1
|
LoBue A, Li Z, Heuser SK, Li J, Leo F, Vornholz L, Dunaway LS, Suvorava T, Isakson BE, Cortese-Krott MM. Generation and characterization of a conditional eNOS knock out mouse model for cell-specific reactivation of eNOS in gain-of-function studies. Nitric Oxide 2024; 153:106-113. [PMID: 39419166 DOI: 10.1016/j.niox.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) in the vessel wall regulates blood pressure and cardiovascular hemodynamics. In this study, we generated conditional eNOS knock out (KO) mice characterized by a duplicated/inverted exon 2 flanked with two pairs of loxP regions (eNOSinv/inv); a Cre-recombinase activity induces cell-specific reactivation of eNOS, as a result of a flipping of the inverted exon 2 (eNOSfl). This work aimed to test the efficiency of the Cre-mediated cell-specific recombination and the resulting eNOS expression/function. As proof of concept, we crossed eNOSinv/inv mice with DeleterCrepos (DelCrepos) mice, expressing Cre recombinase in all cells. We generated heterozygous eNOSfl/inv or homozygous eNOSfl/fl mice, and eNOSinv/inv littermate mice. We found that both eNOSfl/fl and eNOSfl/inv mice express eNOS and the overall expression level depends on the number of mutated alleles, while eNOSinv/inv mice did not show any eNOS expression. Vascular endothelial function was restored in eNOSfl/fl and eNOSfl/inv mice, as determined by ACh-dependent vasodilation of aortic rings. Cre-dependent reactivation of eNOS in eNOSfl/fl and eNOSfl/inv mice rescued eNOSinv/inv (phenotypically global eNOS KO) mice from hypertension. These findings demonstrate that eNOS expression is restored in eNOSfl/fl mice at comparable physiological levels of WT mice, and its functional activity is independent on the number of the reactivated alleles. Therefore, eNOSinv/inv mice are a useful model for studying the effects of conditional reactivation of eNOS and gene dosage effects in specific cells for gain-of-function studies.
Collapse
Affiliation(s)
- Anthea LoBue
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Sophia K Heuser
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Francesca Leo
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Lukas Vornholz
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tatsiana Suvorava
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Group, Department of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden; CARID, Cardiovascular Research Institute Düsseldorf, Germany.
| |
Collapse
|
2
|
Markou M, Katsouda A, Papaioannou V, Argyropoulou A, Vanioti M, Tamvakopoulos C, Skaltsounis LA, Halabalaki M, Mitakou S, Papapetropoulos A. Anti-obesity effects of Beta vulgaris and Eruca sativa-based extracts. Phytother Res 2024; 38:4757-4773. [PMID: 39120436 DOI: 10.1002/ptr.8291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Obesity is a major source of morbidity worldwide with more than 2 billion adults being overweight or obese. The incidence of obesity has tripled in the last 50 years, leading to an increased risk for a variety of noncommunicable diseases. Previous studies have demonstrated the positive effects of green leafy vegetables on weight gain and obesity and have attributed these beneficial properties, at least in part, to nitrates and isothiocyanates. Nitrates are converted to nitric oxide (NO) and isothiocyanates are known to release hydrogen sulfide (H2S). Herein, we investigated the effect of extracts and fractions produced from Beta vulgaris and Eruca sativa for their ability to limit lipid accumulation, regulate glucose homeostasis, and reduce body weight. Extracts from the different vegetables were screened for their ability to limit lipid accumulation in adipocytes and hepatocytes and for their ability to promote glucose uptake in skeletal muscle cultures; the most effective extracts were next tested in vivo. Wild type mice were placed on high-fat diet for 8 weeks to promote weight gain; animals receiving the selected B. vulgaris and E. sativa extracts exhibited attenuated body weight. Treatment with extracts also led to reduced white adipose tissue depot mass, attenuated adipocyte size, reduced expression of Dgat2 and PPARγ expression, and improved liver steatosis. In contrast, the extracts failed to improve glucose tolerance in obese animals and did not affect blood pressure. Taken together, our data indicate that extracts produced from B. vulgaris and E. sativa exhibit anti-obesity effects, suggesting that dietary supplements containing nitrates and sulfide-releasing compounds might be useful in limiting weight gain.
Collapse
Affiliation(s)
- Maria Markou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Katsouda
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Varvara Papaioannou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Argyropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- PharmaGnose S.A., Oinofyta, Greece
| | - Marianna Vanioti
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Tamvakopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Mitakou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Dunaway LS, Saii K, LoBue A, Nyshadham S, Abib N, Heuser SK, Loeb SA, Simonsen U, Cortese-Krott MM, Isakson BE. The hemodynamic response to nitrite is acute and dependent upon tissue perfusion. Nitric Oxide 2024; 150:47-52. [PMID: 39097183 PMCID: PMC11330714 DOI: 10.1016/j.niox.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
In the vasculature, nitric oxide (NO) is produced in the endothelium by endothelial nitric oxide synthase (eNOS) and is critical for the regulation of blood flow and blood pressure. Blood flow may also be regulated by the formation of nitrite-derived NO catalyzed by hemoproteins under hypoxic conditions. We sought to investigate whether nitrite administration may affect tissue perfusion and systemic hemodynamics in WT and eNOS knockout mice. We found that global eNOS KO mice show decreased tissue perfusion compared to WT mice by using laser speckle contrast imaging. To study both the acute and long-term effects of sodium nitrite (0, 0.1, 1, and 10 mg/kg) on peripheral blood flow and systemic blood pressure, a bolus of nitrite was delivered intraperitoneally every 24 h over 4 consecutive days. We found that nitrite administration resulted in a dose-dependent and acute increase in peripheral blood flow in eNOS KO mice but had no effects in WT mice. The nitrite induced changes in tissue perfusion were transient, as determined by intraindividual comparisons of tissue perfusion 24-h after injection. Accordingly, 10 mg/kg sodium nitrite acutely decreased blood pressure in eNOS KO mice but not in WT mice as determined by invasive Millar catheterization. Interestingly, we found the vasodilatory effects of nitrite to be inversely correlated to baseline tissue perfusion. These results demonstrate the nitrite acutely recovers hypoperfusion and hypertension in global eNOS KO mice and suggest the vasodilatory actions of nitrite are dependent upon tissue hypoperfusion.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Germany
| | - Khatera Saii
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Shruthi Nyshadham
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Germany
| | - Nasim Abib
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Germany
| | - Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Germany; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Germany
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Germany; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Germany.
| |
Collapse
|
4
|
Scarpellino G, Brunetti V, Berra-Romani R, De Sarro G, Guerra G, Soda T, Moccia F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int J Mol Sci 2024; 25:9071. [PMID: 39201757 PMCID: PMC11354477 DOI: 10.3390/ijms25169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
5
|
Kluknavsky M, Balis P, Liskova S, Micurova A, Skratek M, Manka J, Bernatova I. Dimethyl Fumarate Prevents the Development of Chronic Social Stress-Induced Hypertension in Borderline Hypertensive Rats. Antioxidants (Basel) 2024; 13:947. [PMID: 39199192 PMCID: PMC11351876 DOI: 10.3390/antiox13080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated the effects of chronic crowding-induced social stress and dimethyl fumarate (DMF) on borderline hypertensive rats, focusing on the transcription nuclear factor (erythroid-derived 2)-like 2 (NRF2) gene Nfe2l2, on the expression of selected NFR2-mediated gene expressions in the heart, and on vascular function. Rats were exposed to chronic crowding, DMF treatment (30 mg/kg/day, p.o.), or a combination of both for six weeks. Blood pressure (BP) was measured non-invasively, gene expressions were analysed using RT-qPCR, and vascular function was assessed by measuring noradrenaline (NA)-induced vasoconstriction and endothelium-dependent and -independent relaxations in the femoral arteries using a wire myograph. Chronic stress increased BP, Nfe2l2 expression, and NA-induced vasoconstriction, though it did not affect relaxation responses nor the left heart ventricle-to-body weight (LHV/BW) ratio. DMF elevated Nfe2l2 expression (as the main effect) in the heart but did not alter BP and vascular functions vs. control when administered alone. Interestingly, DMF increased the LHV/BW ratio, supposedly due to reductive stress induced by continuous NRF2 activation. When combined with stress, DMF treatment prevented stress-induced hypertension and mitigated NA-induced vasoconstriction without altering relaxation functions. In addition, the combination of stress and DMF increased Tnf and Nos2 expression and the expressions of several genes involved in iron metabolism. In conclusion, these findings suggest that DMF can prevent chronic stress-induced hypertension by reducing vascular contractility. Moreover, DMF itself may produce reductive stress in the heart and induce inflammation when combined with stress. This indicates a need for the careful consideration of long-term DMF treatment considering its impact on the heart.
Collapse
Affiliation(s)
- Michal Kluknavsky
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.K.); (P.B.); (S.L.); (A.M.)
| | - Peter Balis
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.K.); (P.B.); (S.L.); (A.M.)
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.K.); (P.B.); (S.L.); (A.M.)
