1
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Zheng XN, Li TT, Elsheikha HM, Wang M, Sun LX, Wu XJ, Fu BQ, Zhu XQ, Wang JL. GRA47 is important for the morphology and permeability of the parasitophorous vacuole in Toxoplasma gondii. Int J Parasitol 2024; 54:583-596. [PMID: 38936501 DOI: 10.1016/j.ijpara.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.
Collapse
Affiliation(s)
- Xiao-Nan Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China.
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China.
| |
Collapse
|
3
|
Bitew MA, Gaete PS, Swale C, Maru P, Contreras JE, Saeij JPJ. Two Toxoplasma gondii putative pore-forming proteins, GRA47 and GRA72, influence small molecule permeability of the parasitophorous vacuole. mBio 2024; 15:e0308123. [PMID: 38380952 PMCID: PMC10936148 DOI: 10.1128/mbio.03081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins secreted from dense granule organelles to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions, we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant "bubble vacuole" morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections. IMPORTANCE Toxoplasma gondii is a parasite that poses significant health risks to those with impaired immunity. It replicates inside host cells shielded by the PVM, which controls nutrient and waste exchange with the host. GRA72, previously identified as essential in the absence of the GRA17 nutrient channel, is implicated in forming an alternative nutrient channel. Here we found that GRA47 associates with GRA72 and is also important for the PVM's permeability to small molecules. Removal of GRA47 leads to distorted vacuoles and impairs small molecule transport across the PVM, resembling the effects of GRA17 and GRA72 deletions. Structural models suggest GRA47 and GRA72 form distinct pore structures, with a pore-lining histidine critical to their function. Toxoplasma strains lacking GRA47 or those with a histidine mutation have impaired growth and reduced virulence in mice, highlighting these proteins as potential targets for new treatments against toxoplasmosis.
Collapse
Affiliation(s)
- Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California, Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, University of California, Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
4
|
Desai SA. Novel Ion Channel Genes in Malaria Parasites. Genes (Basel) 2024; 15:296. [PMID: 38540355 PMCID: PMC10970509 DOI: 10.3390/genes15030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Ion channels serve many cellular functions including ion homeostasis, volume regulation, signaling, nutrient acquisition, and developmental progression. Although the complex life cycles of malaria parasites necessitate ion and solute flux across membranes, the whole-genome sequencing of the human pathogen Plasmodium falciparum revealed remarkably few orthologs of known ion channel genes. Contrasting with this, biochemical studies have implicated the channel-mediated flux of ions and nutritive solutes across several membranes in infected erythrocytes. Here, I review advances in the cellular and molecular biology of ion channels in malaria parasites. These studies have implicated novel parasite genes in the formation of at least two ion channels, with additional ion channels likely present in various membranes and parasite stages. Computational approaches that rely on homology to known channel genes from higher organisms will not be very helpful in identifying the molecular determinants of these activities. Given their unusual properties, novel molecular and structural features, and essential roles in pathogen survival and development, parasite channels should be promising targets for therapy development.
Collapse
Affiliation(s)
- Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
5
|
Bitew MA, Gaete PS, Swale C, Maru P, Contreras JE, Saeij JPJ. GRA47 and GRA72 are Toxoplasma gondii pore-forming proteins that influence small molecule permeability of the parasitophorous vacuole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567216. [PMID: 38014337 PMCID: PMC10680723 DOI: 10.1101/2023.11.15.567216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins, secreted from dense granule organelles, to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant 'bubble vacuole' morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections.
Collapse
Affiliation(s)
- Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| |
Collapse
|
6
|
de Souza Teles ER, de Araujo Portes J, de Souza W. New morphological observations on the initial events of Toxoplasma gondii entry into host cells. Vet Parasitol 2023; 322:110006. [PMID: 37633244 DOI: 10.1016/j.vetpar.2023.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan of worldwide distribution. It is effective in the infection of various homoeothermic animals of economic importance. The process of T. gondii invasion of host cells occurs in less than 20 s by the active mechanism of penetration. First, a mobile junction is formed due to the association between the apical end of the parasite and the host cell surface. Then, the secretion of invasive and docking proteins allows the formation of the mobile junction before the complete internalization of the parasite. Here, using high-resolution microscopy, it was described new morphological observations of the early events of host cell invasion by tachyzoites of T. gondii. Attempts were made to synchronize the interaction process using low temperatures and treatment of the host cells with cytochalasin D, a drug that interferes with the actin dynamics. Images were obtained showing that the parasite and the host cells seem to release small vesicles with diameters varying from 25 to 100 nm. Furthermore, tunneling nanotubes emerge from the host cell surface and interact with the parasite even at long distance. These observations add new details of adhesion and entry events, such as surface projections of the host cell plasma membrane, pseudopods, and nanotubes radiating from the host cell toward the parasite. In addition, scanning microscopy revealed intense vesiculation, with a morphological characteristic of extracellular microvesicles, during the entry of the tachyzoite into the host cell.
Collapse
Affiliation(s)
- Everson Reili de Souza Teles
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INBEB, and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro de Estudos Biomédicos-CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
7
|
Paredes-Santos TC, Bitew MA, Swale C, Rodriguez F, Krishnamurthy S, Wang Y, Maru P, Sangaré LO, Saeij JPJ. Genome-wide CRISPR screen identifies genes synthetically lethal with GRA17, a nutrient channel encoding gene in Toxoplasma. PLoS Pathog 2023; 19:e1011543. [PMID: 37498952 PMCID: PMC10409377 DOI: 10.1371/journal.ppat.1011543] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Toxoplasma gondii is a parasite that replicates within a specialized compartment called the parasitophorous vacuole (PV), which is surrounded by the PV membrane (PVM). To obtain essential nutrients, Toxoplasma must transport molecules across the PVM, a process mediated by the secreted parasite proteins GRA17 and GRA23. These proteins form pores in the PVM through which small molecules can diffuse in and out of the PV. GRA17 and GRA23 are synthetically lethal, suggesting that at least one pore type is essential for parasite survival. In the 'nutrient sensitized' Δgra17 strain it is likely that other Toxoplasma genes become essential, because they mediate nutrient acquisition from the host or are involved in the trafficking of GRA23 to the PVM. To identify these genes, a genome-wide loss-of-function screen was performed in wild-type and Δgra17 parasites, which identified multiple genes that were synthetically sick/lethal with GRA17. Several of these genes were involved in the correct localization of GRAs, including GRA17/GRA23, to the PVM. One of the top hits, GRA72, was predicted to form a pore on the PVM, and its deletion led to the formation of enlarged "bubble vacuoles" with reduced PVM small molecule permeability, similar to what was previously observed for Δgra17 parasites. Furthermore, Δgra72 parasites had reduced in vitro growth and virulence in mice. These findings suggest that in the absence of GRA17, other genes become essential, likely because they play a role in the proper localization of GRA23 (and other GRAs) or because they determine host-derived nutrient acquisition at the PVM.
