1
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
2
|
Fang H, Zheng H, Yang Y, Hu Y, Wang Z, Xia Q, Guo P. Structural Insights into the Substrate Binding of Farnesyl Diphosphate Synthase FPPS1 from Silkworm, Bombyx mori. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1787-1796. [PMID: 38214248 DOI: 10.1021/acs.jafc.3c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Farnesyl diphosphate synthase (FPPS) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway. Herein, we report the crystal structure of a type-I Lepidopteran FPPS from Bombyx mori (BmFPPS1) at 2.80 Å resolution. BmFPPS1 adopts an α-helix structure with a deep cavity at the center of the overall structure. Computational simulations combined with biochemical analysis allowed us to define the binding mode of BmFPPS1 to its substrates. Structural comparison revealed that BmFPPS1 adopts a structural pattern similar to that of type-II FPPS but exhibits a distinct substrate-binding site. These findings provide a structural basis for understanding substrate preferences and designing FPPS inhibitors. Furthermore, the expression profiles and RNA interference of BmFPPSs indicated that they play critical roles in the JH biosynthesis and larval-pupal metamorphosis. These findings enhance our understanding of the structural features of type-I Lepidopteran FPPS while providing direct evidence for the physiological role of BmFPPSs in silkworm development.
Collapse
Affiliation(s)
- Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ying Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Conart C, Bomzan DP, Huang XQ, Bassard JE, Paramita SN, Saint-Marcoux D, Rius-Bony A, Hivert G, Anchisi A, Schaller H, Hamama L, Magnard JL, Lipko A, Swiezewska E, Jame P, Riveill G, Hibrand-Saint Oyant L, Rohmer M, Lewinsohn E, Dudareva N, Baudino S, Caissard JC, Boachon B. A cytosolic bifunctional geranyl/farnesyl diphosphate synthase provides MVA-derived GPP for geraniol biosynthesis in rose flowers. Proc Natl Acad Sci U S A 2023; 120:e2221440120. [PMID: 37126706 PMCID: PMC10175749 DOI: 10.1073/pnas.2221440120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-β-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.
Collapse
Affiliation(s)
- Corentin Conart
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Dikki Pedenla Bomzan
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN47907-2063
| | - Jean-Etienne Bassard
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, Strasbourg67084, France
| | - Saretta N. Paramita
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Denis Saint-Marcoux
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Aurélie Rius-Bony
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Gal Hivert
- Department of Vegetable Crops, Newe Ya’ar Research Center, Agricultural Research organization, The Volcani Center, Ramat Yishay30095, Israel
- Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot76100001, Israel
| | - Anthony Anchisi
- Université de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, VilleurbanneF-69100, France
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, Strasbourg67084, France
| | - Latifa Hamama
- Université d'Angers, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers49000, France
| | - Jean-Louis Magnard
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Agata Lipko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw02-109Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw02-106Poland
| | - Patrick Jame
- Université de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, VilleurbanneF-69100, France
| | - Geneviève Riveill
- Université de Strasbourg, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin,F-68000Colmar, France
| | - Laurence Hibrand-Saint Oyant
- Université d'Angers, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers49000, France
| | - Michel Rohmer
- Institut de Chimie de Strasbourg, Université de Strasbourg/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7177, Institut Le Bel, Strasbourg67081, France
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya’ar Research Center, Agricultural Research organization, The Volcani Center, Ramat Yishay30095, Israel
- Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot76100001, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN47907-2063
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907-2010
| | - Sylvie Baudino
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Jean-Claude Caissard
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Benoît Boachon
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| |
Collapse
|
4
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Picard MÈ, Cusson M, Sen SE, Shi R. Rational design of Lepidoptera-specific insecticidal inhibitors targeting farnesyl diphosphate synthase, a key enzyme of the juvenile hormone biosynthetic pathway. JOURNAL OF PESTICIDE SCIENCE 2021; 46:7-15. [PMID: 33746541 PMCID: PMC7953025 DOI: 10.1584/jpestics.d20-078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reducing the use of broad-spectrum insecticides is one of the many challenges currently faced by insect pest management practitioners. For this reason, efforts are being made to develop environmentally benign pest-control products through bio-rational approaches that aim at disrupting physiological processes unique to specific groups of pests. Perturbation of hormonal regulation of insect development and reproduction is one such strategy. It has long been hypothesized that some enzymes in the juvenile hormone biosynthetic pathway of moths, butterflies and caterpillars (order Lepidoptera) display unique structural features that could be targeted for the development of Lepidoptera-specific insecticides, a promising avenue given the numerous agricultural and forest pests belonging to this order. Farnesyl diphosphate synthase, FPPS, is one such enzyme, with recent work suggesting that it has structural characteristics that may enable its selective inhibition. This review synthesizes current knowledge on FPPS and summarizes recent advances in its use as a target for insecticide development.
Collapse
Affiliation(s)
- Marie-Ève Picard
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada
- To whom correspondence should be addressed. E-mail:
| | - Michel Cusson
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Station Ste. Foy, Quebec City, QC, G1V 4C7, Canada
| | - Stephanie E. Sen
- Department of Chemistry, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628, USA
| | - Rong Shi
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2021; 8:612728. [PMID: 33490038 PMCID: PMC7815940 DOI: 10.3389/fchem.2020.612728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vishal R Pandya
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sean J Ezekiel
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
7
|
Chen CC, Malwal SR, Han X, Liu W, Ma L, Zhai C, Dai L, Huang JW, Shillo A, Desai J, Ma X, Zhang Y, Guo RT, Oldfield E. Terpene Cyclases and Prenyltransferases: Structures and Mechanisms of Action. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Alli Shillo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Janish Desai
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xianqiang Ma
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Chiang CY, Chou CC, Chang HY, Hsu MF, Pao PJ, Chiang MH, Wang AHJ. Biochemical and molecular dynamics studies of archaeal polyisoprenyl pyrophosphate phosphatase from Saccharolobus solfataricus. Enzyme Microb Technol 2020; 139:109585. [DOI: 10.1016/j.enzmictec.2020.109585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
|
9
|
Maheshwari S, Kim YS, Aripirala S, Murphy M, Amzel LM, Gabelli SB. Identifying Structural Determinants of Product Specificity in Leishmania major Farnesyl Diphosphate Synthase. Biochemistry 2020; 59:2751-2759. [PMID: 32584028 PMCID: PMC8049779 DOI: 10.1021/acs.biochem.0c00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Farnesyl diphosphate synthase (FPPS) is an isoprenoid chain elongation enzyme that catalyzes the sequential condensation of dimethylallyl diphosphate (C5) with isopentenyl diphosphate (IPP; C5) and the resulting geranyl diphosphate (GPP; C10) with another molecule of IPP, eventually producing farnesyl diphosphate (FPP; C15), which is a precursor for the biosynthesis of a vast majority of isoprenoids. Previous studies of FPPS have highlighted the importance of the structure around the hydrophobic chain elongation path in determining product specificity. To investigate what structural features define the final chain length of the product in FPPS from Leishmania major, we designed and expressed six mutants of LmFPPS by replacing small amino acids around the binding pocket with bulky residues. Using enzymatic assays, binding kinetics, and crystallographic studies, we analyzed the effects of these mutations on the activity and product specificity of FPPS. Our results revealed that replacement of Thr-164 with tryptophan and phenylalanine completely abolished the activity of FPPS. Intriguingly, the T164Y substitution displayed dual product specificity and produced a mixture GPP and FPP as final products, with an activity for FPP synthesis that was lower than that of the wild-type enzyme. These data indicate that Thr-164 is a potential regulator of product specificity.
