1
|
Jeong Y, Kim MW, Lee SG, Park S, Jeong KS, Lee YH, Lee S, Chung HM, Kim J, Kim CY. Therapeutic effects of CGS21680, a selective A 2A receptor agonist, via BDNF-related pathways in R106W mutation Rett syndrome model. Biomed Pharmacother 2025; 183:117821. [PMID: 39813786 DOI: 10.1016/j.biopha.2025.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A2A receptor (A2AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an A2AR agonist, through in vitro and in vivo studies using R106W RTT model. CGS21680 restored neurite outgrowth, the number of SYN1+/MAP2+ puncta pairs, genes related to the BDNF-TrkB signaling pathway (Bdnf, TrkB, and Mtor) and neural development (Tuj1 and Syn1), and electrophysiological functions in in vitro RTT primary neurons. Additionally, CGS21680 alleviated neurobehavioral impairments and modulated gene expression in an RTT in vivo model. Our findings suggest that activation of A2AR via CGS21680 enhances BDNF-TrkB signaling, which in turn activates downstream pathways, ultimately increasing neurite outgrowth and synaptic plasticity, and restoring neurobehavioral clinical symptoms. This is the first study to report the therapeutic effect of CGS21680 in R106W point mutation RTT models, both in vitro and in vivo. These research results suggest that CGS21680 could be a promising therapeutic candidate for the treatment of RTT.
Collapse
Affiliation(s)
- Youngin Jeong
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seul-Gi Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, College of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
N'Guetta PEY, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, Scherrer G, O'Brien LL. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. Cell Rep 2024; 43:114860. [PMID: 39412983 PMCID: PMC11616766 DOI: 10.1016/j.celrep.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
The kidneys act as finely tuned sensors to maintain physiological homeostasis. Both sympathetic and sensory nerves modulate kidney function through precise neural control. However, how the kidneys are innervated during development to support function remains elusive. Using light-sheet and confocal microscopy, we generated anatomical maps of kidney innervation across development. Kidney innervation commences on embryonic day 13.5 (E13.5) as network growth aligns with arterial differentiation. Fibers are synapsin I+, highlighting ongoing axonogenesis and potential signaling crosstalk. By E17.5, axons associate with nephrons, and the network continues to expand postnatally. CGRP+, substance P+, TRPV1+, and PIEZO2+ sensory fibers and TH+ sympathetic fibers innervate the developing kidney. TH+ and PIEZO2+ axons similarly innervate the human kidney, following the arterial tree to reach targets. Retrograde tracing revealed the primary dorsal root ganglia, T10-L2, from which sensory neurons project to the kidneys. Together, our findings elucidate the temporality and neuronal diversity of kidney innervation.
Collapse
Affiliation(s)
- Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R McLarnon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sepenta Shirvan
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rose Z Hill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Kidney Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Wang Y, Wei Y, Ren M, Sajja VS, Wilder DM, Arun P, Gist ID, Long JB, Yang F. Blast Exposure Alters Synaptic Connectivity in the Mouse Auditory Cortex. J Neurotrauma 2024; 41:1438-1449. [PMID: 38047526 DOI: 10.1089/neu.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Blast exposure can cause auditory deficits that have a lasting, significant impact on patients. Although the effects of blast on auditory functions localized to the ear have been well documented, the impact of blast on central auditory processing is largely undefined. Understanding the structural and functional alterations in the central nervous system (CNS) associated with blast injuries is crucial for unraveling blast-induced pathophysiological pathways and advancing development of therapeutic interventions. In this study, we used electrophysiology in combination with optogenetics assay, proteomic analysis, and morphological evaluation to investigate the impairment of synaptic connectivity in the auditory cortex (AC) of mice following blast exposure. Our results show that the long-range functional connectivity between the medial geniculate nucleus (MGN) and AC was impaired in the acute phase of blast injury. We also identified impaired synaptic transmission and dendritic spine alterations within 7 days of blast exposure, which recovered at 28 days post-blast. Additionally, proteomic analysis identified a few differentially expressed proteins in the cortex that are involved in synaptic signaling and plasticity. These findings collectively suggest that blast-induced alterations in the sound signaling network in the auditory cortex may underlie hearing deficits in the acute and sub-acute phases after exposure to shockwaves. This study may shed light on the perturbations underlying blast-induced auditory dysfunction and provide insights into the potential therapeutic windows for improving auditory outcomes in blast-exposed individuals.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Yanling Wei
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ming Ren
- Lieber Institute for Brain Development, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Venkatasivasai S Sajja
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Irene D Gist
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Feng Yang
- Lieber Institute for Brain Development, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
4
|
N’Guetta PEY, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, Scherrer G, O’Brien LL. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567276. [PMID: 38496522 PMCID: PMC10942422 DOI: 10.1101/2023.11.15.567276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The kidney functions as a finely tuned sensor to balance body fluid composition and filter out waste through complex coordinated mechanisms. This versatility requires tight neural control, with innervating efferent nerves playing a crucial role in regulating blood flow, glomerular filtration rate, water and sodium reabsorption, and renin release. In turn sensory afferents provide feedback to the central nervous system for the modulation of cardiovascular function. However, the cells targeted by sensory afferents and the physiological sensing mechanisms remain poorly characterized. Moreover, how the kidney is innervated during development to establish these functions remains elusive. Here, we utilized a combination of light-sheet and confocal microscopy to generate anatomical maps of kidney sensory and sympathetic nerves throughout development and resolve the establishment of functional crosstalk. Our analyses revealed that kidney innervation initiates at embryonic day (E)13.5 as the nerves associate with vascular smooth muscle cells and follow arterial differentiation. By E17.5 axonal projections associate with kidney structures such as glomeruli and tubules and the network continues to expand postnatally. These nerves are synapsin I-positive, highlighting ongoing axonogenesis and the potential for functional crosstalk. We show that sensory and sympathetic nerves innervate the kidney concomitantly and classify the sensory fibers as calcitonin gene related peptide (CGRP)+, substance P+, TRPV1+, and PIEZO2+, establishing the presence of PIEZO2 mechanosensory fibers in the kidney. Using retrograde tracing, we identified the primary dorsal root ganglia, T10-L2, from which PIEZO2+ sensory afferents project to the kidney. Taken together our findings elucidate the temporality of kidney innervation and resolve the identity of kidney sympathetic and sensory nerves.
Collapse
Affiliation(s)
- Pierre-Emmanuel Y. N’Guetta
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R. McLarnon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sepenta Shirvan
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - Rose Z. Hill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation – Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L. O’Brien
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Mao LM, Thallapureddy K, Wang JQ. Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo. Brain Res 2024; 1823:148671. [PMID: 37952872 PMCID: PMC10806815 DOI: 10.1016/j.brainres.2023.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Khyathi Thallapureddy
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
6
|
Rodriguez-Duboc A, Basille-Dugay M, Debonne A, Rivière MA, Vaudry D, Burel D. Apnea of prematurity induces short and long-term development-related transcriptional changes in the murine cerebellum. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100113. [PMID: 38020806 PMCID: PMC10663136 DOI: 10.1016/j.crneur.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Apnea of prematurity (AOP) affects more than 50% of preterm infants and leads to perinatal intermittent hypoxia (IH) which is a major cause of morbimortality worldwide. At birth, the human cerebellar cortex is still immature, making it vulnerable to perinatal events. Additionally, studies have shown a correlation between cerebellar functions and the deficits observed in children who have experienced AOP. Yet, the cerebellar alterations underpinning this link remain poorly understood. To gain insight into the involvement of the cerebellum in perinatal hypoxia-related consequences, we developed a mouse model of AOP. Our previous research has revealed that IH induces oxidative stress in the developing cerebellum, as evidenced by the over-expression of genes involved in reactive oxygen species production and the under-expression of genes encoding antioxidant enzymes. These changes suggest a failure of the defense system against oxidative stress and could be responsible for neuronal death in the cerebellum. Building upon these findings, we conducted a transcriptomic study of the genes involved in the processes that occur during cerebellar development. Using real-time PCR, we analyzed the expression of these genes at different developmental stages and in various cell types. This enabled us to pinpoint a timeframe of vulnerability at P8, which represents the age with the highest number of downregulated genes in the cerebellum. Furthermore, we discovered that our IH protocol affects several molecular pathways, including proliferation, migration, and differentiation. This indicates that IH can impact the development of different cell types, potentially contributing to the histological and behavioral deficits observed in this model. Overall, our data strongly suggest that the cerebellum is highly sensitive to IH, and provide valuable insights into the cellular and molecular mechanisms underlying AOP. In the long term, these findings may contribute to the identification of novel therapeutic targets for improving the clinical management of this prevalent pathology.
