1
|
Cohen OS, Sinha M, Wang Y, Daman T, Li PC, Deatherage C, Charrez B, Deshpande A, Jordan S, Makoni N, LeDonne K, Dale CJ, Driss LB, Pan C, Gasperini C, Wagers AJ, Rubin LL, Finklestein SP, Allen M, Lee RT, Sandrasagra A. Recombinant GDF11 Promotes Recovery in a Rat Permanent Ischemia Model of Subacute Stroke. Stroke 2025; 56:996-1009. [PMID: 39909827 PMCID: PMC11932786 DOI: 10.1161/strokeaha.124.049908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Stroke remains a leading cause of death and disability, underscoring the urgent need for treatments that enhance recovery. GDF11 (growth differentiation factor 11), a member of the TGF-β (transforming growth factor-β) superfamily, is a circulating protein involved in cellular development and tissue repair. GDF11 has gained attention for its potential regenerative properties in aging and disease contexts, making it a candidate for stroke recovery therapies. METHODS The therapeutic benefits of rGDF11 (recombinant GDF11) were evaluated using a rat ischemic stroke model, in which focal cerebral infarcts were induced in 8- to 10-week-old young adult male Sprague-Dawley rats by permanently occluding the proximal right middle cerebral artery. Rats received single or multiple doses of rGDF11 (0.1-4 mg/kg) or vehicle from 24 to 72 hours post-injury. Sensorimotor functions were evaluated, and brain and serum samples were examined to determine the mechanisms of action and identify biomarkers, using immunofluorescence, target-specific ELISAs, and an aptamer-based proteomics platform. RESULTS We confirmed rGDF11 activity in vitro and in established in vivo mouse models of cardiac hypertrophy and glucose metabolism and assessed the efficacy of rGDF11 treatment in 6 preclinical stroke studies using independent Contract Research Organizations, with all study animals and treatment groups blinded. All 6 studies revealed consistent improvement in sensorimotor outcomes with rGDF11. rGDF11-treated rats showed increased cortical vascularization and radial glia in the ventricular zone. Serum analysis revealed that rGDF11 caused dose-dependent decreases in CRP (C-reactive protein) and identified novel pharmacodynamic biomarkers and pathways associated with potential mechanisms of action of rGDF11. CONCLUSIONS These results demonstrate that systemically delivered rGDF11 enhances neovascularization, reduces inflammation, promotes neurogenesis, and improves sensorimotor function post-injury in a rat model of ischemic stroke. More importantly, these data define an optimized and clinically feasible rGDF11 dosing regimen for therapeutic development in ischemic stroke and identify a panel of candidate pharmacodynamic and mechanistic biomarkers to support clinical translation.
Collapse
Affiliation(s)
- Ori S. Cohen
- Elevian, Inc. Newton MA, 02458, USA
- Alevian, Inc. Lexington MA, 02421, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Laura Ben Driss
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cheryl Pan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caterina Gasperini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seth P. Finklestein
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
2
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Wong A, Bhuiyan MIH, Rothman J, Drew K, Pourrezaei K, Sun D, Barati Z. Near infrared spectroscopy detection of hemispheric cerebral ischemia following middle cerebral artery occlusion in rats. Neurochem Int 2023; 162:105460. [PMID: 36455748 PMCID: PMC10263189 DOI: 10.1016/j.neuint.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Timely and sensitive in vivo estimation of ischemic stroke-induced brain infarction are necessary to guide diagnosis and evaluation of treatments' efficacy. The gold standard for estimation of the cerebral infarction volume is magnetic resonance imaging (MRI), which is expensive and not readily accessible. Measuring regional cerebral blood flow (rCBF) with Laser Doppler flowmetry (LDF) is the status quo for confirming reduced blood flow in experimental ischemic stroke models. However, rCBF reduction following cerebral artery occlusion often does not correlate with subsequent infarct volume. In the present study, we employed the continuous-wave near infrared spectroscopy (NIRS) technique to monitor cerebral oxygenation during 90 min of the intraluminal middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats (n = 8, male). The NIRS device consisted of a controller module and an optical sensor with two LED light sources and two photodiodes making up two parallel channels for monitoring left and right cerebral hemispheres. Optical intensity measurements were converted to deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2) changes relative to a 2-min window prior to MCAO. Area under the curve (auc) for Hb and HbO2 was calculated for the 90-min occlusion period for each hemisphere (ipsilateral and contralateral). To obtain a measure of total ischemia, auc of the contralateral side was subtracted from the ipsilateral side resulting in ΔHb and ΔHbO2 parameters. Infarct volume (IV) was calculated by triphenyl tetrazolium chloride (TTC) staining at 24h reperfusion. Results showed a significant negative correlation (r = -0.81, p = 0.03) between ΔHb and infarct volume. In conclusion, our results show feasibility of using a noninvasive optical imaging instrument, namely NIRS, in monitoring cerebral ischemia in a rodent stroke model. This cost-effective, non-invasive technique may improve the rigor of experimental models of ischemic stroke by enabling in vivo longitudinal assessment of cerebral oxygenation and ischemic injury.
Collapse
Affiliation(s)
- Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Mohammad Iqbal Hossain Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pennsylvania, PA, 15260, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, 79968, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, USA
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pennsylvania, PA, 15260, USA
| | - Zeinab Barati
- Barati Medical LLC, Fairbanks, AK, USA; Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, USA.
| |
Collapse
|
4
|
Scott XO, Chen SH, Hadad R, Yavagal D, Peterson EC, Starke RM, Dietrich WD, Keane RW, de Rivero Vaccari JP. Cohort study on the differential expression of inflammatory and angiogenic factors in thrombi, cerebral and peripheral plasma following acute large vessel occlusion stroke. J Cereb Blood Flow Metab 2022; 42:1827-1839. [PMID: 35673992 PMCID: PMC9536118 DOI: 10.1177/0271678x221106956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Inflammation plays an important role in the pathogenesis of stroke. The differential expression of inflammatory and angiogenic factors in thrombi and plasma remain undefined. In this observational cohort study, we evaluated angiogenic factors and inflammatory cytokines, in cerebral thrombi, local cerebral plasma (CP), and peripheral plasma (PP) in patients with acute ischemic stroke. Protein analysis of thrombi, CP and PP were used to measure angiogenic and inflammatory proteins using electrochemiluminescence. Our data indicate that VEGF-A, VEGF-C, bFGF, IL-4, IL-13, IL-1β, IL-2, IL-8, IL-16, IL-6 and IL-12p70 were higher in the thrombi of acute ischemic stroke patients than in the CP and PP of stroke patients. Moreover, the protein levels of GM-CSF were lower in the PP than in the CP and the clot. Moreover, VEGF-D, Flt-1, PIGF, TIE-2, IL-5, TNF-β, IL-15, IL-12/IL-23p40, IFN-γ and IL-17A were higher in PP and CP than in thrombi. Our results show that cytokines mediating the inflammatory response and proteins involved in angiogenesis are differentially expressed in thrombi within the cerebral and peripheral circulations. These data highlight the importance of identifying new biomarkers in different compartments of the circulatory system and in thrombi that may be used for the diagnosis and treatment of stroke patients.