Collapse
Affiliation(s)
- Sweta Maheshwari
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Seon Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivas Aripirala
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
10
|
Feng Y, Morgan RML, Fraser PD, Hellgardt K, Nixon PJ. Crystal Structure of Geranylgeranyl Pyrophosphate Synthase (CrtE) Involved in Cyanobacterial Terpenoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:589. [PMID: 32523588 PMCID: PMC7261888 DOI: 10.3389/fpls.2020.00589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class of natural products with potential as advanced biofuels and high-value chemicals. However, the cyanobacterial enzymes involved in the biosynthesis of the terpene precursors needed to make more complicated terpenoids are poorly characterized. Here we show that the predicted type II prenyltransferase CrtE encoded by the model cyanobacterium Synechococcus sp. PCC 7002 is homodimeric and able to synthesize C20-geranylgeranyl pyrophosphate (GGPP) from C5-isopentenyl pyrophosphate (IPP) and C5-dimethylallyl pyrophosphate (DMAPP). The crystal structure of CrtE solved to a resolution of 2.7 Å revealed a strong structural similarity to the large subunit of the heterodimeric geranylgeranyl pyrophosphate synthase 1 from Arabidopsis thaliana with each subunit containing 14 helices. Using mutagenesis, we confirmed that the fourth and fifth amino acids (Met-87 and Ser-88) before the first conserved aspartate-rich motif (FARM) play important roles in controlling chain elongation. While the WT enzyme specifically produced GGPP, variants M87F and S88Y could only generate C15-farnesyl pyrophosphate (FPP), indicating that residues with large side chains obstruct product elongation. In contrast, replacement of M87 with the smaller Ala residue allowed the formation of the longer C25-geranylfarnesyl pyrophosphate (GFPP) product. Overall, our results provide new structural and functional information on the cyanobacterial CrtE enzyme that could lead to the development of improved cyanobacterial platforms for terpenoid production.
Collapse
Affiliation(s)
- Yuchi Feng
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - R. Marc L. Morgan
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Klaus Hellgardt
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Glasgow AA, Huang YM, Mandell DJ, Thompson M, Ritterson R, Loshbaugh AL, Pellegrino J, Krivacic C, Pache RA, Barlow KA, Ollikainen N, Jeon D, Kelly MJS, Fraser JS, Kortemme T. Computational design of a modular protein sense-response system. Science 2020; 366:1024-1028. [PMID: 31754004 DOI: 10.1126/science.aax8780] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Sensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site closely matches the design model. Our computational design strategy opens broad avenues to link biological outputs to new signals.
Collapse
Affiliation(s)
- Anum A Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yao-Ming Huang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Mandell
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Bioinformatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Michael Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Ritterson
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amanda L Loshbaugh
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jenna Pellegrino
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Cody Krivacic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Roland A Pache
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kyle A Barlow
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Bioinformatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Noah Ollikainen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Bioinformatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Deborah Jeon
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA. .,Bioinformatics Graduate Program, University of California San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
12
|
Functional Gene Network of Prenyltransferases in Arabidopsis thaliana. Molecules 2019; 24:molecules24244556. [PMID: 31842481 PMCID: PMC6943727 DOI: 10.3390/molecules24244556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.
Collapse
|
13
|
A Simple In Vitro Assay to Measure the Activity of Geranylgeranyl Diphosphate Synthase and Other Short-Chain Prenyltransferases. Methods Mol Biol 2019; 2083:27-38. [PMID: 31745910 DOI: 10.1007/978-1-4939-9952-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
14
|
Molecular Docking and Site-Directed Mutagenesis of Dichloromethane Dehalogenase to Improve Enzyme Activity for Dichloromethane Degradation. Appl Biochem Biotechnol 2019; 190:487-505. [DOI: 10.1007/s12010-019-03106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
15
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Wang J, Lin HX, Su P, Chen T, Guo J, Gao W, Huang LQ. Molecular cloning and functional characterization of multiple geranylgeranyl pyrophosphate synthases (ApGGPPS) from Andrographis paniculata. PLANT CELL REPORTS 2019; 38:117-128. [PMID: 30448883 DOI: 10.1007/s00299-018-2353-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 05/19/2023]
Abstract
We found that ApGGPPS1, ApGGPPS2, and ApGGPPS3 can convert IPP and DMAPP to GGPP. ApGGPPS2 is probably involved in andrographolide biosynthesis. ApGGPPS3 may be responsible for the synthesis of the cytosolic GGPP. Andrographis paniculata is a traditional herb for the treatment of sore throat, flu, upper respiratory tract infections and other disorders. In A. paniculata, GGPP is not only the precursor of andrographolide and its primary bioactive compounds, but also the precursor of chlorophylls, carotenoids, gibberellins, and abscisic acid, which are the biomolecules of photosynthesis, growth regulation and other physiological and ecological processes. In this study, four cDNAs (named ApGGPPS1, ApGGPPS2, ApGGPPS3 and ApGGPPS4) encoding geranylgeranyl pyrophosphate synthases from A. paniculata were putatively isolated. Bioinformatic and phylogenetic analyses suggested that these ApGGPPS are highly similar to the geranylgeranyl pyrophosphate synthases in other plants. Prokaryotic expression showed that ApGGPPS1, ApGGPPS2 and ApGGPPS3 could convert IPP and DMAPP to GGPP, although ApGGPPS4 lacks a similar function. The expression of ApGGPPS2 was similar as ApCPS2 under MeJA treatment, ApCPS2 involved in the biosynthesis pathway of andrographolide (Shen et al., Biotechnol Lett 38:131-137, 2016a), has been proven through Virus-induced Gene Siliencing (VIGS) (Shen et al., Acta Bot Boreal 36:17-22, 2016b), and the subcellular localization of ApGGPPS2 was shown to localize in the plastid, suggested that ApGGPPS2 could be the key synthase in the biosynthesis pathway of andrographolide. In addition, ApGGPPS3 was shown to localize in the cytoplasm, suggested that ApGGPPS3 may be responsible for the synthesis of cytosolic GGPP, which may participate in the synthesis of cytosolic oligoprenols as side chains to produce ubiquinone, dolichols or other isoprenoids, in the synthesis of polyisoprenoids, and in protein prenylation.