Collapse
Affiliation(s)
- A. Rodriguez-Duboc
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
| | - M. Basille-Dugay
- Univ Rouen Normandie, Inserm, U1239, Normandie Univ, F-76000, Rouen, France
| | - A. Debonne
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - M.-A. Rivière
- Univ Rouen Normandie, UR 4108, LITIS Lab, INSA Rouen, NormaSTIC, CNRS 3638, Normandie Univ, F-76000, Rouen, France
| | - D. Vaudry
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - D. Burel
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| |
Collapse
|
7
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits. Biophys Rev 2022; 14:553-568. [PMID: 35528035 PMCID: PMC9043075 DOI: 10.1007/s12551-022-00942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable state in neurons from different brain regions. Much is unknown about epilepsy and seizures development, depicting a growing field of research. Animal models have provided important clues about the underlying mechanisms of seizure-generating neuronal circuits. Mammalian complexity still makes it difficult to define some principles of nervous system function, and non-mammalian models have played pivotal roles depending on the research question at hand. Mollusks and the Helix land snail have been used to study epileptic-like behavior in neurons. Neurons from these organisms confer advantages as single-cell identification, isolation, and culture, either as single cells or as physiological relevant monosynaptic or polysynaptic circuits, together with amenability to different protocols and treatments. This review's purpose consists in presenting relevant papers in order to gain a better understanding of Helix neurons, their characteristics, uses, and capabilities for studying the fundamental mechanisms of epileptic disorders and their treatment, to facilitate their more expansive use in epilepsy research.
Collapse
|
9
|
Luo W, Yang Z, Zhang W, Zhou D, Guo X, Wang S, He F, Wang Y. Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury. Front Mol Neurosci 2022; 14:785938. [PMID: 35145378 PMCID: PMC8821658 DOI: 10.3389/fnmol.2021.785938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. Methods Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein–protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). Results In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. Conclusion Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Zhou
- Periodical Office, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohang Guo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shunshun Wang
- Postpartum Health Care Department, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Feng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
10
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
11
|
GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells 2021; 10:cells10082092. [PMID: 34440861 PMCID: PMC8393567 DOI: 10.3390/cells10082092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3–cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.
Collapse
|
12
|
Defective Reelin/Dab1 signaling pathways associated with disturbed hippocampus development of homozygous yotari mice. Mol Cell Neurosci 2021; 112:103614. [PMID: 33845123 DOI: 10.1016/j.mcn.2021.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022] Open
Abstract
Homozygous Dab1 yotari mutant mice, Dab1yot (yot/yot) mice, have an autosomal recessive mutation of Dab1 and show reeler-like phenotype including histological abnormality of the cerebellum, hippocampus, and cerebral cortex. We here show abnormal hippocampal development of yot/yot mice where granule cells and pyramidal cells fail to form orderly rows but are dispersed diffusely in vague multiplicative layers. Possibly due to the positioning failure of granule cells and pyramidal cells and insufficient synaptogenesis, axons of the granule cells did not extend purposefully to connect with neighboring regions in yot/yot mice. We found that both hippocampal granule cells and pyramidal cells of yot/yot mice expressed proteins reactive with the anti-Dab1 antibody. We found that Y198- phosphorylated Dab1 of yot/yot mice was greatly decreased. Accordingly the downstream molecule, Akt was hardly phosphorylated. Especially, synapse formation was defective and the distribution of neurons was scattered in hippocampus of yot/yot mice. Some of neural cell adhesion molecules and hippocampus associated transcription factors of the neurons were expressed aberrantly, suggesting that the Reelin-Dab1 signaling pathway seemed to be importantly involved in not only neural migration as having been shown previously but also neural maturation and/or synaptogenesis of the mice. It is interesting to clarify whether the defective neural maturation is a direct consequence of the dysfunctional Dab1, or alternatively secondarily due to the Reelin-Dab1 intracellular signaling pathways.
Collapse
|
13
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
14
|
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H. Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease. Sci Rep 2020; 10:15119. [PMID: 32934297 PMCID: PMC7492427 DOI: 10.1038/s41598-020-71865-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Most of the gut functions are controlled by the enteric nervous system (ENS), a complex network of enteric neurons located throughout the wall of the gastrointestinal tract. The formation of ENS connectivity during the perinatal period critically underlies the establishment of gastrointestinal motility, but the factors involved in this maturation process remain poorly characterized. Here, we examined the role of Semaphorin 3A (Sema3A) on ENS maturation and its potential implication in Hirschsprung disease (HSCR), a developmental disorder of the ENS with impaired colonic motility. We found that Sema3A and its receptor Neuropilin 1 (NRP1) are expressed in the rat gut during the early postnatal period. At the cellular level, NRP1 is expressed by enteric neurons, where it is particularly enriched at growth areas of developing axons. Treatment of primary ENS cultures and gut explants with Sema3A restricts axon elongation and synapse formation. Comparison of the ganglionic colon of HSCR patients to the colon of patients with anorectal malformation shows reduced expression of the synaptic molecule synapsin 1 in HSCR, which is inversely correlated with Sema3A expression. Our study identifies Sema3A as a critical regulator of ENS connectivity and provides a link between altered ENS connectivity and HSCR.
Collapse
Affiliation(s)
- Jacques Gonzales
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Anne Dariel
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.,Pediatric Surgery Department, Hôpital Timone-Enfants, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Paul Bréhéret
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Michel Neunlist
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Hélène Boudin
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.
