: 18682535 DOI: 10.1152/ajpendo.90438.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fatty acid synthase (FAS) is a key enzyme of hepatic lipogenesis responsible for the synthesis of long-chain saturated fatty acids. This enzyme is mainly regulated at the transcriptional level by nutrients and hormones. In particular, glucose, insulin, and T(3) increase FAS activity, whereas glucagon and saturated and polyunsaturated fatty acids decrease it. In the present study we show that, in liver, T(3) and insulin were able to activate FAS enzymatic activity, mRNA expression, and gene transcription. We localized the T(3) response element (TRE) that mediates the T(3) genomic effect, on the FAS promoter between -741 and -696 bp that mediates the T(3) genomic effect. We show that both T(3) and insulin regulate FAS transcription via this sequence. The TRE binds a TR/RXR heterodimer even in the absence of hormone, and this binding is increased in response to T(3) and/or insulin treatment. The use of H7, a serine/threonine kinase inhibitor, reveals that a phosphorylation mechanism is implicated in the transcriptional regulation of FAS in response to both hormones. Specifically, we show that T(3) is able to modulate FAS transcription via a nongenomic action targeting the TRE through the activation of a PI 3-kinase-ERK1/2-MAPK-dependent pathway. Insulin also targets the TRE sequence, probably via the activation of two parallel pathways: Ras/ERK1/2 MAPK and PI 3-kinase/Akt. Finally, our data suggest that the nongenomic actions of T(3) and insulin are probably common to several TREs, as we observed similar effects on a classical DR4 consensus sequence.
Collapse
Affiliation(s)
- Anne Radenne
- Département des Sciences Biologiques, Centre de recherche BioMed, Université du Québec, CP 8888, Succursale Centreville, Montreal, Canada H36 3P8
| | | | | | | | | | | |
Collapse
|
5
|
Chen RN, Huang YH, Lin YC, Yeh CT, Liang Y, Chen SL, Lin KH. Thyroid hormone promotes cell invasion through activation of furin expression in human hepatoma cell lines. Endocrinology 2008; 149:3817-31. [PMID: 18467449 PMCID: PMC2488248 DOI: 10.1210/en.2007-0989] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to identify genes regulated by thyroid hormone (T(3)) and associated with tumor invasion. The gene encoding furin, as previously identified by cDNA microarray, is known to be up-regulated by T(3) treatment, and stimulated furin production occurs in thyroidectomized rats after administration of T(3). Presently, by using serial deletion of the promoter and EMSAs, the T(3) response element on the furin promoter was localized to the -6317/-6302 region. T(3)-mediated furin up-regulation was cooperative with TGF-beta because T(3) induction increased after Smad3/4 addition. Furthermore, the invasiveness of HepG2-thyroid hormone receptor (TR) cells was significantly increased by T(3) treatment, perhaps due to furin processing of matrix metalloproteinase-2 and -9. In addition, furin up-regulation either by stable overexpression or T(3) and/or TGF-beta induction was evident in severe-combined immune-deficient mice inoculated with HepG2-TRalpha1 cells. The HepG2-furin mice displayed a higher metastasis index and tumor size than HepG2-neo mice. Notably, the increased liver and lung tumor number or size in the hyperthyroid severe-combined immune-deficient mice as well as TGF-beta mice was attributed specifically to furin overexpression in the HepG2-TRalpha1 cells. Furthermore, this study demonstrated that furin overexpression in some types of hepatocellular carcinomas is TR dependent and might play a crucial role in the development of hepatocellular carcinoma. Thus, T(3) regulates furin gene expression via a novel mechanism or in cooperation with TGF-beta to enhance tumor metastasis in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cells, Cultured
- Chlorocebus aethiops
- Furin/genetics
- Furin/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, SCID
- Models, Biological
- Neoplasm Invasiveness
- Rats
- Rats, Sprague-Dawley
- Receptors, Thyroid Hormone/physiology
- Thyroid Hormones/pharmacology
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Ruey-Nan Chen
- Department of Biochemistry, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan 333, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Tai PJ, Huang YH, Shih CH, Chen RN, Chen CD, Chen WJ, Wang CS, Lin KH. Direct regulation of androgen receptor-associated protein 70 by thyroid hormone and its receptors. Endocrinology 2007; 148:3485-95. [PMID: 17412801 DOI: 10.1210/en.2006-1239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) regulates multiple physiological processes during development, growth, differentiation, and metabolism. Most T3 actions are mediated via thyroid hormone receptors (TRs) that are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. The effects of T3 treatment on target gene regulation was previously examined in TRalpha1-overexpressing hepatoma cell lines (HepG2-TRalpha1). Androgen receptor (AR)-associated protein 70 (ARA70) was one gene found to be up-regulated by T3. The ARA70 is a ligand-dependent coactivator for the AR and was significantly increased by 4- to 5-fold after T3 treatment by Northern blot analyses in the HepG2-TRalpha1 stable cell line. T3 induced a 1- to 2-fold increase in the HepG2-TRbeta1 stable cell line. Both stable cell lines attained the highest fold expression after 24 h treatment with 10 nM T3. The ARA70 protein was increased up to 1.9-fold after T3 treatment in HepG2-TRalpha1 cells. Similar findings were obtained in thyroidectomized rats after T3 application. Cycloheximide treatment did not suppress induction of ARA70 transcription by T3, suggesting that this regulation is direct. A series of deletion mutants of ARA70 promoter fragments in pGL2 plasmid were generated to localize the thyroid hormone response element (TRE). The DNA fragments (-234/-190 or +56/+119) gave 1.55- or 2-fold enhanced promoter activity by T3. Thus, two TRE sites exist in the upstream-regulatory region of ARA70. The TR-TRE interaction was further confirmed with EMSAs. Additionally, ARA70 could interfere with TR/TRE complex formation. Therefore, the data indicated that ARA70 suppresses T3 signaling in a TRE-dependent manner. These experimental results suggest that T3 directly up-regulates ARA70 gene expression. Subsequently, ARA70 negatively regulates T3 signaling.