Collapse
Affiliation(s)
- Jian Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 100016, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Hui-Xin Lin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- Geneis (Beijing) Co., Ltd, Beijing, 100102, China
| | - Ping Su
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Geneis (Beijing) Co., Ltd, Beijing, 100102, China.
| | - Lu-Qi Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 100016, China.
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Geneis (Beijing) Co., Ltd, Beijing, 100102, China.
| |
Collapse
|
17
|
Rubat S, Varas I, Sepúlveda R, Almonacid D, González-Nilo F, Agosin E. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase. FEMS Yeast Res 2018; 17:3869469. [PMID: 28854674 DOI: 10.1093/femsyr/fox032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/16/2017] [Indexed: 11/13/2022] Open
Abstract
Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS. In silico ΔΔG, i.e. differential binding energy between a protein and two different ligands-of yeast FPPS mutants was evaluated, and F96, A99 and E165 residues were identified as key determinants for product selectivity. A99X variants were evaluated in vivo, S. cerevisiae strains carrying A99R and A99H variants showed significant differences on GPP concentrations and specific growth rates. The FPPS A99T variant produced unquantifiable amounts of FPP and no effect on GPP production was observed. Strains carrying A99Q, A99Y and A99K FPPS accumulated high amounts of DMAPP-IPP, with a decrease in GPP and FPP. Our results demonstrated the relevance of the first residue before FARM (First Aspartate Rich Motif) over substrate consumption and product specificity of S. cerevisiae FPPS in vivo. The presence of A99H significantly modified product selectivity and appeared to be relevant for GPP synthesis.
Collapse
Affiliation(s)
- Sebastián Rubat
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Ignacio Varas
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Romina Sepúlveda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Daniel Almonacid
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| |
Collapse
|
18
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Rodriguez JB, Falcone BN, Szajnman SH. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Expert Opin Drug Discov 2016; 11:307-20. [DOI: 10.1517/17460441.2016.1143814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Wang C, Chen Q, Fan D, Li J, Wang G, Zhang P. Structural Analyses of Short-Chain Prenyltransferases Identify an Evolutionarily Conserved GFPPS Clade in Brassicaceae Plants. MOLECULAR PLANT 2016; 9:195-204. [PMID: 26537048 DOI: 10.1016/j.molp.2015.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 05/06/2023]
Abstract
Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain prenyltransferases (SC-PTs), together with terpene synthases (TPSs), play critical roles in determining terpenoid diversity. SC-PTs biosynthesize prenyl pyrophosphates with different chain lengths, and these compounds are the direct precursors of terpenoids. Arabidopsis thaliana possesses a subgroup of SC-PTs whose functions are not clearly known. In this study, we focus on 10 geranylgeranyl pyrophosphate synthase-like [GGPPSL] proteins, which are commonly thought to produce GGPP [C20]. We found that a subset of members of the Arabidopsis GGPPSL gene family have undergone neo-functionalization: GGPPSL6, 7, 9, and 10 mainly have geranylfarnesyl pyrophosphate synthase activity (C25; renamed AtGFPPS1, 2, 3, and 4), and GGPPSL8 produces even longer chain prenyl pyrophosphate (≥ C30; renamed polyprenyl pyrophosphate synthase 2, AtPPPS2). By solving the crystal structures of AtGFPPS2, AtPPPS2, and AtGGPPS11, we reveal the product chain-length determination mechanism of SC-PTs and interpret it as a "three floors" model. Using this model, we identified a novel GFPPS clade distributed in Brassicaceae plants and found that the GFPPS gene typically occurs in tandem with a gene encoding a TPS, forming a GFPPS-TPS gene cluster.
Collapse
Affiliation(s)
- Chengyuan Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingwen Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongjie Fan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
22
|
Zhang M, Su P, Zhou YJ, Wang XJ, Zhao YJ, Liu YJ, Tong YR, Hu TY, Huang LQ, Gao W. Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii. PLANT CELL REPORTS 2015; 34:2179-88. [PMID: 26449416 DOI: 10.1007/s00299-015-1860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 05/22/2023]
Abstract
We found triptolide synthesis is correlated with the expressions of TwGGPPS1 and TwGGPPS4 . This lays the foundation for future studies of biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii. Tripterygium wilfordii is a traditional Chinese medical plant commonly used to treat rheumatoid arthritis. One of its main bioactive compounds is triptolide, which is identified as an abietane-type diterpenoid natural product. Geranylgeranyl diphosphate synthase (GGPPS) catalyses the synthesis of GGPP (geranylgeranyl diphosphate), the common precursor of diterpenes, and is therefore a crucial enzyme in diterpene biosynthesis. A previous study showed that GGPP could be catalyzed by copalyl diphosphate synthase and kaurene synthase like of Salvia miltiorrhiza (SmCPS, SmKSL) to miltiradiene, a key intermediate in tanshinone biosynthesis. In this paper, five new full-length cDNAs (TwGGPPS) encoding GGPP synthases were cloned from T. wilfordii. Sequence comparisons revealed that all six TwGGPPSs (including TwGGPPS2 cloned previously) exhibit similarities to GGPPSs of other plants. Subsequent functional complement assays demonstrated that TwGGPPS1, TwGGPPS4 and TwGGPPS5 can participate in miltiradiene biosynthesis in the recombinant E. coli. Correlation analysis of gene expressions and secondary metabolite accumulation indicated that TwGGPPS1 and TwGGPPS4 are likely involved in the biosynthesis of triptolide. These findings lay the foundation for future studies of the biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii.