| |
Collapse
|
15
|
Zhang R, Silic MR, Schaber A, Wasel O, Freeman JL, Sepúlveda MS. Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138065. [PMID: 32272399 DOI: 10.1016/j.scitotenv.2020.138065] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of polystyrene (PS) products in a myriad of consumer products has resulted in widespread contamination of PS nanoplastics (PSNPs) in aquatic ecosystems. Fish early life stages are exposed to nanoplastics dermally and via gills. Additional routes of exposure include oral via the ingestion of contaminated prey and maternal transfer. However, there is limited amount of work studying the impact of exposure route in the toxicokinetics and toxicodynamics of PSNPs. The objective of this study was to compare the effects of exposure routes (aqueous and microinjection) on the organ distribution and toxicity of PSNPs. We "mimicked" the maternal exposure of PSNPs to zebrafish by injecting a known concentration of fluorescent particles directly into 2-cell stage embryos. Endpoints were collected starting at 96 h post-fertilization until several weeks post-hatch to evaluate depuration. Although both exposure routes led to the accumulation of PSNPs in the yolk sac followed by brain, eyes, gut and swim bladder, the aqueous exposure caused higher PSNP concentrations in the brain and eyes and the injection exposure caused PSNP accumulation mainly in the trunk area. A waterborne exposure also reduced antioxidant gene expression; increased frequency of developmental abnormalities such as bent tails, jaw deformities and pericardial edema; and resulted in lower growth rates and hypoactivity. Overall, a waterborne exposure to PSNPs resulted in higher transfer to the brain and caused greater toxic effects to zebrafish compared to an injection exposure and highlights the key role of exposure routes in the uptake, localization and subsequent distribution of nanoparticles.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States; School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong Province 266237, PR China
| | - Martin R Silic
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Andy Schaber
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, United States
| | - Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
16
|
Mechanisms of Electroacupuncture on Alzheimer’s Disease: A Review of Animal Studies. Chin J Integr Med 2020; 26:473-480. [DOI: 10.1007/s11655-020-3092-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
|
17
|
Phenotypic and genotypic characterization of families with complex intellectual disability identified pathogenic genetic variations in known and novel disease genes. Sci Rep 2020; 10:968. [PMID: 31969655 PMCID: PMC6976666 DOI: 10.1038/s41598-020-57929-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability (ID), which presents itself during childhood, belongs to a group of neurodevelopmental disorders (NDDs) that are clinically widely heterogeneous and highly heritable, often being caused by single gene defects. Indeed, NDDs can be attributed to mutations at over 1000 loci, and all type of mutations, ranging from single nucleotide variations (SNVs) to large, complex copy number variations (CNVs), have been reported in patients with ID and other related NDDs. In this study, we recruited seven different recessive NDD families with comorbidities to perform a detailed clinical characterization and a complete genomic analysis that consisted of a combination of high throughput SNP-based genotyping and whole-genome sequencing (WGS). Different disease-associated loci and pathogenic gene mutations were identified in each family, including known (n = 4) and novel (n = 2) mutations in known genes (NAGLU, SLC5A2, POLR3B, VPS13A, SYN1, SPG11), and the identification of a novel disease gene (n = 1; NSL1). Functional analyses were additionally performed in a gene associated with autism-like symptoms and epileptic seizures for further proof of pathogenicity. Lastly, detailed genotype-phenotype correlations were carried out to assist with the diagnosis of prospective families and to determine genomic variation with clinical relevance. We concluded that the combination of linkage analyses and WGS to search for disease genes still remains a fruitful strategy for complex diseases with a variety of mutated genes and heterogeneous phenotypic manifestations, allowing for the identification of novel mutations, genes, and phenotypes, and leading to improvements in both diagnostic strategies and functional characterization of disease mechanisms.
Collapse
|
18
|
Maesako M, Zoltowska KM, Berezovska O. Synapsin 1 promotes Aβ generation via BACE1 modulation. PLoS One 2019; 14:e0226368. [PMID: 31830091 PMCID: PMC6907790 DOI: 10.1371/journal.pone.0226368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
It has been revealed that β-amyloid (Aβ) is generated and released from the presynaptic terminals in activity-dependent manner. However, molecules modulating the presynaptic Aβ generation remain elusive. Here we test the hypothesis that Synapsin 1 (Syn1) may acts as a modulator of the Aβ production. Using biochemical and Förster resonance energy transfer (FRET)-based imaging approaches we have found that Syn1 knock down decreases, whereas (over)expression of Syn1 in cells increases the Aβ levels. Mechanistically, Syn1 does not seem to affect the activity of Presenilin 1 (PS1)/γ-secretase, PS1 conformation, or the proximity between PS1 and amyloid precursor protein (APP). However, we found that Syn1 is involved in up-regulation of the β-site APP cleaving enzyme 1 (BACE1)/β-secretase activity and increases the APP/BACE1 interaction. Therefore, we conclude that Syn1 may promote Aβ production via the modulation of BACE1.
Collapse
Affiliation(s)
- Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Katarzyna M. Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Marte A, Russo I, Rebosio C, Valente P, Belluzzi E, Pischedda F, Montani C, Lavarello C, Petretto A, Fedele E, Baldelli P, Benfenati F, Piccoli G, Greggio E, Onofri F. Leucine‐rich repeat kinase 2 phosphorylation on synapsin I regulates glutamate release at pre‐synaptic sites. J Neurochem 2019; 150:264-281. [PMID: 31148170 DOI: 10.1111/jnc.14778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release. To test whether synapsin I is substrate for LRRK2 and characterize the properties of its phosphorylation, we used in vitro kinase and binding assays as well as cellular model and site-direct mutagenesis. Using synaptosomes in superfusion, patch-clamp recordings in autaptic WT and synapsin I KO cortical neurons and SypHy assay on primary cortical culture from wild-type and BAC human LRRK2 G2019S mice we characterized the role of LRRK2 kinase activity on glutamate release and SV trafficking. Here we reported that synapsin I is phosphorylated by LRRK2 and demonstrated that the interaction between LRRK2 WD40 domain and synapsin I is crucial for this phosphorylation. Moreover, we showed that LRRK2 phosphorylation of synapsin I at threonine 337 and 339 significantly reduces synapsin I-SV/actin interactions. Using complementary experimental approaches, we demonstrated that LRRK2 controls glutamate release and SV dynamics in a kinase activity and synapsin I-dependent manner. Our findings show that synapsin I is a LRRK2 substrate and describe a novel mechanisms of regulation of glutamate release by LRRK2 kinase activity.
Collapse
Affiliation(s)
- Antonella Marte
- Department of Experimental Medicine University of Genova Genova Italy
| | | | | | - Pierluigi Valente
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Elisa Belluzzi
- Rheumatology Unit, Department of Medicine‐DIMED University Hospital of Padova Padova Italy
| | - Francesca Pischedda
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Caterina Montani
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Chiara Lavarello
- Laboratory of Mass Spectrometry ‐ Core Facilities Istituto Giannina Gaslini Genova Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry ‐ Core Facilities Istituto Giannina Gaslini Genova Italy
| | - Ernesto Fedele
- Department of Pharmacy University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Pietro Baldelli
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino Genova Italy
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
| | - Giovanni Piccoli
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Elisa Greggio
- Department of Biology University of Padova Padova Italy
| | - Franco Onofri
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| |
Collapse
|
21
|
Lugarà E, De Fusco A, Lignani G, Benfenati F, Humeau Y. Synapsin I Controls Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted Selective Fashion. Front Cell Neurosci 2019; 13:220. [PMID: 31164805 PMCID: PMC6536628 DOI: 10.3389/fncel.2019.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/01/2019] [Indexed: 01/11/2023] Open
Abstract
The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional valence to external stimuli by generating long-term plasticity changes at long-range projections to principal cells. Aversive experience has also been shown to modify pre- and post-synaptic markers in the amygdala, suggesting their possible role in the structural organization of adult amygdala networks. Here, we focused on how the maturation of cortical and thalamic long-range projections occurs on principal neurons and interneurons in the lateral amygdala (LA). We performed dual electrophysiological recordings of identified cells in juvenile and adult GAD67-GFP mice after independent stimulation of cortical and thalamic afferent systems. The results demonstrate that synaptic strengthening occurs during development at synapses projecting to LA principal neurons, but not interneurons. As synaptic strengthening underlies fear conditioning which depends, in turn, on presence and increasing expression of synapsin I, we tested if synapsin I contributes to synaptic strengthening during development. Interestingly, the physiological synaptic strengthening of cortical and thalamic synapses projecting to LA principal neurons was virtually abolished in synapsin I knockout mice, but not differences were observed in the excitatory projections to interneurons. Immunohistochemistry analysis showed that the presence of synapsin I is restricted to excitatory contacts projecting to principal neurons in LA of adult mice. These results indicate that synapsin I is a key regulator of the maturation of synaptic connectivity in this brain region and that is expression is dependent on postsynaptic identity.