Collapse
Affiliation(s)
- Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Felipe Rodriguez
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
8
|
Denton SL, Mejia A, Nevarez LL, Soares MP, Fox BA, Bzik DJ, Gigley JP. Theft of Host Transferrin Receptor-1 by Toxoplasma gondii is required for infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546322. [PMID: 39372795 PMCID: PMC11451604 DOI: 10.1101/2023.06.23.546322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Nutrient acquisition by apicomplexan parasites is essential to drive their intracellular replication, yet the mechanisms that underpin essential nutrient acquisition are not defined. Using the apicomplexan model Toxoplasma gondii , we show that host cell proteins including the transferrin receptor 1, transferrin, ferritin heavy and light chains, and clathrin light chain are robustly taken up by tachyzoites. Tachyzoite acquisition of host cell protein was not related to host cell type or parasite virulence phenotypes. Bradyzoites possessed little capacity to acquire host cell proteins consistent with the cyst wall representing a barrier to host cell protein cargo. Increased trafficking of host cell transferrin receptor 1 and transferrin to endolysosomes boosted tachyzoite acquisition of host proteins and growth rate. Theft of host transferrin 1 and transferrin did not significantly affect iron levels in the tachyzoite. This study provides insight into essential functions associated with parasite theft of host iron sequestration and storage proteins.
Collapse
|
9
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Lacerda-Abreu MA, Dick CF, Meyer-Fernandes JR. The Role of Inorganic Phosphate Transporters in Highly Proliferative Cells: From Protozoan Parasites to Cancer Cells. MEMBRANES 2022; 13:42. [PMID: 36676849 PMCID: PMC9860751 DOI: 10.3390/membranes13010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In addition to their standard inorganic phosphate (Pi) nutritional function, Pi transporters have additional roles in several cells, including Pi sensing (the so-called transceptor) and a crucial role in Pi metabolism, where they control several phenotypes, such as virulence in pathogens and tumour aggressiveness in cancer cells. Thus, intracellular Pi concentration should be tightly regulated by the fine control of intake and storage in organelles. Pi transporters are classified into two groups: the Pi transporter (PiT) family, also known as the Pi:Na+ symporter family; and the Pi:H+ symporter (PHS) family. Highly proliferative cells, such as protozoan parasites and cancer cells, rely on aerobic glycolysis to support the rapid generation of biomass, which is equated with the well-known Warburg effect in cancer cells. In protozoan parasite cells, Pi transporters are strongly associated with cell proliferation, possibly through their action as intracellular Pi suppliers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Similarly, the growth rate hypothesis (GRH) proposes that the high Pi demands of tumours when achieving accelerated proliferation are mainly due to increased allocation to P-rich nucleic acids. The purpose of this review was to highlight recent advances in understanding the role of Pi transporters in unicellular eukaryotes and tumorigenic cells, correlating these roles with metabolism in these cells.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia Fernanda Dick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Hussain T, Linera-Gonzalez J, Beck JM, Fierro MA, Mair GR, Smith RC, Beck JR. The PTEX Pore Component EXP2 Is Important for Intrahepatic Development during the Plasmodium Liver Stage. mBio 2022; 13:e0309622. [PMID: 36445080 PMCID: PMC9765067 DOI: 10.1128/mbio.03096-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.
Collapse
Affiliation(s)
- Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | | | - John M. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gunnar R. Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
13
|
Cui J, Yang X, Yang J, Jia R, Feng Y, Shen B. A Coccidia-Specific Phosphate Transporter Is Essential for the Growth of Toxoplasma gondii Parasites. Microbiol Spectr 2022; 10:e0218622. [PMID: 36094254 PMCID: PMC9604053 DOI: 10.1128/spectrum.02186-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that acquires all necessary nutrients from the hosts, but the exact nutrient acquisition mechanisms are poorly understood. Here, we identified three putative phosphate transporters in T. gondii. TgPiT and TgPT2 are mainly on the plasma membrane, whereas TgmPT is localized to the mitochondrion. TgPiT and TgmPT are widely present and conserved in apicomplexan parasites that include Plasmodium and Eimeria species. Nonetheless, they are dispensable for the growth and virulence of Toxoplasma. TgPT2, on the other hand, is restricted to coccidia parasites and is essential for Toxoplasma survival. TgPT2 depletion led to reduced motility and invasion, as well as growth arrest of the parasites both in vitro and in vivo. Both TgPiT and TgPT2 have phosphate transport activities and contribute to parasites' inorganic phosphate (Pi) absorption. Interestingly, the Pi importing activity of Toxoplasma parasites could be competitively inhibited by ATP and AMP. Furthermore, direct uptake of 32P-ATP was also observed, indicating the parasites' ability to scavenge host ATP. Nonetheless, ATP/AMP import is not mediated by TgPiT or TgPT2, suggesting additional mechanisms. Together, these results show the complex pathways of phosphate transport in Toxoplasma, and TgPT2 is a potential target for antitoxoplasmic intervention design due to its essential role in parasite growth. IMPORTANCE To grow and survive within host cells, Toxoplasma must scavenge necessary nutrients from hosts to support its parasitism. Transporters located in the plasma membrane of the parasites play critical roles in nutrient acquisition. Toxoplasma encodes a large number of transporters, but so far, only a few have been characterized. In this study, we identified two phosphate transporters, TgPiT and TgPT2, to localize to the plasma membrane of Toxoplasma. Although both TgPiT and TgPT2 possess phosphate transport activities, only the novel transporter TgPT2 was essential for parasite growth, both in vitro and in vivo. In addition, TgPT2 and its orthologs are only present in coccidia parasites. As such, TgPT2 represents a potential target for drug design against toxoplasmosis. In addition, our data indicated that Toxoplasma can take up ATP and AMP from the environment, providing new insights into the energy metabolism of Toxoplasma.
Collapse
Affiliation(s)
- Jianmin Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Ruilian Jia
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
14
|
Dewangan PS, Beraki TG, Paiz EA, Appiah Mensah D, Chen Z, Reese ML. Divergent kinase WNG1 is regulated by phosphorylation of an atypical activation sub-domain. Biochem J 2022; 479:1877-1889. [PMID: 35938919 PMCID: PMC9555795 DOI: 10.1042/bcj20220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Apicomplexan parasites like Toxoplasma gondii grow and replicate within a specialized organelle called the parasitophorous vacuole. The vacuole is decorated with parasite proteins that integrate into the membrane after trafficking through the parasite secretory system as soluble, chaperoned complexes. A regulator of this process is an atypical protein kinase called WNG1. Phosphorylation by WNG1 appears to serve as a switch for membrane integration. However, like its substrates, WNG1 is secreted from the parasite dense granules, and its activity must, therefore, be tightly regulated until the correct membrane is encountered. Here, we demonstrate that, while another member of the WNG family can adopt multiple multimeric states, WNG1 is monomeric and therefore not regulated by multimerization. Instead, we identify two phosphosites on WNG1 that are required for its kinase activity. Using a combination of in vitro biochemistry and structural modeling, we identify basic residues that are also required for WNG1 activity and appear to recognize the activating phosphosites. Among these coordinating residues are the 'HRD' Arg, which recognizes activation loop phosphorylation in canonical kinases. WNG1, however, is not phosphorylated on its activation loop, but rather on atypical phosphosites on its C-lobe. We propose a simple model in which WNG1 is activated by increasing ATP concentration above a critical threshold once the kinase traffics to the parasitophorous vacuole.