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Andrea Micurova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.K.); (P.B.); (S.L.); (A.M.)
| | - Martin Skratek
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.S.); (J.M.)
| | - Jan Manka
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (M.S.); (J.M.)
| | - Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.K.); (P.B.); (S.L.); (A.M.)
| |
Collapse
|
6
|
Wang Y, Zhao M, Liu X, Xu B, Reddy GR, Jovanovic A, Wang Q, Zhu C, Xu H, Bayne EF, Xiang W, Tilley DG, Ge Y, Tate CG, Feil R, Chiu JC, Bers DM, Xiang YK. Carvedilol Activates a Myofilament Signaling Circuitry to Restore Cardiac Contractility in Heart Failure. JACC Basic Transl Sci 2024; 9:982-1001. [PMID: 39297139 PMCID: PMC11405995 DOI: 10.1016/j.jacbts.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 09/21/2024]
Abstract
Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). β-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac β-adrenoceptors (βARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local βAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different βAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by β1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced β1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the β1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with β1AR were observed. Stimulating β1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament β1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meimi Zhao
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Bing Xu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Qingtong Wang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Heli Xu
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California-Davis, Davis, California, USA
| | - Donald M Bers
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California-Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
7
|
Tao Y, Lacko AG, Sabnis NA, Das‐Earl P, Ibrahim D, Crowe N, Zhou Z, Cunningham M, Castillo A, Ma R. Reconstituted HDL ameliorated renal injury of diabetic kidney disease in mice. Physiol Rep 2024; 12:e16179. [PMID: 39107084 PMCID: PMC11303015 DOI: 10.14814/phy2.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is a devastating kidney disease and lacks effective therapeutic interventions. The present study was aimed to determine whether reconstituted high-density lipoprotein (rHDL) ameliorated renal injury in eNOS-/- dbdb mice, a mouse model of DKD. Three groups of mice, wild type C57BLKS/J (non-diabetes), eNOS-/- dbdb (diabetes), and eNOS-/- dbdb treated with rHDL (diabetes+rHDL) with both males and females were used. The rHDL nanoparticles were administered to eNOS-/- dbdb mice at Week 16 at 5 μg/g body weight in ~100 μL of saline solution twice per week for 4 weeks via retroorbital injection. We found that rHDL treatment significantly blunted progression of albuminuria and GFR decline observed in DKD mice. Histological examinations showed that the rHDLs significantly alleviated glomerular injury and renal fibrosis, and inhibited podocyte loss. Western blots and immunohistochemical examinations showed that increased protein abundances of fibronectin and collagen IV in the renal cortex of eNOS-/- dbdb mice were significantly reduced by the rHDLs. Taken together, the present study suggests a renoprotective effect of rHDLs on DKD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andras G. Lacko
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nirupama A. Sabnis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Paromita Das‐Earl
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Deena Ibrahim
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nicole Crowe
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Zhengyang Zhou
- Department of Population and Community HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Mark Cunningham
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Angie Castillo
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
8
|
Wang HY, Takagi H, Stoney PN, Echeverria A, Kuhn B, Hsu KS, Takahashi T. Anoxia-induced hippocampal LTP is regeneratively produced by glutamate and nitric oxide from the neuro-glial-endothelial axis. iScience 2024; 27:109515. [PMID: 38591010 PMCID: PMC11000013 DOI: 10.1016/j.isci.2024.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Transient anoxia causes amnesia and neuronal death. This is attributed to enhanced glutamate release and modeled as anoxia-induced long-term potentiation (aLTP). aLTP is mediated by glutamate receptors and nitric oxide (·NO) and occludes stimulation-induced LTP. We identified a signaling cascade downstream of ·NO leading to glutamate release and a glutamate-·NO loop regeneratively boosting aLTP. aLTP in entothelial ·NO synthase (eNOS)-knockout mice and blocking neuronal NOS (nNOS) activity suggested that both nNOS and eNOS contribute to aLTP. Immunostaining result showed that eNOS is predominantly expressed in vascular endothelia. Transient anoxia induced a long-lasting Ca2+ elevation in astrocytes that mirrored aLTP. Blocking astrocyte metabolism or depletion of the NMDA receptor ligand D-serine abolished eNOS-dependent aLTP, suggesting that astrocytic Ca2+ elevation stimulates D-serine release from endfeet to endothelia, thereby releasing ·NO synthesized by eNOS. Thus, the neuro-glial-endothelial axis is involved in long-term enhancement of glutamate release after transient anoxia.
Collapse
Affiliation(s)
- Han-Ying Wang
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- Academia Sinica, Institute of Biomedical Sciences, Taipei 115, Taiwan
| | - Hiroshi Takagi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Patrick N. Stoney
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Anai Echeverria
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Mohamed B, Yarlagadda K, Self Z, Simon A, Rigueiro F, Sohooli M, Eisenschenk S, Doré S. Obstructive Sleep Apnea and Stroke: Determining the Mechanisms Behind their Association and Treatment Options. Transl Stroke Res 2024; 15:239-332. [PMID: 36922470 DOI: 10.1007/s12975-023-01123-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 03/18/2023]
Abstract
Sleep-disordered breathing (SDB) can be a sequela of stroke caused by vascular injury to vital respiratory centers, cerebral edema, and increased intracranial pressure of space-occupying lesions. Likewise, obstructive sleep apnea (OSA) contributes to increased stroke risk through local mechanisms such as impaired ischemic cerebrovascular response and systemic effects such as promoting atherosclerosis, hypercoagulability, cardiac arrhythmias, vascular-endothelial dysfunction, and metabolic syndrome. The impact of OSA on stroke outcomes has been established, yet it receives less attention in national guidelines on stroke management than hyperglycemia and blood pressure dysregulation. Furthermore, whether untreated OSA worsens stroke outcomes is not well-described in the literature. This scoping review provides an updated investigation of the correlation between OSA and stroke, including inter-relational pathophysiology. This review also highlights the importance of OSA treatment and its role in stroke outcomes. Knowledge of pathophysiology, the inter-relationship between these common disorders, and the impact of OSA therapy on outcomes affect the clinical management of patients with acute ischemic stroke. In addition, understanding the relationship between stroke outcomes and pre-existing OSA will allow clinicians to predict outcomes while treating acute stroke.
Collapse
Affiliation(s)
- Basma Mohamed
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Keerthi Yarlagadda
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Zachary Self
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Alexandra Simon
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Frank Rigueiro
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Maryam Sohooli
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Stephan Eisenschenk
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Hricisák L, Pál É, Nagy D, Delank M, Polycarpou A, Fülöp Á, Sándor P, Sótonyi P, Ungvári Z, Benyó Z. NO Deficiency Compromises Inter- and Intrahemispheric Blood Flow Adaptation to Unilateral Carotid Artery Occlusion. Int J Mol Sci 2024; 25:697. [PMID: 38255769 PMCID: PMC10815552 DOI: 10.3390/ijms25020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.
Collapse
Affiliation(s)
- László Hricisák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Max Delank
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
| | - Andreas Polycarpou
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- Mayo Clinic, College of Medicine and Science, Rochester, MN 55905, USA
- Division of Cardiothoracic Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sándor
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, 1122 Budapest, Hungary;
| | - Zoltán Ungvári
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| |
Collapse
|
11
|
Boutagy NE, Gamez-Mendez A, Fowler JW, Zhang H, Chaube BK, Esplugues E, Kuo A, Lee S, Horikami D, Zhang J, Citrin KM, Singh AK, Coon BG, Lee MY, Suarez Y, Fernandez-Hernando C, Sessa WC. Dynamic metabolism of endothelial triglycerides protects against atherosclerosis in mice. J Clin Invest 2024; 134:e170453. [PMID: 38175710 PMCID: PMC10866653 DOI: 10.1172/jci170453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.
Collapse
Affiliation(s)
- Nabil E. Boutagy
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Ana Gamez-Mendez
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Joseph W.M. Fowler
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bal K. Chaube
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Enric Esplugues
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew Kuo
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sungwoon Lee
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Daiki Horikami
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Jiasheng Zhang
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathryn M. Citrin
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abhishek K. Singh
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Monica Y. Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago School of Medicine, Chicago, Illinois, USA
| | - Yajaira Suarez
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, and
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C. Sessa
- Department of Pharmacology
- Vascular Biology and Therapeutics Program, and
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Zatz R, De Nucci G. Endothelium-Derived Dopamine and 6-Nitrodopamine in the Cardiovascular System. Physiology (Bethesda) 2024; 39:44-59. [PMID: 37874898 PMCID: PMC11283902 DOI: 10.1152/physiol.00020.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
The review deals with the release of endothelium-derived dopamine and 6-nitrodopamine (6-ND) and its effects on isolated vascular tissues and isolated hearts. Basal release of both dopamine and 6-ND is present in human isolated umbilical cord vessels, human popliteal vessels, nonhuman primate vessels, and reptilia aortas. The 6-ND basal release was significantly reduced when the tissues were treated with Nω-nitro-l-arginine methyl ester and virtually abolished when the endothelium was mechanically removed. 6-Nitrodopamine is a potent vasodilator, and the mechanism of action responsible for this effect is the antagonism of dopamine D2-like receptors. As a vasodilator, 6-ND constitutes a novel mechanism by which nitric oxide modulates vascular tone. The basal release of 6-ND was substantially decreased in endothelial nitric oxide synthase knockout (eNOS-/-) mice and not altered in neuronal nitric oxide synthase knockout (nNOS-/-) mice, indicating a nonneurogenic source for 6-ND in the heart. Indeed, in rat isolated right atrium, the release of 6-ND was not affected when the atria were treated with tetrodotoxin. In the rat isolated right atrium, 6-ND is the most potent endogenous positive chronotropic agent, and in Langendorff's heart preparation, it is the most potent endogenous positive inotropic agent. The positive chronotropic and inotropic effects of 6-ND are antagonized by β1-adrenoceptor antagonists at concentrations that do not affect the effects induced by noradrenaline, adrenaline, and dopamine, indicating that blockade of the 6-ND receptor is the major modulator of heart chronotropism and inotropism. The review proposes that endothelium-derived catecholamines may constitute a major mechanism for control of vascular tone and heart functions, in contrast to the overrated role attributed to the autonomic nervous system.