Collapse
Affiliation(s)
- Pei-Ju Tai
- Department of Biochemistry, Chang-Gung University, and First Cardiovascular Division, Chang Gung Memorial Hospital, 259 Wen-hwa 1 Road, Taoyuan, Taiwan 333, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Furuya F, Ying H, Zhao L, Cheng SY. Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription. Steroids 2007; 72:171-9. [PMID: 17169389 PMCID: PMC2794798 DOI: 10.1016/j.steroids.2006.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/11/2006] [Indexed: 01/27/2023]
Abstract
Study of molecular actions of thyroid hormone receptor beta (TRbeta) mutants in vivo has been facilitated by creation of a mouse model (TRbetaPV mouse) that harbors a knockin mutant of TRbeta (denoted PV). PV, which was identified in a patient with resistance to thyroid hormone, has lost T3 binding activity and transcription capacity. The striking phenotype of thyroid cancer exhibited by TRbeta(PV/PV) mice has allowed the elucidation of novel oncogenic activity of a TRbeta mutant (PV) [PAS1] beyond nucleus-initiated transcription. PV was found to physically interact with the regulatory p85alpha subunit of phosphatidylinositol 3-kinase (PI3K) in both the nuclear and cytoplasmic compartments. This protein-protein interaction activates the PI3K signaling by increasing phosphorylation of AKT, mammalian target of rapamycin (mTOR), and p70(S6K). PV, via interaction with p85alpha, also activates the PI3K-integrin-linked kinase-matrix metalloproteinase-2 signaling pathway in the extra-nuclear compartment. The PV-mediated PI3K activation results in increased cell proliferation, motility, migration, and metastasis. In addition to affecting these membrane-initiated signaling events, PV affects the stability of the pituitary tumor-transforming gene (PTTG) product. PTTG (also known as securin), a critical mitotic checkpoint protein, is physically associated with TRbeta or PV in vivo. Concomitant with T3-induced degradation of TRbeta, PTTG is degraded by the proteasome machinery, but no such degradation occurs when PTTG is associated with PV. The degradation of PTTG/TRbeta is activated by the direct interaction of the T3-bound TRbeta with the steroid receptor coactivator-3 (SRC-3) that recruits a proteasome activator (PA28gamma). PV that does not bind T3 cannot interact directly with SRC-3/PA28gamma to activate proteasome degradation, and the absence of degradation results in an aberrant accumulation of PTTG. The PV-induced failure of timely degradation of PTTG results in mitotic abnormalities. PV, via novel protein-protein interaction and transcription regulation, acts to antagonize the functions of wild-type TRs and contributes to the oncogenic functions of this mutation.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Ji L, Domanski D, Skirrow RC, Helbing CC. Genistein prevents thyroid hormone-dependent tail regression ofRana catesbeiana tadpoles by targetting protein kinase C and thyroid hormone receptor α. Dev Dyn 2007; 236:777-90. [PMID: 17279574 DOI: 10.1002/dvdy.21088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Thyroid hormone (TH)-regulated gene expression is mainly mediated by TH binding to nuclear thyroid hormone receptors (TRs). Despite extensive studies in mammalian cell lines that show that phosphorylation signaling pathways are important in TH action, little is known about their roles on TH signaling in vivo during development. Anuran metamorphosis is a postembryonic process that is absolutely dependent upon TH and tadpole tail resorption can be precociously induced by exogenous administration of 3,5,3'-triiodothyronine (T(3)). We demonstrate that genistein (a major isoflavone in soy products and tyrosine kinase inhibitor) and the PKC inhibitor (H7) prevent T(3)-induced regression of the Rana catesbeiana tadpole tail. T(3)-induced protein kinase C tyrosine phosphorylation and kinase activity are inhibited by genistein while T(3)-induced up-regulation of TRbeta mRNA, but not TRalpha mRNA, is significantly attenuated, most likely through inhibition of T(3)-dependent phosphorylation of the TRalpha protein. This phosphorylation may be modulated through PKC. These data demonstrate that T(3) signaling in the context of normal cells in vivo includes phosphorylation as an important factor in establishing T(3)-dependent tail regression during development.
Collapse
Affiliation(s)
- L Ji
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
10
|
Yin L, Wang Y, Dridi S, Vinson C, Hillgartner FB. Role of CCAAT/enhancer-binding protein, histone acetylation, and coactivator recruitment in the regulation of malic enzyme transcription by thyroid hormone. Mol Cell Endocrinol 2005; 245:43-52. [PMID: 16293364 DOI: 10.1016/j.mce.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/23/2022]
Abstract
In chick embryo hepatocytes, activation of malic enzyme gene transcription by triiodothyronine (T3) is mediated by a T3 response unit (T3RU) that contains five T3 response elements (T3REs) plus five accessory elements that enhance T3 responsiveness conferred by the T3REs. Results from in vitro binding assays indicate that one of the accessory elements (region F) binds CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Here, we investigated the role of C/EBPalpha in the regulation of malic enzyme transcription by T3. Transfection analyses demonstrated that the stimulation of T3RE function by region F did not require the presence of additional malic enzyme gene promoter sequences. Expression of a dominant negative C/EBP inhibited the ability of region F to stimulate T3 responsiveness. In chromatin immunoprecipitation assays, C/EBPalpha and TR associated with the malic enzyme T3RU in the absence and presence of T3 with the extent of the association being greater in the presence of T3. These observations indicate that C/EBPalpha interacts with TR on the malic enzyme T3RU to enhance T3 regulation of malic enzyme gene transcription. T3 treatment increased the acetylation of histones, decreased the recruitment of nuclear receptor corepressor and increased the recruitment of steroid receptor coactivator-1, CREB binding protein, and the thyroid hormone associated protein/mediator complex at the malic enzyme T3RU. In contrast, T3 treatment had no effect on the acetylation of histones and the recruitment of corepressors and coactivators at the T3RU that mediates the T3 activation of acetyl-CoA carboxylase-alpha gene transcription. We propose that differences between the malic enzyme T3RU and the ACCalpha T3RU in the ability of T3 to modulate histone acetylation and coregulatory protein recruitment are due to differences in the composition of the nuclear receptor complexes that bind these regulatory regions.
Collapse
Affiliation(s)
- Liya Yin
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, P.O. Box 9142, West Virginia University, Morgantown, 26506-9142, USA
| | | | | | | | | |
Collapse
|
11
|
Srinivas H, Juroske DM, Kalyankrishna S, Cody DD, Price RE, Xu XC, Narayanan R, Weigel NL, Kurie JM. c-Jun N-terminal kinase contributes to aberrant retinoid signaling in lung cancer cells by phosphorylating and inducing proteasomal degradation of retinoic acid receptor alpha. Mol Cell Biol 2005; 25:1054-69. [PMID: 15657432 PMCID: PMC543999 DOI: 10.1128/mcb.25.3.1054-1069.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid (RA) is the ligand for nuclear RA receptors (RARs and RXRs) and is crucial for normal epithelial cell growth and differentiation. During malignant transformation, human bronchial epithelial cells acquire a block in retinoid signaling caused in part by a transcriptional defect in RARs. Here, we show that activation of c-Jun N-terminal kinase (JNK) contributes to RAR dysfunction by phosphorylating RARalpha and inducing degradation through the ubiquitin-proteasomal pathway. Analysis of RARalpha mutants and phosphopeptide mapping revealed that RARalpha residues Thr181, Ser445, and Ser461 are phosphorylated by JNK. Mutation of these residues to alanines prevented efficient ubiquitination of RARalpha and increased the stability of the protein. We investigated the importance of RARalpha phosphorylation by JNK as a mediator of retinoid resistance in lung cancer. Mice that develop lung cancer from activation of a latent K-ras oncogene had high intratumoral JNK activity and low RARalpha levels and were resistant to treatment with an RAR ligand. JNK inhibition in a human lung cancer cell line enhanced RARalpha levels, ligand-induced activity of RXR-RAR dimers, and growth inhibition by RA. These findings point to JNK as a key mediator of aberrant retinoid signaling in lung cancer cells.