Collapse
Affiliation(s)
- Xavier O Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie H Chen
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric C Peterson
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Starke
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Am J Cancer Res 2022; 12:6223-6241. [PMID: 36168632 PMCID: PMC9475455 DOI: 10.7150/thno.73421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic diseases, the leading cause of disability and death, are caused by the restriction or blockage of blood flow in specific tissues, including ischemic cardiac, ischemic cerebrovascular and ischemic peripheral vascular diseases. The regeneration of functional vasculature network in ischemic tissues is essential for treatment of ischemic diseases. Direct delivery of pro-angiogenesis factors, such as VEGF, has demonstrated the effectiveness in ischemic disease therapy but suffering from several obstacles, such as low delivery efficacy in disease sites and uncontrolled modulation. In this review, we summarize the molecular mechanisms of inducing vascular regeneration, providing the guidance for designing the desired nanomedicines. We also introduce the delivery of various nanomedicines to ischemic tissues by passive or active targeting manner. To achieve the efficient delivery of nanomedicines in various ischemic diseases, we highlight targeted delivery of nanomedicines and controllable modulation of disease microenvironment using nanomedicines.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.,Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain 2022; 145:1211-1228. [PMID: 34932786 PMCID: PMC9630718 DOI: 10.1093/brain/awab469] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Stroke is a leading cause of disability, with deficits encompassing multiple functional domains. The heterogeneity underlying stroke poses significant challenges in the prediction of post-stroke recovery, prompting the development of neuroimaging-based biomarkers. Structural neuroimaging measurements, particularly those reflecting corticospinal tract injury, are well-documented in the literature as potential biomarker candidates of post-stroke motor recovery. Consistent with the view of stroke as a 'circuitopathy', functional neuroimaging measures probing functional connectivity may also prove informative in post-stroke recovery. An important step in the development of biomarkers based on functional neural network connectivity is the establishment of causality between connectivity and post-stroke recovery. Current evidence predominantly involves statistical correlations between connectivity measures and post-stroke behavioural status, either cross-sectionally or serially over time. However, the advancement of functional connectivity application in stroke depends on devising experiments that infer causality. In 1965, Sir Austin Bradford Hill introduced nine viewpoints to consider when determining the causality of an association: (i) strength; (ii) consistency; (iii) specificity; (iv) temporality; (v) biological gradient; (vi) plausibility; (vii) coherence; (viii) experiment; and (ix) analogy. Collectively referred to as the Bradford Hill Criteria, these points have been widely adopted in epidemiology. In this review, we assert the value of implementing Bradford Hill's framework to stroke rehabilitation and neuroimaging. We focus on the role of neural network connectivity measurements acquired from task-oriented and resting-state functional MRI, EEG, magnetoencephalography and functional near-infrared spectroscopy in describing and predicting post-stroke behavioural status and recovery. We also identify research opportunities within each Bradford Hill tenet to shift the experimental paradigm from correlation to causation.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jasper I Mark
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles; and California Rehabilitation Institute, Los Angeles, CA, USA
| |
Collapse
|
7
|
Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol 2021; 12:671131. [PMID: 33967812 PMCID: PMC8102031 DOI: 10.3389/fphar.2021.671131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of death worldwide, and its treatment remains a challenge. Complex pathological processes are involved in stroke, which causes a reduction in the supply of oxygen and energy to the brain that triggers subsequent cascade events, such as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke is a devastating disease for which there are few treatments, but physical rehabilitation can help improve stroke recovery. Although there are very few treatments for stroke patients, the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play essential roles by functioning as homeostatic factors and controlling cells and hormones involved in metabolism. They could be used as effective therapeutic agents for stroke. In this review, we will discuss the pharmacological actions of FGFs on multiple targets, including their ability to directly promote neuron survival, enhance angiogenesis, protect against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
8
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Abstract
Rodents are the most widely used experimental animals in stroke research due to their similar vascular anatomy, high reproductive rates, and availability of transgenic models. However, the difficulties in assessing higher brain functions, such as cognition and memory, in rodents decrease the translational potential of these studies. In this review, we summarize commonly used motor/sensorimotor and cognition tests in rodent models of stroke. Specifically, we first briefly introduce the objective and procedure of each behavioral test. Next, we summarize the application of each test in both ischemic stroke and hemorrhagic stroke. Last, the advantages and disadvantages of these tests in assessing stroke outcome are discussed. This review summarizes commonly used behavioral tests in stroke studies and compares their applications in different stroke types.
Collapse
Affiliation(s)
- Jingsong Ruan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, USA
| |
Collapse
|
10
|
Systemic treatment with a novel basic fibroblast growth factor mimic small-molecule compound boosts functional recovery after spinal cord injury. PLoS One 2020; 15:e0236050. [PMID: 32678832 PMCID: PMC7367485 DOI: 10.1371/journal.pone.0236050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Neurotrophic factors have been regarded having promising potentials for neuronal protection and regeneration, and thus promoting beneficial effects of kinesiological functions. They can be suspected to play important roles in cell/tissue grafting for various neural diseases. The clinical applications of such trophic factors to the central nervous system (CNS), however, have caused problematic side effects on account of the distinctive bioactive properties. In the course of developing synthetic compounds reflecting beneficial properties of basic fibroblast growth factor (bFGF), we conducted screening candidates that stimulate to trigger the intracellular tyrosine phosphorylation of FGF receptor and lead to the subsequent intracellular signaling in neurons. A small synthetic molecule SUN13837 was characterized by mimicking the beneficial properties of bFGF, which have been known as its specific activities when applied to CNS. What is more remarkable is that SUN13837 is eliminated the bioactivity to induce cell proliferation of non-neuronal somatic cells. On the bases of studies of pharmacology, behavior, physiology and histology, the present study reports that SUN13837 is characterized as a promising synthetic compound for treatment of devastating damages onto the rat spinal cord.