Collapse
Affiliation(s)
- Meng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Ping Su
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong-Jin Zhou
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Göteborg, Sweden
| | - Xiu-Juan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Yu-Jun Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu-Jia Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yu-Ru Tong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tian-Yuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
23
|
Yokoyama T, Mizuguchi M, Ostermann A, Kusaka K, Niimura N, Schrader TE, Tanaka I. Protonation State and Hydration of Bisphosphonate Bound to Farnesyl Pyrophosphate Synthase. J Med Chem 2015; 58:7549-56. [PMID: 26314394 DOI: 10.1021/acs.jmedchem.5b01147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS) catalyzes the condensation of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate to FPP and is known to be a molecular target of osteoporosis drugs, such as risedronate (RIS), which is a nitrogen-containing bisphosphonate. The protonation states and hydration structure of RIS bound to FPPS were determined by neutron protein crystallography, which allows direct visualization of hydrogens and deuteriums. The structure analysis revealed that the phosphate groups of RIS were fully deprotonated with the abnormally decreased pKa, and that the roles of E93 and D264 consisted of canceling the extra negative charges upon the binding of ligands. Collectively, our neutron structures provided insights into the physicochemical properties during the bisphosphonate binding event.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University , 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Nobuo Niimura
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University , 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Tabias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Ichiro Tanaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University , 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.,College of Engineering, Ibaraki University , Naka-Narusawa 4-12-1, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
24
|
Srivastava PL, Daramwar PP, Krithika R, Pandreka A, Shankar SS, Thulasiram HV. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album. Sci Rep 2015; 5:10095. [PMID: 25976282 PMCID: PMC4432371 DOI: 10.1038/srep10095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022] Open
Abstract
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.
Collapse
Affiliation(s)
- Prabhakar Lal Srivastava
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Pankaj P Daramwar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Ramakrishnan Krithika
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Avinash Pandreka
- 1] Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008 [2] CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi. 110007
| | - S Shiva Shankar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Hirekodathakallu V Thulasiram
- 1] Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008 [2] CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi. 110007
| |
Collapse
|
25
|
Schmidberger JW, Schnell R, Schneider G. Structural characterization of substrate and inhibitor binding to farnesyl pyrophosphate synthase from Pseudomonas aeruginosa. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:721-31. [PMID: 25760619 PMCID: PMC4356374 DOI: 10.1107/s1399004715001121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/19/2015] [Indexed: 12/23/2022]
Abstract
Locus PA4043 in the genome of Pseudomonas aeruginosa PAO1 has been annotated as coding for a farnesyl pyrophosphate synthase (FPPS). This open reading frame was cloned and expressed recombinantly in Escherichia coli. The dimeric enzyme shows farnesyl pyrophosphate synthase activity and is strongly inhibited by ibandronate and zoledronate, drugs that are presently in clinical use. The structures of the unliganded enzyme and complexes with the substrate geranyl diphosphate (GPP), the inhibitor ibandronate and two compounds obtained from a differential scanning fluorimetry-based screen of a fragment library were determined by X-ray crystallography to resolutions of better than 2.0 Å. The enzyme shows the typical α-helical fold of farnesyl pyrophosphate synthases. The substrate GPP binds in the S1 substrate site in an open conformation of the enzyme. In the enzyme-ibandronate complex three inhibitor molecules are bound in the active site of the enzyme. One inhibitor molecule occupies the allylic substrate site (S1) of each subunit, as observed in complexes of nitrogen-containing bisphosphonate inhibitors of farnesyl synthases from other species. Two (in subunit A) and one (in subunit B) additional ibandronate molecules are bound in the active site. The structures of the fragment complexes show two molecules bound in a hydrophobic pocket adjacent to the active site. This allosteric pocket, which has previously only been described for FPPS from eukaryotic organisms, is thus also present in enzymes from pathogenic prokaryotes and might be utilized for the design of inhibitors of bacterial FPPS with a different chemical scaffold to the highly charged bisphosphonates, which are less likely to pass bacterial membranes.
Collapse
Affiliation(s)
- Jason W. Schmidberger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
26
|
Han X, Chen CC, Kuo CJ, Huang CH, Zheng Y, Ko TP, Zhu Z, Feng X, Wang K, Oldfield E, Wang AHJ, Liang PH, Guo RT, Ma Y. Crystal structures of ligand-bound octaprenyl pyrophosphate synthase from Escherichia coli reveal the catalytic and chain-length determining mechanisms. Proteins 2015; 83:37-45. [PMID: 24895191 PMCID: PMC4256133 DOI: 10.1002/prot.24618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of one allylic substrate farnesyl pyrophosphate (FPP) and five homoallylic substrate isopentenyl pyrophosphate (IPP) molecules to form a C40 long-chain product OPP, which serves as a side chain of ubiquinone and menaquinone. OPPs belongs to the trans-prenyltransferase class of proteins. The structures of OPPs from Escherichia coli were solved in the apo-form as well as in complexes with IPP and a FPP thio-analog, FsPP, at resolutions of 2.2-2.6 Å, and revealed the detailed interactions between the ligands and enzyme. At the bottom of the active-site tunnel, M123 and M135 act in concert to form a wall which determines the final chain length. These results represent the first ligand-bound crystal structures of a long-chain trans-prenyltransferase and provide new information on the mechanisms of catalysis and product chain elongation.
Collapse
Affiliation(s)
- Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Zhen Zhu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinxin Feng
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Ke Wang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| |
Collapse
|
27
|
Heider SAE, Peters-Wendisch P, Beekwilder J, Wendisch VF. IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. FEBS J 2014; 281:4906-20. [PMID: 25181035 DOI: 10.1111/febs.13033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 11/27/2022]
Abstract
Corynebacterium glutamicum, a yellow-pigmented soil bacterium that synthesizes the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides, has been engineered for the production of various carotenoids. CrtE was assumed to be the major geranylgeranyl pyrophosphate (GGPP) synthase in carotenogenesis; however, deletion of crtE did not abrogate carotenoid synthesis. In silico analysis of the repertoire of prenyltransferases encoded by the C. glutamicum genome revealed two candidate GGPPS genes (idsA and ispB). The absence of pigmentation of an idsA deletion mutant and complementation experiments with a double deletion mutant lacking both idsA and crtE showed that IdsA is the major GGPPS of C. glutamicum and that crtE overexpression compensated for the lack of IdsA, whereas plasmid-borne overexpression of ispB did not. Purified His-tagged CrtE was active as a homodimer, whereas the active form of IdsA was homotetrameric. Both enzymes catalyzed prenyl transfer with isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate, geranyl pyrophosphate and farnesylphosphate (FPP) as substrates. IdsA showed the highest catalytic efficiency with dimethylallyl pyrophosphate and IPP, whereas the catalytic efficiency of CrtE was highest with geranyl pyrophosphate and IPP. Finally, application of prenyltransferase overexpression revealed that combined overexpression of idsA and the IPP isomerase gene idi in the absence of crtE led to the highest decaprenoxanthin titer reported to date.