Collapse
Affiliation(s)
- Harish Srinivas
- Department of Thoracic/Head and Neck Oncology-Unit 432, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saelim N, John LM, Wu J, Park JS, Bai Y, Camacho P, Lechleiter JD. Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor. ACTA ACUST UNITED AC 2004; 167:915-24. [PMID: 15569710 PMCID: PMC2172460 DOI: 10.1083/jcb.200409011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thyroid hormone 3,5,3′-tri-iodothyronine (T3) binds and activates thyroid hormone receptors (TRs). Here, we present evidence for a nontranscriptional regulation of Ca2+ signaling by T3-bound TRs. Treatment of Xenopus thyroid hormone receptor beta subtype A1 (xTRβA1) expressing oocytes with T3 for 10 min increased inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ wave periodicity. Coexpression of TRβA1 with retinoid X receptor did not enhance regulation. Deletion of the DNA binding domain and the nuclear localization signal of the TRβA1 eliminated transcriptional activity but did not affect the ability to regulate Ca2+ signaling. T3-bound TRβA1 regulation of Ca2+ signaling could be inhibited by ruthenium red treatment, suggesting that mitochondrial Ca2+ uptake was required for the mechanism of action. Both xTRβA1 and the homologous shortened form of rat TRα1 (rTRαΔF1) localized to the mitochondria and increased O2 consumption, whereas the full-length rat TRα1 did neither. Furthermore, only T3-bound xTRβA1 and rTRαΔF1 affected Ca2+ wave activity. We conclude that T3-bound mitochondrial targeted TRs acutely modulate IP3-mediated Ca2+ signaling by increasing mitochondrial metabolism independently of transcriptional activity.
Collapse
Affiliation(s)
- Nuttawut Saelim
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 2004; 6:517-27. [PMID: 15542435 DOI: 10.1016/j.ccr.2004.09.031] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/05/2004] [Accepted: 09/21/2004] [Indexed: 02/07/2023]
Abstract
Given the role of the EGFR/HER2 family of tyrosine kinases in breast cancer, we dissected the molecular basis of EGFR/HER2 kinase signaling in prostate cancer. Using the small molecule dual EGFR/HER2 inhibitor PKI-166, we show that the biologic effects of EGFR/HER-2 pathway inhibition are caused by reduced AR transcriptional activity. Additional genetic and pharmacologic experiments show that this modulation of AR function is mediated by the HER2/ERBB3 pathway, not by EGFR. This HER2/ERBB3 signal stabilizes AR protein levels and optimizes binding of AR to promoter/enhancer regions of androgen-regulated genes. Surprisingly, the downstream signaling pathway responsible for these effects appears to involve kinases other than Akt. These data suggest that the HER2/ERBB3 pathway is a critical target in hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nicoll JB, Gwinn BL, Iwig JS, Garcia PP, Bunn CF, Allison LA. Compartment-specific phosphorylation of rat thyroid hormone receptor alpha1 regulates nuclear localization and retention. Mol Cell Endocrinol 2003; 205:65-77. [PMID: 12890568 DOI: 10.1016/s0303-7207(03)00199-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thyroid hormone receptor alpha1 (TRalpha1) is a transcription factor, which can activate or repress gene expression in response to thyroid hormone. In addition, some of its actions, including DNA binding and transcriptional activation, are thought to be regulated by phosphorylation. Results presented here, using Xenopus oocyte microinjection assays, demonstrate that a phosphorylated form of rat TRalpha1 is present in the nucleus, whereas unphosphorylated TRalpha1 remains cytoplasmic. Changes in the phosphorylation state of TRalpha1 occur rapidly and point to the possibility that phosphorylation occurs in the nucleus. Furthermore, increasing the overall phosphorylation state of the cell leads to enhanced nuclear retention of TRalpha1, suggesting that compartment-specific phosphorylation regulates nuclear localization of TRalpha1. Enhanced nuclear retention of TRalpha1 is not dependent on phosphorylation of serine 12, a well-characterized casein kinase II site, nor is phosphorylation of this site necessary for import of TRalpha1 into the Xenopus oocyte nucleus. Similarly, mutational analysis in mammalian cells shows that nuclear localization and partitioning of TRalpha1 to the nuclear matrix are independent of serine 12 phosphorylation. Taken together, these studies suggest that phosphorylation of one or more sites in TRalpha1, excluding serine 12, enhances nuclear retention and/or inhibits nuclear export but is not directly involved in nuclear import.
Collapse
Affiliation(s)
- James B Nicoll
- Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187, USA
| | | | | | | | | | | |
Collapse
|
15
|
Barger PM, Browning AC, Garner AN, Kelly DP. p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol Chem 2001; 276:44495-501. [PMID: 11577087 DOI: 10.1074/jbc.m105945200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of enzymes involved in fatty acid beta-oxidation (FAO), the principal source of energy production in the adult mammalian heart, is controlled at the transcriptional level via the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Evidence has emerged that PPARalpha activity is activated as a component of an energy metabolic stress response. The p38 mitogen-activated protein kinase (MAPK) pathway is activated by cellular stressors in the heart, including ischemia, hypoxia, and hypertrophic growth stimuli. We show here that PPARalpha is phosphorylated in response to stress stimuli in rat neonatal cardiac myocytes; in vitro kinase assays demonstrated that p38 MAPK phosphorylates serine residues located within the NH(2)-terminal A/B domain of the protein. Transient transfection studies in cardiac myocytes and in CV-1 cells utilizing homologous and heterologous PPARalpha target element reporters and mammalian one-hybrid transcription assays revealed that p38 MAPK phosphorylation of PPARalpha significantly enhanced ligand-dependent transactivation. Cotransfection studies performed with several known coactivators of PPARalpha demonstrated that p38 MAPK markedly increased coactivation specifically by PGC-1, a transcriptional coactivator implicated in myocyte energy metabolic gene regulation and mitochondrial biogenesis. These results identify PPARalpha as a downstream effector of p38 kinase-dependent stress-activated signaling in the heart, linking extracellular stressors to alterations in energy metabolic gene expression.
Collapse
Affiliation(s)
- P M Barger
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
Collapse
Affiliation(s)
- P M Yen
- Molecular Regulation and Neuroendocrinology Section, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 2001; 20:3047-54. [PMID: 11420720 DOI: 10.1038/sj.onc.1204329] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in the field of in vitro chromatin assembly have led to in vitro transcription systems which reproduce in the test tube, in vivo characteristics of ligand-dependent transcriptional activation by nuclear receptors. Dissection of these systems has begun to provide us with information concerning the underlying molecular mechanisms. Through recruitment of coactivator proteins, nuclear receptors act first to remodel chromatin within the promoter region and then to recruit the transcriptional machinery to the promoter region in order to initiate transcription. Here we present a possible sequential mechanism for ligand-dependent transcriptional activation by nuclear receptors and discuss the in vitro and in vivo data that support this model.