Collapse
|
11
|
Sakai H, Inoue H, Murata K, Toba T, Shimmyo Y, Narii N, Ueno SY, Igawa Y, Takemoto N. Fibroblast growth factor receptor modulators employing diamines with reduced phospholipidosis-inducing potential. Bioorg Med Chem 2020; 28:115562. [PMID: 32616184 DOI: 10.1016/j.bmc.2020.115562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 01/23/2023]
Abstract
SUN13837 (1), a fibroblast growth factor receptor modulator, has been an attractive candidate for treating neurodegenerative diseases. However, one of its metabolites, N-benzyl-4-(methylamino)piperidine (BMP), turned out to possess phospholipidosis-inducing potential (PLIP) in vitro. To obtain SUN13837 analogs with reduced phospholipidosis risk, we replaced BMP with other diamines possessing low PLIP. Our effort led to the discovery of compound 6 with increased efficacy. Further structural modifications to reduce hydrogen bond donors afforded 17 with improved brain exposure. Oral administration of 17 at 1 mg/kg once daily for 10 days showed enhanced recovery of coordinated movement in a rat acute stroke model, suggesting that it is a promising follow-up compound for 1 with reduced risk of phospholipidosis.
Collapse
Affiliation(s)
- Hiroki Sakai
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Hidekazu Inoue
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Murata
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tetsuya Toba
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshiari Shimmyo
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nobuhiro Narii
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shin-Ya Ueno
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshiyuki Igawa
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Naohiro Takemoto
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
12
|
Otero-Ortega L, Laso-García F, Frutos MCGD, Diekhorst L, Martínez-Arroyo A, Alonso-López E, García-Bermejo ML, Rodríguez-Serrano M, Arrúe-Gonzalo M, Díez-Tejedor E, Fuentes B, Gutiérrez-Fernández M. Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell Res Ther 2020; 11:70. [PMID: 32075692 PMCID: PMC7029550 DOI: 10.1186/s13287-020-01601-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Mesenchymal stem cell-derived extracellular vesicles (EVs) are one of the most promising therapeutics in protective and/or regenerative therapy in animal models of stroke using a dose of 100 μg. However, whether EVs dose is related to outcomes is not known. This study aimed to identify the optimal effective dose of EVs from adipose tissue-derived mesenchymal stem cells that promote functional recovery in subcortical stroke. Materials and methods For this purpose, various doses of EVs were tested in an in vitro oxygen-glucose deprivation (OGD) model of oligodendrocytes and neuronal ischemia. At least 50 μg of EVs were necessary to induce proliferation and differentiation of oligodendrocyte and neurons in OGD conditions. For in vivo study, rats were subjected to subcortical stroke and various doses (50 μg, 100 μg, or 200 μg) of EVs were intravenously administered after 24 h. Results All the animals in the EV groups showed significant improvement in functional tests, with an increase in tract connectivity and brain repair-associated markers, and a decrease in cell death and in astrocyte-marker expression. Cell proliferation was increased in the groups receiving 50 μg and 100 μg doses. Only the 50-μg dose was associated with significant increases in brain-derived neurotrophic factor expression. Conclusion In conclusion, 50 μg of EVs appears to be the minimal effective dose to enhance protection, brain repair, and recovery in subcortical ischemic stroke.
Collapse
Affiliation(s)
- Laura Otero-Ortega
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Fernando Laso-García
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Luke Diekhorst
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Arturo Martínez-Arroyo
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Elisa Alonso-López
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Unit, Instituto Ramón y Cajal de investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Macarena Rodríguez-Serrano
- Biomarkers and Therapeutic Targets Unit, Instituto Ramón y Cajal de investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mercedes Arrúe-Gonzalo
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Blanca Fuentes
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
13
|
Regenhardt RW, Takase H, Lo EH, Lin DJ. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38:67-92. [PMID: 31929129 PMCID: PMC7442117 DOI: 10.3233/rnn-190978] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stroke is among the most common causes of adult disability worldwide, and its disease burden is shifting towards that of a long-term condition. Therefore, the development of approaches to enhance recovery and augment neural repair after stroke will be critical. Recovery after stroke involves complex interrelated systems of neural repair. There are changes in both structure (at the molecular, cellular, and tissue levels) and function (in terms of excitability, cortical maps, and networks) that occur spontaneously within the brain. Several approaches to augment neural repair through enhancing these changes are under study. These include identifying novel drug targets, implementing rehabilitation strategies, and developing new neurotechnologies. Each of these approaches has its own array of different proposed mechanisms. Current investigation has emphasized both cellular and circuit-based targets in both gray and white matter, including axon sprouting, dendritic branching, neurogenesis, axon preservation, remyelination, blood brain barrier integrity, blockade of extracellular inhibitory signals, alteration of excitability, and promotion of new brain cortical maps and networks. Herein, we review for clinicians recovery after stroke, basic elements of spontaneous neural repair, and ongoing work to augment neural repair. Future study requires alignment of basic, translational, and clinical research. The field continues to grow while becoming more clearly defined. As thrombolysis changed stroke care in the 1990 s and thrombectomy in the 2010 s, the augmentation of neural repair and recovery after stroke may revolutionize care for these patients in the coming decade.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Hajime Takase
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - David J Lin
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
14
|
Gao X, Zhang X, Cui L, Chen R, Zhang C, Xue J, Zhang L, He W, Li J, Wei S, Wei M, Cui H. Ginsenoside Rb1 Promotes Motor Functional Recovery and Axonal Regeneration in Post-stroke Mice through cAMP/PKA/CREB Signaling Pathway. Brain Res Bull 2019; 154:51-60. [PMID: 31715311 DOI: 10.1016/j.brainresbull.2019.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/29/2019] [Accepted: 10/19/2019] [Indexed: 11/29/2022]
Abstract
The central nervous system (CNS) has a poor self-repairing capability after injury because of the inhibition of axonal regeneration by many myelin-associated inhibitory factors. Therefore, ischemic stroke usually leads to disability. Previous studies reported that Ginsenoside Rb1 (GRb1) plays a role in neuronal protection in acute phase after ischemic stroke, but its efficacy in post-stroke and the underlying mechanism are not clear. Recent evidences demonstrated GRb1 promotes neurotransmitter release through the cAMP-depend protein kinase A (PKA) pathway, which is related to axonal regeneration. The present study aimed to determine whether GRb1 improves long-term motor functional recovery and promotes cortical axon regeneration in post-stroke. Adult male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (dMCAO). GRb1 solution (5 mg/ml) or equal volume of normal saline was injected intraperitoneally for the first time at 24 h after surgery, and then daily injected until day 14. Day 3, 7, 14 and 28 after dMCAO were used as observation time points. Motor functional recovery was assessed with Rota-rod test and grid walking task. The expression of growth-associated protein 43 (GAP43) and biotinylated dextran amine (BDA) was measured to evaluate axonal regeneration. The levels of cyclic AMP (cAMP) and PKA were measured by Elisa, PKAc and phosphorylated cAMP response element protein (pCREB) were determined by western blot. Our results shown that GRb1 treatment improved motor function and increased the expression of GAP43 and BDA in ipsilesional and contralateral cortex. GRb1 significantly elevated cAMP and PKA, increased the protein expression of PKAc and pCREB. However, the effects of GRb1 were eliminated by H89 intervention (a PKA inhibitor). These results suggested that GRb1 improved functional recovery in post-stroke by stimulating axonal regeneration and brain repair. The underlying mechanism might be up-regulating the expression of cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China.