Collapse
Affiliation(s)
- Eleonora Lugarà
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Antonio De Fusco
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de Neuroscience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
22
|
Abstract
Differentiated neurons can undergo cell cycle re-entry during pathological conditions, but it remains largely accepted that M-phase is prohibited in these cells. Here we show that primary neurons at post-synaptogenesis stages of development can enter M-phase. We induced cell cycle re-entry by overexpressing a truncated Cyclin E isoform fused to Cdk2. Cyclin E/Cdk2 expression elicits canonical cell cycle checkpoints, which arrest cell cycle progression and trigger apoptosis. As in mitotic cells, checkpoint abrogation enables cell cycle progression through S and G2-phases into M-phase. Although most neurons enter M-phase, only a small subset undergo cell division. Alternatively, neurons can exit M-phase without cell division and recover the axon initial segment, a structural determinant of neuronal viability. We conclude that neurons and mitotic cells share S, G2 and M-phase regulation.
Collapse
|
23
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
24
|
Han YX, Tao C, Gao XR, Wang LL, Jiang FH, Wang C, Fang K, Chen XX, Chen Z, Ge JF. BDNF-Related Imbalance of Copine 6 and Synaptic Plasticity Markers Couples With Depression-Like Behavior and Immune Activation in CUMS Rats. Front Neurosci 2018; 12:731. [PMID: 30429764 PMCID: PMC6220370 DOI: 10.3389/fnins.2018.00731] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic stress is a contributing risk factor in the pathogenesis of depression. Although the mechanisms are multifaceted, the relationship can be ascribed partly to stress-related alterations in immune activation and brain plasticity. Considering the increasing evidence regarding the role of Copine 6 in the regulation of synaptic plasticity, the aim of the present study is to investigate Copine 6 expression in the hippocampus and the prefrontal cortex (PFC) in a stress-induced depression rat model. The behavior of the rats was evaluated via the open field test, saccharin preference test, elevated plus maze test, tail suspension test, Morris water maze, and forced swimming test. The plasma concentrations of C-reactive protein (CRP) and interleukin-6 (IL-6) were measured, and the protein expressions of brain-derived neurotrophic factor (BDNF), Copine 6, and synaptic plasticity markers in the hippocampus and the PFC were also detected. The results showed that chronic unpredictable mild stress (CUMS) induces depression-like behavior in rats, accompanied by increased plasma concentrations of CRP and IL-6. Moreover, the protein expressions of BDNF, Copine 6, and synapsin I were decreased in both the hippocampus and the PFC of CUMS rats, and the protein expression of synaptotagmin I was decreased in the hippocampus. Furthermore, Pearson's test revealed a potential relationship between the depression-like behavior, the plasma CRP concentration, and the protein expressions of BDNF, Copine 6, synapsin I, or synaptotagmin I in the hippocampus or the PFC. Together with our previous results, the current findings suggest that apart from immune activation, the BDNF-related imbalance of Copine 6 expression in the brain might play a crucial role in stress-associated depression-like behaviors and synaptic plasticity changes.
Collapse
Affiliation(s)
- Yin-Xiu Han
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chen Tao
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Le-le Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fu-Hao Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chong Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ke Fang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Zheng Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Angiotensin II-mediated suppression of synaptic proteins in mouse hippocampal neuronal HT22 cell was inhibited by propofol: role of calcium signaling pathway. J Anesth 2018; 32:856-865. [DOI: 10.1007/s00540-018-2565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
|
26
|
Cabana J, Gilbert G, Létourneau‐Guillon L, Safi D, Rouleau I, Cossette P, Nguyen DK. Effects of SYN1 Q555X mutation on cortical gray matter microstructure. Hum Brain Mapp 2018; 39:3428-3448. [PMID: 29671924 PMCID: PMC6866302 DOI: 10.1002/hbm.24186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
A new Q555X mutation on the SYN1 gene was recently found in several members of a family segregating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation on cortical gray matter microstructure, we performed a surface-based group study using novel diffusion and quantitative multiparametric imaging on 13 SYN1Q555X mutation carriers and 13 age- and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue composition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip angle FLASH acquisition. Results showed significant microstructural alterations in several regions usually involved in oral and written language as well as dyslexia. The most significant changes in these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to detect cortical anomalies in a group of subjects with a well-defined genotype linked to language impairments, epilepsy and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Jean‐François Cabana
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
| | - Guillaume Gilbert
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Philips Healthcare CanadaMarkhamQuébec
| | - Laurent Létourneau‐Guillon
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dima Safi
- Université du Québec à Trois‐Rivières (UQTR), Trois‐RivièresQuébec
- Groupe de recherche CogNAC (UQTR), Trois‐RivièresQuébec
| | - Isabelle Rouleau
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
- Université du Québec à Montréal (UQAM), MontréalQuébec
| | - Patrick Cossette
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dang Khoa Nguyen
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| |
Collapse
|
27
|
Guarnieri FC, Pozzi D, Raimondi A, Fesce R, Valente MM, Delvecchio VS, Van Esch H, Matteoli M, Benfenati F, D'Adamo P, Valtorta F. A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Hum Mol Genet 2018; 26:4699-4714. [PMID: 28973667 DOI: 10.1093/hmg/ddx352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Intellectual Disability is a common and heterogeneous disorder characterized by limitations in intellectual functioning and adaptive behaviour, whose molecular mechanisms remain largely unknown. Among the numerous genes found to be involved in the pathogenesis of intellectual disability, 10% are located on the X-chromosome. We identified a missense mutation (c.236 C > G; p.S79W) in the SYN1 gene coding for synapsin I in the MRX50 family, affected by non-syndromic X-linked intellectual disability. Synapsin I is a neuronal phosphoprotein involved in the regulation of neurotransmitter release and neuronal development. Several mutations in SYN1 have been identified in patients affected by epilepsy and/or autism. The S79W mutation segregates with the disease in the MRX50 family and all affected members display intellectual disability as sole clinical manifestation. At the protein level, the S79W Synapsin I mutation is located in the region of the B-domain involved in recognition of highly curved membranes. Expression of human S79W Synapsin I in Syn1 knockout hippocampal neurons causes aberrant accumulation of small clear vesicles in the soma, increased clustering of synaptic vesicles at presynaptic terminals and increased frequency of excitatory spontaneous release events. In addition, the presence of S79W Synapsin I strongly reduces the mobility of synaptic vesicles, with possible implications for the regulation of neurotransmitter release and synaptic plasticity. These results implicate SYN1 in the pathogenesis of non-syndromic intellectual disability, showing that alterations of synaptic vesicle trafficking are one possible cause of this disease, and suggest that distinct mutations in SYN1 may lead to distinct brain pathologies.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| | - Davide Pozzi
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, 21100 Varese, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, B3000 Leuven, Belgium
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Patrizia D'Adamo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| |
Collapse
|
28
|