Collapse
Affiliation(s)
- F J Dilworth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collège de France, BP163, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
18
|
Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K. Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 2001; 276:3175-82. [PMID: 11069900 DOI: 10.1074/jbc.m005567200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) is a key regulator of terminal adipocyte differentiation. PPARdelta is expressed in preadipocytes, but the importance of this PPAR subtype in adipogenesis has been a matter of debate. Here we present a critical evaluation of the role of PPARdelta in adipocyte differentiation. We demonstrate that treatment of NIH-3T3 fibroblasts overexpressing PPARdelta with standard adipogenic inducers led to induction of PPARgamma2 expression and terminal adipocyte differentiation in a manner that was strictly dependent on simultaneous administration of a PPARdelta ligand and methylisobutylxanthine (MIX) or other cAMP elevating agents. We further show that ligands and MIX synergistically stimulated PPARdelta-mediated transactivation. In 3T3-L1 preadipocytes, simultaneous administration of a PPARdelta-selective ligand and MIX significantly enhanced the early expression of PPARgamma and ALBP/aP2, but only modestly promoted terminal differentiation as determined by lipid accumulation. Finally, we provide evidence that synergistic activation of PPARdelta promotes mitotic clonal expansion in 3T3-L1 cells with or without forced expression of PPARdelta. In conclusion, our results suggest that PPARdelta may play a role in the proliferation of adipocyte precursor cells, whereas activation of endogenous PPARdelta in 3T3-L1 cells appears to have only minor impact on the processes leading to terminal adipocyte differentiation.
Collapse
Affiliation(s)
- J B Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense University, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 2000; 275:38032-9. [PMID: 10982791 DOI: 10.1074/jbc.m002560200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated nongenomically by l-thyroxine (T(4)), mitogen-activated protein kinase (MAPK) complexed in 10-20 min with endogenous nuclear thyroid hormone receptor (TRbeta1 or TR) in nuclear fractions of 293T cells, resulting in serine phosphorylation of TR. Treatment of cells with the MAPK kinase inhibitor, PD 98059, prevented both T(4)-induced nuclear MAPK-TR co-immunoprecipitation and serine phosphorylation of TR. T(4) treatment caused dissociation of TR and SMRT (silencing mediator of retinoid and thyroid hormone receptor), an effect also inhibited by PD 98059 and presumptively a result of association of nuclear MAPK with TR. Transfection into CV-1 cells of TR gene constructs in which one or both zinc fingers in the TR DNA-binding domain were replaced with those from the glucocorticoid receptor localized the site of TR phosphorylation by T(4)-activated MAPK to a serine in the second zinc finger of the TR DNA-binding domain. In an in vitro cell- and hormone-free system, purified activated MAPK phosphorylated recombinant human TRbeta1 (). Thus, T(4) activates MAPK and causes MAPK-mediated serine phosphorylation of TRbeta1 and dissociation of TR and the co-repressor SMRT.
Collapse
Affiliation(s)
- P J Davis
- Samuel S. Stratton Veterans Affairs Medical Center and the Molecular and Cellular Medicine Program, Department of Medicine and the Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
20
|
Fang X, Hillgartner FB. Alterations in retinoid X receptor-alpha expression contribute to cell-type dependent differences in thyroid hormone regulation of malic enzyme transcription. Mol Cell Endocrinol 2000; 164:41-52. [PMID: 11026556 DOI: 10.1016/s0303-7207(00)00238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Triiodothyronine (T3) stimulates a marked increase (> 40-fold) in transcription of the malic enzyme gene in chick embryo hepatocytes (CEH), but has no effect on malic enzyme transcription in chick embryo fibroblasts (CEF) that express nuclear T3 receptors (TR) at levels which are similar to those of CEH. Heterodimerization of the TR with other nuclear proteins is a potential mechanism for the regulation of T3 action. For example, heterodimers of retinoid X receptors (RXR) and TR bind to T3 response elements (T3RE) with higher affinity and modulate transcription more effectively than TR homodimers. In the present report, we investigated the role of RXR in mediating differences in T3 responsiveness of the malic enzyme gene between CEH and CEF. Data from gel mobility shift analyses demonstrated that endogenous TRs from CEH and CEF bind to the major T3RE of the malic enzyme gene primarily as heterodimers with RXR alpha or a protein highly related to RXR alpha. The total binding activity of RXR alpha/TR complexes in CEF was decreased relative to that observed in CEH. Cell-type dependent differences in RXR alpha/TR complex formation were greater in cells incubated in the presence of T3 because T3 treatment increased RXR alpha/TR binding activity in CEH but had no effect on RXR alpha/TR binding activity in CEF. Decreased RXR alpha/TR complex formation in CEF relative to CEH was associated with a reduction in the abundance of RXR alpha protein and RXR alpha mRNA in the former cell-type. Expression of exogenous RXR alpha in CEF increased the T3 responsiveness of the malic enzyme promoter by about 4-fold. In contrast, expression of exogenous RXR alpha in CEH had no effect on the regulation of malic enzyme transcription by T3. These observations support the hypothesis that alterations in RXR alpha expression contribute to cell-type dependent differences in T3 responsiveness of the malic enzyme gene.
Collapse
Affiliation(s)
- X Fang
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown 26506, USA
| | | |
Collapse
|
21
|
Zhu XG, Park KS, Kaneshige M, Bhat MK, Zhu Q, Mariash CN, McPhie P, Cheng SY. The orphan nuclear receptor Ear-2 is a negative coregulator for thyroid hormone nuclear receptor function. Mol Cell Biol 2000; 20:2604-18. [PMID: 10713182 PMCID: PMC85476 DOI: 10.1128/mcb.20.7.2604-2618.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thyroid hormone (T3) nuclear receptors (TR) are ligand-dependent transcription factors which regulate growth, differentiation, and development. One emerging hypothesis suggests that TR mediate these diverse effects via a large network of coregulators. Recently, we found that TR-mediated transcriptional responses varied in six cell lines derived from different tissues. We therefore used human TR subtype beta1 (TRbeta1) as bait to search for coregulators in human colon carcinoma RKO cells with a yeast two-hybrid system. RKO cells exhibited T3-dependent and -independent transcriptional activation. One of the three positive clones was identified as Ear-2, which is a distant member of the chick ovalbumin upstream promoter-transcription factors of the orphan nuclear receptor family. The physical interaction between Ear-2 and TRbeta1 was further confirmed by specific binding of Ear-2 to glutathione S-transferase-TRbeta1. In addition, Ear-2 was found to associate with TRbeta1 in cells. As a result of this physical interaction, binding of TRbeta1 to the T3 response elements was inhibited. Using reporter systems, we found that both the basal activation and the T3-dependent activation mediated by TRbeta1 were repressed by Ear-2 in CV1 cells. In RKO cells, however, the T3-independent transcriptional activity was more sensitive to the repression effect of Ear-2 than the T3-dependent transcriptional activity. The repression effect of Ear-2 was reversed by steroid hormone receptor coactivator 1. These results suggest that TR-mediated responses reflect a balance of corepressors and coactivators in cells. These findings further strengthen the hypothesis that the diverse activities of TR are achieved via a large network of coregulators that includes Ear-2.