Collapse
Affiliation(s)
- Pravin S. Dewangan
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - Tsebaot G. Beraki
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - E. Ariana Paiz
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - Delia Appiah Mensah
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
- Honors College, University of Texas at Dallas, Richardson, TX, U.S.A
| | - Zhe Chen
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| |
Collapse
|
15
|
Munera Lopez J, Tengganu IF, Liu J, Murray JM, Arias Padilla LF, Zhang Y, Brown PT, Florens L, Hu K. An apical protein, Pcr2, is required for persistent movement by the human parasite Toxoplasma gondii. PLoS Pathog 2022; 18:e1010776. [PMID: 35994509 PMCID: PMC9436145 DOI: 10.1371/journal.ppat.1010776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.
Collapse
Affiliation(s)
- Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Isadonna F. Tengganu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Peter T. Brown
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wu M, An R, Zhou N, Chen Y, Cai H, Yan Q, Wang R, Luo Q, Yu L, Chen L, Du J. Toxoplasma gondii CDPK3 Controls the Intracellular Proliferation of Parasites in Macrophages. Front Immunol 2022; 13:905142. [PMID: 35757711 PMCID: PMC9226670 DOI: 10.3389/fimmu.2022.905142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Interferon-γ (IFN-γ)-activated macrophages restrain the replication of intracellular parasites and disrupt the integrity of vacuolar pathogens. The growth of the less virulent type II strain of Toxoplasma gondii (such as ME49) was strongly inhibited by IFN-γ-activated murine macrophages. However, the mechanism of resistance is poorly understood. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Previous studies showed the cassette of autophagy-related proteins including Atg7, Atg3, and Atg12-Atg5-Atg16L1 complex, plays crucial roles in the proper targeting of IFN-γ effectors onto the parasitophorous vacuole (PV) membrane of Toxoplasma gondii and subsequent control of parasites. TgCDPK3 is a calcium dependent protein kinase, located on the parasite periphery, plays a crucial role in parasite egress. Herein, we show that the less virulent strain CDPK3 (ME49, type II) can enhance autophagy activation and interacts with host autophagy proteins Atg3 and Atg5. Infection with CDPK3-deficient ME49 strain resulted in decreased localization of IRGs and GBPs around PV membrane. In vitro proliferation and plaque assays showed that CDPK3-deficient ME49 strain replicated significantly more quickly than wild-type parasites. These data suggested that TgCDPK3 interacts with the host Atg3 and Atg5 to promote the localization of IRGs and GBPs around PV membrane and inhibits the intracellular proliferation of parasites, which is beneficial to the less virulent strain of Toxoplasma gondii long-term latency in host cells.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Nan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,School of Nursing, Anhui Medical University, Hefei, China
| | - Haijian Cai
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Qingli Luo
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Huynh MH, Carruthers VB. Toxoplasma gondii excretion of glycolytic products is associated with acidification of the parasitophorous vacuole during parasite egress. PLoS Pathog 2022; 18:e1010139. [PMID: 35512005 PMCID: PMC9113570 DOI: 10.1371/journal.ppat.1010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/17/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
The Toxoplasma gondii lytic cycle is a repetition of host cell invasion, replication, egress, and re-invasion into the next host cell. While the molecular players involved in egress have been studied in greater detail in recent years, the signals and pathways for triggering egress from the host cell have not been fully elucidated. A perforin-like protein, PLP1, has been shown to be necessary for permeabilizing the parasitophorous vacuole (PV) membrane or exit from the host cell. In vitro studies indicated that PLP1 is most active in acidic conditions, and indirect evidence using superecliptic pHluorin indicated that the PV pH drops prior to parasite egress. Using ratiometric pHluorin, a GFP variant that responds to changes in pH with changes in its bimodal excitation spectrum peaks, allowed us to directly measure the pH in the PV prior to and during egress by live-imaging microscopy. A statistically significant change was observed in PV pH during ionomycin or zaprinast induced egress in both wild-type RH and Δplp1 vacuoles compared to DMSO-treated vacuoles. Interestingly, if parasites are chemically paralyzed, a pH drop is still observed in RH but not in Δplp1 tachyzoites. This indicates that the pH drop is dependent on the presence of PLP1 or motility. Efforts to determine transporters, exchangers, or pumps that could contribute to the drop in PV pH identified two formate-nitrite transporters (FNTs). Auxin induced conditional knockdown and knockouts of FNT1 and FNT2 reduced the levels of lactate and pyruvate released by the parasites and lead to an abatement of vacuolar acidification. While additional transporters and molecules are undoubtedly involved, we provide evidence of a definitive reduction in vacuolar pH associated with induced and natural egress and characterize two transporters that contribute to the acidification. Toxoplasma gondii is a single celled intracellular parasite that infects many different animals, and it is thought to infect up to one third of the human population. This parasite must rupture out of its replicative compartment and the host cell to spread from one cell to another. Previous studies indicated that a decrease in pH occurs within the replicative compartment near the time of parasite exit from host cells, an event termed egress. However, it remained unknown whether the decrease in pH is directly tied to egress and, if so, what is responsible for the decrease in pH. Here we used a fluorescent reporter protein to directly measure pH within the replicative compartment during parasite egress. We found that pH decreases immediately prior to parasite egress and that this decrease is linked to parasite disruption of membranes. We also identified a family of transporters that release acidic products from parasite use of glucose for energy as contributing to the decrease in pH during egress. Our findings provide new insight that connects parasite glucose metabolism to acidification of its replicative compartment during egress from infected cells.