Guarnieri FC, Bellani S, Yekhlef L, Bergamaschi A, Finardi A, Fesce R, Pozzi D, Monzani E, Fornasiero EF, Matteoli M, Martino G, Furlan R, Taverna S, Muzio L, Valtorta F. Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain Behav Immun 2018; 68:197-210. [PMID: 29066310 DOI: 10.1016/j.bbi.2017.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022] Open
Abstract
The classical view of multiple sclerosis (MS) pathogenesis states that inflammation-mediated demyelination is responsible for neuronal damage and loss. However, recent findings show that impairment of neuronal functions and demyelination can be independent events, suggesting the coexistence of other pathogenic mechanisms. Due to the inflammatory milieu, subtle alterations in synaptic function occur, which are probably at the basis of the early cognitive decline that often precedes the neurodegenerative phases in MS patients. In particular, it has been reported that inflammation enhances excitatory synaptic transmission while it decreases GABAergic transmission in vitro and ex vivo. This evidence points to the idea that an excitation/inhibition imbalance occurs in the inflamed MS brain, even though the exact molecular mechanisms leading to this synaptic dysfunction are as yet not completely clear. Along this line, we observed that acute treatment of primary hippocampal neurons in culture with pro-inflammatory cytokines leads to an increased phosphorylation of synapsin I (SynI) by ERK1/2 kinase and to an increase in the frequency of spontaneous synaptic vesicle release events, which is prevented by SynI deletion. In vivo, the ablation of SynI expression is protective in terms of disease progression and neuronal damage in the experimental autoimmune encephalomyelitis mouse model of MS. Our results point to a possible key role in MS pathogenesis of the neuronal protein SynI, a regulator of excitation/inhibition balance in neuronal networks.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Serena Bellani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Latefa Yekhlef
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Andrea Bergamaschi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Eugenio F Fornasiero
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy; CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luca Muzio
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
29
|
Johnstone MR, Sun M, Taylor CJ, Brady RD, Grills BL, Church JE, Shultz SR, McDonald SJ. Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj 2017; 32:257-268. [PMID: 29227174 DOI: 10.1080/02699052.2017.1394492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Collapse
Affiliation(s)
- Maddison R Johnstone
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Mujun Sun
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Caroline J Taylor
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Rhys D Brady
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia.,b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Brian L Grills
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Jarrod E Church
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Sandy R Shultz
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia.,c Department of Neuroscience , Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Stuart J McDonald
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| |
Collapse
|
30
|
The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. eNeuro 2017; 4:eN-NWR-0272-17. [PMID: 28955722 PMCID: PMC5605756 DOI: 10.1523/eneuro.0272-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease.
Collapse
|
31
|
Fernandes LS, Dos Santos NAG, Emerick GL, Santos ACD. L- and T-type calcium channel blockers protect against the inhibitory effects of mipafox on neurite outgrowth and plasticity-related proteins in SH-SY5Y cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1086-1097. [PMID: 28862523 DOI: 10.1080/15287394.2017.1357359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some organophosphorus compounds (OP), including the pesticide mipafox, produce late onset distal axonal degeneration, known as organophosphorus-induced delayed neuropathy (OPIDN). The underlying mechanism involves irreversible inhibition of neuropathy target esterase (NTE) activity, elevated intracellular calcium levels, increased activity of calcium-activated proteases and impaired neuritogenesis. Voltage-gated calcium channels (VGCC) appear to play a role in several neurologic disorders, including OPIDN. Therefore, this study aimed to examine and compare the neuroprotective effects of T-type (amiloride) and L-type (nimodipine) VGCC blockers induced by the inhibitory actions of mipafox on neurite outgrowth and axonal proteins of retinoic-acid-stimulated SH-SY5Y human neuroblastoma cells, a neuronal model widely employed to determine the neurotoxicity attributed to OP. Both nimodipine and amiloride significantly blocked augmentation of intracellular calcium levels and activity of calpains, as well as decreased neurite length, number of differentiated cells, and lowered concentrations of growth-associated protein 43 (GAP-43) and synapsin induced by mipafox. Only nimodipine inhibited reduction of synaptophysin levels produced by mipafox. These findings demonstrate a role for calcium and VGCC in the impairment of neuronal plasticity mediated by mipafox. Data also demonstrated the neuroprotective potential of T-type and L-type VGCC blockers to inhibit OP-mediated actions, which may be beneficial to counteract cases of pesticide poisoning.
Collapse
Affiliation(s)
- Laís Silva Fernandes
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| | - Neife Aparecida G Dos Santos
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| | - Guilherme Luz Emerick
- b Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso - ICS/UFMT/CUS , Sinop , MT , Brazil
| | - Antonio Cardozo Dos Santos
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| |
Collapse
|
32
|
Kao HT, Ryoo K, Lin A, Janoschka SR, Augustine GJ, Porton B. Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 2017; 45:1085-1101. [PMID: 28245069 DOI: 10.1111/ejn.13552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
In neurons, intracellular membrane rafts are essential for specific actions of brain-derived neurotrophic factor (BDNF), which include the regulation of axon outgrowth, growth cone turning and synaptic transmission. Virtually, all the actions of BDNF are mediated by binding to its receptor, TrkB. The association of TrkB with the tyrosine kinase, Fyn, is critical for its localization to intracellular membrane rafts. Here, we show that synapsins, a family of highly amphipathic neuronal phosphoproteins, regulate membrane raft lipid composition and consequently, the ability of BDNF to regulate axon/neurite development and potentiate synaptic transmission. In the brains of mice lacking all synapsins, the expression of both BDNF and TrkB were increased, suggesting that BDNF/TrkB-mediated signaling is impaired. Consistent with this finding, synapsin-depleted neurons exhibit altered raft lipid composition, deficient targeting of Fyn to rafts, attenuated TrkB activation, and abrogation of BDNF-stimulated axon outgrowth and synaptic potentiation. Conversely, overexpression of synapsins in neuroblastoma cells results in corresponding reciprocal changes in raft lipid composition, increased localization of Fyn to rafts and promotion of BDNF-stimulated neurite formation. In the presence of synapsins, the ratio of cholesterol to estimated total phospholipids converged to 1, suggesting that synapsins act by regulating the ratio of lipids in intracellular membranes, thereby promoting lipid raft formation. These studies reveal a mechanistic link between BDNF and synapsins, impacting early development and synaptic transmission.
Collapse
Affiliation(s)
- Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - Kanghyun Ryoo
- Center for Functional Connectomics, Korea Institute of Science and Technology, Sungbukgu, Seoul, Korea
| | - Albert Lin
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - Stephen R Janoschka
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and Technology, Sungbukgu, Seoul, Korea.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| |
Collapse
|
33
|
Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, Montani C, Mossa A, Vezzoli E, Ippolito G, Zapata J, Barrera I, Ryazanov AG, Cook J, Poe M, Stephen MR, Kopanitsa M, Benfante R, Rusconi F, Braida D, Francolini M, Proud CG, Valtorta F, Passafaro M, Sala M, Bachi A, Verpelli C, Rosenblum K, Sala C. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cereb Cortex 2017; 27:2226-2248. [PMID: 27005990 PMCID: PMC5963824 DOI: 10.1093/cercor/bhw075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.