Collapse
Affiliation(s)
- X G Zhu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheng SY. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 2000; 1:9-18. [PMID: 11704997 DOI: 10.1023/a:1010052101214] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S Y Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 29892-4255, USA
| |
Collapse
|
23
|
Koenig RJ. Thyroid Hormone Receptors. Compr Physiol 1999. [DOI: 10.1002/cphy.cp070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Shao D, Lazar MA. Modulating nuclear receptor function: may the phos be with you. J Clin Invest 1999; 103:1617-8. [PMID: 10377165 PMCID: PMC408394 DOI: 10.1172/jci7421] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- D Shao
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6149, USA
| | | |
Collapse
|
25
|
DeVito M, Biegel L, Brouwer A, Brown S, Brucker-Davis F, Cheek AO, Christensen R, Colborn T, Cooke P, Crissman J, Crofton K, Doerge D, Gray E, Hauser P, Hurley P, Kohn M, Lazar J, McMaster S, McClain M, McConnell E, Meier C, Miller R, Tietge J, Tyl R. Screening methods for thyroid hormone disruptors. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107:407-15. [PMID: 10210697 PMCID: PMC1566416 DOI: 10.1289/ehp.99107407] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The U.S. Congress has passed legislation requiring the EPA to implement screening tests for identifying endocrine-disrupting chemicals. A series of workshops was sponsored by the EPA, the Chemical Manufacturers Association, and the World Wildlife Fund; one workshop focused on screens for chemicals that alter thyroid hormone function and homeostasis. Participants at this meeting identified and examined methods to detect alterations in thyroid hormone synthesis, transport, and catabolism. In addition, some methods to detect chemicals that bind to the thyroid hormone receptors acting as either agonists or antagonists were also identified. Screening methods used in mammals as well as other vertebrate classes were examined. There was a general consensus that all known chemicals which interfere with thyroid hormone function and homeostasis act by either inhibiting synthesis, altering serum transport proteins, or by increasing catabolism of thyroid hormones. There are no direct data to support the assertion that certain environmental chemicals bind and activate the thyroid hormone receptors; further research is indicated. In light of this, screening methods should reflect known mechanisms of action. Most methods examined, albeit useful for mechanistic studies, were thought to be too specific and therefore would not be applicable for broad-based screening. Determination of serum thyroid hormone concentrations following chemical exposure in rodents was thought to be a reasonable initial screen. Concurrent histologic evaluation of the thyroid would strengthen this screen. Similar methods in teleosts may be useful as screens, but would require indicators of tissue production of thyroid hormones. The use of tadpole metamorphosis as a screen may also be useful; however, this method requires validation and standardization prior to use as a broad-based screen.
Collapse
Affiliation(s)
- M DeVito
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Juge-Aubry CE, Hammar E, Siegrist-Kaiser C, Pernin A, Takeshita A, Chin WW, Burger AG, Meier CA. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem 1999; 274:10505-10. [PMID: 10187842 DOI: 10.1074/jbc.274.15.10505] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a subgroup of nuclear receptors activated by fatty acids and eicosanoids. In addition, they are subject to phosphorylation by insulin, resulting in the activation of PPARalpha, while inhibiting PPARgamma under certain conditions. However, it was hitherto unclear whether the stimulatory effect of insulin on PPARalpha was direct and by which mechanism it occurs. We now demonstrate that amino acids 1-92 of hPPARalpha contain an activation function (AF)-1-like domain, which is further activated by insulin through a pathway involving the mitogen-activated protein kinases p42 and p44. Further analysis of the amino-terminal region of PPARalpha revealed that the insulin-induced trans-activation occurs through the phosphorylation of two mitogen-activated protein kinase sites at positions 12 and 21, both of which are conserved across evolution. The characterization of a strong AF-1 region in PPARalpha, stimulating transcription one-fourth as strongly as the viral protein VP16, is compatible with the marked basal transcriptional activity of this isoform in transfection experiments. However, it is intriguing that the activity of this AF-1 region is modulated by the phosphorylation of two serine residues, both of which must be phosphorylated in order to activate transcription. This is in contrast to PPARgamma2, which was previously shown to be phosphorylated at a single site in a motif that is not homologous to the sites now described in PPARalpha. Although the molecular details involved in the phosphorylation-dependent enhancement of the transcriptional activity of PPARalpha remain to be elucidated, we demonstrate that the effect of insulin on the AF-1 region of PPARalpha can be mimicked by the addition of triiodothyronine receptor beta1, a strong binder of corepressor proteins. In addition, a triiodothyronine receptor beta1 mutant deficient in interacting with corepressors is unable to activate PPARalpha. These observations suggest that the AF-1 region of PPARalpha is partially silenced by corepressor proteins, which might interact in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- C E Juge-Aubry
- Division of Endocrinology and Diabetes, University Hospital Geneva, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sarkar S, Biswas SC, Chatterjee O, Sarkar PK. Protein kinase A linked phosphorylation mediates triiodothyronine induced actin gene expression in developing brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:158-64. [PMID: 10101242 DOI: 10.1016/s0169-328x(99)00056-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the developing rat cerebra, triiodothyronine (T3) stimulates actin mRNA by acting predominantly at the level of transcription whereas tubulin mRNA is enhanced primarily by post-transcriptional regulation. We report here that in primary cultures of rat cerebra, the T3-induced actin gene expression is mediated by phosphorylation events. Inhibition of protein kinase A (PKA), but not of protein kinase C (PKC) or tyrosine kinase, totally blocked the induction of actin mRNA by T3. Under identical conditions, induction of tubulin mRNA by T3 was virtually unaffected by all the inhibitors. Activators of PKA, but not of PKC, potentiated the T3-induced actin gene expression, both at mRNA and protein level, by about 2-fold. In the absence of T3, neither the inhibitor nor the activator of PKA had any significant effect on this induction. The involvement of PKA in mediating the induction of actin mRNA by T3 was confirmed by transfecting primary cultures of rat cerebra with an expression vector encoding the protein kinase A inhibitor which totally abolished the induction. T3 is shown to enhance the phosphorylation of the thyroid hormone receptor, TRalpha, by about 2-fold but the level of phosphorylation of TRbeta remained virtually unaffected.