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Weiliang He
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jiamin Li
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Shanshan Wei
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Mengmeng Wei
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Hemei Cui
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| |
Collapse
|
15
|
Chen P, Zhang H, Zhang Q, Zhou W, Deng Y, Hu X, Zhang L. Basic Fibroblast Growth Factor Reduces Permeability and Apoptosis of Human Brain Microvascular Endothelial Cells in Response to Oxygen and Glucose Deprivation Followed by Reoxygenation via the Fibroblast Growth Factor Receptor 1 (FGFR1)/ERK Pathway. Med Sci Monit 2019; 25:7191-7201. [PMID: 31551405 PMCID: PMC6778414 DOI: 10.12659/msm.918626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Disruption of the blood–brain barrier (BBB) is a mechanism in the pathogenesis of traumatic brain injury. Basic fibroblast growth factor (bFGF) is expressed in angiogenesis, neurogenesis, and neuronal survival. This study aimed to investigate the role of bFGF in vitro in human brain microvascular endothelial cells (HBMECs) challenged by oxygen-glucose deprivation/reperfusion (OGD/R). Material/Methods HBMECs were cultured in glucose-free medium and an environment with <0.5% oxygen in an anaerobic chamber. Immunocytochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to measure the protein and mRNA expression levels of bFGF, tight junction, adherens junction, apoptotic proteins, and matrix metalloproteinases (MMPs). The effects of bFGF on the viability of HBMECs was evaluated using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was evaluated using the TUNEL assay, and endothelial permeability was quantified using a transwell migration assay with fluorescein isothiocyanate (FITC) conjugated with dextran. The effects of bFGF were evaluated following inhibition of fibroblast growth factor receptor 1 (FGFR1) with PD173074 and inhibition of ERK with PD98059. Results Following OGD/R of HBMECs, bFGF significantly reduced cell permeability and apoptosis and significantly inhibited the down-regulation of the expressions of proteins associated with tight junctions, adherens junctions, apoptosis and matrix metalloproteinases (MMPs). The effects of bFGF were mediated by the activation of FGFR1 and ERK, as they were blocked by FGFR1 and ERK inhibitors. Conclusions Permeability and apoptosis of HBMECs challenged by OGD/R were reduced by bFGF by activation of the FGFR1 and the ERK pathway.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Hongguang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Qingtao Zhang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Wei Zhou
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Xi Hu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
16
|
Sakai H, Inoue H, Toba T, Murata K, Narii N, Shimmyo Y, Igawa Y, Matsumoto T, Takemoto N. Discovery of 1,2,3-triazole-based fibroblast growth factor receptor modulators. Bioorg Med Chem Lett 2019; 29:2332-2337. [DOI: 10.1016/j.bmcl.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
|
17
|
Wang H, Cheng X, Yu H, Zhang X, Guan M, Zhao L, Liu Y, Linag Y, Luo Y, Zhao C. Activation of GABAA receptors enhances the behavioral recovery but not axonal sprouting in ischemic rats. Restor Neurol Neurosci 2019; 37:315-331. [PMID: 31227671 DOI: 10.3233/rnn-180827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Huibin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hang Yu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Xiuchun Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiting Guan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lanqing Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yifan Linag
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yujia Luo
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
18
|
Affiliation(s)
- David J. Lin
- Center for Neurotechnology and Neurorecovery, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Seth P. Finklestein
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
19
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281:139-177. [DOI: 10.1016/j.jconrel.2018.05.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
20
|
bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis 2018; 9:172. [PMID: 29416039 PMCID: PMC5833346 DOI: 10.1038/s41419-017-0229-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022]
Abstract
Transient global cerebral ischemia (tGCI) is a cerebrovascular disorder that can cause apoptotic neuronal damage and functional deficits. Basic fibroblast growth factor (bFGF) was reported to be highly expressed in the central nervous system (CNS) and to exert neuroprotective effects against different CNS diseases. However, the effects of bFGF on tGCI have not been studied intensively. This study was conducted to investigate the effect of bFGF and its underlying mechanism in an animal model of tGCI. After intracerebroventricular (i.c.v.) injection of bFGF, functional improvement was observed, and the number of viable neurons increased in the ischemia-vulnerable hippocampal CA1 region. Apoptosis was induced after tGCI and could be attenuated by bFGF treatment via inhibition of p53 mitochondrial translocation. In addition, autophagy was activated during this process, and bFGF could inhibit activation of autophagy through the mTOR pathway. Rapamycin, an activator of autophagy, was utilized to explore the relationship among bFGF, apoptosis, and autophagy. Apoptosis deteriorated after rapamycin treatment, which indicated that excessive autophagy could contribute to the apoptosis process. In conclusion, these results demonstrate that bFGF could exert neuroprotective effects in the hippocampal CA1 region by suppressing excessive autophagy via the mTOR pathway and inhibiting apoptosis by preventing p53 mitochondrial translocation. Furthermore, our results suggest that bFGF may be a promising therapeutic agent to for treating tGCI in response to major adverse events, including cardiac arrest, shock, extracorporeal circulation, traumatic hemorrhage, and asphyxiation.
Collapse
|
21
|
Cramer SC. Treatments to Promote Neural Repair after Stroke. J Stroke 2018; 20:57-70. [PMID: 29402069 PMCID: PMC5836581 DOI: 10.5853/jos.2017.02796] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major cause of human disability worldwide. In parallel with advances in acute stroke interventions, new therapies are under development that target restorative processes. Such therapies have a treatment time window measured in days, weeks, or longer and so have the advantage that they may be accessible by a majority of patients. Several categories of restorative therapy have been studied and are reviewed herein, including drugs, growth factors, monoclonal antibodies, activity-related therapies including telerehabilitation, and a host of devices such as those related to brain stimulation or robotics. Many patients with stroke do not receive acute stroke therapies or receive them and do not derive benefit, often surviving for years thereafter. Therapies based on neural repair hold the promise of providing additional treatment options to a majority of patients with stroke.