Collapse
Affiliation(s)
- Sabine A E Heider
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Germany
| | | | | | | |
Collapse
|
28
|
Park J, Matralis AN, Berghuis AM, Tsantrizos YS. Human isoprenoid synthase enzymes as therapeutic targets. Front Chem 2014; 2:50. [PMID: 25101260 PMCID: PMC4106277 DOI: 10.3389/fchem.2014.00050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022] Open
Abstract
In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University Montreal, QC, Canada
| | | | - Albert M Berghuis
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Department of Microbiology and Immunology, McGill University Montreal, QC, Canada
| | - Youla S Tsantrizos
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Department of Chemistry, McGill University Montreal, QC, Canada
| |
Collapse
|
29
|
Chang HY, Chou CC, Hsu MF, Wang AHJ. Proposed carrier lipid-binding site of undecaprenyl pyrophosphate phosphatase from Escherichia coli. J Biol Chem 2014; 289:18719-35. [PMID: 24855653 DOI: 10.1074/jbc.m114.575076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Undecaprenyl pyrophosphate phosphatase (UppP), an integral membrane protein, catalyzes the dephosphorylation of undecaprenyl pyrophosphate to undecaprenyl phosphate, which is an essential carrier lipid in the bacterial cell wall synthesis. Sequence alignment reveals two consensus regions, containing glutamate-rich (E/Q)XXXE plus PGXSRSXXT motifs and a histidine residue, specific to the bacterial UppP enzymes. The predicted topological model suggests that both of these regions are localized near the aqueous interface of UppP and face the periplasm, implicating that its enzymatic function is on the outer side of the plasma membrane. The mutagenesis analysis demonstrates that most of the mutations (E17A/E21A, H30A, S173A, R174A, and T178A) within the consensus regions are completely inactive, indicating that the catalytic site of UppP is constituted by these two regions. Enzymatic analysis also shows an absolute requirement of magnesium or calcium ions in enzyme activity. The three-dimensional structural model and molecular dynamics simulation studies have shown a plausible structure of the catalytic site of UppP and thus provides insights into the molecular basis of the enzyme-substrate interaction in membrane bilayers.
Collapse
Affiliation(s)
| | - Chia-Cheng Chou
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis Academia Sinica, Taipei and
| | - Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis Academia Sinica, Taipei and
| | - Andrew H J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis Academia Sinica, Taipei and the Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11529, Taiwan
| |
Collapse
|
30
|
Garcia DE, Keasling JD. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae. PLoS One 2014; 9:e87112. [PMID: 24475236 PMCID: PMC3903622 DOI: 10.1371/journal.pone.0087112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023] Open
Abstract
The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M) of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max) was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.
Collapse
Affiliation(s)
- David E. Garcia
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| |
Collapse
|
31
|
Ferrer-Casal M, Li C, Galizzi M, Stortz CA, Szajnman SH, Docampo R, Moreno SNJ, Rodriguez JB. New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase. Bioorg Med Chem 2013; 22:398-405. [PMID: 24300918 DOI: 10.1016/j.bmc.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED₅₀ value of 4.7 μM against tachyzoites of T. gondii and an IC₅₀ of 0.051 μM against TgFPPS.
Collapse
Affiliation(s)
- Mariana Ferrer-Casal
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Melina Galizzi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Carlos A Stortz
- Departamento de Química Orgánica and CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Juan B Rodriguez
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
32
|
Geranylgeranyl reductase and ferredoxin from Methanosarcina acetivorans are required for the synthesis of fully reduced archaeal membrane lipid in Escherichia coli cells. J Bacteriol 2013; 196:417-23. [PMID: 24214941 DOI: 10.1128/jb.00927-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea produce membrane lipids that typically possess fully saturated isoprenoid hydrocarbon chains attached to the glycerol moiety via ether bonds. They are functionally similar to, but structurally and biosynthetically distinct from, the fatty acid-based membrane lipids of bacteria and eukaryotes. It is believed that the characteristic lipid structure helps archaea survive under severe conditions such as extremely low or high pH, high salt concentrations, and/or high temperatures. We detail here the first successful production of an intact archaeal membrane lipid, which has fully saturated isoprenoid chains, in bacterial cells. The introduction of six phospholipid biosynthetic genes from a methanogenic archaeon, Methanosarcina acetivorans, in Escherichia coli enabled the host bacterium to synthesize the archaeal lipid, i.e., diphytanylglyceryl phosphoglycerol, while a glycerol modification of the phosphate group was probably catalyzed by endogenous E. coli enzymes. Reduction of the isoprenoid chains occurred only when archaeal ferredoxin was expressed with geranylgeranyl reductase, suggesting the role of ferredoxin as a specific electron donor for the reductase. This report is the first identification of a physiological reducer for archaeal geranylgeranyl reductase. On the other hand, geranylgeranyl reductase from the thermoacidophilic archaeon Sulfolobus acidocaldarius could, by itself, replace both its orthologue and ferredoxin from M. acetivorans, which indicated that an endogenous redox system of E. coli reduced the enzyme.
Collapse
|
33
|
Ruppel NJ, Kropp KN, Davis PA, Martin AE, Luesse DR, Hangarter RP. Mutations in GERANYLGERANYL DIPHOSPHATE SYNTHASE 1 affect chloroplast development in Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2074-84. [PMID: 24081146 DOI: 10.3732/ajb.1300124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PREMISE OF THE STUDY Within plastids, geranylgeranyl diphosphate synthase is a key enzyme in the isoprenoid biosynthetic pathway that catalyzes the formation of geranylgeranyl diphosphate, a precursor molecule to several biochemical pathways including those that lead into the biosynthesis of carotenoids and abscisic acid, prenyllipids such as the chlorophylls, and diterpenes such as gibberellic acid. • METHODS We have identified mutants in the GERANYLGERANYL DIPHOSPHATE SYNTHASE 1 (GGPS1) gene, which encodes the major plastid-localized enzyme geranylgeranyl diphosphate synthase in Arabidopsis thaliana. • KEY RESULTS Two T-DNA insertion mutant alleles (ggps1-2 and ggps1-3) were found to result in seedling-lethal albino and embryo-lethal phenotypes, respectively, indicating that GGPS1 is an essential gene. We also identified a temperature-sensitive leaf variegation mutant (ggps1-1) in A. thaliana that is caused by a point mutation. Total chlorophyll and carotenoid levels were reduced in ggps1-1 white tissues as compared with green tissues. Phenotypes typically associated with a reduction in gibberellic acid were not seen, suggesting that gibberellic acid biosynthesis is not noticeably altered in the mutant. In contrast to other variegated mutants, the ggps1-1 green sector photosynthetic rate was not elevated relative to wild-type tissues. Chloroplast development in green sectors of variegated leaves appeared normal, whereas cells in white sectors contained abnormal plastids with numerous electron translucent bodies and poorly developed internal membranes. • CONCLUSIONS Our results indicate that GGPS1 is a key gene in the chlorophyll biosynthetic pathway.