Collapse
Affiliation(s)
- My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
18
|
Shunmugam S, Arnold CS, Dass S, Katris NJ, Botté CY. The flexibility of Apicomplexa parasites in lipid metabolism. PLoS Pathog 2022; 18:e1010313. [PMID: 35298557 PMCID: PMC8929637 DOI: 10.1371/journal.ppat.1010313] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| |
Collapse
|
19
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
20
|
Nguyen TT, Kamyingkird K, Phimpraphai W, Inpankaew T. Viability of Toxoplasma gondii tachyzoites in different conditions for parasite transportation. Vet World 2022; 15:198-204. [PMID: 35369589 PMCID: PMC8924386 DOI: 10.14202/vetworld.2022.198-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Aim Toxoplasma gondii tachyzoite is the infective stage that causes acute infection, leading to severe toxoplasmosis. The tachyzoite stage has been extensively used for several inoculation purposes, including antigen production, immunological studies, nutrition mechanisms, and in vitro drug trials. The use of fresh tachyzoites is required for inoculation in either in vitro or in vivo studies. However, there is a lack of information on preserving live tachyzoites during transportation from laboratories to inoculation sites. Therefore, this study aimed to validate suitable preservative conditions for maintaining live parasites by determining the survival and viability of T. gondii tachyzoites on the basis of different media, temperatures, and incubation times. Materials and Methods The free live T. gondii tachyzoites were evaluated on their viability when maintained in different media without 5% Carbon dioxide (CO2). The purified tachyzoites of the RH and PLK strains were individually suspended in normal saline (NS), phosphate-buffered saline (PBS), minimum essential medium (MEM), and MEM with 10% fetal bovine serum (MEM-FBS) and incubated for 6 h at ice-cold (IC; 3-9°C) and room temperature (RT; 25°C). Parasite survival was measured at the 0, 1st, 2nd, 3rd, 4th, 5th, and 6th h post-incubation using the trypan blue exclusion test. Results The viability was in the range of 85.0%-91.0% for IC using NS and 81.0%-85.1% (IC) and 75.3%-77.5% (RT) using PBS. The viability was approximately 75.0%-83.0% (IC) and 70.0%-79.0% (RT) using MEM and MEM-FBS. There was a significant difference in the viability between the seven periods on the basis of one-way repeated Analysis of variance and Friedman analyses. Parasite survival slightly reduced (20.0%-30.0%) in NS and MEM-FBS at both temperatures during incubation. Notably, PBS could not support tachyzoite viability after 3 h post-incubation. Conclusion NS was a suitable preservative for maintaining purified T. gondii tachyzoites during transportation at IC and RT without 5% CO2 supplementation. This could be a valuable medium for parasite transportation, especially when there is a large distance between the laboratory and inoculation site.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Department of Veterinary Medicine, Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Waraphon Phimpraphai
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
21
|
Usey MM, Huet D. Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion. J Eukaryot Microbiol 2022; 69:e12906. [PMID: 35315174 PMCID: PMC9490983 DOI: 10.1111/jeu.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a member of the apicomplexan phylum, a group of single-celled eukaryotic parasites that cause significant human morbidity and mortality around the world. T. gondii harbors two organelles of endosymbiotic origin: a non-photosynthetic plastid, known as the apicoplast, and a single mitochondrion derived from the ancient engulfment of an α-proteobacterium. Due to excitement surrounding the novelty of the apicoplast, the T. gondii mitochondrion was, to a certain extent, overlooked for about two decades. However, recent work has illustrated that the mitochondrion is an essential hub of apicomplexan-specific biology. Development of novel techniques, such as cryo-electron microscopy, complexome profiling, and next-generation sequencing have led to a renaissance in mitochondrial studies. This review will cover what is currently known about key features of the T. gondii mitochondrion, ranging from its genome to protein import machinery and biochemical pathways. Particular focus will be given to mitochondrial features that diverge significantly from the mammalian host, along with discussion of this important organelle as a drug target.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA,Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Diego Huet
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA,Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
22
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Lodoen MB, Smith NC, Soldati-Favre D, Ferguson DJP, van Dooren GG. Nanos gigantium humeris insidentes: old papers informing new research into Toxoplasma gondii. Int J Parasitol 2021; 51:1193-1212. [PMID: 34736901 PMCID: PMC10538201 DOI: 10.1016/j.ijpara.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Since Nicolle, Manceaux and Splendore first described Toxoplasma gondii as a parasite of rodents and rabbits in the early 20th century, a diverse and vigorous research community has been built around studying this fascinating intracellular parasite. In addition to its importance as a pathogen of humans, livestock and wildlife, modern researchers are attracted to T. gondii as a facile experimental system to study many aspects of evolutionary biology, cellular biology, host-microbe interactions, and host immunity. For new researchers entering the field, the extensive literature describing the biology of the parasite, and the interactions with its host, can be daunting. In this review, we examine four foundational studies that describe various aspects of T. gondii biology, presenting a 'journal club'-style analysis of each. We have chosen a paper that established the beguiling life cycle of the parasite (Hutchison et al., 1971), a paper that described key features of its cellular biology that the parasite shares with related organisms (Gustafson et al., 1954), a paper that characterised the origin of the unique compartment in which the parasite resides within host cells (Jones and Hirsch, 1972), and a paper that established a key mechanism in the host immune response to parasite infection (Pfefferkorn, 1984). These interesting and far-reaching studies set the stage for subsequent research into numerous facets of parasite biology. As well as providing new researchers with an entry point into the literature surrounding the parasite, revisiting these studies can remind us of the roots of our discipline, how far we have come, and the new directions in which we might head.
Collapse
Affiliation(s)
- Melissa B Lodoen
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
24
|
Kloehn J, Lacour CE, Soldati-Favre D. The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol 2021; 63:250-258. [PMID: 34455306 DOI: 10.1016/j.mib.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
The apicoplast is the relict of a plastid organelle found in several disease-causing apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii. In these organisms, the organelle has lost its photosynthetic capability but harbours several fitness-conferring or essential metabolic pathways. Although maintaining the apicoplast and fuelling the metabolic pathways within requires the challenging constant import and export of numerous metabolites across its four membranes, only few apicoplast transporters have been identified to date, most of which are orphan transporters. Here we review the roles of metabolic pathways within the apicoplast and what is currently known about the few identified apicoplast metabolite transporters. We discuss what metabolites must get in and out of the apicoplast, the many transporters that are yet to be discovered, and what role these might play in parasite metabolism and as putative drug targets.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | - Clément Em Lacour
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Augusto L, Wek RC, Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion. Mol Microbiol 2021; 115:839-848. [PMID: 33118234 PMCID: PMC9364677 DOI: 10.1111/mmi.14634] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
The intracellular parasite Toxoplasma gondii infects nucleated cells in virtually all warm-blooded vertebrates, including one-third of the human population. While immunocompetent hosts do not typically show symptoms of acute infection, parasites are retained in latent tissue cysts that can be reactivated upon immune suppression, potentially damaging key organ systems. Toxoplasma has a multistage life cycle that is intimately linked to environmental stresses and host signals. As this protozoan pathogen is transmitted between multiple hosts and tissues, it evaluates these external signals to appropriately differentiate into distinct life cycle stages, such as the transition from its replicative stage (tachyzoite) to the latent stage (bradyzoite) that persists as tissue cysts. Additionally, in the gut of its definitive host, felines, Toxoplasma converts into gametocytes that produce infectious oocysts (sporozoites) that are expelled into the environment. In this review, we highlight recent advances that have illuminated the interfaces between Toxoplasma and host and how these interactions control parasite stage conversion. Mechanisms underlying these stage transitions are important targets for therapeutic intervention aimed at thwarting parasite transmission and pathogenesis.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Ronald C. Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
26
|
Ben Chaabene R, Lentini G, Soldati-Favre D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 2021; 115:453-465. [PMID: 33368727 DOI: 10.1111/mmi.14674] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Abstract
Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Chi-Min Ho
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
28
|
Counihan NA, Modak JK, de Koning-Ward TF. How Malaria Parasites Acquire Nutrients From Their Host. Front Cell Dev Biol 2021; 9:649184. [PMID: 33842474 PMCID: PMC8027349 DOI: 10.3389/fcell.2021.649184] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Plasmodium parasites responsible for the disease malaria reside within erythrocytes. Inside this niche host cell, parasites internalize and digest host hemoglobin to source amino acids required for protein production. However, hemoglobin does not contain isoleucine, an amino acid essential for Plasmodium growth, and the parasite cannot synthesize it de novo. The parasite is also more metabolically active than its host cell, and the rate at which some nutrients are consumed exceeds the rate at which they can be taken up by erythrocyte transporters. To overcome these constraints, Plasmodium parasites increase the permeability of the erythrocyte membrane to isoleucine and other low-molecular-weight solutes it requires for growth by forming new permeation pathways (NPPs). In addition to the erythrocyte membrane, host nutrients also need to cross the encasing parasitophorous vacuole membrane (PVM) and the parasite plasma membrane to access the parasite. This review outlines recent advances that have been made in identifying the molecular constituents of the NPPs, the PVM nutrient channel, and the endocytic apparatus that transports host hemoglobin and identifies key knowledge gaps that remain. Importantly, blocking the ability of Plasmodium to source essential nutrients is lethal to the parasite, and thus, components of these key pathways represent potential antimalaria drug targets.