Collapse
Affiliation(s)
- Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology and Physical Medicine & Rehabilitation, University of California, Irvine, CA, USA
| |
Collapse
|
22
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
23
|
bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms. Mol Neurobiol 2017; 55:3131-3142. [DOI: 10.1007/s12035-017-0544-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
|
24
|
Cramer SC, Enney LA, Russell CK, Simeoni M, Thompson TR. Proof-of-Concept Randomized Trial of the Monoclonal Antibody GSK249320 Versus Placebo in Stroke Patients. Stroke 2017; 48:692-698. [PMID: 28228578 PMCID: PMC5325241 DOI: 10.1161/strokeaha.116.014517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— One class of poststroke restorative therapy focuses on promoting axon outgrowth by blocking myelin-based inhibitory proteins such as myelin-associated glycoprotein. The purpose of the current study was to extend preclinical and clinical findings of GSK249320, a humanized monoclonal antibody to myelin-associated glycoprotein with disabled Fc region, to explore effects on motor outcomes poststroke. Methods— In this phase IIb double-blind, randomized, placebo-controlled study, patients at 30 centers with ischemic stroke 24 to 72 hours prior and gait deficits were randomized to 2 IV infusions of GSK249320 or placebo. Primary outcome measure was change in gait velocity from baseline to day 90. Results— A total of 134 subjects were randomized between May 2013 and July 2014. The 2 groups were overall well matched at baseline. The study was stopped at the prespecified interim analysis because the treatment difference met the predefined futility criteria cutoff; change in gait velocity to day 90 was 0.55±0.46 (mean±SD) in the GSK249320 group and 0.56±0.50 for placebo. Secondary end points including upper extremity function were concordant. The 2 IV infusions of GSK249320 were well tolerated. No neutralizing antibodies to GSK249320 were detected. Conclusions— GSK249320, within 72 hours of stroke, demonstrated no improvement on gait velocity compared with placebo. Possible reasons include challenges translating findings into humans and no direct evidence that the therapy reached the biological target. The antibody was well tolerated and showed low immunogenicity, findings potentially useful to future studies aiming to use a monoclonal antibody to modify activity in specific biological pathways to improve recovery from stroke. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT01808261.
Collapse
Affiliation(s)
- Steven C Cramer
- From the Department of Neurology, University of California, Irvine (S.C.C.); GlaxoSmithKline Research and Development, Research Triangle Park, NC (L.A.E., C.K.R., T.R.T.); PAREXEL International, Durham, NC (C.K.R.); GlaxoSmithKline Research and Development, Stockley Park, United Kingdom (M.S.); and Medpace Inc, Cincinnati, OH (T.R.T.).
| | - Lori A Enney
- From the Department of Neurology, University of California, Irvine (S.C.C.); GlaxoSmithKline Research and Development, Research Triangle Park, NC (L.A.E., C.K.R., T.R.T.); PAREXEL International, Durham, NC (C.K.R.); GlaxoSmithKline Research and Development, Stockley Park, United Kingdom (M.S.); and Medpace Inc, Cincinnati, OH (T.R.T.)
| | - Colleen K Russell
- From the Department of Neurology, University of California, Irvine (S.C.C.); GlaxoSmithKline Research and Development, Research Triangle Park, NC (L.A.E., C.K.R., T.R.T.); PAREXEL International, Durham, NC (C.K.R.); GlaxoSmithKline Research and Development, Stockley Park, United Kingdom (M.S.); and Medpace Inc, Cincinnati, OH (T.R.T.)
| | - Monica Simeoni
- From the Department of Neurology, University of California, Irvine (S.C.C.); GlaxoSmithKline Research and Development, Research Triangle Park, NC (L.A.E., C.K.R., T.R.T.); PAREXEL International, Durham, NC (C.K.R.); GlaxoSmithKline Research and Development, Stockley Park, United Kingdom (M.S.); and Medpace Inc, Cincinnati, OH (T.R.T.)
| | - Thomas R Thompson
- From the Department of Neurology, University of California, Irvine (S.C.C.); GlaxoSmithKline Research and Development, Research Triangle Park, NC (L.A.E., C.K.R., T.R.T.); PAREXEL International, Durham, NC (C.K.R.); GlaxoSmithKline Research and Development, Stockley Park, United Kingdom (M.S.); and Medpace Inc, Cincinnati, OH (T.R.T.)
| |
Collapse
|
25
|
Imaging the Transformation of Ipsilateral Internal Capsule Following Focal Cerebral Ischemia in Rat by Diffusion Kurtosis Imaging. J Stroke Cerebrovasc Dis 2017; 26:42-48. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
|
26
|
Abstract
The application of targeted temperature management has become common practice in the neurocritical care setting. It is important to recognize the pathophysiologic mechanisms by which temperature control impacts acute neurologic injury, as well as the clinical limitations to its application. Nonetheless, when utilizing temperature modulation, an organized approach is required in order to avoid complications and minimize side-effects. The most common clinically relevant complications are related to the impact of cooling on hemodynamics and electrolytes. In both instances, the rate of complications is often related to the depth and rate of cooling or rewarming. Shivering is the most common side-effect of hypothermia and is best managed by adequate monitoring and stepwise administration of medications specifically targeting the shivering response. Due to the impact cooling can have upon pharmacokinetics of commonly used sedatives and analgesics, there can be significant delays in the return of the neurologic examination. As a result, early prognostication posthypothermia should be avoided.
Collapse
Affiliation(s)
- N Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
28
|
|
29
|
Hasbani MJ, Underhill SM, De Erausquin G, Goldberg MP. Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia? Neuroscientist 2016. [DOI: 10.1177/107385840000600208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known of the mechanisms governing functional recovery after ischemic brain injury, and there is no clinical therapy established to restore neurologic function after ischemic injury is complete. Even so, pronounced spontaneous recovery of function is often observed in a subset of patients. Resolution of neurological deficits after ischemia must occur through replacement of lost tissue via production of new neurons, or through changes in the structure, function, or connectivity of surviving neurons. This review focuses on the neuronal synapse as a potential locus for functional recovery. Selective disruption of synaptic elements is a characteristic feature of hypoxic-ischemic brain injury, such as that seen in ischemic stroke or cardiac arrest. Ischemic damage to synapses occurs even in the absence of neuronal loss, and therefore might underlie the clinical disability observed in patients following mild or transient ischemia. We review evidence that recovery of lost synapses occurs after ischemic injury and that this recovery may be a necessary step for restoration of neurological function. The process of synapse loss and recovery can be examined in neuronal cultures and experimental stroke models. Such studies may help to gain a better understanding of the extracellular factors and intracellular cascades that facilitate recovery of synapses, and may result in therapeutic approaches to improve function after cerebral ischemia.