Collapse
Affiliation(s)
- Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, São Leopoldo Mandic, Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, Metropolitan University of Santos, Santos, São Paulo, Brazil
| |
Collapse
|
13
|
Eley L, Richardson RV, Alqahtani A, Chaudhry B, Henderson DJ. eNOS plays essential roles in the developing heart and aorta linked to disruption of Notch signalling. Dis Model Mech 2024; 17:dmm050265. [PMID: 38111957 PMCID: PMC10846539 DOI: 10.1242/dmm.050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
eNOS (NOS3) is the enzyme that generates nitric oxide, a signalling molecule and regulator of vascular tone. Loss of eNOS function is associated with increased susceptibility to atherosclerosis, hypertension, thrombosis and stroke. Aortopathy and cardiac hypertrophy have also been found in eNOS null mice, but their aetiology is unclear. We evaluated eNOS nulls before and around birth for cardiac defects, revealing severe abnormalities in the ventricular myocardium and pharyngeal arch arteries. Moreover, in the aortic arch, there were fewer baroreceptors, which sense changes in blood pressure. Adult eNOS null survivors showed evidence of cardiac hypertrophy, aortopathy and cartilaginous metaplasia in the periductal region of the aortic arch. Notch1 and neuregulin were dysregulated in the forming pharyngeal arch arteries and ventricles, suggesting that these pathways may be relevant to the defects observed. Dysregulation of eNOS leads to embryonic and perinatal death, suggesting mutations in eNOS are candidates for causing congenital heart defects in humans. Surviving eNOS mutants have a deficiency of baroreceptors that likely contributes to high blood pressure and may have relevance to human patients who suffer from hypertension associated with aortic arch abnormalities.
Collapse
Affiliation(s)
- Lorraine Eley
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rachel V. Richardson
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ahlam Alqahtani
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Bill Chaudhry
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Deborah J. Henderson
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
14
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
15
|
Nguyen TD, Rahman NT, Sessa WC, Lee MY. Endothelial nitric oxide synthase (eNOS) S1176 phosphorylation status governs atherosclerotic lesion formation. Front Cardiovasc Med 2023; 10:1279868. [PMID: 38034389 PMCID: PMC10683645 DOI: 10.3389/fcvm.2023.1279868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Objective We have previously demonstrated the in vivo importance of the Akt-eNOS substrate-kinase relationship, as defective postnatal angiogenesis characteristic of global Akt1-null mice is rescued when bred to 'gain-of-function' eNOS S1176D mutant mice. While multiple studies support the vascular protective role of endothelial NO generation, the causal role of Akt1-dependent eNOS S1176 phosphorylation during atherosclerotic plaque formation is not yet clear. Approach and results We herein bred congenic 'loss-of-function' eNOS S1176A and 'gain-of-function' eNOS S1176D mutant mice to the exacerbated atherogenic Akt1-/-; ApoE-/- double knockout mice to definitively test the importance of Akt-mediated eNOS S1176 phosphorylation during atherogenesis. We find that a single amino acid substitution at the eNOS S1176 phosphorylation site yields divergent effects on atherosclerotic plaque formation, as an eNOS phospho-mimic aspartate (D) substitution at S1176 leads to favorable lipid profiles and decreased indices of atherosclerosis, even when on a proatherogenic Akt1 global deletion background. Conversely, mice harboring an unphosphorylatable mutation to alanine (S1176A) result in increased plasma lipids, increased lesion formation and cellular apoptosis, phenocopying the physiological consequence of eNOS deletion and/or impaired enzyme function. Furthermore, gene expression analyses of whole aortas indicate a combinatorial detriment from NO deficiency and Western Diet challenge, as 'loss-of-function' eNOS S1176A mice on a Western Diet present a unique expression pattern indicative of augmented T-cell activity when compared to eNOS S1176D mice. Conclusions By using genetic epistasis approaches, we conclusively demonstrate that Akt-mediated eNOS S1176 phosphorylation and subsequent eNOS activation remains to be the most physiologically relevant method of NO production to promote athero-protective effects.
Collapse
Affiliation(s)
- Tung D. Nguyen
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago School of Medicine, Chicago, IL, United States
| | - Nur-Taz Rahman
- Bioinformatics Support Group, Yale University Cushing/Whitney Medical Library, New Haven, CT, United States
| | - William C. Sessa
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Monica Y. Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago School of Medicine, Chicago, IL, United States
| |
Collapse
|
16
|
Geethika M, Singh N, Kumar S, Kumar SKN, Mugesh G. A Redox Modulatory SOD Mimetic Nanozyme Prevents the Formation of Cytotoxic Peroxynitrite and Improves Nitric Oxide Bioavailability in Human Endothelial Cells. Adv Healthc Mater 2023; 12:e2300621. [PMID: 37524524 DOI: 10.1002/adhm.202300621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/22/2023] [Indexed: 08/02/2023]
Abstract
The endothelium-derived signalling molecule nitric oxide (NO) in addition to controlling multifarious servo-regulatory functions, suppresses key processes in vascular lesion formation and prevents atherogenesis and other vascular abnormalities. The conversion of NO into cytotoxic and powerful oxidant peroxynitrite (ONOO- ) in a superoxide (O2 .- )-rich environment has emerged as a major reason for reduced NO levels in vascular walls, leading to endothelial dysfunction and cardiovascular complications. So, designing superoxide dismutase (SOD) mimetics that can selectively catalyze the dismutation of O2 .- in the presence of NO, considering their rapid reaction is challenging and is of therapeutic relevance. Herein, the authors report that SOD mimetic cerium vanadate (CeVO4 ) nanozymes effectively regulate the bioavailability of both NO and O2 .- , the two vital constitutive molecules of vascular endothelium, even in the absence of cellular SOD enzyme. The nanozymes optimally modulate the O2 .- level in endothelial cells under oxidative stress conditions and improve endogenously generated NO levels by preventing the formation of ONOO- . Furthermore, nanoparticles exhibit size- and morphology-dependent uptake into the cells and internalize via the clathrin-mediated endocytosis pathway. Intravenous administration of CeVO4 nanoparticles in mice caused no definite organ toxicity and unaltered haematological and biochemical parameters, indicating their biosafety and potential use in biological applications.
Collapse
Affiliation(s)
- Motika Geethika
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sagar Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
17
|
Dobrynina LA, Shabalina AA, Shamtieva KV, Kremneva EI, Zabitova MR, Krotenkova MV, Burmak AG, Gnedovskaya EV. L-Arginine-eNOS-NO Functional System in Brain Damage and Cognitive Impairments in Cerebral Small Vessel Disease. Int J Mol Sci 2023; 24:14537. [PMID: 37833984 PMCID: PMC10572456 DOI: 10.3390/ijms241914537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 μmol/L of L-arginine, the nitric oxide (NO) donor, blood-brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI.
Collapse
Affiliation(s)
| | | | | | | | - Maryam R. Zabitova
- Research Center of Neurology, 80 Volokolamskoe Shosse, 125367 Moscow, Russia; (L.A.D.); (A.A.S.); (K.V.S.); (E.I.K.); (M.V.K.); (A.G.B.); (E.V.G.)
| | | | | | | |
Collapse
|
18
|
Britto-Júnior J, Pereira do Prado GL, Chiavegatto S, Cunha F, Moraes MO, Elisabete A Moraes M, Monica FZ, Antunes E, De Nucci G. The importance of the endothelial nitric oxide synthase on the release of 6-nitrodopamine from mouse isolated atria and ventricles and their role on chronotropism. Nitric Oxide 2023; 138-139:26-33. [PMID: 37269938 DOI: 10.1016/j.niox.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
6-nitrodopamine (6-ND) is released from rat isolated atria, where it acts as a potent positive chronotropic agent. The release of 6-ND from rat isolated atria and ventricles is significantly reduced when pre-incubated with l-NAME, and the release was not affected by tetrodotoxin pre-treatment, indicating that in the heart, the origin of 6-ND is not neurogenic. Since l-NAME inhibits all three isoforms of NO synthase, it was investigated the basal release of 6-ND from isolated atria and ventricles from nNOS-/-, iNOS-/- and eNOS-/- mice of either sex. The release of 6-ND was measured by LC-MS/MS. There were no significant differences in the 6-ND basal release from isolated atria and ventricles from male control mice, as compared to female control mice. The 6-ND release from atria obtained from eNOS-/- mice was significantly reduced when compared to atria obtained from control mice. The 6-ND release in nNOS-/- mice was not significantly different compared to control animals whereas the 6-ND release from atria obtained from iNOS-/- mice was significantly higher when compared to control group. Incubation of the isolated atria with l-NAME caused a significant decrease in the basal atrial rate of control, nNOS-/-, and iNOS-/- mice, but not in eNOS-/- mice. The results clearly indicate that eNOS is the isoform responsible for the synthesis of 6-ND in the mice isolated atria and ventricles and supports the concept that 6-ND is the major mechanism by which endogenous NO modulates heart rate.