Collapse
Affiliation(s)
| | - Joyanta K Modak
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
29
|
Panas MW, Boothroyd JC. Seizing control: How dense granule effector proteins enable Toxoplasma to take charge. Mol Microbiol 2021; 115:466-477. [PMID: 33400323 PMCID: PMC8344355 DOI: 10.1111/mmi.14679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Control of the host cell is crucial to the Apicomplexan parasite, Toxoplasma gondii, while it grows intracellularly. To achieve this goal, these single-celled eukaryotes export a series of effector proteins from organelles known as "dense granules" that interfere with normal cellular processes and responses to invasion. While some effectors are found attached to the outer surface of the parasitophorous vacuole (PV) in which Toxoplasma tachyzoites reside, others are found in the host cell's cytoplasm and yet others make their way into the host nucleus, where they alter host transcription. Among the processes that are severely altered are innate immune responses, host cell cycle, and association with host organelles. The ways in which these crucial processes are altered through the coordinated action of a large collection of effectors is as elegant as it is complex, and is the central focus of the following review; we also discuss the recent advances in our understanding of how dense granule effector proteins are trafficked out of the PV.
Collapse
Affiliation(s)
- Michael W. Panas
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| | - John C. Boothroyd
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
30
|
Gezelle J, Saggu G, Desai SA. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021; 37:414-429. [PMID: 33640269 DOI: 10.1016/j.pt.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.
Collapse
Affiliation(s)
- Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
31
|
Vella SA, Moore CA, Li ZH, Hortua Triana MA, Potapenko E, Moreno SNJ. The role of potassium and host calcium signaling in Toxoplasma gondii egress. Cell Calcium 2021; 94:102337. [PMID: 33524795 DOI: 10.1016/j.ceca.2020.102337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and replicates inside a parasitophorous vacuole (PV) within the host cell. The membrane of the PV (PVM) contains pores that permits for equilibration of ions and small molecules between the host cytosol and the PV lumen. Ca2+ signaling is universal and both T. gondii and its mammalian host cell utilize Ca2+ signals to stimulate diverse cellular functions. Egress of T. gondii from host cells is an essential step for the infection cycle of T. gondii, and a cytosolic Ca2+ increase initiates a Ca2+ signaling cascade that culminates in the stimulation of motility and egress. In this work we demonstrate that intracellular T. gondii tachyzoites are able to take up Ca2+ from the host cytoplasm during host cell signaling events. Both intracellular and extracellular Ca2+ sources are important in reaching a threshold of parasite cytosolic Ca2+ needed for successful egress. Two peaks of Ca2+ were observed in egressing single parasites with the second peak resulting from Ca2+ entry. We patched infected host cells to allow the delivery of precise concentrations of Ca2+ for the stimulation of motility and egress. Using this approach of patching infected host cells, allowed us to determine that increasing the host cytosolic Ca2+ to a specific concentration can trigger egress, which is further accelerated by diminishing the concentration of potassium (K+).
Collapse
Affiliation(s)
- Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Microbiology, University of Georgia, United States
| | - Christina A Moore
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States
| | | | - Evgeniy Potapenko
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States.
| |
Collapse
|
32
|
Asady B, Dick CF, Ehrenman K, Sahu T, Romano JD, Coppens I. A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog 2021; 16:e1009067. [PMID: 33383579 PMCID: PMC7817038 DOI: 10.1371/journal.ppat.1009067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/20/2021] [Accepted: 10/14/2020] [Indexed: 11/22/2022] Open
Abstract
Inorganic ions such as phosphate, are essential nutrients required for a broad spectrum of cellular functions and regulation. During infection, pathogens must obtain inorganic phosphate (Pi) from the host. Despite the essentiality of phosphate for all forms of life, how the intracellular parasite Toxoplasma gondii acquires Pi from the host cell is still unknown. In this study, we demonstrated that Toxoplasma actively internalizes exogenous Pi by exploiting a gradient of Na+ ions to drive Pi uptake across the plasma membrane. The Na+-dependent phosphate transport mechanism is electrogenic and functionally coupled to a cipargarmin sensitive Na+-H+-ATPase. Toxoplasma expresses one transmembrane Pi transporter harboring PHO4 binding domains that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. We genetically ablated the PiT gene, and ΔTgPiT parasites are impaired in importing Pi and synthesizing polyphosphates. Interestingly, ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate molecules, as compared to parental parasites. In addition, these mutants have a reduced cell volume, enlarged VAC organelles, defects in calcium storage and a slightly alkaline pH. Overall, these mutants exhibit severe growth defects and have reduced acute virulence in mice. In survival mode, ΔTgPiT parasites upregulate several genes, including those encoding enzymes that cleave or transfer phosphate groups from phosphometabolites, transporters and ions exchangers localized to VAC or acidocalcisomes. Taken together, these findings point to a critical role of TgPiT for Pi supply for Toxoplasma and also for protection against osmotic stresses. Inorganic phosphate (Pi) is indispensable for the biosynthesis of key cellular components, and is involved in many metabolic and signaling pathways. Transport across the plasma membrane is the first step in the utilization of Pi. The import mechanism of Pi by the intracellular parasite Toxoplasma is unknown. We characterized a transmembrane, high-affinity Na+-Pi cotransporter, named TgPiT, expressed by the parasite at the plasma membrane for Pi uptake. Interestingly, TgPiT is also localized to inward buds of the endosomal VAC organelles and some cytoplasmic vesicles. Loss of TgPiT results in a severe reduction in Pi internalization and polyphosphate levels, but stimulation of the biogenesis of phosphate-enriched acidocalcisomes. ΔTgPiT parasites have a shrunken cell body, enlarged VAC organelles, poor release of stored calcium and a mildly alkaline pH, suggesting a role for TgPiT in the maintenance of overall ionic homeostasis. ΔTgPiT parasites are poorly infectious in vitro and in mice. The mutant appears to partially cope with the absence of TgPiT by up-regulating genes coding for ion transporters and enzymes catalyzing phosphate group transfer. Our data highlight a scenario in which the role of TgPiT in Pi and Na+ transport is functionally coupled with osmoregulation activities central to sustain Toxoplasma survival.