Collapse
Affiliation(s)
- M. Josh Hasbani
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M. Underhill
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel De Erausquin
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Mark P. Goldberg
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res 2016; 8:33-46. [PMID: 27109642 DOI: 10.1007/s12975-016-0467-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine & Rehabilitation, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 210, Orange, CA, 92868-5397, USA. .,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Rd, Irvine, 92697, CA, USA.
| |
Collapse
|
31
|
Liu HS, Shen H, Luo Y, Hoffer BJ, Wang Y, Yang Y. Post-treatment with cocaine- and amphetamine-regulated transcript enhances infarct resolution, reinnervation, and angiogenesis in stroke rats - an MRI study. NMR IN BIOMEDICINE 2016; 29:361-370. [PMID: 26915794 DOI: 10.1002/nbm.3461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/29/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Recent studies have shown that post-treatment with cocaine- and amphetamine-regulated transcript (CART) has neuroregenerative effects in animal models of stroke. The purpose of this study was to characterize CART-mediated neuronal and vascular repairments using non-invasive MRI techniques. Adult male rats were subjected to a 90 min middle cerebral artery occlusion (MCAo). Animals were separated into two groups with similar infarction sizes, measured by T2 -weighted MRI on Day 2 after MCAo, and were treated with CART or vehicle intranasally from Day 3 to Day 12. Diffusion tensor imaging was used to examine changes in plasticity of white matter elements. Susceptibility-weighted imaging (SWI) was used to measure angiogenesis. Post-treatment with CART significantly increased fractional anisotropy (FA) in lesioned cortex on Days 10 and 25 post stroke. A significant correlation between the behavioral recovery in body asymmetry and the change in FA was shown, suggesting that behavioral recovery was associated with reinnervation to the lesioned hemisphere. CART also increased the intensity of SWI and the immunoreactivity of the vascular marker alpha-smooth muscle actin in lesioned cortex. Together, our data support a non-invasive treatment strategy for stroke through angiogenesis and reinnervation by CART. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- H-S Liu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
- Radiogenomic Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Translational Imaging Research Center, Taipei, Taiwan
| | - H Shen
- Synaptic Plasticity Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Y Luo
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - B J Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Research Center, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Y Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
32
|
Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release 2016; 224:165-175. [DOI: 10.1016/j.jconrel.2016.01.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 01/20/2023]
|
33
|
|
34
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
35
|
Young J, Pionk T, Hiatt I, Geeck K, Smith JS. Environmental enrichment aides in functional recovery following unilateral controlled cortical impact of the forelimb sensorimotor area however intranasal administration of nerve growth factor does not. Brain Res Bull 2015; 115:17-22. [PMID: 25889001 DOI: 10.1016/j.brainresbull.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE An injury to the forelimb sensorimotor cortex results in the impairment of motor function in animals. Recent research has suggested that intranasal administration of nerve growth factor (NGF), a protein naturally found in the brain, and placement into enriched environments (EE) improves motor and cognitive function after traumatic brain injury (TBI). The purpose of this study was to determine whether NGF, EE, or the combination of both was beneficial in the recovery of motor function following TBI. RESULTS Uninjured animals had fewer foot faults than injured animals, displaying a lesion effect. Injured animals housed in EE were shown to have fewer foot faults whether or not they received NGF. Injured animals also displayed an increased reliance on the non-impaired limb further validating a lesion effect. CONCLUSION EE is an effective treatment on the recovery of motor function after a TBI. Intranasal administration of NGF was found to not be an effective treatment for functional motor recovery after a TBI.
Collapse
Affiliation(s)
- Jennica Young
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Timothy Pionk
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Ivy Hiatt
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Katalin Geeck
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Jeffrey S Smith
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| |
Collapse
|
36
|
Zhao J, Chen N, Shen N, Zhao H, Wang D, Shi J, Wang Y, Cui X, Yan Z, Xue H. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury. Neural Regen Res 2015; 7:741-8. [PMID: 25737696 PMCID: PMC4345655 DOI: 10.3969/j.issn.1673-5374.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.
Collapse
Affiliation(s)
- Junjian Zhao
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Naiyao Chen
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Na Shen
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Hui Zhao
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China ; Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Dali Wang
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Jun Shi
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Yang Wang
- College of Life Science, Hebei United University, Tangshan 063000, Hebei Province, China
| | - Xiufeng Cui
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Zhenyu Yan
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Hui Xue
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| |
Collapse
|
37
|
Post-hypoxic and ischemic neuroprotection of BMP-7 in the cerebral cortex and caudate-putamen tissue of rat. Acta Histochem 2015; 117:148-54. [PMID: 25577291 DOI: 10.1016/j.acthis.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Previous reports have indicated that exogenous bone morphogenetic protein-7 (BMP-7) has a neuroprotective effect after cerebral ischemia injury and promotes motor function recovery, but the appropriate BMP-7 concentration and time course are unclear. Here, we assessed endogenous BMP-7 expression in hypoxia and ischemia-damaged brain tissues and investigated the effects of different BMP-7 concentrations in pre- and post-hypoxic primary rat neurons. The results showed that BMP-7 expression was significantly higher in the ischemic hemisphere. The expressions of BMP-7 and caspase-3 were localized in the cytoplasm of the primary cerebral cortical and caudate-putamen neurons 24h after hypoxia/reoxygenation. After BMP-7 treatment, the number of caspase-3 positive neurons began to decrease with increasing BMP-7 concentrations up to 80ng/ml, but not beyond. Although the numbers of caspase-3-positive neurons between pre- and post-hypoxia/reoxygenation were not significantly different, more dendrites were observed in the groups treated prior to hypoxia/reoxygenation. These results suggest that increased BMP-7 expression can be induced in the cerebral cortex and caudate-putamen both in vivo and in vitro in hypoxic-ischemic states. The neuroprotective mechanism of BMP-7 may include apoptosis suppression, and its effect was enhanced from 40 to 80ng/ml. Pre-hypoxic BMP-7 treatment may be useful to stimulate dendrite sprouting in non-injured neurons.
Collapse
|
38
|
Abstract
Reorganization of the cortex post stroke is dependent not only on the lesion site but also on remote brain areas that have structural connections with the area damaged by the stroke. Motor recovery is largely dependent on the intact cortex adjacent to the infarct, which points out the importance of preserving the penumbral areas. There appears to be a priority setting with contralateral and ipsilateral motor pathways, with ipsilateral (unaffected hemisphere) pathways only becoming prominent after more severe strokes where functional contralateral (affected hemisphere) pathways are unable to recover. Ipsilateral or unaffected hemisphere motor pathway activation is therefore associated with a worse prognosis.