Collapse
Affiliation(s)
- Nicholas J Ruppel
- Indiana University, Department of Biology, 915 E 3rd Street, Bloomington, Indiana 47405 USA
| | | | | | | | | | | |
Collapse
|
34
|
Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. N Biotechnol 2013; 30:114-23. [DOI: 10.1016/j.nbt.2012.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022]
|
35
|
Park J, Lin YS, De Schutter JW, Tsantrizos YS, Berghuis AM. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme's active site closure. BMC STRUCTURAL BIOLOGY 2012; 12:32. [PMID: 23234314 PMCID: PMC3539973 DOI: 10.1186/1472-6807-12-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human farnesyl pyrophosphate synthase (FPPS) controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme's C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP). This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme's active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. RESULTS We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi), inorganic pyrophosphate (PPi), and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. CONCLUSIONS In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the "off" position in the absence of bound IPP. Q242 plays the role of a gatekeeper and directly controls the anchoring of R351 side chain. The interactions between the residues K57 and N59 and those upstream and downstream of Y349 are likely responsible for the switch activation. The findings of this study can be exploited for structure-guided optimization of existing inhibitors as well as development of new pharmacophores.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada
| | - Yih-Shyan Lin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada
| | - Joris W De Schutter
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada
| | - Youla S Tsantrizos
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada,Department of Microbiology and Immunology, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada
| |
Collapse
|
36
|
Liu PL, Wan JN, Guo YP, Ge S, Rao GY. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism. BMC Evol Biol 2012; 12:214. [PMID: 23137178 PMCID: PMC3518182 DOI: 10.1186/1471-2148-12-214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemyl diphosphate synthase (CDS) is a key enzyme in biosynthetic pathways producing pyrethrins and irregular monoterpenes. These compounds are confined to plants of the tribe Anthemideae of the Asteraceae, and play an important role in defending the plants against herbivorous insects. It has been proposed that the CDS genes arose from duplication of the farnesyl diphosphate synthase (FDS) gene and have different function from FDSs. However, the duplication time toward the origin of CDS and the evolutionary force behind the functional divergence of the CDS gene are still unknown. RESULTS Two duplication events were detected in the evolutionary history of the FDS gene family in the Asteraceae, and the second duplication led to the origin of CDS. CDS occurred after the divergence of the tribe Mutisieae from other tribes of Asteraceae but before the birth of the Anthemideae tribe. After its origin, CDS accumulated four mutations in sites homologous to the substrate-binding and catalysis sites of FDS. Of these, two sites were involved in the binding of the nucleophilic substrate isopentenyl diphosphate in FDS. Maximum likelihood analyses showed that some sites in CDS were under positive selection and were scattered throughout primary sequences, whereas in the three-dimensional structure model they clustered in the large central cavity. CONCLUSION Positive selection associated with gene duplication played a major role in the evolution of CDS.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
37
|
Zhang YL, Li ZX. Functional analysis and molecular docking identify two active short-chain prenyltransferases in the green peach aphid, Myzus persicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:63-76. [PMID: 22696503 DOI: 10.1002/arch.21032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Short-chain prenyltransferases are responsible for biosynthesis of the C(10)-C(20) precursors of a variety of isoprenoids. We previously isolated two different short-chain prenyltransferases from the green peach aphid, Myzus persicae (MpIPPS1 and MpIPPS2). In this study, the activity of the two aphid prenyltransferases was analyzed in vitro. Kinetic analysis using recombinant enzymes showed that both prenyltransferases could efficiently catalyze the formation of C(10) geranyl diphosphate (GPP) and C(15) farnesyl diphosphate (FPP) from the C(5) substrates isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), and MpIPPS2 had higher catalytic activity than MpIPPS1. Product analysis by gas chromatography-mass spectrometry demonstrated that FPP was generated as the major product, but GPP could be detected at low enzyme concentrations. Molecular docking revealed that MpIPPS2 had higher binding affinity with the substrates DMAPP, IPP, and GPP than MpIPPS1, which supported the experimentally determined kinetic parameters. Molecular docking also identified an amino acid residue (K266) critical to the catalytic activity of both MpIPPS1 and MpIPPS2. This prediction was subsequently confirmed by site-directed mutagenesis, in which a point mutation (K266I) abolished the activity of both MpIPPS1 and MpIPPS2. Our data illustrate that both aphid short-chain prenyltransferases are active forms, which is in contrast to the previously reported results.
Collapse
Affiliation(s)
- Yong-Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | | |
Collapse
|
38
|
Mabanglo MF, Pan JJ, Shakya B, Poulter CD. Mutagenesis of isopentenyl phosphate kinase to enhance geranyl phosphate kinase activity. ACS Chem Biol 2012; 7:1241-6. [PMID: 22533411 DOI: 10.1021/cb300106e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isopentenyl phosphate kinase (IPK) catalyzes the ATP-dependent phosphorylation of isopentenyl phosphate (IP) to form isopentenyl diphosphate (IPP) during biosynthesis of isoprenoid metabolites in Archaea. The structure of IPK from the archeaon Thermoplasma acidophilum (THA) was recently reported and guided the reconstruction of the IP binding site to accommodate the longer chain isoprenoid monophosphates geranyl phosphate (GP) and farnesyl phosphate (FP). We created four mutants of THA IPK with different combinations of alanine substitutions for Tyr70, Val73, Val130, and Ile140, amino acids with bulky side chains that limited the size of the side chain of the isoprenoid phosphate substrate that could be accommodated in the active site. The mutants had substantially increased GP kinase activity, with 20-200-fold increases in k(cat)(GP) and 30-130-fold increases in k(cat)(GP)/K(M)(GP) relative to those of wild-type THA IPK. The mutations also resulted in a 10(6)-fold decrease in k(cat)(IP)/K(M)(IP) compared to that of wild-type IPK. No significant change in the kinetic parameters for the cosubstrate ATP was observed, signifying that binding between the nucleotide binding site and the IP binding site was not cooperative. The shift in substrate selectivity from IP to GP, and to a lesser extent, FP, in the mutants could act as a starting point for the creation of more efficient GP or FP kinases whose products could be exploited for the chemoenzymatic synthesis of radiolabeled isoprenoid diphosphates.