Collapse
Affiliation(s)
- S Sarkar
- Division of Neurobiology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Calcutta, 700 032, India
| | | | | | | |
Collapse
|
28
|
Jeannin E, Robyr D, Desvergne B. Transcriptional regulatory patterns of the myelin basic protein and malic enzyme genes by the thyroid hormone receptors alpha1 and beta1. J Biol Chem 1998; 273:24239-48. [PMID: 9727048 DOI: 10.1074/jbc.273.37.24239] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Collapse
Affiliation(s)
- E Jeannin
- Institut de Biologie Animale, Université de Lausanne, Bâtiment de Biologie, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Katsetos CD, Stadnicka I, Boyd JC, Ehya H, Zheng S, Soprano CM, Cooper HS, Patchefsky AS, Soprano DR, Soprano KJ. Cellular distribution of retinoic acid receptor-alpha protein in serous adenocarcinomas of ovarian, tubal, and peritoneal origin: comparison with estrogen receptor status. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:469-80. [PMID: 9708807 PMCID: PMC1852976 DOI: 10.1016/s0002-9440(10)65590-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/1998] [Indexed: 11/16/2022]
Abstract
Retinoids are effective growth modulators of human ovarian carcinoma cell lines. Their effects are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are transcriptional factors and members of the steroid/thyroid receptor superfamily. To our knowledge, until now, the cellular distribution of RAR proteins in human ovarian tumor specimens is unknown. This study provides new data on the differential cellular localization of RAR alpha protein in 16 serous adenocarcinomas originating from the ovaries, fallopian tubes, and the peritoneum. Using an affinity-purified antiserum specific for RAR alpha and a monoclonal antibody recognizing the full-length estrogen receptor molecule (clone 6F11), we performed immunohistochemistry on frozen tissue sections and examined the relationship between RAR alpha and estrogen receptor protein expression by comparing the percentage of immunostained tumor cells for either receptor. Our findings indicate a strong linear relationship between the percentages of RAR alpha- and estrogen receptor-labeled tumor cells as determined by linear regression analysis (P < 0.005, r = 0.825). A modest inverse relationship was found between the percentage of RAR alpha-positive tumor cells and histological grade, attesting to a differentiation-dependent trend (P < 0.04). No significant relationship was found between RAR alpha-labeled cells and clinical stage (P = 0.139), site of tumor origin (ovaries versus fallopian tubes versus peritoneum) (P = 0.170), and primary versus metastatic lesion (P = 0.561). Thus, serous adenocarcinomas are capable of expressing RAR alpha and estrogen receptor despite high histological grade and advanced stage of neoplastic disease. Compared with the heterogeneous localization of RAR alpha in cancer cells, there was widespread RAR alpha immunoreactivity in tumor-infiltrating lymphocytes, vascular endothelial cells, and stromal fibroblasts, underscoring the value of immunohistochemistry in the accurate determination of RAR/(RXR) content in tumor specimens.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Fallopian Tube Neoplasms/metabolism
- Fallopian Tube Neoplasms/pathology
- Female
- Humans
- Immunoenzyme Techniques
- Middle Aged
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Peritoneal Neoplasms/metabolism
- Peritoneal Neoplasms/pathology
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
Collapse
Affiliation(s)
- C D Katsetos
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tzagarakis-Foster C, Privalsky ML. Phosphorylation of thyroid hormone receptors by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding. J Biol Chem 1998; 273:10926-32. [PMID: 9556570 DOI: 10.1074/jbc.273.18.10926] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormone receptor (T3R) alpha-1 and its oncogenic derivative, the v-ERB A protein, are phosphorylated by cAMP-dependent protein kinase A. Although this phosphorylation appears to be necessary for the oncogenic properties of v-ERB A, the mechanism by which phosphorylation influences the functions of v-ERB A and of the normal T3R has not been established. The protein kinase A phosphorylation site in T3Ralpha-1 is within a domain that is known to contribute to the DNA recognition properties of these receptors. We therefore analyzed the effects of protein kinase A phosphorylation on DNA recognition by the normal T3Ralpha and by the v-ERB A oncoprotein. We report here that phosphorylation of these receptor derivatives does not significantly alter the overall affinity of receptor dimers for DNA. However, phosphorylation does notably alter DNA recognition by preventing, or greatly inhibiting, the ability of these receptors to bind to DNA as protein monomers. These studies suggest that the phosphorylation of T3Ralpha-1 and v-ERB A by protein kinase A may provide a means of altering promoter recognition through a post-translational modification.
Collapse
Affiliation(s)
- C Tzagarakis-Foster
- Section of Microbiology and Section of Molecular and Cellular Biology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
31
|
Huang CJ, Feltkamp D, Nilsson S, Gustafsson JA. Synergistic activation of RLD-1 by agents triggering PKA and PKC dependent signalling. Biochem Biophys Res Commun 1998; 243:657-63. [PMID: 9500983 DOI: 10.1006/bbrc.1998.8152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RLD-1 and OR-1 are closely related orphan nuclear receptors that can be activated by certain oxysterols. To obtain cells stably expressing RLD-1 or OR-1, CHOK1 cells were successively transfected with a DGRE2-ALP reporter and GR-RLD-1 or GR-OR-1 chimeric constructs. The selected cell clones that showed low background activity of the reporter and maximum fold induction by 22R(OH)cholesterol were used for subsequent experiments. Treatment of the cells with PGE2, TPA, or 8-bromo-cAMP alone did not transactivate the reporter. However, the induction of the reporter by 22R(OH)cholesterol was markedly enhanced in the presence of PGE2, TPA, 8-bromo-cAMP, or forskolin in cells expressing GR-RLD-1. The enhancement was inhibited by H-89 and bisindolylmaleimide, both inhibitors of protein kinases. These results suggest that transactivation by ligand-activated RLD-1 may be further modulated/regulated through other signal transduction pathways involving phosphorylation catalyzed by protein kinases.
Collapse
Affiliation(s)
- C J Huang
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
32
|
Liu Y, Takeshita A, Nagaya T, Baniahmad A, Chin WW, Yen PM. An inhibitory region of the DNA-binding domain of thyroid hormone receptor blocks hormone-dependent transactivation. Mol Endocrinol 1998; 12:34-44. [PMID: 9440808 DOI: 10.1210/mend.12.1.0046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have employed a chimeric receptor system in which we cotransfected yeast GAL4 DNA-binding domain/retinoid X receptor beta ligand-binding domain chimeric receptor (GAL4RXR), thyroid hormone receptor-beta (TRbeta), and upstream activating sequence-reporter plasmids into CV-1 cells to study repression, derepression, and transcriptional activation. In the absence of T3, unliganded TR repressed transcription to 20% of basal level, and in the presence of T3, liganded TRbeta derepressed transcription to basal level. Using this system and a battery of TRbeta mutants, we found that TRbeta/RXR heterodimer formation is necessary and sufficient for basal repression and derepression in this system. Additionally, an AF-2 domain mutant (E457A) mediated basal repression but not derepression, suggesting that interaction with a putative coactivator at this site may be critical for derepression. Interestingly, a mutant containing only the TRbeta ligand binding domain (LBD) not only mediated derepression, but also stimulated transcriptional activation 10-fold higher than basal level. Studies using deletion and domain swap mutants localized an inhibitory region to the TRbeta DNA-binding domain. Titration studies further suggested that allosteric changes promoting interaction with coactivators may account for enhanced transcriptional activity by LBD. In summary, our findings suggest that TR heterodimer formation with RXR is important for repression and derepression, and coactivator interaction with the AF-2 domain may be needed for derepression in this chimeric system. Additionally, there may be an inhibitory region in the DNA-binding domain, which reduces TR interaction with coactivators, and prevents full-length wild-type TRbeta from achieving transcriptional activation above basal level in this chimeric receptor system.
Collapse
Affiliation(s)
- Y Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
To understand the role of phosphorylation in the hormone-dependent transcriptional activation of thyroid hormone receptors (TRs), the present study evaluated the effect of the thyroid hormone, 3,3',5-triiodo-L-thyronine (T3) on the phosphorylation of TR, human subtype beta1 (h-TRbeta1). The extent of phosphorylation was compared in cells cultured in T3-depleted (Td) or T3-supplemented medium (Td + T3). T3 was found to activate phosphorylation of h-TRbeta1 approximately threefold. Taking into account the T3-induced fourfold downregulation in the expression of h-TRbeta1 in the same period, the specific T3-activated phosphorylation was increased approximately twelvefold. Phosphoamino acid analysis indicates that the phosphorylation of serine and threonine in a ratio of approximately 10:1 was increased approximately threefold by T3. Comparison of the [32P]-labeled tryptic maps of h-TRbeta1 phosphorylated in cells cultured in Td medium or Td + T3 medium indicates that the latter had fewer fragments and changes of intensities in several common fragments, indicating that the phosphorylation sites activated by T3-treatment differed from those of basal phosphorylation. Partial V8 and chymotrypic proteolysis indicates that h-TRbeta1 phosphorylated in cells cultured in Td + T3 medium was more resistant to proteolysis. These results indicate that T3-activated phosphorylation altered the protease susceptibility of h-TRbeta1 that could reflect structural changes in h-TRbeta1. These results raise the possibility that T3-activated phosphorylation may play an important role in transcriptional activation of h-TRbeta1.