Collapse
Affiliation(s)
- Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Claudia F. Dick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Tejram Sahu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Yamada N, Sakai H, Onuma R, Kroth PG, Horiguchi T. Five Non-motile Dinotom Dinoflagellates of the Genus Dinothrix. FRONTIERS IN PLANT SCIENCE 2020; 11:591050. [PMID: 33329655 PMCID: PMC7710806 DOI: 10.3389/fpls.2020.591050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Dinothrix paradoxa and Gymnodinium quadrilobatum are benthic dinoflagellates possessing diatom-derived tertiary plastids, so-called dinotoms. Due to the lack of available genetic information, their phylogenetic relationship remains unknown. In this study, sequencing of 18S ribosomal DNA (rDNA) and the rbcL gene from temporary cultures isolated from natural samples revealed that they are close relatives of another dinotom, Galeidinium rugatum. The morphologies of these three dinotoms differ significantly from each other; however, they share a distinctive life cycle, in which the non-motile cells without flagella are their dominant phase. Cell division occurs in this non-motile phase, while swimming cells only appear for several hours after being released from each daughter cell. Furthermore, we succeeded in isolating and establishing two novel dinotom strains, HG180 and HG204, which show a similar life cycle and are phylogenetically closely related to the aforementioned three species. The non-motile cells of strain HG180 are characterized by the possession of a hemispheroidal cell covered with numerous nodes, while those of the strain HG204 form aggregations consisting of spherical smooth-surface cells. Based on the similarity in life cycles and phylogenetic closeness, we conclude that all five species should belong to a single genus, Dinothrix, the oldest genus within this clade. We transferred Ga. rugatum and Gy. quadrilobatum to Dinothrix, and described strains HG180 and HG204 as Dinothrix phymatodea sp. nov. and Dinothrix pseudoparadoxa sp. nov.
Collapse
Affiliation(s)
- Norico Yamada
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hiroto Sakai
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Ryo Onuma
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Peter G. Kroth
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Takeo Horiguchi
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Wang Y, Sangaré LO, Paredes-Santos TC, Saeij JPJ. Toxoplasma Mechanisms for Delivery of Proteins and Uptake of Nutrients Across the Host-Pathogen Interface. Annu Rev Microbiol 2020; 74:567-586. [PMID: 32680452 PMCID: PMC9934516 DOI: 10.1146/annurev-micro-011720-122318] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many intracellular pathogens, including the protozoan parasite Toxoplasma gondii, live inside a vacuole that resides in the host cytosol. Vacuolar residence provides these pathogens with a defined niche for replication and protection from detection by host cytosolic pattern recognition receptors. However, the limiting membrane of the vacuole, which constitutes the host-pathogen interface, is also a barrier for pathogen effectors to reach the host cytosol and for the acquisition of host-derived nutrients. This review provides an update on the specialized secretion and trafficking systems used by Toxoplasma to overcome the barrier of the parasitophorous vacuole membrane and thereby allow the delivery of proteins into the host cell and the acquisition of host-derived nutrients.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA; , , ,
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA; , , ,
| | - Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
35
|
Bisio H, Soldati-Favre D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu Rev Microbiol 2020; 73:579-599. [PMID: 31500539 DOI: 10.1146/annurev-micro-020518-120235] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.
Collapse
Affiliation(s)
- Hugo Bisio
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| | - Dominique Soldati-Favre
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| |
Collapse
|
36
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
37
|
Spielmann T, Gras S, Sabitzki R, Meissner M. Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol 2020; 36:520-532. [DOI: 10.1016/j.pt.2020.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
|
38
|
Bergmann A, Floyd K, Key M, Dameron C, Rees KC, Thornton LB, Whitehead DC, Hamza I, Dou Z. Toxoplasma gondii requires its plant-like heme biosynthesis pathway for infection. PLoS Pathog 2020; 16:e1008499. [PMID: 32407406 PMCID: PMC7252677 DOI: 10.1371/journal.ppat.1008499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/27/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023] Open
Abstract
Heme, an iron-containing organic ring, is essential for virtually all living organisms by serving as a prosthetic group in proteins that function in diverse cellular activities ranging from diatomic gas transport and sensing, to mitochondrial respiration, to detoxification. Cellular heme levels in microbial pathogens can be a composite of endogenous de novo synthesis or exogenous uptake of heme or heme synthesis intermediates. Intracellular pathogenic microbes switch routes for heme supply when heme availability fluctuates in their replicative environment throughout infection. Here, we show that Toxoplasma gondii, an obligate intracellular human pathogen, encodes a functional heme biosynthesis pathway. A chloroplast-derived organelle, termed apicoplast, is involved in heme production. Genetic and chemical manipulation revealed that de novo heme production is essential for T. gondii intracellular growth and pathogenesis. Surprisingly, the herbicide oxadiazon significantly impaired Toxoplasma growth, consistent with phylogenetic analyses that show T. gondii protoporphyrinogen oxidase is more closely related to plants than mammals. This inhibition can be enhanced by 15- to 25-fold with two oxadiazon derivatives, lending therapeutic proof that Toxoplasma heme biosynthesis is a druggable target. As T. gondii has been used to model other apicomplexan parasites, our study underscores the utility of targeting heme biosynthesis in other pathogenic apicomplexans, such as Plasmodium spp., Cystoisospora, Eimeria, Neospora, and Sarcocystis.
Collapse
Affiliation(s)
- Amy Bergmann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Katherine Floyd
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Melanie Key
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Carly Dameron
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kerrick C. Rees
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - L. Brock Thornton
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
39
|
The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. Pathogens 2020; 9:pathogens9030234. [PMID: 32245165 PMCID: PMC7157559 DOI: 10.3390/pathogens9030234] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protist found in a wide variety of hosts, including a large proportion of the human population. Beyond an acute phase which is generally self-limited in immunocompetent individuals, the ability of the parasite to persist as a dormant stage, called bradyzoite, is an important aspect of toxoplasmosis. Not only is this stage not eliminated by current treatments, but it can also reactivate in immunocompromised hosts, leading to a potentially fatal outcome. Yet, despite its critical role in the pathology, the bradyzoite stage is relatively understudied. One main explanation is that it is a considerably challenging model, which essentially has to be derived from in vivo sources. However, recent progress on genetic manipulation and in vitro differentiation models now offers interesting perspectives for tackling key biological questions related to this particularly important developmental stage.