Collapse
Affiliation(s)
- José Britto-Júnior
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Gustavo L Pereira do Prado
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), São Paulo, Brazil; Department of Psychiatry, Institute of Psychiatry (IPq), University of Sao Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Fernando Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Manoel Odorico Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Maria Elisabete A Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Fabiola Z Monica
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gilberto De Nucci
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil; Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), São Paulo, Brazil; Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Brazil
| |
Collapse
|
19
|
Reventun P, Sánchez-Esteban S, Cook-Calvete A, Delgado-Marín M, Roza C, Jorquera-Ortega S, Hernandez I, Tesoro L, Botana L, Zamorano JL, Zaragoza C, Saura M. Endothelial ILK induces cardioprotection by preventing coronary microvascular dysfunction and endothelial-to-mesenchymal transition. Basic Res Cardiol 2023; 118:28. [PMID: 37452166 PMCID: PMC10348984 DOI: 10.1007/s00395-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Endothelial dysfunction is an early event in coronary microvascular disease. Integrin-linked kinase (ILK) prevents endothelial nitric oxide synthase (eNOS) uncoupling and, thus, endothelial dysfunction. However, the specific role of endothelial ILK in cardiac function remains to be fully elucidated. We hypothesised that endothelial ILK plays a crucial role in maintaining coronary microvascular function and contractile performance in the heart. We generated an endothelial cell-specific ILK conditional knock-out mouse (ecILK cKO) and investigated cardiovascular function. Coronary endothelial ILK deletion significantly impaired cardiac function: ejection fraction, fractional shortening and cardiac output decreased, whilst left ventricle diastolic internal diameter decreased and E/A and E/E' ratios increased, indicating not only systolic but also diastolic dysfunction. The functional data correlated with extensive extracellular matrix remodelling and perivascular fibrosis, indicative of adverse cardiac remodelling. Mice with endothelial ILK deletion suffered early ischaemic-like events with ST elevation and transient increases in cardiac troponins, which correlated with fibrotic remodelling. In addition, ecILK cKO mice exhibited many features of coronary microvascular disease: reduced cardiac perfusion, impaired coronary flow reserve and arterial remodelling with patent epicardial coronary arteries. Moreover, endothelial ILK deletion induced a moderate increase in blood pressure, but the antihypertensive drug Losartan did not affect microvascular remodelling whilst only partially ameliorated fibrotic remodelling. The plasma miRNA profile reveals endothelial-to-mesenchymal transition (endMT) as an upregulated pathway in endothelial ILK conditional KO mice. Our results show that endothelial cells in the microvasculature in endothelial ILK conditional KO mice underwent endMT. Moreover, endothelial cells isolated from these mice and ILK-silenced human microvascular endothelial cells underwent endMT, indicating that decreased endothelial ILK contributes directly to this endothelial phenotype shift. Our results identify ILK as a crucial regulator of microvascular endothelial homeostasis. Endothelial ILK prevents microvascular dysfunction and cardiac remodelling, contributing to the maintenance of the endothelial cell phenotype.
Collapse
Affiliation(s)
- P Reventun
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
- School of Medicine, Department of Medicine, Cardiology Division, Johns Hopkins University, Baltimore, MD, United States
| | - S Sánchez-Esteban
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - A Cook-Calvete
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - M Delgado-Marín
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - S Jorquera-Ortega
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - I Hernandez
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - L Tesoro
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
| | - L Botana
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
| | - J L Zamorano
- Servicio Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - C Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - M Saura
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
20
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Huang L, Cheng F, Zhang X, Zielonka J, Nystoriak MA, Xiang W, Raygor K, Wang S, Lakshmanan A, Jiang W, Yuan S, Hou KS, Zhang J, Wang X, Syed AU, Juric M, Takahashi T, Navedo MF, Wang RA. Nitric oxide synthase and reduced arterial tone contribute to arteriovenous malformation. SCIENCE ADVANCES 2023; 9:eade7280. [PMID: 37235659 PMCID: PMC10219588 DOI: 10.1126/sciadv.ade7280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.
Collapse
Affiliation(s)
- Lawrence Huang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Feng Cheng
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xuetao Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacek Zielonka
- Free Radical Research Laboratory, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew A. Nystoriak
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Weiwei Xiang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kunal Raygor
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shaoxun Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aditya Lakshmanan
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Weiya Jiang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sai Yuan
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin S. Hou
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jiayi Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xitao Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Matea Juric
- Free Radical Research Laboratory, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Marín-Medina A, Gómez-Ramos JJ, Mendoza-Morales N, Figuera-Villanueva LE. Association between the Polymorphisms rs2070744, 4b/a and rs1799983 of the NOS3 Gene with Chronic Kidney Disease of Uncertain or Non-Traditional Etiology in Mexican Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:829. [PMID: 37241060 PMCID: PMC10221284 DOI: 10.3390/medicina59050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Chronic Kidney Disease of uncertain or non-traditional etiology (CKDnT) is a form of chronic kidney disease of undetermined etiology (CKDu) and is not associated with traditional risk factors. The aim of this study was to investigate the association of polymorphisms rs2070744, 4b/a and rs1799983 of the NOS3 gene with CKDnT in Mexican patients. Materials and Methods: We included 105 patients with CKDnT and 90 controls. Genotyping was performed by PCR-RFLP's, genotypic and allelic frequencies were determined and compared between the two groups using χ2 analysis, and differences were expressed as odd ratios with 95% confidence intervals (CI). Values of p < 0.05 were considered statistically significant. Results: Overall, 80% of patients were male. The rs1799983 polymorphism in NOS3 was found to be associated with CKDnT in the Mexican population (p = 0.006) (OR = 0.397; 95% CI, 0.192-0.817) under a dominant model. The genotype frequency was significantly different between the CKDnT and control groups (χ2 = 8.298, p = 0.016). Conclusions: The results of this study indicate that there is an association between the rs2070744 polymorphism and CKDnT in the Mexican population. This polymorphism can play an important role in the pathophysiology of CKDnT whenever there is previous endothelial dysfunction.
Collapse
Affiliation(s)
- Alejandro Marín-Medina
- Departamento de Biología Molecular y Genómicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44100, Jalisco, Mexico
| | - José Juan Gómez-Ramos
- Departamento de Urgencias, Hospital General de Zona No. 89, Instituto Mexicano del Seguro Social, Guadalajara 44100, Jalisco, Mexico
| | - Norberto Mendoza-Morales
- Departamento de Urgencias, Hospital General de Zona No. 89, Instituto Mexicano del Seguro Social, Guadalajara 44100, Jalisco, Mexico
- Programa de Especialización en Medicina de Urgencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44100, Jalisco, Mexico
| | - Luis Eduardo Figuera-Villanueva
- Departamento de Biología Molecular y Genómicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44100, Jalisco, Mexico
- Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara 44100, Jalisco, Mexico
| |
Collapse
|
23
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
24
|
Szlęzak D, Ufnal M, Drapała A, Samborowska E, Wróbel M. Urinary excretion of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine is positively related to nitric oxide level in tissues of normotensive and hypertensive rats. Amino Acids 2023; 55:529-539. [PMID: 36802034 PMCID: PMC10140227 DOI: 10.1007/s00726-023-03246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Nitric oxide (NO) is one of the gaseous transmitters which play a very important role in the regulation of the circulatory system. Decreased NO availability is associated with hypertension, cardiovascular and kidney diseases. Endogenous NO is generated enzymatically by nitric oxide synthase (NOS) depending on the availability of the substrate, cofactors, or presence/absence of inhibitors, such as asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). The objective of this study was to evaluate the potential relationship between NO level in rat tissues (heart and kidneys) and the concentrations of endogenous metabolites related to NO in plasma and urine. The experiment was carried out with 16- and 60-week-old male Wistar Kyoto (WKY) and age-matched male Spontaneously Hypertensive Rats (SHR). NO level in tissue homogenates was determined by the colorimetric method. RT-qPCR was used to verify the expression of the eNOS (endothelial NOS) gene. Plasma and urine concentrations of arginine, ornithine, citrulline, and dimethylarginines were examined by the UPLC-MS/MS method. 16-week-old WKY rats had the highest tissue NO and plasma citrulline levels. Furthermore, 16-week-old WKY rats showed higher urinary excretion of ADMA/SDMA compared to other experimental groups, however, plasma concentrations of arginine, ADMA, and SDMA were comparable between the groups. In conclusion, our research shows that hypertension and aging decrease tissue NO levels and are associated with reduced urinary excretion of NOS inhibitors, i.e., ADMA and SDMA.