Collapse
Affiliation(s)
- Robert Teasell
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care and the University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
39
|
Abstract
Impaired motor function after stroke is a major cause of disability in young stroke survivors. The plasticity of the adult human brain provides opportunities to enhance traditional rehabilitation programs for these individuals. Younger stroke patients appear to have a greater ability to recover from stroke and are likely to benefit substantially from treatments that facilitate plasticity-mediated recovery. The use of new exercise treatments, such as constraint-induced movement therapy, robot-aided rehabilitation, and partial body weight supported treadmill training are being studied intensively and are likely to ultimately be incorporated into standard poststroke rehabilitation. Medications to enhance recovery, growth factors, and stem cells will also be components of rehabilitation for the young stroke survivor in the foreseeable future.
Collapse
Affiliation(s)
- Joel Stein
- Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Zorowitz RD, Smout RJ, Gassaway JA, Horn SD. Neurostimulant Medication Usage During Stroke Rehabilitation: The Post-Stroke Rehabilitation Outcomes Project (PSROP). Top Stroke Rehabil 2015; 12:28-36. [PMID: 16698735 DOI: 10.1310/2403-b0cy-1udn-4b6d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motor recovery after a stroke depends upon many upon different modalities. Intensive therapy using compensatory and facilitatory techniques is the primary method to improve movement and function in affected extremities. However, medications used to modulate neurotransmitters may be useful in augmenting therapy approaches. The Post-Stroke Rehabilitation Outcomes Project (PSROP) database was used to describe the frequency of prescribing neurostimulant medications; the types of neurostimulant medications used; and how the use of neurostimulant medications affected rehabilitation length of stay, motor recovery, cognitive recovery, and discharge destination. Of the 1,161 patients in the PSROP database, 929 (80.0%) patients did not receive any treatment with methylphenidate, modafinil, levodopa, amantadine, or bromocriptine. Patients who received neurostimulant medications did not have any more significant changes in length of stay, motor recovery, cognitive recovery, or discharge destination than patients who did not receive neurostimulant medications. Much research needs to be completed before clinicians know precisely whether and how rehabilitation therapies and medications interact to assist in functional recovery.
Collapse
Affiliation(s)
- Richard D Zorowitz
- Physical Medicine and Rehabilitation, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
41
|
Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats. Mol Neurobiol 2014; 52:1245-1256. [DOI: 10.1007/s12035-014-8909-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/28/2014] [Indexed: 01/25/2023]
|
42
|
Hodor A, Palchykova S, Baracchi F, Noain D, Bassetti CL. Baclofen facilitates sleep, neuroplasticity, and recovery after stroke in rats. Ann Clin Transl Neurol 2014; 1:765-77. [PMID: 25493268 PMCID: PMC4241804 DOI: 10.1002/acn3.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.
Collapse
Affiliation(s)
- Aleksandra Hodor
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Svitlana Palchykova
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Francesca Baracchi
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zürich 8091, Zürich, Switzerland
| | - Claudio L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| |
Collapse
|
43
|
Nagaraja TN, Keenan KA, Aryal MP, Ewing JR, Gopinath S, Nadig VS, Shashikumar S, Knight RA. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia. Fluids Barriers CNS 2014; 11:21. [PMID: 25276343 PMCID: PMC4177725 DOI: 10.1186/2045-8118-11-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/19/2014] [Indexed: 12/02/2022] Open
Abstract
Background Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Methods Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. Results The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was significantly larger than the pixels covered by bolus maximum (p = 0.05). Conclusions These results demonstrate that the SDI protocol resulted in a spread of the MRCA beyond the ischemic core. Whether plasma-borne acute stroke therapeutics can be delivered to the ischemic penumbra in a similar way needs to be investigated.
Collapse
Affiliation(s)
- Tavarekere N Nagaraja
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Kelly A Keenan
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Madhava P Aryal
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA ; Present address: Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA ; Department of Physics, Oakland University, Rochester, MI, USA ; Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Saarang Gopinath
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Varun S Nadig
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Sukruth Shashikumar
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Robert A Knight
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA ; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
44
|
Evidence for fibroblast growth factor-2 as a mediator of amphetamine-enhanced motor improvement following stroke. PLoS One 2014; 9:e108031. [PMID: 25229819 PMCID: PMC4168218 DOI: 10.1371/journal.pone.0108031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte-conditioned media. Taken together the present results suggest that noradrenergic activation, when combined with physical therapy, can improve motor recovery following ischemic damage by stimulating the formation of new neural pathways in an FGF-2-dependent manner.
Collapse
|
45
|
PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease. Mol Neurobiol 2014; 51:32-42. [DOI: 10.1007/s12035-014-8750-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
46
|
Goldshmit Y, Frisca F, Pinto AR, Pébay A, Tang JKKY, Siegel AL, Kaslin J, Currie PD. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 2014; 4:187-200. [PMID: 24683512 PMCID: PMC3967535 DOI: 10.1002/brb3.172] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/30/2013] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES A major impediment for recovery after mammalian spinal cord injury (SCI) is the glial scar formed by proliferating reactive astrocytes. Finding factors that may reduce glial scarring, increase neuronal survival, and promote neurite outgrowth are of major importance for improving the outcome after SCI. Exogenous fibroblast growth factor (Fgf) has been shown to decrease injury volume and improve functional outcome; however, the mechanisms by which this is mediated are still largely unknown. METHODS In this study, Fgf2 was administered for 2 weeks in mice subcutaneously, starting 30 min after spinal cord hemisection. RESULTS Fgf2 treatment decreased the expression of TNF-a at the lesion site, decreased monocyte/macrophage infiltration, and decreased gliosis. Fgf2 induced astrocytes to adopt a polarized morphology and increased expression of radial markers such as Pax6 and nestin. In addition, the levels of chondroitin sulfate proteoglycans (CSPGs), expressed by glia, were markedly decreased. Furthermore, Fgf2 treatment promotes the formation of parallel glial processes, "bridges," at the lesion site that enable regenerating axons through the injury site. Additionally, Fgf2 treatment increased Sox2-expressing cells in the gray matter and neurogenesis around and at the lesion site. Importantly, these effects were correlated with enhanced functional recovery of the left paretic hind limb. CONCLUSIONS Thus, early pharmacological intervention with Fgf2 following SCI is neuroprotective and creates a proregenerative environment by the modulation of the glia response.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia ; Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital East Melbourne, VIC, Australia
| | - Frisca Frisca
- Department of Ophthalmology, The University of Melbourne East Melbourne, VIC, Australia
| | - Alexander R Pinto
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Alice Pébay
- Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital East Melbourne, VIC, Australia ; Department of Ophthalmology, The University of Melbourne East Melbourne, VIC, Australia
| | | | - Ashley L Siegel
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| |
Collapse
|
47
|
Tennant KA. Thinking outside the brain: structural plasticity in the spinal cord promotes recovery from cortical stroke. Exp Neurol 2014; 254:195-9. [PMID: 24518486 DOI: 10.1016/j.expneurol.2014.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/02/2014] [Indexed: 11/29/2022]
Abstract
Neuroanatomically connected regions distal to a cortical stroke can exhibit both degenerative and adaptive changes during recovery. As the locus for afferent somatosensory fibres and efferent motor fibres, the spinal cord is ideally situated to play a critical role in functional recovery. In contrast to the wealth of research into cortical plasticity after stroke, much less focus has previously been placed on the role of subcortical or spinal cord plasticity in recovery of function after cortical stroke. Little is known about the extent and spatiotemporal profile of spinal rewiring, its regulation by neurotrophins or inflammatory cytokines, or its potential as a therapeutic target to improve stroke recovery. This commentary examines the recent findings by Sist et al. (2014) that there is a distinct critical period of heightened structural plasticity, growth factor expression, and inflammatory cytokine production in the spinal cord. They suggest that neuroplasticity is highest during the first two weeks after stroke and tapers off dramatically by the fourth week. Spinal cord plasticity correlates with the severity of cortical injury and temporally matches periods of accelerated spontaneous recovery of skilled reaching function. The potential of treatments that extend or re-open this window of spinal cord plasticity, such as anti-Nogo-A antibodies or chondroitinase ABC, to dramatically improve recovery from cortical stroke in clinical populations is discussed.