Collapse
|
40
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
41
|
Guevara RB, Fox BA, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Regulate Maturation of the Cyst Wall. mSphere 2020; 5:e00851-19. [PMID: 31941814 PMCID: PMC6968655 DOI: 10.1128/msphere.00851-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
After differentiation is triggered, the tachyzoite-stage Toxoplasma gondii parasitophorous vacuole membrane (PVM) has been hypothesized to transition into the cyst membrane that surrounds the cyst wall and encloses bradyzoites. Here, we tracked the localization of two PVM dense granule (GRA) proteins (GRA5 and GRA7) after in vitro differentiation of the tachyzoite stage parasitophorous vacuole into the mature cyst. GRA5 and GRA7 were visible at the cyst periphery at 6 h and at all later times after differentiation, suggesting that the PVM remained intact as it transitioned into the cyst membrane. By day 3 postdifferentiation, GRA5 and GRA7 were visible in a continuous pattern at the cyst periphery. In mature 7- and 10-day-old cysts permeabilized with a saponin pulse, GRA5 and GRA7 were localized to the cyst membrane and the cyst wall regions. Cysts at different stages of cyst development exhibited differential susceptibility to saponin permeabilization, and, correspondingly, saponin selectively removed GRA5 from the cyst membrane and cyst wall region in 10-day-old cysts. GRA5 and GRA7 were localized at the cyst membrane and cyst wall region at all times after differentiation of the parasitophorous vacuole, which supports a previous model proposing that the PVM develops into the cyst membrane. In addition, evaluation of Δgra3, Δgra5, Δgra7, Δgra8, and Δgra14 mutants revealed that PVM-localized GRAs were crucial to support the normal rate of accumulation of cyst wall proteins at the cyst periphery.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. Once host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Furthermore, how the cyst membrane and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma parasitophorous vacuole membrane (PVM) dense granules (GRA) proteins during cyst development in vitro. PVM-localized GRA5 and GRA7 were found at the cyst membrane and cyst wall region throughout cyst development, suggesting that the PVM remains intact and develops into the cyst membrane. In addition, our results show that genetic deletion of PVM GRAs reduced the rate of accumulation of cyst wall cargo at the cyst periphery and suggest that PVM-localized GRAs mediate the development and maturation of the cyst wall and cyst membrane.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
42
|
Wang JL, Bai MJ, Elsheikha HM, Liang QL, Li TT, Cao XZ, Zhu XQ. Novel roles of dense granule protein 12 (GRA12) in Toxoplasma gondii infection. FASEB J 2020; 34:3165-3178. [PMID: 31908049 DOI: 10.1096/fj.201901416rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Dense granule protein 12 (GRA12) is implicated in a range of processes related to the establishment of Toxoplasma gondii infection, such as the formation of the intravacuolar network (IVN) within the parasitophorous vacuole (PV). This protein is also thought to be important for T. gondii-host interaction, pathogenesis, and immune evasion, but their exact roles remain unknown. In this study, the contributions of GRA12 to the molecular pathogenesis of T. gondii infection were examined in vitro and in vivo. Deletion of GRA12 in type I RH and type II Pru T. gondii strains did not affect the parasite growth and replication in vitro, however, it caused a significant reduction in the parasite virulence and tissue cyst burden in vivo. T. gondii Δgra12 mutants were more vulnerable to be eliminated by host immunity, without the accumulation of immunity-related GTPase a6 (Irga6) onto the PV membrane. The ultrastructure of IVN in Δgra12 mutants appeared normal, suggesting that GRA12 is not required for biogenesis of the IVN. Combined deletion of GRA12 and ROP18 induced more severe attenuation of virulence compared to single Δgra12 or Δrop18 mutant strains. These data suggest a functional association between GRA12 and ROP18 that is revealed by the severe attenuation of virulence in a double mutant relative to the single individual mutations. Future studies are needed to define the molecular basis of this putative association. Collectively these findings indicate that although GRA12 is not essential for the parasite growth and replication in vitro, it contributes to the virulence and growth of T. gondii in mice.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Meng-Jie Bai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Xue-Zhen Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P.R. China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| |
Collapse
|
43
|
Guevara RB, Fox BA, Falla A, Bzik DJ. Toxoplasma gondii Intravacuolar-Network-Associated Dense Granule Proteins Regulate Maturation of the Cyst Matrix and Cyst Wall. mSphere 2019; 4:e00487-19. [PMID: 31619500 PMCID: PMC6796980 DOI: 10.1128/msphere.00487-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Little is known regarding how the chronic Toxoplasma gondii cyst develops. Here, we investigated intravacuolar-network-associated dense granule (GRA) proteins GRA1, GRA2, GRA4, GRA6, GRA9, and GRA12 during cyst development in vitro after differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 postdifferentiation, GRA1, GRA4, GRA6, GRA9, and GRA12 colocalized with Dolichos biflorus agglutinin stain at the cyst periphery. In contrast, GRA2 remained in the cyst matrix. By day 2 postdifferentiation, coinciding with localization of GRA2 to the cyst periphery, GRA1, GRA4, GRA6, and GRA9 established a continuous matrix pattern in the cyst. In contrast, GRA2 and GRA12 were colocalized in prominent cyst matrix puncta throughout cyst development. While GRA2, GRA6, and GRA12 localized in outer and inner layers of the cyst wall, GRA1, GRA4, and GRA9 localized predominantly in the inner layers of the cyst wall. GRA2 and GRA12 were colocalized in the cyst wall by day 7 postdifferentiation. However, by day 10 postdifferentiation, GRA12 was relocalized from the cyst wall to puncta in the cyst matrix. Differentiation of Δgra2 parasites revealed a defect in the ability to establish a normal cyst matrix. In addition, the deletion of any intravacuolar-network-associated GRA protein, except GRA1, reduced the rate of accumulation of cyst wall proteins at the cyst periphery relative to the cyst interior. Our findings reveal dynamic patterns of GRA protein localization during cyst development and suggest that intravacuolar-network-associated GRA proteins regulate the formation and maturation of the cyst matrix and cyst wall structures.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. If host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Moreover, how the vital and characteristic cyst matrix and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma intravacuolar-network-associated dense granule (GRA) proteins during cyst development in vitro Intravacuolar-network GRAs were present within the cyst matrix and at the cyst wall in developing cysts, and genetic deletion of intravacuolar-network-associated GRAs reduced the rate of accumulation of cyst wall material at the cyst periphery. Our results show that intravacuolar-network-associated GRAs, particularly GRA2 and GRA12, play dynamic and essential roles in the development and maturation of the cyst matrix and the cyst wall structures.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
44
|
Paredes-Santos T, Wang Y, Waldman B, Lourido S, Saeij JP. The GRA17 Parasitophorous Vacuole Membrane Permeability Pore Contributes to Bradyzoite Viability. Front Cell Infect Microbiol 2019; 9:321. [PMID: 31572690 PMCID: PMC6751312 DOI: 10.3389/fcimb.2019.00321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Abstract
The Toxoplasma gondii parasitophorous vacuole membrane (PVM) offers protection from the host immune system but is also a barrier for uptake of nutrients from the host. Previously, we showed that GRA17 mediates the tachyzoite PVM permeability to small molecules. During the conversion from tachyzoites to encysted bradyzoites, the PVM become the cyst membrane that is the outer layer of the cyst wall. Little is known about how small molecules, such as nutrients, enter cysts. To characterize GRA17's role in cysts, we deleted GRA17 in the type II ME49 cyst-forming strain. ME49Δgra17 parasites have reduced growth and formed grossly enlarged "bubble vacuoles," which have reduced PVM small molecule permeability. ME49Δgra17 parasites formed cysts in vitro at rates comparable to the wild-type, but the viability of the bradyzoites inside these cysts was significantly reduced compared to wild-type bradyzoites. Genetic complementation of ME49Δgra17 with GRA17 expressed from the endogenous or tachyzoite-specific SAG1 promoter recovered the viability of bradyzoites. Complementation with the bradyzoite-specific SRS9 promoter drastically increased the viability of bradyzoites, demonstrating the importance of GRA17 in regulating bradyzoite viability inside cysts. Mice infected with a high dose of ME49Δgra17 parasites did not contain parasites in their brain nor did mice infected with ME49Δgra17 complemented with GRA17 expressed from a bradyzoite-specific promoter. Our results suggest that the ME49Δgra17 strain is avirulent and is cleared before it can reach the brain and that GRA17 not only plays an important role during acute infections but is also needed for viability of bradyzoites inside cysts.