Collapse
Affiliation(s)
- Y T Ting
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
34
|
Zhu XG, McPhie P, Lin KH, Cheng SY. The differential hormone-dependent transcriptional activation of thyroid hormone receptor isoforms is mediated by interplay of their domains. J Biol Chem 1997; 272:9048-54. [PMID: 9083030 DOI: 10.1074/jbc.272.14.9048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human thyroid hormone nuclear receptor isoforms (TRalpha1 and TRbeta1) express differentially in a tissue-specific and development-dependent manner. It is unclear whether these two isoforms have differential functions. We analyzed their interaction with a thyroid hormone response element with half-site binding motifs arranged in an everted repeat separated by six nucleotides (F2). Despite extensive sequence homologies, the two isoforms bound to F2 with different affinities and ratios of homodimer/monomer. Using F2-containing reporter gene, we found that the transcriptional activity of TRbeta1 was approximately 6-fold higher than that of TRalpha1. The lower activity of TRalpha1 was not due to differences in expression of the two isoforms because similar nuclear localization patterns were observed. To understand the structural determinants responsible for these differences, we constructed chimeric receptors in which hinge regions (domain D), hormone binding domains (domain E), and domains (D + E) were sequentially interchanged and their activities were compared. Chimeric TRs containing the domains D, E or (D + E) of TRbeta1 showed increased propensities to form homodimers and mediated higher transactivation activities than TRalpha1. Thus, differential transactivation activities of TR isoforms are mediated by interplay of their domains and could serve as an important regulatory mechanism to achieve diversity and specificity of pleiotropic T3 effect.
Collapse
Affiliation(s)
- X G Zhu
- Laboratory of Molecular Biology, Division of Basic Sciences, NIDDKD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
35
|
Ting YT, Bhat MK, Wong R, Cheng SY. Tissue-specific stabilization of the thyroid hormone beta1 nuclear receptor by phosphorylation. J Biol Chem 1997; 272:4129-34. [PMID: 9020124 DOI: 10.1074/jbc.272.7.4129] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The present study evaluated the expression and regulation of endogenous thyroid hormone receptors (TRs) in cultured cells. In COS-1 cells, the endogenous TR, subtype beta1 (TRbeta1), but not subtype beta2 or alpha1, was induced to express by okadaic acid (OA) in a concentration-dependent manner. The induced TRbeta1 had immunoreactivity and partial V8 proteolytic maps similar to those of the transfected and in vitro translated human TRbeta1 (h-TRbeta1). The OA-induced expression of endogenous TRbeta1 was, however, not observed in a variety of other cultured cell lines tested, indicating that the induction was cell type-dependent. TRbeta1 induced by OA was a multisite phosphorylated protein, in which serine and threonine in a ratio of 10:1 were phosphorylated. The induced TRbeta1 was functional as it could mediate the thyroid hormone-dependent transcriptional activity via several thyroid hormone response elements. The induction of endogenous TRbeta1 expression by OA was not accompanied by an increase in mRNA levels but was the result of an increase in the stability of the TRbeta1 protein. This is the first report to indicate that one of the mechanisms by which the TR isoforms are differentially expressed is via the tissue-specific stabilization of the TR isoform proteins. Furthermore, this selective stability of TRbeta1 could be conferred by phosphorylation.
Collapse
Affiliation(s)
- Y T Ting
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
36
|
Leitman DC, Costa CH, Graf H, Baxter JD, Ribeiro RC. Thyroid hormone activation of transcription is potentiated by activators of cAMP-dependent protein kinase. J Biol Chem 1996; 271:21950-5. [PMID: 8703000 DOI: 10.1074/jbc.271.36.21950] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We characterized the cross-talk between activators of protein kinase A (PKA) and thyroid hormone (T3) in T3 receptor (TR)-mediated transcription. U937 cells were cotransfected with a plasmid expressing the TR and a reporter plasmid containing a T3 response element (TRE) oriented either as a direct repeat or as a palindrome upstream of the thymidine kinase promoter linked to the chloramphenicol acetyltransferase gene. T3 activated transcription by 10-fold. T3 response was potentiated 2.5-3-fold by activators of PKA, but an activator of protein kinase C or of guanylate kinase was ineffective. In the absence of T3, activators of PKA had no effect on transcription. TR heterodimerization with the retinoid X receptor may facilitate T3/PKA cross-talk because coexpression of the retinoid X receptor potentiated cross-talk. Synergy was not observed in JEG-3, F9, CV-1, HeLa, L929, and HTC cells, indicating that it may require cell-specific factors. Synergy required the DNA- and ligand-binding domains, but not the amino-terminal domain, indicating that T3- and TRE-induced conformational changes on the TR are essential for cross-talk. PKA phosphorylated the TR in vitro, suggesting that, like other nuclear receptors, the TR is a target for PKA. These results imply that PKA cross-talks with T3 at the level of the TRE-bound TR, enhancing its transcriptional activity in a cell-specific manner.
Collapse
Affiliation(s)
- D C Leitman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco 94143-0540, USA
| | | | | | | | | |
Collapse
|
37
|
Takimoto GS, Hovland AR, Tasset DM, Melville MY, Tung L, Horwitz KB. Role of phosphorylation on DNA binding and transcriptional functions of human progesterone receptors. J Biol Chem 1996; 271:13308-16. [PMID: 8662865 DOI: 10.1074/jbc.271.23.13308] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To study the function of human progesterone receptor (hPR) phosphorylation, we have tested four sets of serine to alanine substitution mutants: 10 serine clusters, located in regions common to both hPR isoforms (the M-series mutants) were mutated in A-receptors and B-receptors; 6 serine clusters located in the B-upstream segment (BUS; the B-series mutants) were mutated individually and collectively and cloned into B-receptors and into BUS-DBD-NLS, a constitutive transactivator, in which the AF3 function of BUS is fused to the DNA binding domain (DBD) and nuclear localization signal (NLS) of hPR. Transcription by most of the M-series mutants resembles that of wild-type A- or B-receptors. Mutation of 3 sites, Ser190 at the N terminus of A-receptors, a cluster of serines just upstream of the DBD, or Ser676 in the hinge region, inhibits transcription by 20-50% depending on cell or promoter context. These sites lie outside the AF1 activation function. M-series mutants are substrates for a hormone-dependent phosphorylation step, and they all bind well to DNA. Progressive mutation of the B-series clusters leads to the gradual dephosphorylation of BUS, but only the 6-site mutant, involving 10 serine residues, is completely dephosphorylated. These data suggest that in BUS alternate serines are phosphorylated or dephosphorylated at any time. However, even when BUS is completely dephosphorylated, both BUS-DBD-NLS and full-length B-receptors remain strong transactivators. Mutant B-receptors also do not acquire the dominant negative properties of A-receptors, and they retain the ability to activate transcription in synergy with 8-Br-cAMP and antiprogestins. We conclude that phosphorylation has subtle effects on the complex transcriptional repertoire that distinguishes the two hPR isoforms and does not influence transactivation mediated by AF1 or AF3, but subserves other functions.