Collapse
Affiliation(s)
- Dominika Szlęzak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St, 02-097, Warsaw, Poland
| | - Adrian Drapała
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St, 02-097, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawińskiego St, 02-106, Warsaw, Poland
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland.
| |
Collapse
|
25
|
Chuaiphichai S, Chu SM, Carnicer R, Kelly M, Bendall JK, Simon JN, Douglas G, Crabtree MJ, Casadei B, Channon KM. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2023; 324:H430-H442. [PMID: 36735402 PMCID: PMC9988535 DOI: 10.1152/ajpheart.00562.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury.NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sandy M Chu
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Kelly
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jillian N Simon
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mark J Crabtree
- Department of Biochemical Sciences, School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Barbara Casadei
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Tao Y, Young‐Stubbs C, Yazdizadeh Shotorbani P, Su D, Mathis KW, Ma R. Sex and strain differences in renal hemodynamics in mice. Physiol Rep 2023; 11:e15644. [PMID: 36946063 PMCID: PMC10031302 DOI: 10.14814/phy2.15644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
The present study was to examine sex and strain differences in glomerular filtration rate (GFR) and renal blood flow (RBF) in C57BL6, 129/Sv, and C57BLKS/J mice, three commonly used mouse strains in renal research. GFR was measured by transdermal measurement of FITC-sinitrin clearance in conscious mice. RBF was measured by a flow probe placed in the renal artery under an anesthetic state. In C57BL6 mice, there were no sex differences in both GFR and RBF. In 129/Sv mice, females had significantly greater GFR than males at age of 24 weeks, but not at 8 weeks. However, males had higher RBF and lower renal vascular resistance (RVR). Similar to 129/Sv, female C57BLKS/J had significantly greater GFR at both 8 and 24 weeks, lower RBF, and higher RVR than males. Across strains, male 129/Sv had lower GFR and higher RBF than male C57BL6, but no significant difference in GFR and greater RBF than male C57BLKS/J. No significant difference in GFR or RBF was observed between C57BL6 and C57BLKS/J mice. Deletion of eNOS in C57BLKS/J mice reduced GFR in both sexes, but decreased RBF in males. Furthermore, there were no sex differences in the severity of renal injury in eNOS-/- dbdb mice. Taken together, our study suggests that sex differences in renal hemodynamics in mice are strain and age dependent. eNOS was not involved in the sex differences in GFR, but in RBF. Furthermore, the sexual dimorphism did not impact the severity of renal injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Cassandra Young‐Stubbs
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | | | - Dong‐Ming Su
- Department of Microbiology, Immunology and GeneticsUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Keisa W. Mathis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
27
|
Lin J, Wang Q, Xu S, Zhou S, Zhong D, Tan M, Zhang X, Yao K. Banxia baizhu tianma decoction, a Chinese herbal formula, for hypertension: Integrating meta-analysis and network pharmacology. Front Pharmacol 2022; 13:1025104. [PMID: 36534045 PMCID: PMC9755740 DOI: 10.3389/fphar.2022.1025104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2024] Open
Abstract
Hypertension is a major cardiovascular risk factor, which seriously affects the quality of life of patients. Banxia Baizhu Tianma Decoction (BXD) is a Chinese herbal formula that is widely used to treat hypertension in China. This study aimed to evaluate the efficacy and potential mechanism of BXD for hypertension by meta-analysis and network pharmacology. Meta-analysis was performed to explore the efficacy and safety of BXD combined with conventional treatment for hypertension. Network pharmacology was used to explore the molecular mechanism of BXD in antihypertension. A total of 23 studies involving 2,041 patients were included. Meta-analysis indicated that compared with conventional treatment, combined BXD treatment was beneficial to improve clinical efficacy rate, blood pressure, blood lipids, homocysteine, endothelial function, inflammation, and traditional Chinese medicine symptom score. In addition, meta-analysis indicated that BXD is safe and has no obvious adverse reactions. Network pharmacology showed that the antihypertensive targets of BXD may be AKT1, NOS3, ACE, and PPARG. The antihypertensive active ingredients of BXD may be naringenin, poricoic acid C, eburicoic acid, and licochalcone B. Due to the poor methodological quality of the Chinese studies and the small sample size of most, the analysis of this study may have been affected by bias. Therefore, the efficacy and safety of BXD for hypertension still need to be further verified by high-quality clinical studies. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022353666.
Collapse
Affiliation(s)
- Jianguo Lin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyu Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Zhou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Zhong
- Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Meng Tan
- Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Xiaoxiao Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
29
|
Nakata T, Shindo T, Ito K, Eguchi K, Monma Y, Ichijo S, Ryoke R, Satoh W, Kumasaka K, Sato H, Kurosawa R, Satoh K, Kawashima R, Miura M, Kanai H, Yasuda S, Shimokawa H. Beneficial Effects of Low-Intensity Pulsed Ultrasound Therapy on Right Ventricular Dysfunction in Animal Models. JACC Basic Transl Sci 2022; 8:283-297. [PMID: 37034290 PMCID: PMC10077125 DOI: 10.1016/j.jacbts.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Right ventricular failure (RVF) is a leading cause of death in patients with pulmonary hypertension; however, effective treatment remains to be developed. We have developed low-intensity pulsed ultrasound therapy for cardiovascular diseases. In this study, we demonstrated that the expression of endothelial nitric oxide synthase (eNOS) in RVF patients was downregulated and that eNOS expression and its downstream pathway were ameliorated through eNOS activation in 2 animal models of RVF. These results indicate that eNOS is an important therapeutic target of RVF, for which low-intensity pulsed ultrasound therapy is a promising therapy for patients with RVF.
Collapse
Affiliation(s)
- Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenta Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadamitsu Ichijo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wakako Satoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazunori Kumasaka
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- International University of Health and Welfare, Narita, Japan
- Address for correspondence: Dr Hiroaki Shimokawa, International University of Health and Welfare, Narita 286-8686, Japan.
| |
Collapse
|
30
|
Neffeová K, Olejníčková V, Naňka O, Kolesová H. Development and diseases of the coronary microvasculature and its communication with the myocardium. WIREs Mech Dis 2022; 14:e1560. [DOI: 10.1002/wsbm.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kristýna Neffeová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| | - Ondřej Naňka
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| |
Collapse
|
31
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
32
|
Cortese-Krott MM, Suvorava T, Leo F, Heuser SK, LoBue A, Li J, Becher S, Schneckmann R, Srivrastava T, Erkens R, Wolff G, Schmitt JP, Grandoch M, Lundberg JO, Pernow J, Isakson BE, Weitzberg E, Kelm M. Red blood cell eNOS is cardioprotective in acute myocardial infarction. Redox Biol 2022; 54:102370. [PMID: 35759945 PMCID: PMC9241051 DOI: 10.1016/j.redox.2022.102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) were shown to transport and release nitric oxide (NO) bioactivity and carry an endothelial NO synthase (eNOS). However, the pathophysiological significance of RBC eNOS for cardioprotection in vivo is unknown. Here we aimed to analyze the role of RBC eNOS in the regulation of coronary blood flow, cardiac performance, and acute myocardial infarction (AMI) in vivo. To specifically distinguish the role of RBC eNOS from the endothelial cell (EC) eNOS, we generated RBC- and EC-specific knock-out (KO) and knock-in (KI) mice by Cre-induced inactivation or reactivation of eNOS. We found that RBC eNOS KO mice had fully preserved coronary dilatory responses and LV function. Instead, EC eNOS KO mice had a decreased coronary flow response in isolated perfused hearts and an increased LV developed pressure in response to elevated arterial pressure, while stroke volume was preserved. Interestingly, RBC eNOS KO showed a significantly increased infarct size and aggravated LV dysfunction with decreased stroke volume and cardiac output. This is consistent with reduced NO bioavailability and oxygen delivery capacity in RBC eNOS KOs. Crucially, RBC eNOS KI mice had decreased infarct size and preserved LV function after AMI. In contrast, EC eNOS KO and EC eNOS KI had no differences in infarct size or LV dysfunction after AMI, as compared to the controls. These data demonstrate that EC eNOS controls coronary vasodilator function, but does not directly affect infarct size, while RBC eNOS limits infarct size in AMI. Therefore, RBC eNOS signaling may represent a novel target for interventions in ischemia/reperfusion after myocardial infarction.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | - Tatsiana Suvorava
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Francesca Leo
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Becher
- Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rebekka Schneckmann
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Tanu Srivrastava
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Ralf Erkens
- Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Georg Wolff
- Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Joachim P Schmitt
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - John Pernow
- Department of Cardiology, Karolinska Institute, Stockholm, Sweden
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
33
|
Du H, Yu J, Li Q, Zhang M. New Evidence of Tiger Subspecies Differentiation and Environmental Adaptation: Comparison of the Whole Genomes of the Amur Tiger and the South China Tiger. Animals (Basel) 2022; 12:ani12141817. [PMID: 35883364 PMCID: PMC9312029 DOI: 10.3390/ani12141817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tigers are top predators and umbrella protectors, vital to the stability of ecosystems. The South China tiger has been declared extinct in the wild and only exists in captivity. The Chinese government is actively promoting the reintroduction of the South China tiger into the wild. The future of the wild population of the Amur tiger in China is not optimistic, and the recovery of the population is an essential task for the conservation of the Amur tiger. The recovery of the population is not only a macroscopic problem but also a significant study of molecular ecology. We used high-throughput sequencing technology to study the differences in adaptive selection between Amur tigers and South China tigers. Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. The research also provides a molecular basis for future tiger conservation. Abstract Panthera tigris is a top predator that maintains the integrity of forest ecosystems and is an integral part of biodiversity. No more than 400 Amur tigers (P. t. altaica) are left in the wild, whereas the South China tiger (P. t. amoyensis) is thought to be extinct in the wild, and molecular biology has been widely used in conservation and management. In this study, the genetic information of Amur tigers and South China tigers was studied by whole-genome sequencing (WGS). A total of 647 Gb of high-quality clean data was obtained. There were 6.3 million high-quality single-nucleotide polymorphisms (SNPs), among which most (66.3%) were located in intergenic regions, with an average of 31.72% located in coding sequences. There were 1.73 million insertion-deletions (InDels), among which there were 2438 InDels (0.10%) in the coding region, and 270 thousand copy number variations (CNVs). Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. The linkage disequilibrium analysis showed that the linkage disequilibrium attenuation distance of the South China tiger and the Amur tiger was almost the same, whereas the r2 of the South China tiger was 0.6, and the r2 of the Amur tiger was 0.4. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. Our results can provide genetic support for precise interspecies conservation and management planning in the future.