Collapse
Affiliation(s)
- Kelly A Tennant
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
48
|
Sreenivasan AK, Bachur CD, Lanier KE, Curatolo AS, Connors SM, Moses MA, Comi AM. Urine vascular biomarkers in Sturge-Weber syndrome. Vasc Med 2014; 18:122-8. [PMID: 23720035 DOI: 10.1177/1358863x13486312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sturge-Weber syndrome (SWS) consists of a capillary-venous vascular malformation of the brain, skin and eye. Urine vascular biomarkers have been demonstrated to be abnormal in other vascular anomalies and to correlate with clinical severity and progression. The current study investigated the use of urinary matrix metalloproteinase (MMP)-2, MMP-9, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) levels to non-invasively monitor the progression of SWS. Fifty-four urine samples were collected from patients seen at the Hunter Nelson Sturge-Weber Center at Kennedy Krieger Institute. Urine was analyzed for MMP-2, MMP-9, VEGF and bFGF levels and correlated with clinical outcome at the time of urine collection (n = 48) and 1 year following urine collection (n = 22). Analysis revealed that MMP-2 (p = 0.033) and MMP-9 (p = 0.010) were significantly more likely to be present in the urine of SWS subjects compared to controls and that bFGF was significantly more likely to be present at abnormal levels (p = 0.005). MMP-2 correlated with a more severe clinical score at the time of urine collection, while both MMP-2 and MMP-9 levels correlated with greater disease severity at time of collection. bFGF levels correlated with improved clinical score 1 year after urine collection. These results suggest that MMP-2 and MMP-9 levels may be useful in assessing SWS progression, as well as indicating which patients might benefit from more aggressive treatment, while bFGF levels may be useful in judging the efficacy of neurologic treatment in SWS.
Collapse
Affiliation(s)
- Aditya K Sreenivasan
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Liu Y, Yi XC, Guo G, Long QF, Wang XA, Zhong J, Liu WP, Fei Z, Wang DM, Liu J. Basic fibroblast growth factor increases the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol Med Rep 2013; 9:333-9. [PMID: 24248266 DOI: 10.3892/mmr.2013.1803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) has proven useful for neural stem and progenitor cells during the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells (BMSCs). Endogenous bFGF expression levels increase during brain development and gradually diminish with aging. To date, few studies have been conducted on exogenous bFGF promoting BMSC transplantation‑mediated functional recovery in adult rats following traumatic brain injury (TBI). The results of the present study showed that BMSCs in the TBI cortex and dentate gyrus showed differentiation along the glial and neuronal lines, which are possibly enhanced by bFGF. The neuronal differentiation rate was not consistent with neurological functional recovery rate over time. bFGF may promote the transplantation‑mediated therapeutic effect of BMSCs more significantly and rapidly in rats following TBI, with a small proportion of differentiated neurons. In conclusion, exogenous bFGF functions as a booster of the transplantation‑mediated therapeutic effect of BMSCs following TBI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, The Third Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kobayashi T, Kawamata T, Mitsuyama T, Hori T. Modified permanent middle cerebral artery occlusion rat model aiming to reduce variability in infarct size. Neurol Res 2013; 29:884-7. [PMID: 17803841 DOI: 10.1179/016164107x228651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In animal cerebral infarct experiments, the most important aspect is to produce consistent infarct size and localization. In an attempt to improve the conventional middle cerebral artery (MCA) coagulation technique, we developed a new animal model using a microclip to reduce variability in infarct size. Male Sprague-Dawley rats were subjected to right MCA occlusion. The animals were divided into two groups; conventional MCA occlusion group (Group 1; n = 9) and modified clip occlusion group (Group 2; n = 9). In Group 2, the proximal portion of MCA was occluded by applying a small clip just proximal to the olfactory nerve, and the MCA from the clipped position to the position just proximal to the level of the inferior cerebral vein was electrocoagulated using a bipolar diathermy in the same manner as in Group 1. In other words, the only difference between these two groups was the manner of occlusion of the most proximal portion of the MCA. Rats were killed 24 hours after the stroke-inducing surgery, and infarct volume was determined by an image analysis program following staining with 2,3,5-triphenyltetrazolium chloride. The cortical infarct volumes were 51.0 +/- 13.8% in Group 1 and 46.3 +/- 6.2% in Group 2. The scattering of cortical infarct volume was significantly small in Group 2 (p=0.0176). The differences in scattering of striatal and total infarct volumes did not reach statistical significance. The present results demonstrated that the new MCA occlusion model using a clip significantly reduces the variability in cortical infarct volume, solving the problems of the model using coagulation alone. That permanent MCA occlusion model using a clip is an excellent method that produces more consistent and reproducible infarction.
Collapse
Affiliation(s)
- Tomonori Kobayashi
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | |
Collapse
|