Collapse
Affiliation(s)
- Tatiana Paredes-Santos
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Benjamin Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeroen P. Saeij
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
45
|
Translocation of effector proteins into host cells by Toxoplasma gondii. Curr Opin Microbiol 2019; 52:130-138. [PMID: 31446366 DOI: 10.1016/j.mib.2019.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
The Apicomplexan parasite, Toxoplasma gondii, is an obligate intracellular organism that must co-opt its host cell to survive. To this end, Toxoplasma parasites introduce a suite of effector proteins from two secretory compartments called rhoptries and dense granules into the host cells. Once inside, these effectors extensively modify the host cell to facilitate parasite penetration, replication and persistence. In this review, we summarize the most recent advances in current understanding of effector translocation from Toxoplasma's rhoptry and dense granule organelles into the host cell, with comparisons to Plasmodium spp. for broader context.
Collapse
|
46
|
Beraki T, Hu X, Broncel M, Young JC, O'Shaughnessy WJ, Borek D, Treeck M, Reese ML. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole. Proc Natl Acad Sci U S A 2019; 116:6361-6370. [PMID: 30850550 PMCID: PMC6442604 DOI: 10.1073/pnas.1816161116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network's functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection.
Collapse
Affiliation(s)
- Tsebaot Beraki
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoyu Hu
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - William J O'Shaughnessy
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - Michael L Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390;
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
47
|
Deffieu MS, Alayi TD, Slomianny C, Tomavo S. The Toxoplasma gondii dense granule protein TgGRA3 interacts with host Golgi and dysregulates anterograde transport. Biol Open 2019; 8:bio.039818. [PMID: 30814066 PMCID: PMC6451337 DOI: 10.1242/bio.039818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
After entry into the host cell, the intracellular parasite Toxoplasma gondii resides within a membrane-bound compartment, the parasitophorous vacuole (PV). The PV defines an intracellular, parasite-specific niche surrounded by host organelles, including the Golgi apparatus. The mechanism by which T. gondii hijacks the host Golgi and subverts its functions remains unknown. Here, we present evidence that the dense granule protein TgGRA3 interacts with host Golgi, leading to the formation of tubules and the entry of host Golgi material into the PV. Targeted disruption of the TgGRA3 gene delays this engulfment of host Golgi. We also demonstrate that TgGRA3 oligomerizes and binds directly to host Golgi membranes. In addition, we show that TgGRA3 dysregulates anterograde transport in the host cell, thereby revealing one of the mechanisms employed by T. gondii to recruit host organelles and divert their functions.
This article has an associated First Person interview with the first author of the paper. Summary : Toxoplasma gondii recruits various host organelles to enable parasite intracellular development. We describe a new role for TgGRA3 in modulating the host anterograde transport by binding to the Golgi apparatus.
Collapse
Affiliation(s)
- Maika S Deffieu
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Université de Lille, 59 000 Lille, France
| | | | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université de Lille, 59655 Villeneuve d'Ascq, France
| | - Stanislas Tomavo
- Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Université de Lille, 59000 Lille, France .,Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, CEA, Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
48
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
49
|
Attias M, Miranda K, De Souza W. Development and fate of the residual body of Toxoplasma gondii. Exp Parasitol 2018; 196:1-11. [PMID: 30476495 DOI: 10.1016/j.exppara.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
As the tachyzoite form of Toxoplasma gondii divides inside the parasitophorous vacuole, the daughter cells remain attached to each other at the posterior end through the so-called residual body (RB). Here, we studied this process using field emission scanning electron microscopy of dry scraped infected cells, transmission electron microscopy of random ultrathin sections, X-ray microanalysis, and 3-D modelling of tomographic volumes and slice and view series obtained by FIB SEM at 7, 24, and 48 h post infection. Combining these methods of observation, we traced a timeline of events for the formation, development, and fate of the RB. The RB is formed as the first endodyogenic division is complete. Before that, finger-like invaginations at the posterior end of the tachyzoite secrete tubules from the intravacuolar network. The RB is roughly spherical and measures 1 μm in diameter at random. Its size does not vary considerably as the division cycles that form the rosette proceed. The contents of the RB are similar to the cytoplasm of the parasites. It contains ER membranous profiles and vacuolar structures identified as acidocalcisomes. This was confirmed by microanalysis. Mitochondrial profiles seen inside the RB are actually branches of mother cell mitochondrion not yet split between the two daughter cells. Acidocalcisomes of a mother cell are distributed between the two daughter cells, but as the rosette of parasites grow, acidocalcisomes seem to concentrate inside the RB where they are usually larger and tend to fuse to each other, filling most of the space in the RB. Here we hypothesize that, upon egress, the acidocalcisomes would ultimately fuse with the RB membrane liberating its contents inside the parasitophorous vacuole (PV) and, by doing so; the RB would disintegrate, releasing its contents in the PV.
Collapse
Affiliation(s)
- Marcia Attias
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Brazil.
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Biologia Celular, Laboratório de Ultraestrutura Celular Hertha Meyer, Brazil
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Biologia Celular, Laboratório de Ultraestrutura Celular Hertha Meyer, Brazil
| |
Collapse
|
50
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. T. gondii can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of T. gondii with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host-parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of T. gondii, which are associated with acute and chronic infection, respectively.
Collapse
Affiliation(s)
- Martin Blume
- NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|