Collapse
Affiliation(s)
- Mark F. Mabanglo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake
City, Utah 84112, United States
| | - Jian-Jung Pan
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake
City, Utah 84112, United States
| | - Binita Shakya
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical
Drive, Salt Lake City, Utah 84112, United States
| | - C. Dale Poulter
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
39
|
Chang KM, Chen SH, Kuo CJ, Chang CK, Guo RT, Yang JM, Liang PH. Roles of amino acids in the Escherichia coli octaprenyl diphosphate synthase active site probed by structure-guided site-directed mutagenesis. Biochemistry 2012; 51:3412-9. [PMID: 22471615 DOI: 10.1021/bi300069j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Octaprenyl diphosphate synthase (OPPS) catalyzes consecutive condensation reactions of farnesyl diphosphate (FPP) with five molecules of isopentenyl diphosphates (IPP) to generate C(40) octaprenyl diphosphate, which constitutes the side chain of ubiquinone or menaquinone. To understand the roles of active site amino acids in substrate binding and catalysis, we conducted site-directed mutagenesis studies with Escherichia coli OPPS. In conclusion, D85 is the most important residue in the first DDXXD motif for both FPP and IPP binding through an H-bond network involving R93 and R94, respectively, whereas R94, K45, R48, and H77 are responsible for IPP binding by providing H-bonds and ionic interactions. K170 and T171 may stabilize the farnesyl carbocation intermediate to facilitate the reaction, whereas R93 and K225 may stabilize the catalytic base (MgPP(i)) for H(R) proton abstraction after IPP condensation. K225 and K235 in a flexible loop may interact with FPP when the enzyme becomes a closed conformation, which is therefore crucial for catalysis. Q208 is near the hydrophobic part of IPP and is important for IPP binding and catalysis.
Collapse
Affiliation(s)
- Keng-Ming Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Lin YS, Park J, De Schutter JW, Huang XF, Berghuis AM, Sebag M, Tsantrizos YS. Design and Synthesis of Active Site Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Apoptosis and Inhibition of ERK Phosphorylation in Multiple Myeloma Cells. J Med Chem 2012; 55:3201-15. [PMID: 22390415 DOI: 10.1021/jm201657x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yih-Shyan Lin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal,
QC, Canada H3A 0B8
| | - Jaeok Park
- Department
of Biochemistry, McGill University, 3649
Promenade Sir William Osler,
Montreal, QC, Canada H3G 0B1
| | - Joris W. De Schutter
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal,
QC, Canada H3A 0B8
| | - Xian Fang Huang
- Division of Haematology, McGill University Health Center, Royal Victoria Hospital,
C6.80, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| | - Albert M. Berghuis
- Department
of Biochemistry, McGill University, 3649
Promenade Sir William Osler,
Montreal, QC, Canada H3G 0B1
| | - Michael Sebag
- Division of Haematology, McGill University Health Center, Royal Victoria Hospital,
C6.80, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal,
QC, Canada H3A 0B8
- Department
of Biochemistry, McGill University, 3649
Promenade Sir William Osler,
Montreal, QC, Canada H3G 0B1
| |
Collapse
|
41
|
Hojo M, Toga K, Watanabe D, Yamamoto T, Maekawa K. High-level expression of the Geranylgeranyl diphosphate synthase gene in the frontal gland of soldiers in Reticulitermes speratus (Isoptera: Rhinotermitidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:17-31. [PMID: 21308763 DOI: 10.1002/arch.20415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 12/02/2010] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
Defensive strategies of termite soldiers are roughly classified as either mechanical, using mandibles and/or the whole head, or chemical, using frontal gland secretion. Soldiers of the genus Nasutitermes (Termitidae, Nasutitermitinae), which is one of the most derived termite genera, use only chemical defenses, and diterpene defensive secretions were suggested to be synthesized through geranylgeranyl diphosphate (GGPP). On the other hand, soldiers of the genus Reticulitermes (Rhinotermitidae, Heterotermitinae) mainly use mechanical defenses, but also use supplementary chemical defenses involving frontal gland secretions, including diterpene alcohol. In this study, to confirm whether the GGPP is used for diterpene synthesis in a representative of an earlier-branching termite lineage, the GGPP synthase gene (RsGGPPS) was identified in the rhinotermitid Reticulitermes speratus (Kolbe). The relative expression level of RsGGPPS in soldiers was three-fold higher than in workers. Furthermore, RsGGPPS gene expression was detected in epithelial class 1 gland cells around the frontal-gland reservoir. Although GGPP is used for various essential cellular roles in animals, RsGGPPS is suggested to be used not only for these essential roles but also for diterpene synthesis in order to produce defensive secretions. Chemical structures of the diterpene identified from Reticulitermes and Nasutitermes are extremely different from each other, and the two genera are phylogenetically distant from each other. Thus, these two lineages may have independently acquired the abilities of diterpene synthesis from GGPP.
Collapse
Affiliation(s)
- Masaru Hojo
- Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact 2011; 10:4. [PMID: 21276210 PMCID: PMC3042375 DOI: 10.1186/1475-2859-10-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. RESULTS S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence) at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R) variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330) in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1) also improved production levels, pointing to an additional means to improve production. CONCLUSIONS Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.
Collapse
Affiliation(s)
- Codruta Ignea
- Department of Natural Products and Biotechnology, Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Chania, PO Box 85, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
43
|
Mann FM, Thomas JA, Peters RJ. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. FEBS Lett 2011; 585:549-54. [PMID: 21237161 DOI: 10.1016/j.febslet.2011.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/01/2011] [Accepted: 01/05/2011] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the "missing" GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.