Collapse
Affiliation(s)
| | - Elham Taha
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Luca Murru
- CNR Neuroscience Institute, Milan, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | - Elena Vezzoli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | - Iliana Barrera
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Alexey G. Ryazanov
- The Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - James Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Maksym Kopanitsa
- Synome, Babraham Research Campus, Cambridge CB22 3AT, UK
- Charles River Discovery Research Services, 70210 Kuopio, Finland
| | - Roberta Benfante
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Maura Francolini
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Christopher G. Proud
- University of Southampton, Centre for Biological Sciences, Southampton SO17 1BJ, UK
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, Australia
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Kobi Rosenblum
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
34
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
35
|
Mackenzie KD, Lumsden AL, Guo F, Duffield MD, Chataway T, Lim Y, Zhou XF, Keating DJ. Huntingtin-associated protein-1 is a synapsin I-binding protein regulating synaptic vesicle exocytosis and synapsin I trafficking. J Neurochem 2016; 138:710-21. [PMID: 27315547 DOI: 10.1111/jnc.13703] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
Abstract
Huntingtin-associated protein-1 (HAP1) is involved in intracellular trafficking, vesicle transport, and membrane receptor endocytosis. However, despite such diverse functions, the role of HAP1 in the synaptic vesicle (SV) cycle in nerve terminals remains unclear. Here, we report that HAP1 functions in SV exocytosis, controls total SV turnover and the speed of vesicle fusion in nerve terminals and regulates glutamate release in cortical brain slices. We found that HAP1 interacts with synapsin I, an abundant neuronal phosphoprotein that associates with SVs during neurotransmitter release and regulates synaptic plasticity and neuronal development. The interaction between HAP1 with synapsin I was confirmed by reciprocal co-immunoprecipitation of the endogenous proteins. Furthermore, HAP1 co-localizes with synapsin I in cortical neurons as discrete puncta. Interestingly, we find that synapsin I localization is specifically altered in Hap1(-/-) cortical neurons without an effect on the localization of other SV proteins. This effect on synapsin I localization was not because of changes in the levels of synapsin I or its phosphorylation status in Hap1(-/-) brains. Furthermore, fluorescence recovery after photobleaching in transfected neurons expressing enhanced green fluorescent protein-synapsin Ia demonstrates that loss of HAP1 protein inhibits synapsin I transport. Thus, we demonstrate that HAP1 regulates SV exocytosis and may do so through binding to synapsin I. The Proposed mechanism of synapsin I transport mediated by HAP1 in neurons. HAP1 interacts with synapsin I, regulating the trafficking of synapsin I containing vesicles and/or transport packets, possibly through its engagement of microtubule motors. The absence of HAP1 reduces synapsin I transport and neuronal exocytosis. These findings provide insights into the processes of neuronal trafficking and synaptic signaling.
Collapse
Affiliation(s)
- Kimberly D Mackenzie
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Feng Guo
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Michael D Duffield
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Timothy Chataway
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Yoon Lim
- Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Wu J, Chen H, Li H, Tang Y, Yang L, Cao S, Qin D. Antidepressant Potential of Chlorogenic Acid-Enriched Extract from Eucommia ulmoides Oliver Bark with Neuron Protection and Promotion of Serotonin Release through Enhancing Synapsin I Expression. Molecules 2016; 21:260. [PMID: 26927040 PMCID: PMC6274286 DOI: 10.3390/molecules21030260] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022] Open
Abstract
Eucommia ulmoides Oliver (E. ulmoides) is a traditional Chinese medicine with many beneficial effects, used as a tonic medicine in China and other countries. Chlorogenic acid (CGA) is an important compound in E. ulmoides with neuroprotective, cognition improvement and other pharmacological effects. However, it is unknown whether chlorogenic acid-enriched Eucommia ulmoides Oliver bark has antidepressant potential through neuron protection, serotonin release promotion and penetration of blood-cerebrospinal fluid barrier. In the present study, we demonstrated that CGA could stimulate axon and dendrite growth and promote serotonin release through enhancing synapsin I expression in the cells of fetal rat raphe neurons in vitro. More importantly, CGA-enriched extract of E. ulmoides (EUWE) at 200 and 400 mg/kg/day orally administered for 7 days showed antidepressant-like effects in the tail suspension test of KM mice. Furthermore, we also found CGA could be detected in the the cerebrospinal fluid of the rats orally treated with EUWE and reach the level of pharmacological effect for neuroprotection by UHPLC-ESI-MS/MS. The findings indicate CGA is able to cross the blood-cerebrospinal fluid barrier to exhibit its neuron protection and promotion of serotonin release through enhancing synapsin I expression. This is the first report of the effect of CGA on promoting 5-HT release through enhancing synapsin I expression and CGA-enriched EUWE has antidepressant-like effect in vivo. EUWE may be developed as the natural drugs for the treatment of depression.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou 86646-000, Sichuan, China.
| | - Haixia Chen
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou 86646-000, Sichuan, China.
| | - Hua Li
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou 86646-000, Sichuan, China.
| | - Yong Tang
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou 86646-000, Sichuan, China.
| | - Le Yang
- Chengdu Analytical Applications Center, Shimadzu (China) Co. Ltd., Chengdu 86610-063, Sichuan, China.
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou 86646-000, Sichuan, China.
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou 86646-000, Sichuan, China.
| |
Collapse
|
37
|
Marte A, Messa M, Benfenati F, Onofri F. Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth. Mol Neurobiol 2016; 54:484-494. [PMID: 26742525 DOI: 10.1007/s12035-015-9659-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023]
Abstract
Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth. While NGF had similar effects in all genotypes, BDNF induced significant differences in Syn KO axonal outgrowth compared to wild type (WT), an effect that was rescued by the re-expression of Syn I. Moreover, the significant increase of axonal branching induced by BDNF in WT neurons was not detectable in Syn KO neurons. The expression analysis of BDNF receptors in Syn KO neurons revealed a significant decrease of the full length TrkB receptor and an increase in the levels of the truncated TrkB.t1 isoform and p75NTR associated with a marked reduction of the BDNF-induced MAPK/Erk activation. By using the Trk inhibitor K252a, we demonstrated that these differences in BDNF effects were dependent on a TrkB/p75NTR imbalance. The data indicate that Syn I plays a pivotal role in the BDNF signal transduction during axonal growth.
Collapse
Affiliation(s)
- Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Mirko Messa
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, 06519, New Haven, CT, USA
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy.
| |
Collapse
|
38
|
Knock-down of synapsin alters cell excitability and action potential waveform by potentiating BK and voltage-gated Ca(2+) currents in Helix serotonergic neurons. Neuroscience 2015; 311:430-43. [PMID: 26522789 DOI: 10.1016/j.neuroscience.2015.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/23/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
Synapsins (Syns) are an evolutionarily conserved family of presynaptic proteins crucial for the fine-tuning of synaptic function. A large amount of experimental evidences has shown that Syns are involved in the development of epileptic phenotypes and several mutations in Syn genes have been associated with epilepsy in humans and animal models. Syn mutations induce alterations in circuitry and neurotransmitter release, differentially affecting excitatory and inhibitory synapses, thus causing an excitation/inhibition imbalance in network excitability toward hyperexcitability that may be a determinant with regard to the development of epilepsy. Another approach to investigate epileptogenic mechanisms is to understand how silencing Syn affects the cellular behavior of single neurons and is associated with the hyperexcitable phenotypes observed in epilepsy. Here, we examined the functional effects of antisense-RNA inhibition of Syn expression on individually identified and isolated serotonergic cells of the Helix land snail. We found that Helix synapsin silencing increases cell excitability characterized by a slightly depolarized resting membrane potential, decreases the rheobase, reduces the threshold for action potential (AP) firing and increases the mean and instantaneous firing rates, with respect to control cells. The observed increase of Ca(2+) and BK currents in Syn-silenced cells seems to be related to changes in the shape of the AP waveform. These currents sustain the faster spiking in Syn-deficient cells by increasing the after hyperpolarization and limiting the Na(+) and Ca(2+) channel inactivation during repetitive firing. This in turn speeds up the depolarization phase by reaching the AP threshold faster. Our results provide evidence that Syn silencing increases intrinsic cell excitability associated with increased Ca(2+) and Ca(2+)-dependent BK currents in the absence of excitatory or inhibitory inputs.