Collapse
Affiliation(s)
- Hairong Du
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
| | - Jingjing Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Qian Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Correspondence: (Q.L.); (M.Z.)
| | - Minghai Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
- Correspondence: (Q.L.); (M.Z.)
| |
Collapse
|
34
|
Sirtuin1 inhibitor attenuates hypertension in spontaneously hypertensive rats: role of Giα proteins and nitroxidative stress. J Hypertens 2022; 40:1314-1326. [PMID: 35762472 DOI: 10.1097/hjh.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We recently showed that vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) exhibit overexpression of Sirtuin1 (Sirt1) that contributes to the enhanced expression of Giα proteins implicated in the development of hypertension in SHR. METHOD The present study investigated if the inhibition of Sirt1 could also ameliorate hypertension in SHR and explore the underlying molecular mechanisms. For this study, a selective inhibitor of Sirt1, EX-527 (5 mg/kg of body weight), was injected intraperitoneally into 8-week-old SHR and age-matched Wistar Kyoto (WKY) rats twice per week for 3 weeks. The blood pressure (BP) and heart rate was measured twice a week by the CODA noninvasive tail cuff method. RESULTS The high BP and augmented heart rate in SHR was significantly attenuated by EX-527 treatment, which was associated with the suppression of the overexpression of Sirt1 and Giα proteins in heart, VSMC and aorta. In addition, the enhanced levels of superoxide anion, NADPH oxidase activity, overexpression of NADPH oxidase subunits and FOXO1 were attenuated and the decreased levels of endothelial nitric oxide synthase (eNOS), nitric oxide and increased levels of peroxynitrite (ONOO-) and tyrosine nitration in VSMC from SHR were restored to control levels by EX-527 treatment. Furthermore, knockdown of FOXO1 by siRNA also attenuated the overexpression of Giα-2 and NADPH oxidase subunit proteins and restored the decreased expression of eNOS in VSMC from SHR. CONCLUSION These results suggest that the inhibition of overexpressed Sirt1 and its target FOXO1 through decreasing the enhanced levels of Giα proteins and nitro-oxidative stress attenuates the high BP in SHR.
Collapse
|
35
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Regulatory Role of Nitric Oxide in Cutaneous Inflammation. Inflammation 2022; 45:949-964. [PMID: 35094214 PMCID: PMC11249049 DOI: 10.1007/s10753-021-01615-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO), a signaling molecule, regulates biological functions in multiple organs/tissues, including the epidermis, where it impacts permeability barrier homeostasis, wound healing, and antimicrobial defense. In addition, NO participates in cutaneous inflammation, where it exhibits pro-inflammatory properties via the cyclooxygenase/prostaglandin pathway, migration of inflammatory cells, and cytokine production. Yet, NO can also inhibit cutaneous inflammation through inhibition of T cell proliferation and leukocyte migration/infiltration, enhancement of T cell apoptosis, as well as through down-regulation of cytokine production. Topical applications of NO-releasing products can alleviate atopic dermatitis in humans and in murine disease models. The underlying mechanisms of these discrepant effects of NO on cutaneous inflammation remain unknown. In this review, we briefly review the regulatory role of NO in cutaneous inflammation and its potential, underlying mechanisms.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA.
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China.
| | - Joan S Wakefield
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA
| | - Theodora M Mauro
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA
| | - Peter M Elias
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
36
|
Musicante M, Kim HH, Chen Y, Liao F, Bhattacharya SK, Lu L, Sun Y. Regulation of endothelial nitric oxide synthase in cardiac remodeling. Int J Cardiol 2022; 364:96-101. [PMID: 35654172 DOI: 10.1016/j.ijcard.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Our previous study demonstrated that endothelial nitric oxide synthase (eNOS) gene serves as a candidate for modifiers of hypertrophic cardiomyopathy (HCM), which alters severity of HCM phenotypes. Herein, we sought to further elucidate the role of eNOS on cardiac myocyte hypertrophy and fibrosis, the major phenotypes of HCM. METHODS Male eNOS-deficient mice (eNOS-/-) and wild type control mice (eNOS+/+, C57B1/6 J) were used in this study. Myocyte size was analyzed in hematoxylin/eosin stained sections using an image analyzing system. Cardiac β-myosin heavy chain (β-MHC) and α-skeletal actin (α-SKA) levels, markers of myocyte hypertrophy were evaluated by Western blot. Cardiac collagen volume fraction (CVF) was examined in picrosirius red stained section using an image analyzing system. Cardiac expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and transforming growth factor beta 1 (TGF-β1), markers of fibrosis, were determined by Western blot. RESULTS Compared to eNOS+/+ mice, we found that; 1) myocyte size was significantly increased in eNOS-/- mice; 2) cardiac expression of β-MHC was markedly elevated, while α-SKA levels remained unchanged in eNOS-/- mice; 3) cardiac total and interstitial CVF levels were significantly higher in eNOS-/- mice; and 4) cardiac TIMP-1 levels were significantly greater in eNOS-/- mice, however, cardiac TGF-β1 was not differently expressed between the two groups. CONCLUSION The current study revealed that eNOS plays a beneficial role in cardiac remodeling, preventing the heart from development of myocyte hypertrophy and cardiac fibrosis. These findings support our previous report that eNOS may modify the severity of HCM phenotypes.
Collapse
Affiliation(s)
- Meryl Musicante
- University of Tennessee Health Science Center, United States of America
| | - Hannah H Kim
- University of Tennessee Health Science Center, United States of America
| | - Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine(,) University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine(,) University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine(,) University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
37
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
38
|
Veron D, Aggarwal PK, Li Q, Moeckel G, Kashgarian M, Tufro A. Podocyte VEGF-A Knockdown Induces Diffuse Glomerulosclerosis in Diabetic and in eNOS Knockout Mice. Front Pharmacol 2022; 12:788886. [PMID: 35280251 PMCID: PMC8906751 DOI: 10.3389/fphar.2021.788886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor-a (VEGF-A) and nitric oxide (NO) are essential for glomerular filtration barrier homeostasis, and are dysregulated in diabetic kidney disease (DKD). While NO availability is consistently low in diabetes, both high and low VEGF-A have been reported in patients with DKD. Here we examined the effect of inducible podocyte VEGF-A knockdown (VEGFKD) in diabetic mice and in endothelial nitric oxide synthase knockout mice (eNOS−/−). Diabetes was induced with streptozotocin using the Animal Models of Diabetic Complications Consortium (AMDCC) protocol. Induction of podocyte VEGFKD led to diffuse glomerulosclerosis, foot process effacement, and GBM thickening in both diabetic mice with intact eNOS and in non-diabetic eNOS−/−:VEGFKD mice. VEGFKD diabetic mice developed mild proteinuria and maintained normal glomerular filtration rate (GFR), associated with extremely high NO and thiol urinary excretion. In eNOS−/−:VEGFKD (+dox) mice severe diffuse glomerulosclerosis was associated with microaneurisms, arteriolar hyalinosis, massive proteinuria, and renal failure. Collectively, data indicate that combined podocyte VEGF-A and eNOS deficiency result in diffuse glomerulosclerosis in mice; compensatory NO and thiol generation prevents severe proteinuria and GFR loss in VEGFKD diabetic mice with intact eNOS, whereas VEGFKD induction in eNOS−/−:VEGFKD mice causes massive proteinuria and renal failure mimicking DKD in the absence of diabetes. Mechanistically, we identify VEGFKD-induced abnormal S-nitrosylation of specific proteins, including β3-integrin, laminin, and S-nitrosoglutathione reductase (GSNOR), as targetable molecular mechanisms involved in the development of advanced diffuse glomerulosclerosis and renal failure.