Collapse
Affiliation(s)
- Francis M Mann
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
44
|
Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M, Koyama T, Miki K. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. J Biol Chem 2010; 286:3729-40. [PMID: 21068379 DOI: 10.1074/jbc.m110.147991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Grant J, Saldanha JW, Gould AP. A Drosophila model for primary coenzyme Q deficiency and dietary rescue in the developing nervous system. Dis Model Mech 2010; 3:799-806. [PMID: 20889762 DOI: 10.1242/dmm.005579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) or ubiquinone is a lipid component of the electron transport chain required for ATP generation in mitochondria. Mutations in CoQ biosynthetic genes are associated with rare but severe infantile multisystemic diseases. CoQ itself is a popular over-the-counter dietary supplement that some clinical and rodent studies suggest might be beneficial for neurodegenerative diseases. Here, we identify mutations in the Drosophila qless gene, which encodes an orthologue of the human PDSS1 prenyl transferase that synthesizes the isoprenoid side chain of CoQ. We show that neurons lacking qless activity upregulate markers of mitochondrial stress and undergo caspase-dependent apoptosis. Surprisingly, even though experimental inhibition of caspase activity did not prevent mitochondrial disruption, it was sufficient to rescue the size of neural progenitor clones. This demonstrates that, within the developing larval CNS, qless activity is required primarily for cell survival rather than for cell growth and proliferation. Full rescue of the qless neural phenotype was achieved by dietary supplementation with CoQ4, CoQ9 or CoQ10, indicating that a side chain as short as four isoprenoid units can provide in vivo activity. Together, these findings show that Drosophila qless provides a useful model for studying the neural effects of CoQ deficiency and dietary supplementation.
Collapse
Affiliation(s)
- Jennifer Grant
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
46
|
Mabanglo MF, Schubert HL, Chen M, Hill CP, Poulter CD. X-ray structures of isopentenyl phosphate kinase. ACS Chem Biol 2010; 5:517-27. [PMID: 20402538 PMCID: PMC2879073 DOI: 10.1021/cb100032g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Isoprenoid compounds are ubiquitous in nature, participating in important biological phenomena such as signal transduction, aerobic cellular respiration, photosynthesis, insect communication, and many others. They are derived from the 5-carbon isoprenoid substrates isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In Archaea and Eukarya, these building blocks are synthesized via the mevalonate pathway. However, the genes required to convert mevalonate phosphate (MP) to IPP are missing in several species of Archaea. An enzyme with isopentenyl phosphate kinase (IPK) activity was recently discovered in Methanocaldococcus jannaschii (MJ), suggesting a departure from the classical sequence of converting MP to IPP. We have determined the high-resolution crystal structures of isopentenyl phosphate kinases in complex with both substrates and products from Thermoplasma acidophilum (THA), as well as the IPK from Methanothermobacter thermautotrophicus (MTH), by means of single-wavelength anomalous diffraction (SAD) and molecular replacement. A histidine residue (His50) in THA IPK makes a hydrogen bond with the terminal phosphates of IP and IPP, poising these molecules for phosphoryl transfer through an in-line geometry. Moreover, a lysine residue (Lys14) makes hydrogen bonds with nonbridging oxygen atoms at P(alpha) and P(gamma) and with the P(beta)-P(gamma) bridging oxygen atom in ATP. These interactions suggest a transition-state-stabilizing role for this residue. Lys14 is a part of a newly discovered "lysine triangle" catalytic motif in IPKs that also includes Lys5 and Lys205. Moreover, His50, Lys5, Lys14, and Lys205 are conserved in all IPKs and can therefore serve as fingerprints for identifying new homologues.
Collapse
Affiliation(s)
- Mark F. Mabanglo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - Mo Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - C. Dale Poulter
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.,Corresponding author:
| |
Collapse
|
47
|
Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. PLANT PHYSIOLOGY 2010; 152:639-55. [PMID: 19939949 PMCID: PMC2815902 DOI: 10.1104/pp.109.144691] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/19/2009] [Indexed: 05/19/2023]
Abstract
The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.
Collapse
|
48
|
Vandermoten S, Haubruge E, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 2009; 66:3685-95. [PMID: 19633972 PMCID: PMC11115643 DOI: 10.1007/s00018-009-0100-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/28/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C5) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C5). The reactions leading to the production of geranyl diphosphate (C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate (C20), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Sophie Vandermoten
- Department of Functional and Evolutionary Entomology, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | |
Collapse
|
49
|
Gennadios HA, Gonzalez V, Di Costanzo L, Li A, Yu F, Miller DJ, Allemann RK, Christianson DW. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry 2009; 48:6175-83. [PMID: 19489610 DOI: 10.1021/bi900483b] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+)-Delta-cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 A resolution and the structure of its complex with three putative Mg(2+) ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 A resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D(307)DTYD(311) motif on helix D that interacts with Mg(2+)(A) and Mg(2+)(C). However, DCS appears to be unique among terpenoid cyclases in that it does not contain the "NSE/DTE" motif on helix H that specifically chelates Mg(2+)(B), which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg(2+)(B) ligands). Instead, DCS contains a second aspartate-rich motif, D(451)DVAE(455), that interacts with Mg(2+)(B). In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg(2+)(B) binding motif. Analyses of DCS mutants with alanine substitutions in the D(307)DTYD(311) and D(451)DVAE(455) segments reveal the contributions of these segments to catalysis.
Collapse
Affiliation(s)
- Heather A Gennadios
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J 2009; 421:231-41. [PMID: 19392660 DOI: 10.1042/bj20081968] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AS-PT (aromatic substrate prenyltransferase) family plays a critical role in the biosynthesis of important quinone compounds such as ubiquinone and plastoquinone, although biochemical characterizations of AS-PTs have rarely been carried out because most members are membrane-bound enzymes with multiple transmembrane alpha-helices. PPTs [PHB (p-hydroxybenzoic acid) prenyltransferases] are a large subfamily of AS-PTs involved in ubiquinone and naphthoquinone biosynthesis. LePGT1 [Lithospermum erythrorhizon PHB geranyltransferase] is the regulatory enzyme for the biosynthesis of shikonin, a naphthoquinone pigment, and was utilized in the present study as a representative of membrane-type AS-PTs to clarify the function of this enzyme family at the molecular level. Site-directed mutagenesis of LePGT1 with a yeast expression system indicated three out of six conserved aspartate residues to be critical to the enzymatic activity. A detailed kinetic analysis of mutant enzymes revealed the amino acid residues responsible for substrate binding were also identified. Contrary to ubiquinone biosynthetic PPTs, such as UBIA in Escherichia coli which accepts many prenyl substrates of different chain lengths, LePGT1 can utilize only geranyl diphosphate as its prenyl substrate. Thus the substrate specificity was analysed using chimeric enzymes derived from LePGT1 and UBIA. In vitro and in vivo analyses of the chimeras suggested that the determinant region for this specificity was within 130 amino acids of the N-terminal. A 3D (three-dimensional) molecular model of the substrate-binding site consistent with these biochemical findings was generated.
Collapse
|