Collapse
|
39
|
Coleman WL, Kulp AC, Venditti JJ. Functional distribution of synapsin I in human sperm. FEBS Open Bio 2015; 5:801-8. [PMID: 26566474 PMCID: PMC4600850 DOI: 10.1016/j.fob.2015.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022] Open
Abstract
Synapsin I was localized in the human sperm equatorial segment. Presence of synapsin I was confirmed by dot and Western blotting techniques. Treatment of sperm with anti-synapsin antibodies significantly decreased motility.
Proteins known to function during cell–cell communication and exocytosis in neurons and other secretory cells have recently been reported in human sperm. Synapsins are a group of proteins that have been very well characterized in neurons, but little is known about synapsin function in other cell types. Based upon previous findings and the known function of synapsin, we tested the hypothesis that synapsin I was present in human sperm. Washed, capacitated, and acrosome induced sperm preparations were used to evaluate the functional distribution of synapsin I using immunocytochemistry. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were used for protein blotting techniques. Immunolocalization revealed synapsin I was enriched in the sperm equatorial segment. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were positive for synapsin I using several different antibodies, and dot blot results were confirmed by Western blot analyses. Finally, treatment of capacitated and acrosome reaction induced samples with anti-synapsin antibodies significantly reduced sperm motility. Localization of synapsin I in human sperm is a novel finding. The association of synapsin I with the sperm equatorial segment and effects on motility are suggestive of a role associated with capacitation and/or acrosome reaction, processes that render sperm capable of fertilizing an oocyte.
Collapse
Affiliation(s)
- William L Coleman
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA, United States
| | - Adam C Kulp
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA, United States
| | - Jennifer J Venditti
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA, United States
| |
Collapse
|
40
|
Brenes O, Giachello CNG, Corradi AM, Ghirardi M, Montarolo PG. Synapsin knockdown is associated with decreased neurite outgrowth, functional synaptogenesis impairment, and fast high-frequency neurotransmitter release. J Neurosci Res 2015. [PMID: 26213348 DOI: 10.1002/jnr.23624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synapsins (Syns) are an evolutionarily conserved family of synaptic vesicle-associated proteins related to fine tuning of synaptic transmission. Studies with mammals have partially clarified the different roles of Syns; however, the presence of different genes and isoforms and the development of compensatory mechanisms hinder accurate data interpretation. Here, we use a simple in vitro monosynaptic Helix neuron connection, reproducing an in vivo physiological connection as a reliable experimental model to investigate the effects of Syn knockdown. Cells overexpressing an antisense construct against Helix Syn showed a time-dependent decrease of Syn immunostaining, confirming protein loss. At the morphological level, Syn-silenced cells showed a reduction in neurite linear outgrowth and branching and in the size and number of synaptic varicosities. Functionally, Syn-silenced cells presented a reduced ability to form synaptic connections; however, functional chemical synapses showed similar basal excitatory postsynaptic potentials and similar short-term plasticity paradigms. In addition, Syn-silenced cells presented faster neurotransmitter release and decreased postsynaptic response toward the end of long tetanic presynaptic stimulations, probably related to an impairment of the synaptic vesicle trafficking resulting from a different vesicle handling, with an increased readily releasable pool and a compromised reserve pool.
Collapse
Affiliation(s)
- Oscar Brenes
- Department of Neuroscience, Section of Physiology, University of Turin, Turin, Italy.,Department of Physiology, School of Medicine, University of Costa Rica, San José, Costa Rica
| | | | | | - Mirella Ghirardi
- Department of Neuroscience, Section of Physiology, University of Turin, Turin, Italy.,National Institute of Neuroscience, Turin, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience, Section of Physiology, University of Turin, Turin, Italy.,National Institute of Neuroscience, Turin, Italy
| |
Collapse
|
41
|
Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS One 2015; 10:e0132366. [PMID: 26177381 PMCID: PMC4503715 DOI: 10.1371/journal.pone.0132366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023] Open
Abstract
Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.
Collapse
|
42
|
Electroacupuncture Suppressed Neuronal Apoptosis and Improved Cognitive Impairment in the AD Model Rats Possibly via Downregulation of Notch Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:393569. [PMID: 25810743 PMCID: PMC4355557 DOI: 10.1155/2015/393569] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/11/2015] [Indexed: 12/03/2022]
Abstract
Acupuncture is a potential strategy for the treatment of Alzheimer's disease (AD) and the possible mechanisms worth to be explored. In this study, we proposed and tested the hypothesis that whether Notch signaling pathway is involved in the effect of electroacupuncture (EA) treatment. Rats that received EA treatment on the acupoints of Baihui (Du 20) and Shenshu (BL 23) had shorter latency and remained in the original platform quadrant longer and crossed the former platform contained quadrant more frequently compared to the Aβ injection rats without EA treatment. EA obviously alleviated the cell apoptosis resulted by Aβ infusion in hippocampus CA1 regions through upregulating the expression of Bcl-2 and downregulating the expression of Bax. EA could further obviously promote the expression of synapsin-1 and synaptophysin in hippocampus. Aβ injection significantly increased the expression of Notch1, Jag1, and Hes1 mRNA, while EA treatment downregulated the level of Notch1 and Hes1 mRNA in hippocampus, but not Jag1 mRNA. Our data suggested that EA treatment improved learning and memory function in the AD rat model partially through downregulating Notch signaling pathway.
Collapse
|
43
|
Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics. J Neurosci 2015; 34:14752-68. [PMID: 25355227 DOI: 10.1523/jneurosci.1093-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synapsins (Syns) are synaptic vesicle (SV)-associated proteins involved in the regulation of synaptic transmission and plasticity, which display a highly conserved ATP binding site in the central C-domain, whose functional role is unknown. Using molecular dynamics simulations, we demonstrated that ATP binding to SynI is mediated by a conformational transition of a flexible loop that opens to make the binding site accessible; such transition, prevented in the K269Q mutant, is not significantly affected in the absence of Ca(2+) or by the E373K mutation that abolishes Ca(2+)-binding. Indeed, the ATP binding to SynI also occurred under Ca(2+)-free conditions and increased its association with purified rat SVs regardless of the presence of Ca(2+) and promoted SynI oligomerization. However, although under Ca(2+)-free conditions, SynI dimerization and SV clustering were enhanced, Ca(2+) favored the formation of tetramers at the expense of dimers and did not affect SV clustering, indicating a role of Ca(2+)-dependent dimer/tetramer transitions in the regulation of ATP-dependent SV clustering. To elucidate the role of ATP/SynI binding in synaptic physiology, mouse SynI knock-out hippocampal neurons were transduced with either wild-type or K269Q mutant SynI and inhibitory transmission was studied by patch-clamp and electron microscopy. K269Q-SynI expressing inhibitory synapses showed increased synaptic strength due to an increase in the release probability, an increased vulnerability to synaptic depression and a dysregulation of SV trafficking, when compared with wild-type SynI-expressing terminals. The results suggest that the ATP-SynI binding plays predocking and postdocking roles in the modulation of SV clustering and plasticity of inhibitory synapses.