Collapse
Affiliation(s)
- Delma Veron
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States
| | - Qi Li
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States.,Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States.,Department of Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Briffa JF, Bevens W, Gravina S, Said JM, Wlodek ME. Pregnant biglycan knockout mice have altered cardiorenal adaptations and a shorter gestational length, but do not develop a pre-eclamptic phenotype. Placenta 2022; 119:52-62. [PMID: 35150975 DOI: 10.1016/j.placenta.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Pre-eclampsia complicates 4.6% of pregnancies and is linked to impaired placentation; likely due to dysregulated vasculogenesis/angiogenesis. Proteoglycans, such as biglycan, are located on the endothelial surface of fetal capillaries. Biglycan is reduced in the placenta of pregnancies complicated by fetal growth restriction and pre-eclampsia. Importantly, biglycan stimulates angiogenesis in numerous tissues. Therefore, this study investigated whether biglycan knockdown in mice results in a pre-eclamptic phenotype. METHODS Wild-type (WT) and Bgn-/- mice underwent cardiorenal measurements prior to and during pregnancy. One cohort of mice underwent post-mortem on gestational day 18 (E18) and another cohort underwent post-mortem on postnatal day 1 (PN1), with maternal and offspring tissues of relevance collected. RESULTS Bgn-/- dams had increased heart rate (+9%, p < 0.037) and reduced systolic (-11%, p < 0.001), diastolic (-15%, p < 0.001), and mean arterial (-12%, p < 0.001) pressures at all ages investigated compared to WT. Additionally, Bgn-/- dams had reduced urine flow rate (-64%, p < 0.001) as well as reduced urinary excretions (-49%, p < 0.004) during late gestation compared to WT. Bgn-/- pups had higher body weight (+8%, p = 0.004; E18 only) and a higher liver-to-brain weight ratio (+43%, p < 0.001). Placental weight was unaltered with only minor changes in vasculogenic and angiogenic gene abundances detected, which did not correlate to changes in protein expression. DISCUSSION This study demonstrated that total knockdown of biglycan is not associated with features of pre-eclampsia.
Collapse
Affiliation(s)
- J F Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - W Bevens
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Gravina
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J M Said
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, 3010, Australia; Maternal Fetal Medicine, Sunshine Hospital, Western Health, St Albans, VIC, 3021, Australia
| | - M E Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
40
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Role of nitric oxide in regulating epidermal permeability barrier function. Exp Dermatol 2022; 31:290-298. [PMID: 34665906 PMCID: PMC8897205 DOI: 10.1111/exd.14470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), a free radical molecule synthesized by nitric oxide synthases (NOS), regulates multiple cellular functions in a variety of cell types. These NOS, including endothelial NOS (eNOS), inducible NOS (iNOS) and neural NOS (nNOS), are expressed in keratinocytes. Expression levels of both iNOS and nNOS decrease with ageing, and insufficient NO has been linked to the development of a number of disorders such as diabetes and hypertension, and to the severity of atherosclerosis. Conversely, excessive NO levels can induce cellular oxidative stress, but physiological levels of NO are required to maintain the normal functioning of cells, including keratinocytes. NO also regulates cutaneous functions, including epidermal permeability barrier homeostasis and wound healing, through its stimulation of keratinocyte proliferation, differentiation and lipid metabolism. Topical applications of a diverse group of agents which generate nitric oxide (called NO donors) such as S-nitroso-N-acetyl-D,L-penicillamine (SNAP) can delay permeability barrier recovery in barrier-disrupted skin, but iNOS is still required for epidermal permeability barrier homeostasis. This review summarizes the regulatory role that NO plays in epidermal permeability barrier functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA,Dermatology Hospital, Southern Medical University, Guangdong 510091, China
| | - Joan S. Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| |
Collapse
|
41
|
Luk C, Haywood NJ, Bridge KI, Kearney MT. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front Cardiovasc Med 2022; 9:882923. [PMID: 35557517 PMCID: PMC9086712 DOI: 10.3389/fcvm.2022.882923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023] Open
Abstract
The vascular endothelium traditionally viewed as a simple physical barrier between the circulation and tissue is now well-established as a key organ mediating whole organism homeostasis by release of a portfolio of anti-inflammatory and pro-inflammatory vasoactive molecules. Healthy endothelium releases anti-inflammatory signaling molecules such as nitric oxide and prostacyclin; in contrast, diseased endothelium secretes pro-inflammatory signals such as reactive oxygen species, endothelin-1 and tumor necrosis factor-alpha (TNFα). Endothelial dysfunction, which has now been identified as a hallmark of different components of the cardiometabolic syndrome including obesity, type 2 diabetes and hypertension, initiates and drives the progression of tissue damage in these disorders. Recently it has become apparent that, in addition to vasoactive molecules, the vascular endothelium has the potential to secrete a diverse range of small molecules and proteins mediating metabolic processes in adipose tissue (AT), liver, skeletal muscle and the pancreas. AT plays a pivotal role in orchestrating whole-body energy homeostasis and AT dysfunction, characterized by local and systemic inflammation, is central to the metabolic complications of obesity. Thus, understanding and targeting the crosstalk between the endothelium and AT may generate novel therapeutic opportunities for the cardiometabolic syndrome. Here, we provide an overview of the role of the endothelial secretome in controlling the function of AT. The endothelial-derived metabolic regulatory factors are grouped and discussed based on their physical properties and their downstream signaling effects. In addition, we focus on the therapeutic potential of these regulatory factors in treating cardiometabolic syndrome, and discuss areas of future study of potential translatable and clinical significance. The vascular endothelium is emerging as an important paracrine/endocrine organ that secretes regulatory factors in response to nutritional and environmental cues. Endothelial dysfunction may result in imbalanced secretion of these regulatory factors and contribute to the progression of AT and whole body metabolic dysfunction. As the vascular endothelium is the first responder to local nutritional changes and adipocyte-derived signals, future work elucidating the changes in the endothelial secretome is crucial to improve our understanding of the pathophysiology of cardiometabolic disease, and in aiding our development of new therapeutic strategies to treat and prevent cardiometabolic syndrome.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
42
|
Liao FF, Lin G, Chen X, Chen L, Zheng W, Raghow R, Zhou FM, Shih AY, Tan XL. Endothelial Nitric Oxide Synthase-Deficient Mice: A Model of Spontaneous Cerebral Small-Vessel Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1932-1945. [PMID: 33711310 PMCID: PMC8647425 DOI: 10.1016/j.ajpath.2021.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Age-related cerebral small-vessel disease (CSVD) is a major cause of stroke and dementia. Despite a widespread acceptance of small-vessel arteriopathy, lacunar infarction, diffuse white matter injury, and cognitive impairment as four cardinal features of CSVD, a unifying pathologic mechanism of CSVD remains elusive. Herein, we introduce partial endothelial nitric oxide synthase (eNOS)-deficient mice as a model of age-dependent, spontaneous CSVD. These mice developed cerebral hypoperfusion and blood-brain barrier leakage at a young age, which progressively worsened with advanced age. Their brains exhibited elevated oxidative stress, astrogliosis, cerebral amyloid angiopathy, microbleeds, microinfarction, and white matter pathology. Partial eNOS-deficient mice developed gait disturbances at middle age, and hippocampus-dependent memory deficits at older ages. These mice also showed enhanced expression of bone morphogenetic protein 4 (BMP4) in brain pericytes before myelin loss and white matter pathology. Because BMP4 signaling not only promotes astrogliogenesis but also blocks oligodendrocyte differentiation, we posit that paracrine actions of BMP4, localized within the neurovascular unit, promote white matter disorganization and neurodegeneration. These observations point to BMP4 signaling pathway in the aging brain vasculature as a potential therapeutic target. Finally, because studies in partial eNOS-deficient mice corroborated recent clinical evidence that blood-brain barrier disruption is a primary cause of white matter pathology, the mechanism of impaired nitric oxide signaling-mediated CSVD warrants further investigation.