Collapse
Affiliation(s)
- G S Takimoto
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
38
|
Yap N, Yu CL, Cheng SY. Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53. Proc Natl Acad Sci U S A 1996; 93:4273-7. [PMID: 8633054 PMCID: PMC39525 DOI: 10.1073/pnas.93.9.4273] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcriptional factors that regulate growth, differentiation, and development. The molecular mechanisms by which TRs mediate these effects are unclear. One prevailing hypothesis suggests that TRs may cooperate with other transcriptional factors to mediate their biological effects. In this study, we tested this hypothesis by examining whether the activity of TRs is modulated by the tumor suppressor p53. p53 is a nuclear protein that regulates gene expression via sequence-specific DNA binding and/or direct protein-protein interaction. We found that the human TR subtype beta 1 (h-TR beta 1) physically interacted with p53 via its DNA binding domain. As a result of this physical interaction, binding of h-TR beta 1 to its hormone response elements either as homodimer or as a heterodimer with the retinoic X receptor was inhibited by p53 in a concentration-dependent manner. In transfected cells, wild-type p53 repressed the hormone-dependent transcriptional activation of h-TR beta 1. In contrast, mutant p53 either had no effect or activated the transcriptional activity of h-TR beta 1 depending on the type of hormone response elements. These results indicate the gene regulating activity of TRs was modulated by p53, suggesting that the cross talk between these two transcriptional factors may play an important role in the biology of normal and cancer cells.
Collapse
Affiliation(s)
- N Yap
- Gene Regulation Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
39
|
Malik S, Karathanasis SK. TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 1996; 16:1824-31. [PMID: 8657158 PMCID: PMC231169 DOI: 10.1128/mcb.16.4.1824] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is required for development and maintenance of the liver phenotype. HNF-4 activates several hepatocyte-specific genes, including the gene encoding apolipoprotein AI (apoAI), the major protein component of plasma high-density lipoprotein. The apoAI gene is activated by HNF-4 through a nuclear receptor binding element (site A) located in its liver-specific enhancer. To decipher the mechanism whereby HNF-4 enhances apoAI gene transcription, we have reconstituted its activity in a cell-free system. Functional HNF-4 was purified to homogeneity from a bacterial expression system. In in vitro transcription assays employing nuclear extract from HeLa cells, which do not contain HNF-4, recombinant HNF-4 stimulated transcription from basal promoters linked to site A. Activation by HNF-4 did not exhibit a ligand requirement, but phosphorylation of HNF-4 in the in vitro transcription system was observed. The activation function of HNF-4 was localized to a domain displaying strong homology to the conserved AF-2 region of nuclear receptors. Dissection of the transcription cycle revealed that HNF-4 activated transcription by facilitating assembly of a preinitiation complex intermediate consisting of TBP, the TATA box-binding protein component of TFIID and TFIID, via direct physical interactions with TFIIB. However, recruitment of TFIIB by HNF-4 was not sufficient for activation, since HNF-4 deletion derivatives lacking AF-2 bound TFIIB. On the basis of these results, HNF-4 appears to activate transcription at two distinct levels. The first step involves AF-2-independent recruitment of TFIIB to the promoter complex; the second step is AF-2 dependent and entails entry of preinitiation complex components acting downstream of TFIIB.
Collapse
Affiliation(s)
- S Malik
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965, USA
| | | |
Collapse
|
40
|
Yen PM, Sugawara A, Liu Y, Whang J, Chin WW. Factors that enhance Escherichia coli-expressed TR beta binding to T3 and DNA. Thyroid 1995; 5:309-13. [PMID: 7488874 DOI: 10.1089/thy.1995.5.309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thyroid hormone receptors (TRs) recently have been produced in E. coli by several laboratories. We produced E. coli-expressed human TR beta using the histidine/fusion protein system. Surprisingly, we observed that reticulocyte lysate, nonspecific proteins, and 1% Triton X dramatically increased both the T3- and DNA-binding activities of human TR beta. These studies demonstrate that there are a number of factors that will enhance ligand and DNA binding of E. coli-expressed TR beta. Addition of these factors to reaction samples containing E. coli-expressed TRs will help to optimize measurement conditions. These findings also suggest that experiments in which cellular proteins are added to highly purified TR preparations may require controls to eliminate contributions by nonspecific proteins.
Collapse
Affiliation(s)
- P M Yen
- Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts, USA
| | | | | | | | | |
Collapse
|
41
|
Lefebvre P, Gaub MP, Tahayato A, Rochette-Egly C, Formstecher P. Protein phosphatases 1 and 2A regulate the transcriptional and DNA binding activities of retinoic acid receptors. J Biol Chem 1995; 270:10806-16. [PMID: 7738017 DOI: 10.1074/jbc.270.18.10806] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To determine which factors may regulate the DNA binding and transcriptional properties of retinoic acid receptors (RARs and RXRs), we investigated the sensitivity of reporter genes bearing various retinoic acid response elements (RAREs) to protein phosphatases (PPases) inhibition. PPases inhibition by okadaic acid led to an increase of the reporter genes activity in a RARE-dependent and ligand-independent manner and was dependent on the type of response element used. Overexpression of protein phosphatases 2A and 1 (PP2A and PP1) decreased the inducibility of the reporter genes tested. Nuclear extracts from okadaic acid-treated COS cells displayed an 2-5-fold increased level of receptor binding to RAREs in vitro, suggesting that PPases inhibition increased the DNA binding activity of retinoid receptors. Treatment of receptors extracted from COS cells by alkaline phosphatase and partially purified PP1 and PP2A decreased their DNA binding activity, but heterodimers bound to DNA were not sensitive to phosphatase treatment. Reconstitution experiments showed that phosphorylation of both receptors increased the DNA binding activity of RXR/RAR heterodimers. Taken together, these data show that the modulation of the phosphorylation state of RARs and RXRs represents an other level of regulation of the retinoid signaling pathway.
Collapse
Affiliation(s)
- P Lefebvre
- CJF INSERM 92-03, Laboratoire de Biochimie Structurale Faculté de Médecine de Lille, France
| | | | | | | | | |
Collapse
|
42
|
Cheng Sy SY. New Insights into the Structure and Function of the Thyroid Hormone Receptor. J Biomed Sci 1995; 2:77-89. [PMID: 11725045 DOI: 10.1007/bf02253060] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- S.-y. Cheng Sy
- Gene Regulation Section, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Md., USA
| |
Collapse
|
43
|
Affiliation(s)
- W Bai
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
44
|
Underhill TM, Kotch LE, Linney E. Retinoids and mouse embryonic development. VITAMINS AND HORMONES 1995; 51:403-57. [PMID: 7483329 DOI: 10.1016/s0083-6729(08)61046-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T M Underhill
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|