Collapse
|
44
|
Abstract
As noted in the separate introduction to this special topic section, episodic and electrical disorders can appear quite different clinically and yet share many overlapping features, including attack precipitants, therapeutic responses, natural history, and the types of genes that cause many of the genetic forms (i.e., ion channel genes). Thus, as we mapped and attempted to clone genes causing other episodic disorders, ion channels were always outstanding candidates when they mapped to the critical region of linkage in such a family. However, some of these disorders do not result from mutations in channels. This realization has opened up large and exciting new areas for the pathogenesis of these disorders. In some cases, the mutations occur in genes of unknown function or without understanding of molecular pathogenesis. Recently, emerging insights into a fascinating group of episodic movement disorders, the paroxysmal dyskinesias, and study of the causative genes and proteins are leading to the emerging concept of episodic electric disorders resulting from synaptic dysfunction. Much work remains to be done, but the field is evolving rapidly. As it does, we have come to realize that the molecular pathogenesis of electrical and episodic disorders is more complex than a scenario in which such disorders are simply due to mutations in the primary determinants of membrane excitability (channels).
Collapse
|
45
|
Ji ZH, Liu C, Zhao H, Yu XY. Neuroprotective effect of biatractylenolide against memory impairment in D-galactose-induced aging mice. J Mol Neurosci 2014; 55:678-83. [PMID: 25173400 DOI: 10.1007/s12031-014-0407-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/18/2014] [Indexed: 12/25/2022]
Abstract
Biatractylenolide, a sesquiterpene lactone, which exerted the neuroprotective effect against glutamate-induced excitotoxicity, was isolated from Atractylodis macrocephala in our previous study. In this study, we evaluated the neuroprotective effect of biatractylenolide against D-galactose-induced memory impairment and explored the potential mechanism of its action. The results showed that administration of biatractylenolide could significantly improve behavioral performance of D-galactose-treated mice in passive avoidance test and spatial learning-memory test. Administration of biatractylenolide could significantly decrease the formation of reactive oxygen species (ROS), decrease the activity of acetylcholinesterase (AChE), and increase the expression of synapsin I and protein kinase C (PKC) in D-galactose-treated mice. Our findings provide first evidence for the neuroprotective effect of biatractylenolide against D-galactose-induced memory impairment. The potential mechanisms underlying the neuroprotective effect of biatractylenolide in D-galactose-treated mice might be (i) attenuating oxidative damage via decreasing ROS formation, (ii) restoring cholinergic neurotransmission via decreasing AChE activity, and (iii) increasing the expression of memory-related proteins (synapsin I and PKC). Biatractylenolide may have therapeutic potential in aging-related memory impairment.
Collapse
Affiliation(s)
- Zhi-Hong Ji
- Laboratory of Neuroscience, College of Medicine, Dalian University, Dalian, 116622, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci 2014; 34:7266-80. [PMID: 24849359 DOI: 10.1523/jneurosci.3973-13.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.
Collapse
|
47
|
Chau LS, Prakapenka AV, Zendeli L, Davis AS, Galvez R. Training-dependent associative learning induced neocortical structural plasticity: a trace eyeblink conditioning analysis. PLoS One 2014; 9:e95317. [PMID: 24760074 PMCID: PMC3997347 DOI: 10.1371/journal.pone.0095317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/26/2014] [Indexed: 11/18/2022] Open
Abstract
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers.
Collapse
Affiliation(s)
- Lily S. Chau
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- * E-mail:
| | - Alesia V. Prakapenka
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Liridon Zendeli
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Ashley S. Davis
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Roberto Galvez
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
48
|
Desai A, Kevala K, Kim HY. Depletion of brain docosahexaenoic acid impairs recovery from traumatic brain injury. PLoS One 2014; 9:e86472. [PMID: 24475126 PMCID: PMC3903526 DOI: 10.1371/journal.pone.0086472] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023] Open
Abstract
Omega-3 fatty acids are crucial for proper development and function of the brain where docosahexaenoic acid (DHA), the primary omega-3 fatty acid in the brain, is retained avidly by the neuronal membranes. We investigated the effect of DHA depletion in the brain on the outcome of traumatic brain injury (TBI). Pregnant mice were put on an omega-3 fatty acid adequate or deficient diet from gestation day 14 and the pups were raised on the respective diets. Continuation of this dietary regime for three generations resulted in approximately 70% loss of DHA in the brain. Controlled cortical impact was delivered to both groups of mice to produce severe TBI and the functional recovery was compared. Compared to the omega-3 adequate mice, the DHA depleted mice exhibited significantly slower recovery from motor deficits evaluated by the rotarod and the beam walk tests. Furthermore, the DHA deficient mice showed greater anxiety-like behavior tested in the open field test as well as cognitive deficits evaluated by the novel object recognition test. The level of alpha spectrin II breakdown products, the markers of TBI, was significantly elevated in the deficient mouse cortices, indicating that the injury is greater in the deficient brains. This observation was further supported by the reduction of NeuN positive cells around the site of injury in the deficient mice, indicating exacerbated neuronal death after injury. These results suggest an important influence of the brain DHA status on TBI outcome.
Collapse
Affiliation(s)
- Abhishek Desai
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr 2014; 2:94. [PMID: 25237665 PMCID: PMC4154395 DOI: 10.3389/fped.2014.00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/21/2014] [Indexed: 12/03/2022] Open
Abstract
Autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests, and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn) genes in humans has been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Syns are pre-synaptic proteins regulating synaptic vesicle traffic, neurotransmitter release, and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication, and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.
Collapse
Affiliation(s)
- Silvia Giovedí
- Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova , Genova , Italy ; Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia , Genova , Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova , Genova , Italy ; Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia , Genova , Italy
| |
Collapse
|
50
|
Skorobogatko Y, Landicho A, Chalkley RJ, Kossenkov AV, Gallo G, Vosseller K. O-linked β-N-acetylglucosamine (O-GlcNAc) site thr-87 regulates synapsin I localization to synapses and size of the reserve pool of synaptic vesicles. J Biol Chem 2013; 289:3602-12. [PMID: 24280219 DOI: 10.1074/jbc.m113.512814] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-GlcNAc is a carbohydrate modification found on cytosolic and nuclear proteins. Our previous findings implicated O-GlcNAc in hippocampal presynaptic plasticity. An important mechanism in presynaptic plasticity is the establishment of the reserve pool of synaptic vesicles (RPSV). Dynamic association of synapsin I with synaptic vesicles (SVs) regulates the size and release of RPSV. Disruption of synapsin I function results in reduced size of the RPSV, increased synaptic depression, memory deficits, and epilepsy. Here, we investigate whether O-GlcNAc directly regulates synapsin I function in presynaptic plasticity. We found that synapsin I is modified by O-GlcNAc during hippocampal synaptogenesis in the rat. We identified three novel O-GlcNAc sites on synapsin I, two of which are known Ca(2+)/calmodulin-dependent protein kinase II phosphorylation sites. All O-GlcNAc sites mapped within the regulatory regions on synapsin I. Expression of synapsin I where a single O-GlcNAc site Thr-87 was mutated to alanine in primary hippocampal neurons dramatically increased localization of synapsin I to synapses, increased density of SV clusters along axons, and the size of the RPSV, suggesting that O-GlcNAcylation of synapsin I at Thr-87 may be a mechanism to modulate presynaptic plasticity. Thr-87 is located within an amphipathic lipid-packing sensor (ALPS) motif, which participates in targeting of synapsin I to synapses by contributing to the binding of synapsin I to SVs. We discuss the possibility that O-GlcNAcylation of Thr-87 interferes with folding of the ALPS motif, providing a means for regulating the association of synapsin I with SVs as a mechanism contributing to synapsin I localization and RPSV generation.
Collapse
Affiliation(s)
- Yuliya Skorobogatko
- From the Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | | | | | | | | | | |
Collapse
|