Collapse
Affiliation(s)
- Francesca-Fang Liao
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee.
| | - Geng Lin
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, China
| | - Xingyong Chen
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei Zheng
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, China
| | - Rajendra Raghow
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Xing-Lin Tan
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Neurology, Nanhai Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
43
|
Carter KJ, Ward AT, Kellawan JM, Eldridge MW, Al-Subu A, Walker BJ, Lee JW, Wieben O, Schrage WG. Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. J Physiol 2021; 599:4973-4989. [PMID: 34587648 PMCID: PMC9009720 DOI: 10.1113/jp281975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey W Lee
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
44
|
Park S, Lee KH, Choi H, Jang G, Kang WS, Kim E, Kim JS, Na CS, Kim S. Combined antihypertensive effect of unripe Rubus coreanus Miq. and Dendropanax morbiferus H. Lév. Extracts in 1 kidney-1 clip hypertensive rats and spontaneously hypertensive rats. BMC Complement Med Ther 2021; 21:271. [PMID: 34711215 PMCID: PMC8555169 DOI: 10.1186/s12906-021-03438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background We previously showed that enzymatically hydrolyzed Dendropanax morbiferus H. Lév. leaf (Hy-DP) and unripe Rubus coreanus Miq. (5-uRCK) extracts exhibit potent vasodilator effects on isolated aortic rings from rats partly through endothelium-dependent and endothelium-independent mechanisms. These two extracts have different mechanisms of action; however, their combined effect on antihypertensive activity has not been explored. Methods The present study aims to investigate the effect of a chronic optimized mixture (HDR-2, composed of Hy-DP and 5-uRCK in a 2:1 mass ratio) on vascular tension and blood pressure in two different hypertensive rat models. Results The results showed that HDR-2 concentration-dependently relaxed endothelium-intact and endothelium-denuded aortic rings precontracted with phenylephrine. Antihypertensive effects were assessed in vivo on a 1 kidney-1 clip (1 K-1C) rat model of hypertension and spontaneously hypertensive rats (SHRs). Acute HDR-2 treatment significantly decreased systolic blood pressure (SBP) 3 h posttreatment in both models. Chronic HDR-2 administration also significantly decreased SBP in the hypertensive rat models. Moreover, HDR-2 increased eNOS protein expression and phosphorylation levels in the aorta. Conclusion Chronic HDR-2 administration may effectively improve vascular function by decreasing plasma angiotensin-converting enzyme (ACE) activity and AngII levels. HDR-2 significantly improved acetylcholine (ACh)-induced aortic endothelium-dependent relaxation and affected sodium nitroprusside (SNP)-induced endothelium-independent relaxation in SHRs.
Collapse
Affiliation(s)
- Soyi Park
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Ki Hoon Lee
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Hakjoon Choi
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Goeun Jang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Wan Seok Kang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Eun Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Jin Seok Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., 257, Jebong-ro, Buk-gu, Gwangju, 61239, South Korea.
| |
Collapse
|
45
|
Ventilatory responses during and following hypercapnic gas challenge are impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:20557. [PMID: 34663876 PMCID: PMC8523677 DOI: 10.1038/s41598-021-99922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
The roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.
Collapse
|
46
|
Das M, Devi KP, Belwal T, Devkota HP, Tewari D, Sahebnasagh A, Nabavi SF, Khayat Kashani HR, Rasekhian M, Xu S, Amirizadeh M, Amini K, Banach M, Xiao J, Aghaabdollahian S, Nabavi SM. Harnessing polyphenol power by targeting eNOS for vascular diseases. Crit Rev Food Sci Nutr 2021; 63:2093-2118. [PMID: 34553653 DOI: 10.1080/10408398.2021.1971153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kiumarth Amini
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Poland
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Safieh Aghaabdollahian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Getsy PM, Sundararajan S, May WJ, von Schill GC, McLaughlin DK, Palmer LA, Lewis SJ. Short-term facilitation of breathing upon cessation of hypoxic challenge is impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:18346. [PMID: 34526532 PMCID: PMC8443732 DOI: 10.1038/s41598-021-97322-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Decreases in arterial blood oxygen stimulate increases in minute ventilation via activation of peripheral and central respiratory structures. This study evaluates the role of endothelial nitric oxide synthase (eNOS) in the expression of the ventilatory responses during and following a hypoxic gas challenge (HXC, 10% O2, 90% N2) in freely moving male and female wild-type (WT) C57BL6 and eNOS knock-out (eNOS-/-) mice. Exposure to HXC caused an array of responses (of similar magnitude and duration) in both male and female WT mice such as, rapid increases in frequency of breathing, tidal volume, minute ventilation and peak inspiratory and expiratory flows, that were subject to pronounced roll-off. The responses to HXC in male eNOS-/- mice were similar to male WT mice. In contrast, several of the ventilatory responses in female eNOS-/- mice (e.g., frequency of breathing, and expiratory drive) were greater compared to female WT mice. Upon return to room-air, male and female WT mice showed similar excitatory ventilatory responses (i.e., short-term potentiation phase). These responses were markedly reduced in male eNOS-/- mice, whereas female eNOS-/- mice displayed robust post-HXC responses that were similar to those in female WT mice. Our data demonstrates that eNOS plays important roles in (1) ventilatory responses to HXC in female compared to male C57BL6 mice; and (2) expression of post-HXC responses in male, but not female C57BL6 mice. These data support existing evidence that sex, and the functional roles of specific proteins (e.g., eNOS) have profound influences on ventilatory processes, including the responses to HXC.
Collapse
Affiliation(s)
- Paulina M. Getsy
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH USA
| | - Sripriya Sundararajan
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.411024.20000 0001 2175 4264Present Address: Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Walter J. May
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Graham C. von Schill
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Dylan K. McLaughlin
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Lisa A. Palmer
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Stephen J. Lewis
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Pharmacology, Case Western Reserve University, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
48
|
Leo F, Suvorava T, Heuser SK, Li J, LoBue A, Barbarino F, Piragine E, Schneckmann R, Hutzler B, Good ME, Fernandez BO, Vornholz L, Rogers S, Doctor A, Grandoch M, Stegbauer J, Weitzberg E, Feelisch M, Lundberg JO, Isakson BE, Kelm M, Cortese-Krott MM. Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation 2021; 144:870-889. [PMID: 34229449 PMCID: PMC8529898 DOI: 10.1161/circulationaha.120.049606] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.
Collapse
Affiliation(s)
- Francesca Leo
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacy, University of Pisa, Italy (F.P.)
| | - Eugenia Piragine
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rebekka Schneckmann
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Hutzler
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.G.)
| | - Bernadette O. Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (B.O.F.)
| | - Lukas Vornholz
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephen Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology (J.S.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Martin Feelisch
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Nephrology (J.S.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf (M.K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacy, University of Pisa, Italy (F.P.)
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.G.)
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (B.O.F.)
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
| | - Malte Kelm
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf (M.K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| |
Collapse
|
49
|
Rodríguez-Fdez S, Lorenzo-Martín LF, Fabbiano S, Menacho-Márquez M, Sauzeau V, Dosil M, Bustelo XR. New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System. BIOLOGY 2021; 10:biology10090857. [PMID: 34571735 PMCID: PMC8472352 DOI: 10.3390/biology10090857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In this review, we provide information on the role of Vav proteins, a group of signaling molecules that act as both Rho GTPase activators and adaptor molecules, in the cardiovascular system, skeletal muscle, and the nervous system. We also describe how these functions impact in other physiological and pathological processes such as sympathoregulation, blood pressure regulation, systemic metabolism, and metabolic syndrome. Abstract Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, and glia cells. These functions, in turn, ensure the proper regulation of blood pressure levels, skeletal muscle mass, axonal wiring, and fiber myelination events as well as systemic metabolic balance. The study of these mice has also led to the discovery of new physiological interconnection among tissues that contribute to the ontogeny and progression of different pathologies such as, for example, hypertension, cardiovascular disease, and metabolic syndrome. Here, we provide an integrated view of all these new Vav family-dependent signaling and physiological functions.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Salvatore Fabbiano
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
| | - Vincent Sauzeau
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Institut du Thorax, UMR1087 CNRS 6291, INSERM, Université de Nantes, 44096 Nantes, France
| | - Mercedes Dosil
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-663-194-634
| |
Collapse
|
50
|
Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Front Cardiovasc Med 2021; 8:683074. [PMID: 34504875 PMCID: PMC8421733 DOI: 10.3389/fcvm.2021.683074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect, affecting ~1% of all live births. Malformations of the cardiac outflow tract (OFT) account for ~30% of all CHD and include a range of CHDs from bicuspid aortic valve (BAV) to tetralogy of Fallot (TOF). We hypothesized that transcriptomic profiling of a mouse model of CHD would highlight disease-contributing genes implicated in congenital cardiac malformations in humans. To test this hypothesis, we utilized global transcriptional profiling differences from a mouse model of OFT malformations to prioritize damaging, de novo variants identified from exome sequencing datasets from published cohorts of CHD patients. Notch1 +/- ; Nos3 -/- mice display a spectrum of cardiac OFT malformations ranging from BAV, semilunar valve (SLV) stenosis to TOF. Global transcriptional profiling of the E13.5 Notch1 +/- ; Nos3 -/- mutant mouse OFTs and wildtype controls was performed by RNA sequencing (RNA-Seq). Analysis of the RNA-Seq dataset demonstrated genes belonging to the Hif1α, Tgf-β, Hippo, and Wnt signaling pathways were differentially expressed in the mutant OFT. Mouse to human comparative analysis was then performed to determine if patients with TOF and SLV stenosis display an increased burden of damaging, genetic variants in gene homologs that were dysregulated in Notch1 +/- ; Nos3 -/- OFT. We found an enrichment of de novo variants in the TOF population among the 1,352 significantly differentially expressed genes in Notch1 +/- ; Nos3 -/- mouse OFT but not the SLV population. This association was not significant when comparing only highly expressed genes in the murine OFT to de novo variants in the TOF population. These results suggest that transcriptomic datasets generated from the appropriate temporal, anatomic and cellular tissues from murine models of CHD may provide a novel approach for the prioritization of disease-contributing genes in patients with CHD.
Collapse
Affiliation(s)
- Adrianna Matos-Nieves
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L. McBride
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, Ohio State University, Columbus, OH, United States
| |
Collapse
|